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Abstract
Let Q™! denote the family of regular Sasakian manifolds whose baseifoid
M?M is a compact symmetric space. We provide a classificatiorn@ftatally geo-
desic submanifolds o®™+* which are invariant, anti-invariant of maximal dimension
or contact CR with respect to the Sasakian structure. Sulimanifolds are closely
related to complex and totally real totally geodesic subifoais of the Hermitian
symmetric spacevi®™.

1. Introduction

Totally geodesic submanifolds of a Riemannian manifold ar&undamental ob-
ject of study in submanifold geometry, generalizing the dgsics of the manifold to
higher dimensional submanifolds. Their classification dogiven manifold is a central
problem and examples of totally geodesic submanifolds apdicitly known in some
very special cases. For space forms all totally geodesicnanliolds were classified
by Cartan (see [1] for an overview). The classification i dlmctable in the case of
symmetric spaces. Here the classification is equivalenfié¢cctassification of Lie triple
systems, which is an algebraic problem. All the totally gexid submanifolds of non-
spherical rank one symmetric spaces were classified by V#8f §nd [14]; we note
that they are all distinguished with respect to the natyrdéfined geometric structures.
For example, in quaternionic projective spdfié®" the maximal totally geodesic sub-
manifolds areHP"™ ! and CP". The first is quaternionic, i.e. invariant under a local
sectionJy, J,, J3 of the quaternionic-Kahler structutg, and the second is totally com-
plex with respect to one of the local sections, Jg(TpS) C T,S and J(TpS) C vp(9),
the normal bundle ofS, for i = 2, 3 and all pointsp € S. In recent years the clas-
sification has been completed in the rank two case by Kleie (8¢ [7], [8] and
[9]), who found an error in the previous classification ofatlyt geodesic submanifolds
in compact rank two symmetric spaces due to Chen and Nagama. deries of pa-
pers he resolved the errors and the classification is nowrtigdte Aside from two
exceptional examples and one exceptional family (none dthvlare maximal unless
the ambient symmetric space has dimension four) all of thessomplex two-plane
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Grassmannians are again distinguished with respect toatisrai geometric structures
(the complex structure] and the quaternionic-Kéhler structugg). Hence, for sym-
metric spaces with additional geometric structures it ipanant to study the totally
geodesic submanifolds which respect these structures.

The other fruitful field of study has been Hermitian symnmespaces i, J). Most
known examples here are either totally real (i.e. oe I'(T 9, J X € ['(v(9))) or else
complex (i.e.JX € (TS for X € I'(TS). Complex totally geodesic submanifolds
are completely classified in Hermitian symmetric spaces wua theorem of lhara
[10]. Leung's work [11] provides a classification of all rfarms of Hermitian sym-
metric spaces (i.e. totally real, totally geodesic subiadois S of M with dimg(S) =
dimc(M), but in general totally real totally geodesic submani$olte more difficult
to understand.

Sporadic new examples have been recently found in other s§rmurspaces, and
there has been progress on the classification of such sufwidsn{see [7] for a sur-
vey). There has been no progress at all to date on the classificof totally geo-
desic submanifolds for non-symmetric spaces, as the egisdchniques which reduce
it to an algebraic problem do not generalize. This paper doreddress this deficit by
investigating regular Sasakian manifol@"** (which are circle bundles over Hermit-
ian manifolds) whose bas®I?™ is also a symmetric space. Hence their base space
is a Hermitian symmetric space, and all real forms and comfatally geodesic sub-
manifolds in the base space are known. The totally geodegimanifolds of Q™+!
which satisfy similar geometric conditions to those of Hgtaeal and complex sub-
manifolds in Hermitian symmetric spaces are classified ia gaper. Q™! does not
have a complex structure, but it does have a Sasakian gsteugturhe analogous class
of submanifoldsS ¢ Q™*! which respect this structure are those which are invariant
(i,e. for X e I(TS), ¢(X) e I'(TY) and those which are anti-invariant (i.e. fof
(T, ¢(X) € T'(v(9), the normal bundle ofS). The third distinguished family of
submanifolds that have been investigated are contact CRiamifolds. We define a
submanifoldS ¢ Q™! to be contact CR if there exists a distributi@ of non-zero
dimension such that there is a decomposition

TS={UleDaeD*

with (D) = D and ¢(D+) € v(S), the normal bundle ofS. Here {U} denotes the
distribution spanned by the Killing vector field tangential to the fibres of the sub-
mersion. Our objective is to establish:

Theorem. Let 7: (Q™?, ) — (M?™, J) denote the canonical submersion from
a regular Sasakian manifold to a Hermitian symmetric space.
e S is an invariant totally geodesic submanifold of"@ if and only if it is locally
isometric tor~(P), where P is a complex totally geodesic submanifold of"M
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e S is an anti-invariant totally geodesic submanifold of"@ of maximal dimension
m if and only if it is locally isometric toH, where H is a horizontal lift of a real
form of MP™,

e There are no contact CR submanifolds of@ which are totally geodesic.

If we assume further thab is a closed submanifold it is easy to extend this local
classification to deduce that 8 is invariant it is isometric tor~*(P) for P a closed to-
tally geodesic complex submanifold &12™. If Sis anti-invariant the horizontal lifH
might not patch together to give a closed submanifold)f™, so one can only con-
clude that it is locally isometric to a horizontal lift of treame totally real, totally geo-
desic submanifold oM?2™. Applying the work of lhara mentioned above together with
this result yields an explicit classification for invariatbmanifolds. Leung’s work im-
plies that the anti-invariant totally geodesic submaudi$obf Q™! of maximal dimen-
sion m are also classified as a corollary of this theorem.

For symmetric spaces of low rank, specifically of rank onevaw, tthere are com-
plete explicit classifications of totally geodesic subrfialds [13], [7], and one may eas-
ily read off from this a list of real forms and complex totatjpodesic submanifolds. In
these cases, the theorem yields an explicit list of the iamdrandm-dimensional anti-
invariant totally geodesic submanifolds of the correspogdegular Sasakian manifolds.
As an illustration of this, consider the case SUM + 2)/SUM)SU(2) — G,(C™*?),
m > 3, where the base space is the complex two-plane Grassmainiank-two sym-
metric space. From the list in [7] there are three familiesabmanifolds in the first
class, namelyr ~*(P) whereP is isometric to a neighbourhood @‘P{, G»(C'*?), where
in both cases k | < n, and finallyCP}* x CP}?, wherel; + |, = m. There is also an
exceptional example, wher is isometric to a neighbourhood of ay (R®). For the
second classSis a horizontal lift of a real form of the base space. Thesdaually iso-
metric to one of RP", RP[} . RP[},, CP[), HP[}, Go(R™?), or RP}' x RP}? where
[ + 1, = m. The subscripts here refer to nonstandard scalings of theanee refer the
reader to [8] for explanations of this notation and furthetadls.

This work was undertaken as part of a Ph.D. under the supamved Prof Jirgen
Berndt at University College Cork, Ireland. The author #tehim and Sebastian Klein
for their helpful comments. The author was supported in therse of this research
by a postgraduate fellowship of the Irish Research Couraril Science, Engineering
and Technology.

2. Proof of main result

To begin, well-known facts about the geometry of regularakas manifolds are
briefly summarized. A good general reference is [4]. M&" denote a compact Hermit-
ian symmetric space, whefe is the identity component of the full isometry group. This
is a connected semisimple Lie group. The stabilikehas one-dimensional centel,
and soK is diffeomorphic toHU;. The homogeneous spa@™+! = G/H is a regular
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Sasakian manifold of dimensiom®2+ 1 and the canonical projection: Q — M is the
corresponding Riemannian submersion withfibres. This paper is concerned with the
geometry of the submanifolds @™**.

The metric( -, -) is invariant along the fibre of the circle bundle. Denote the
corresponding Killing vector field oQ™! by U, whose value ap is denotedU (p).
There is a foliationF on Q™*! induced by the flow of the unit Killing vector field
U and the maximal integral curves bf are closed geodesics @M1, F is a totally
geodesic Riemannian foliation 0™+, with Q™*1/F isometric to M2™, J). Setting
¢ == —VU, whereV denotes the Levi-Civita connection oQ{*%, (-, -)), we also have
that @, U, (-, U)) is a Sasakian structure d@™**, and it is related to the complex
structure on the base space by the fundamental formula

(2.1) I, = me.

Define the horizontal distributioft{(p) := {X € T,Q™*: (X, U(p)) = 0}. Then we
note without proof thatp(#) C H and ¢?(X) = —X + (X, U)U (see [4]). Moreover,

(0(X), 9(Y)) = (X, Y) = (X, U){Y, U).

It follows from this that that(p(X), Y) = —(X, ¢(Y)) if one of X,Y € I'(H). We are
now ready to prove the theorem.

Proof. LetS be a totally geodesic submanifold iQ{+*, g) of dimensionn. We
will work in a neighbourhoodW of a pointq € S in what follows. Suppose further
that S is an invariant or anti-invariant submanifold ™** that is not in one of the
following two families:

(1) U(p) € TpSfor all pe W, or else

(2) U(p) L T,Sforall pe W,

i.e. U(p) is neither perpendicular to nor contained TpS for all p € W. Choose a
local framing of Q™! constructed in the following manner. At each poipte W,
Ulrs(p) := U(p)|r,s denotes the vector field obtained by projectidgat each point

p € S to the vector subspac&,S. Multiply U|rs by the function f € C*(W) so
that || f(p)U|rs(p)l| = 1 and setX(p) = f(p)U|rs(p). Then choose an orthonormal
framing of TSw: {X, Y1, ..., Yn_1} where by constructiorY; € I'(*{). The notation
(T 9|w will denote the restriction of the vector field ¥, so that on all pointg €

W, X(q) € T4S, etc. SinceU ¢ I'(T §|w there is also a nonzero orthogonal projection
at each pointp to the normal bundle,(S) which is again normalized to give a unit
normal vector field called;. Then complete our framing by choosing an orthonormal
frame field ofv(S)|w: {&1,...,Em-n}. By our choice of framing orw we also have that

(2.2) U(p) = f1(p)X(p) + f2(p)é1(p)

for nonzero functionsf,, f, € C*°(W). By re-choosing a smaller neighbourhotd
of p if necessary, both functions may be chosen to be nonzerol @bmits p € W.
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Observe thatip(Y), U) = —(VyU, U) = 0 so, from Equation (2.2)

—fa(p)
f1(p)

Assume now thatS is anti-invariant of dimensiom = m. From the factp(X) =
—(fa(p)/ f1(P))e(&1) it follows also thatp(X) L & and so

(2.3) (oY), X) = (o(Yi), &1).

(p(x) € Spar{$21 RN 5m},

where the framing is chosen by settifg = ¢(Yj_1), ] > 2. But (¢(X), &) =
(0(X), o(Yj-1)) = (—¢*(X), Yj-1), becauseY;_; € H. This is (X — f;U, Yj_1) which
is zero by construction. Hengg(X) € I'(T 9, contrary to assumption. It follows from
Equation (2.3) alone th&b cannot be invariant for alh. If it were, then(p(X),Y;) # 0
for at least onej > 1 and then applying Equation (2.3) leads to an immediate
contradiction.

The upshot of this is that there are exactly two possibditie
(1) U eI (T 9w, or else
2) UeT@w9lw-
In Case (1),U(q) € T4S and soU(p) € T,S for all p € W. Otherwise, at some point
0o we would haveU ¢ Tq,S. But then, repeating the same argument as above at the
point go, since we are not in Case (1), a&dis totally geodesic, Case (2) holds Gt
so U € vg,(S). Connectingg and g by a path¢, let U’ be the orthogonal projection
of U onto T §y. Case (1) mean$U’|| = 1, Case (2) meangU’|| = 0. For continuity
reasons, the continuous functigiy’|: S — R cannot jump from being 1 to being 0
as one travels along, so S cannot jump from being in Case (1) to being in Case (2).

For Case (1), the fact thdtl € I'(T §|w implies thatz(S)|w is a submanifold
of M. This follows from the equationr.[X, Y] = [X, Y] o = for basic lifts of two
vector fieldsX, Y € I'(Tx(9)), the Frobenius theorem and the f&&tc Q. Choosing
n to be a unit normal vector field t§, n € I'(H) and so induces a unit normal vector
field 7.n on 7 (9)|w, and every unit normal vector field arises that way. The nep s
is to establish thair(S) is totally geodesic. If it were not, then there would exiats
vector field B € I'(Tx(S)) such thatV¥é = AB with A # 0, where¢ € v(Tx(9) is
a unit normal vector field. Her&™ denotes the Levi-Civita connection for?™ and
similarly V® denotes the Levi-Civita connection ™. But then by the fundamental
equations for a Riemannian submersion

Qz _ 1 p ONE
VOE =B+ AQVE

where AN is the O’Neill tensor for a Riemannian submersi@ denotes the horizon-
tal lift of B, and£ is the horizontal lift of¢. & is a unit normal vector field t&®. By
definition A°N takes values in the tangent space to the fibres, so the veetds n
the right hand side are normal to each other. The fagt 0 would contradict the fact
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S is totally geodesic and heneg(S) is totally geodesic. Sincel € TS for all p e W,
therefore the integral curves &f (which are the fibres of the submersion) areTyt
and sor1(z(S)) = S on W. Now it is well-known that for a Riemannian submer-
sionz: Q- M and P C M a totally geodesic submanifold of the base spktethen
771(P) is totally geodesic if and only if

ONg __
ANE =0,

for Z a horizontal lift of a vector fieldZ tangent toP and& a horizontal lift of a unit
vector fieldé normal to P. See [5], Theorem 2.9 for a proof of this. Calculating the
scalar component of this tensor gives

1 - - 1 _ B 1 . ]
32, 8,0) = 5(VEE - v7Z,U)) = 5(VEE V) - (v3Z.U)
= (. V2U) - (2, V) = . 0@

using the facts thap is skew-symmetric and, & € Hq for all pointsg € W. Hence it
vanishes if and only ifp(TS C TS and from Equation (2.1) it follows that it vanishes
if and only if P C M is complex. This proves the first case of the theorem.

The classification of all examples which fall into Case (2)ais elementary ap-
plication of a theorem of Reckziegel [12], who showed thabrie has a Riemannian
submersionz: Q — M from a Sasakian manifold@ to a Kahler manifoldM then
every horizontal submanifoldi corresponds (under the map) to a totally real sub-
manifold H in M, and vice versa. Moreover, the the second fundamental forms a
related by the formula

aH = TT:0g.

It is immediate from this thaH is totally geodesic if and only ifH is and hence
H c Q™! is totally geodesic if and only if it is a horizontal lift of atally geodesic
totally real submanifold.

Finally, supposeS C Q™! is a contact CR totally geodesic submanifold, and choose
a neighbourhoodV of a pointp € S. Recall thatT S= {U} @ D & D*. Hence any CR
contact submanifold would falls into class 1 by definitiort.h&s already been shown
that the only totally geodesic submanifolds in the first case invariant, so it follows
that there are no totally geodesic contact CR submanifdid®" . O

In general it is more difficult to classify the totally realtsnanifolds of a Hermit-
ian symmetric space than the complex ones, as Leung’s warktriites. The the-
orem above actually classifies all anti-invariant subnd# of maximal dimension
which fall into class 1 or 2, so it would be of interest to stutipse which are not in
these classes.
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REMARK. A theorem in [15] was brought to our attention after this kvevas

completed. Here the following result is proven: et Q — M be the usual fibering
from a (2n + 1)-dimensional Sasakian manifol@ to a 2n-dimensional Kéhler mani-
fold M. Let S be an (n + 1)-dimensional invariant submanifold @ and N be an
m-dimensional complex submanifold &fi such thatz(S) = N. Then S is totally geo-
desic inQ if, and only if, N is totally geodesic inVl. Our result agrees with theirs in
the invariant submanifold case, but is stronger as we hawarstihat the hypothesis
that the projection of the invariant submanifold to the bapace be a complex sub-
manifold and the restriction on the dimensions of the subfolas may be removed,
as well as actually classifying the various possibilities §.
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