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Abstract

We construct moduli spaces of weighted pointed stablematiourvesMg . with
symmetric weight data by the GIT quotient of moduli spacesvefghted pointed
stable mapsMo (P, 1). As a consequence, we prove that the Knudsen—Mumford
spaceMg, of n-pointed stable rational curves is obtained by a sequencexpii-
cit blow-ups from the GIT quotientP()"//SL(2) with respect to the symmetric lin-

earizationO(1, . .., 1). The intermediate blown-up spaces turn out toNbg,. for
suitable ranges oé. As an application, we provide a new unconditional proof of

M. Simpson’s theorem about the log canonical modelsvig,.

1. Introduction

Recently there has been a tremendous amount of interese ibirtiitional geometry
of moduli spaces of stable curves. See for instance [2, 41,712, 16, 20] for the
genus 0 case only. Most prominently, it has been proved in [20# that the log
canonical models forl\Zloyn, Ko, T aD), where D is the boundary divisor and is
a rational number, give us Hassett’s moduli spabks,. of weighted pointed stable
curves withsymmetricweightsn-€ = (e, ..., €). See 8§2.1 for the definition o¥lg ..
and Theorem 1.2 below for a precise statement. The purpofi@sopaper is to prove
that all the moduli spacek?loyn.g can be constructed by the GIT quotient of the moduli
spacesMg . (P, 1) of weighted pointed stable maps Bd of genus zero and degree
one (83). Also, from an explicit blow-up construction b, (P*, 1) explained in §3,
we deduce thaMy . is obtained by a sequence of explicit blow-ups from the GIT
quotient P1)"//SL(2) with respect to the symmetric linearizati@d(1, ..., 1) where
SL(2) acts on P1)" diagonally. More precisely, we prove the following.

Theorem 1.1. (i) With respect to the linearization described explicitly §4,

@) Mon.(P*, 1)//SL(2) = Mop..
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(i) There is a sequence of blow-ups
(2) Mo,n = |\7|O,n-em,2 - Mo,n-em,g —> > Mo,n-el - (Pl)n//SL(z)

where m= [n/2] and1/(m+ 1—k) < ex < 1/(m—Kk). Except for the last arrow when
n is even the center for each blow-up is a union of transversal smoathvarieties
of same dimension. When n is eyvéime last arrow is the blow-up along the singu-
lar locus which consists o¢1/2)(r?1) points in (P1)"//SL(2). More precisely Mg ., is
Kirwan's desingularization(see[15]) of the GIT quotieni(P)?™//SL(2).

If the center of a blow-up is the transversal union of smoaibvarieties in a
nonsingular variety, the result of the blow-up is isomoepkd that of the sequence
of smooth blow-ups along the proper transforms of the ircdzla components of the
center in any order (see 82.3). So each of the above arrowbeatecomposed into
a composition of smooth blow-ups along the proper transfoofthe irreducible com-
ponents. The fact that the reduction morphiis}ra,n_Ek — Mo,n.gkfl is a composition of
smooth blow-ups&long smooth centergs mentioned in several papers ([7, Remark 4.6]
for some special cases, and [20, Section 3]). But there isrnofpmbout this “folk-
lore” in the literature. Actually, this fact, especiallyetiiransversality of the blow-up
centers is nontrivial and indeed somewhat delicate. Theoreas that in contrast to
the Mo, the boundary divisors and the closures of topologicaltatd not intersect
transversally in|\7loyn.g, so we have to select the order of blow-ups carefully. The no-
tion of the transversal intersection is much more stronpan tthe statement that the
intersection is a smooth variety. See 82.3 for related defird. So the authors be-
lieve that it should be proved rigorously. In this paper, wevile a detailed proof.
This proof justifies the pull-back formulas in Lemma 5.3 ahd blow-up formula for
the canonical divisor in Lemma 5.5.

For the Mori theoretic approach to the birational geometryMy,, one of the
most prominent results is the following theorem of M. Simp$2@].

Theorem 1.2. Let o be a rational number satisfying/(h — 1) < « <1 and let
D = Mo, — Mo, denote the boundary divisor. Then the log canonical model

Mon(@) = Proj(EB HO(Mon, O(ll (K, + aD)J)))

>0

satisfies the following

Q) IF2/(m—k+2)<a<2/(m—k+1)for 1 <k <m-2, then Mon() = Mone,.
(2) If 2/(n—1) <a < 2/(Mm+ 1), then Mo () = (PY)"//SL(2) where the quotient is
taken with respect to the symmetric linearizatiol, . . ., 1).

Simpson proved this theorem assuming Fulton’s conjectdreere are already
two different unconditional proofs of Theorem 1.2 by Alexeev—Swinarski [2] and by
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Fedorchuk—Smyth [4]. See Remark 5.13 for a brief outline h&# two proofs. The
essential part of all known proofs is proving the amplenekssestain divisors on
Mon @s shown by Simpson [20]. Alexeev and Swinarski proved it @ving:
(1) Prove the nefness of the divisors by expressing them agiy@linear combina-
tions of several nef divisors arise from the GIT quotients.
(2) Reduce the proof of ampleness to a combinatorial prolidgnusing a theorem of
Alexeev ([2, Theorem 4.1]) comes from the general theoryh&f moduli spaces of
weighted hyperplane arrangements.
As an application of Theorem 1.1, we give a quick direct probthe ampleness result
from step (1).

It is often the case in moduli theory that adding an extracétine makes a problem

easier. A morphismf : (C, p1,..., pn) = X from a pointed rational nodal curv@ to
a nonsingular projective varietX is calledn - §-stable mapif

i. all marked pointspy, ..., py are smooth points o€;

i if p,=---=p forig,...,ij €l C{1,2,...,n}, thens-|I| =1

ii. wc+8Y,; piis f-ample.
There exists a proper moduli stadkons(X, 8) parameterizingn - §-stable maps toX
with f,[C] = B € Hx(X, Z) ([1, Theorem 1.9]).

Now, suppose thatX = P! and 8 = 1 € Hy(P!, Z) = Z. Then the condi-
tions ii. and iii. are equivalent to the following more irtiue conditions.
iv. no more than|1/§| of the marked point9s, ..., pn can coincide;
v. any ending irreducible compone@t of C which is contracted byf contains more
than [1/§] marked points;
vi. the group of automorphisms & preservingf and p; is finite.
A. Mustag and A.M. Musta called that a pointed nodal curv€,(py, ..., pn) Of
genus 0 together a degree 1 morphi$mC — P! as ak-stable pointed parameterized
rational curveif it satisfies i., iv., v. and vi. fok = n—[1/8], or equivalently, 1(n—
k+1) <8 <1/(n—k). Moreover, they proved the following in [18] (in terms of madd
spaces ok-stable pointed parameterized rational curves).

Theorem 1.3([18, 81]). Let ¢ be a rational number satisfying/(n —k + 1) <
8k < 1/(n—K). Let R = Mons (P, 1). Then K is a fine moduli space of 16-stable
maps. Furthermorethe moduli spaces (it into a sequence of blow-ups

(3 Mon1(Pt, 1) = Frz Jog, Frs ML GRLY Fy X Fo = (PY)"

whose centers are transversal unions of smooth subvagietie

The first termMg ,1(P?, 1) is the moduli space of ordinary stable maps. It is iso-
morphic to the Fulton—MacPherson compactificat®tn] of the configuration space
of n points in P! constructed in [5] ([18, p.55]). The blow-up centers are$reersal
unions of smooth subvarieties and hence we can further demseneach arrow into
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the composition of smooth blow-ups along the irreduciblenponents in any order.
This blow-up sequence is actually a special case of L. Liduative construction of a
wonderful compactificatiomf the configuration space and the transversality of various
subvarieties is a corollary of Li's result [16, Propositi@r8]. (See §2.3.) The images
of the blow-up centers are invariant under the diagonabaatif SL(2) on ()" and so
this action lifts toFy for all k. The aim of this paper is to show that the GIT quotient
of the sequence (3) b$L(2) gives us (2).

To make sense of GIT quotients, we need to specify a lindaizaf the ac-
tion of G = SL(2) on K. For Fy = (PY)", we choose the symmetric linearization
Lo = O(1,...,1). Inductively, we choosey = ¥Ly1 ® O(—axEx) where Ey is
the exceptional divisor offy and O< a K a1 < -+- K a1 K 1. Let Fg° (resp. FY)
be the semistable (resp. stable) partFpfwith respect toLy. Then by [15, §3] or [8,
Theorem 3.11], we have

@) U (R € R C R C Y (REy).
In particular, we obtain a sequence of morphisms

Vi Fe//G = Fi1//G.

It is well known that a point Xy, ..., X,) in Fo = (P1)" is stable (resp. semistable)
if > [n/2] points (resp.> [n/2| points) do not coincide ([17, 14]).

Let us first consider the case wherds odd. In this caseF; = F3° becausen/2
is not an integer. Henc&? = F2° for any k by (4). Since the blow-up centers @iy
for k < m+ 1 lie in the unstable part, we havg; = F§ for k < m + 1. Further-
more, the stabilizer group of every point i is {£1}, i.e. G = PGL(2) acts freely
on F¢ for 0 <k <n—2 and thusF//G = FZ/G is nonsingular. By the stability con-
ditions, forgetting the degree 1 morphisin C — P! gives us an invariant morphism
FS mik = Mon.e Which induces a morphism

#x: Foomik//G — Mone for k=0,...,m—2.

Since both varieties are nonsingular, we can conclude ¢hat an isomorphism by
showing that the Picard numbers are identical. By the difimiof ¢ and 8¢ in The-
orem 1.1 and 1.3,

Mo,n-ek(Pll 1)//G = Mo,n-sn,mk(Pla 1)//G = Fn7m+k//G,

thus we get the first part of Theorem 1.1. Sireacts freely onF$ ., the quotient

of the blow-up center of/,_mik+1 IS again a transversal union ()Iﬂlk) smooth vari-

etiesEns_mk//G for a subsetS of {1,...,n} with |S| = m—k. Finally we conclude that

“a -(/;n*m T
Pk - MO,n-ek = Foomk//G —+k> Foomik-1//G = MO,n-ek,l
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is a blow-up by using a lemma in [15] which tells us that quatiand blow-up com-
mute in some sense. (For more precise statement, see 8R.R.)straightforward to
check that this morphismpy is identical to Hassett's natural morphisms (§2.1). Note
that the isomorphism

bm_2: Mona(PL, 1)//G = PY[n]//G = Mo

was obtained by Hu and Keel ([10]) whenis odd becausé is atypical linearization
in the sense thak$® = F3. The above proof of the fact thgi is an isomorphism in
the oddn case is essentially the same as Hu—Keel's. However theihadetdoes not
apply to the even degree case.

The case where is even is more complicated becausg® # F? for all k. Indeed,
Fm//G = --- = Fo//G = (P1)"//G s singular with exactly (12)(;) singular points.
But for k > 1, we proved that the GIT quotient &,_mx by G is nonsingular by using
Kirwan’s partial desingularization of the GIT quotieRf_m,«//G ([15]). Fork > 1, the
locus Y, _mk Of closed orbits inF3S . —F5 .., is the disjoint union of the transver-
sal intersections of smooth diviso& .., and =¥ | whereSUS® ={1,...,n} is a
partition with |S| = m. In particular,Y,_m.k is of codimension 2 and the stabilizers of
points inY,_m.k are all conjugates o€*. The weights of the action of the stabilizer
C* on the normal space t¥,—-m+x are 2,—2. By Luna’s slice theorem ([17, Appen-
dix 1.D]), it follows that F,_mik//G is smooth along the divisoY,_mk//G. If we let

Fnomik — F35.. be the blow-up ofF3S .. along Yn_mik, FS5.. = FS ..., and
Fnom+k//G = FS_..,,/G is nonsingular. Since blow-up and quotient commute (§2.2),

the induced map
'fn—m+k//G — Fnomik//G

is a blow-up alongY,_m+k//G which has to be an isomorphism because the blow-up
center is already a smooth divisor. So we can BE§e,,, instead ofF3S_ ., and apply
the same line of arguments as in the odd degree case. In tjisweacan establish
Theorem 1.1.

To deduce Theorem 1.2 from Theorem 1.1, we note that by [2@pl@oy 3.5], it
suffices to prove that(,\;h)vn_sk + aDy is ample for 2Z(m—k+2) <a <2/(m—k + 1)

where Dy = Mone, — Mo, is the boundary divisor oMg ., (Proposition 5.6). By
the intersection number calculations of Alexeev and Swekiaf{2, §83]), we obtain the
nefness ofK,\;,o‘n_ek + oDy for « = 2/(m — k + 1) + s for some (sufficiently small)
positive numbers. Because any positive linear combination of an ample divisa a
nef divisor is ample, it suffices to show thls(t,\;,omk + a Dy is ample fore = 2/(m —

k + 2) + t for any sufficiently smallt > 0. We use induction ok. By calculating the
canonical divisor explicitly, it is easy to show whdén= 0. Becausey is a blow-up
with exceptional divisoDy"***, ¢ (Kyy,,  +aDi-1) —8DF ¥+ is ample for small
§>0if KMo,n.ék,l + aDy_1 is ample. By a direct calculation, we find that these ample
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divisors give usK i, .., + @Dk with « = 2/(m—k + 2) +t for any sufficiently small
t > 0. So we obtain a proof of Theorem 1.2.
For the moduli spaces afnorderedweighted pointed stable curves

Mo,n-ek = Mo,n-ek/%

we can simply take the&s, quotient of our sequence (2) and thl\?ti),n.ek can be con-
structed by a sequence wfeighted blow-upgrom P"//G = ((P1)"//G)/S,. In partic-
ular, l\7I0,n.E1 is a weighted blow-up ofP"//G at its singular point whem is even.

In the previous version of this paper, as another applinatib Theorem 1.1, we
gave an explicit basis dhtegral Picard group ofMg .. It comes from a study of the
Picard group of P1)"//G by using descent lemma ([3]) and the blow-up formula ([6,
11.8. Exercise 5]). But it seems that we have no practical ofs¢his basis yet, so we
omit this computational result.

After completing this paper, we noticed that there is anotthescription of the
morphismz: Mg, — (P1)"//SL(2) by Hu ([9]) via symplectic reduction. He showed
that in analytic categoryy is a composition of blow-ups and (ifP¢)"//SL(2) is sin-
gular) a resolution of singularities. However there is nodulb theoretic description
of intermediate spaces and morphisms in [9] and his appreaeims quite different
from ours.

Here is an outline of this paper. In 82, we recall necessarternads about the
moduli spacesMo .., of weighted pointed stable curves, partial desingulaopaand
blow-up along transversal center. In 83, we recall the blpaconstruction of the mod-
uli spaceMo . (P, 1) of weighted pointed stable maps. In 84, we prove Theoreim 1
In 85, we give a quick proof of Theorem 1.2.

2. Preliminaries

2.1. Moduli of weighted pointed stable curves. We recall the definition and
basic facts on Hassett's moduli spaces of weighted pointsales curves from [7].

A family of nodal curves of genug with n marked points over base scherBe
consists of
(1) a flat proper morphisnxr: C — B whose geometric fibers are nodal connected
curves of arithmetic genug and
(2) sectionss;, s, ..., S of 7.
An n-tuple A = (ag, ap, ..., a,) € Q" with 0 < g < 1 assigns a weigh# to thei-th
marked point. Suppose thag22+a +a, +---+a, > 0.

DEFINITION 2.1 ([7, 82]). A family of nodal curves of genug with n marked

points C,s1, ..., %) % B is stable of type(g, A) if
(1) the sectionsy, ..., s, lie in the smooth locus ofr;

(2) for any subsefs,, ..., s,} of nonempty intersectiorg;, +---+ &, <1,

fa—
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(B) w; + a8 + @S + -+ - + ans, is w-relatively ample.

Theorem 2.2([7, Theorem 2.1]). There exists a connected Deligne—-Mumford stack
Mgy, 4, smooth and proper ovef, representing the moduli functor of weighted pointed
stable curves of typ@g, A). The corresponding coarse moduli scheh?h@ 4 IS projective
overZ.

When g = 0, there is no nontrivial automorphism for any weighted painstable
curve and henceéVlp 4 is a projectivesmooth varietyfor any A.

There are natural morphisms between moduli spaces witlerdiff weight data.
Let A= (ay,...,an), B=(by,...,b,) be two weight data and suppoae> b; for all
1 <i = n. Then there exists a biratione¢duction morphism

For C,s,...,%) € /\;lg,A, va8(C, s, ..., ) is obtained by collapsing components
of C on whichwc + bis; + - -+ + b,s, fails to be ample. These morphisms between
moduli stacks induce corresponding morphisms betweerseaaoduli schemes.

The exceptional locus of the reduction morphigm z consists of boundary div-
isors Dy jc wherel = {iy,...,ir} and1®={js,..., jn_r} form a partition of{1,...,n}
satisfyingr > 2,

a,+---+a >1 and b, +---+b <1

Here D, | denotes the closure of the locus @, §,...,s,) whereC has two irreducible
componentsCy, C, with pa(C1) =0, pa(Cz) = g, r sectionss,,...s, lying on C;, and
the othern —r sections lying onCs,.

Proposition 2.3 ([7, Proposition 4.5]). The boundary divisor P is isomorphic
to Mo4; X Mg 1, With A = (a,,...,&,,1) and A} = (aj,,...,aj,,,1). Furthermore

‘/)A,B(DI,IC) >~ Mg,Bic with Bic = (bjl, R bjn—r' ZL:l bik)-

From now on, we focus on thg = O case. Let

m=|D 1 <1 and n-e = ( )
2" m—-k+1 ek_m—k ek o €k

Consider the reduction morphism
(Pn-ek,n-ek,l: MO,n-ek - MO,H-Ekfl'

Then Dy ¢ is contracted bypn., .ne_, if and only if ||| = m—k + 1. Certainly, there
are (., x,,) such partitionsl L 1¢ of {1,...,n}.
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By [12], it is well known that the Picard number &fy, is

_ - n
(5) p(Mog) = p(Mone, ) = 2" - (2) -1
From (5) and a counting the number of contracted divisors, obv&ain the follow-
ing lemma.

Lemma 2.4. (1) If nis odd p(Mone) =N+ Y, (i1
(2) If nis even p(MO,n-ek) =n+ (1/2)(21) + Z:(=2 (m—?+1)'

2.2. Partial desingularization. We recall a few results from [15, 8] on change
of stability in a blow-up.

Let G be a complex reductive group acting on a projective nonsamgeariety X.
Let L be aG-linearized ample line bundle oX. Let Y be aG-invariant closed sub-
variety of X, and let: X — X be the blow-up ofX alongY, with exceptional divisor
E. Then for sufficiently larged, Ly = 7*L9 ® O(—~E) becomes very ample, and there
is a natural lifting of theG-action toLq4 ([15, 83]).

Let X35 (resp. X®) denote the semistable (resp. stable) parXofWith respect to
the polarizations. and Lq, the following hold ([15, 83] or [8, Theorem 3.11]):

(6) XSS 7 H(X%9), X3 > aYX5).

In particular, if XSS = X8, then X5% = X = 7~1(X9).

For the next lemma, let us suppo¥&® = Y N X33 is nonsingular. We can compare
the GIT quotient ofX by G with respect toLy with the quotient ofX by G with
respect toL.

Lemma 2.5 ([15, Lemma 3.11]). For sufficiently large ¢ X//G is the blow-up
of X//G along the image ¥ G of Y5,

Let Z be the ideal sheaf o¥. In the statement of Lemma 2.5, the blow-up is
defined by the ideal sheaff{)s which is the G-invariant part ofZ™, for somem.
(See the proof of [15, Lemma 3.11].) In the cases considereithis paper, the blow-
ups always take place alormgducedideals, i.e.X//G is the blow-up ofX//G along
the subvarietyY //G because of the following.

Lemma 2.6. Let G= SL(2) and C* be the maximal torus of G. Supposé&®Ys
smooth. The blow-upX//G — X//G is the blow-up of the reduced ideal of//G if
any of the following holds
(1) The stabilizers of points in R are all equal to the centef+1}, i.e. G =SL(2)/{+1}
acts on Xs freely.
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(2) If we denote theC*-fixed locus in X° by Z3, YS$ =Y N X3 = GZg and the
stabilizers of points in ¥ —YsS are all {£1}. Furthermore suppose that the weights
of the action ofC* on the normal space of Y at any ye Zg$ are %I for some [> 1.
(3) There exists a smooth divisor W ofXvhich intersects transversely with*¥such
that the stabilizers of points in SR—W are all Z, = {+1} and the stabilizers of points
in W are all isomorphic tazZ,.

In the caseq1) and (3), Y//G = Y5/G and X//G = X%/G are nonsingular and the
morphismX//G — X//G is the smooth blow-up along the smooth subvarietyGr

Proof. Let us consider the first case. L8&t= PGL(2). By Luna’s étale slice
theorem [17, Appendix 1.D], étale locally near a point\iff, X5Sis G x S and YsS is
G x S for some nonsingular locally closed subvari&yand S = SNY. Then étale
locally X% is G x blsy S where bk'S denotes the blow-up o6 along the nonsingular
variety SY. Thus the quotientsX//G, Y//G and X//G are étale locallyS, S' and
bls S respectively. This implies that the blow-ug//G — X//G is the smooth blow-
up along the reduced ideal &f//G.

For the second case, note that the orbit¥ 1 are closed inXss because the stabi-
lizers are maximal. So we can again use Luna’s slice theoceseé that étale locally
near a pointy in YSS, the varietiesXss, YsS and X are respectivelyG x¢- S, G x¢+ S°
and G x¢« blgS for some nonsingular locally closed*-equivariant subvarietys and
its C*-fixed locusS°. Therefore the quotientX//G, Y//G and X//G are étale locally
S//c*, ° and (bkS)//C*. Thus it suffices to show

(bl9)//C* = ble(S//C*).

Since X is smooth, étale locally we can choose dhito be the normal space to the
orbit of y and S is decomposed into the weight spacgs® St @ S-. As the action
of C* extends toSL(2), the nonzero weights ar¢l by assumption. If we choose co-
ordinatesxy, ..., x for S" andyj, ..., ys for S, the invariants are polynomials of
xyj and thus (®M)c- = (Ic-)™ for m > 1 wherel = (X1, ..., X, Y1, ..., ¥s) is the
ideal of S°. By [6, Il Exercise 7.11], we have

bleS = Projs<@ Im) =~ Projs<@ I2m>
m

m

and thus

(bleS)//C* = Projg,c. (@ |2m) = Projgc. <@(|C*)m> = bl,_.(S//C*).

C*

Since S is factorial andl is reduced,l¢+ is reduced. (Iff™ € I¢c+, then f € | and
(g- f)™ = f™ for g € C*. By factoriality, g- f may differ from f only by a constant
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multiple, which must be am-th root of unity. Becaus€* is connected, the constant
must be 1 and hencé € I¢-.) Thereforelc- is the reduced ideal 08° on S//C* and
hence (b S)//C* =~ ble(S//C*) as desired.

The last case is similar to the first case. Near a pointMn X=s is étale locally
G xz, S whereS= Sy x C for some smooth variety. Z; acts trivially on Sy and
by +1 on C. Etale locallyYsSis G xz, Sy where Sy = (Sy N'Y) x C. The quotients
X//G, Y//G and X//G are étale locallySy x C, (Sy N'Y) x C and bk,ySw x C.
This proves our lemma. ]

Corollary 2.7. Suppose thafl) of Lemma 2.6holds. If Y°*=Y*U---UYs®
is a transversal union of smooth subvarieties of Xnd if X is the blow-up of X°
along Yss, then X//G is the blow-up of /G along the reduced ideal of G which
is again a transversal union of smooth varietigg/%. The same holds under the con-
dition (3) of Lemma 2.6if furthermore Y are transversal to W.

Proof. Because of the assumption (7%= X5 If YSS=YU---UY>Sis
a transversal union of smooth subvarieties)SF and if 7: X — X% is the blow-up
along YsS, then X8 = X% = 7~1(X%) is the composition of smooth blow-ups along
(the proper transforms of) the irreducible componeYjt§ by Proposition 2.10 below.
For each of the smooth blow-ups, the quotient of the blowrspace is the blow-up
of the quotient along the reduced ideal of the quotient of ¢hater by Lemma 2.6.
HenceX//G — X//G is the composition of smooth blow-ups along irreducible stho
subvarieties which are proper transforms¥f/G. HenceX//G is the blow-up along
the unionY//G of Y;//G by Proposition 2.10 again.

The case (3) of Lemma 2.6 is similar and we omit the detail. O

Finally we recall Kirwan’s partial desingularization congtion of GIT quotients.
SupposeXss # X3 and X% is nonempty. Kirwan in [15] introduced a systematic way
of blowing up X3 along a sequence of nonsingular subvarieties to obtain iatyax
with linearized G action such thatXss = X and X//G has at worst finite quotient
singularities only, as follows:

(1) Find a maximal dimensional connected reductive sulqgsuch that theR-fixed
locus Z§ in X% is nonempty. Then

GZ¥ = G xyr ZF

is a nonsingular closed subvariety ¥fS where NR denotes the normalizer @ in G.
(2) Blow up X®% along G Z¥ and find the semistable paX$®. Go back to step 1 and
repeat this precess until there are no more strictly sebiéstaoints.

Kirwan proves that this process stops in finite steps #dG is called thepartial
desingularizationof X//G. We will drop “partial” if it is nonsingular.
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2.3. Blow-up along transversal center. We show that the blow-up along a cen-
ter whose irreducible components are transversal smoaotaties is isomorphic to the
result of smooth blow-ups along the irreducible componémtsny order. This fact can
be directly proved but instead we will see that it is an easscisp case of beautiful
results of L. Li in [16].

DEFINITION 2.8 ([16, 81]). (1) For a nonsingular algebraic variefty, an
arrangementof subvarietiesS is a finite collection of nonsingular subvarieties such
that all nonempty scheme-theoretic intersections of sudtes in S are again inS.

(2) For an arrangemens, a subsetB C S is called abuilding setof S if for any

s € S— B, the minimal elements ifb € B: b D s} intersect transversally and the
intersection iss.

(3) A set of subvarietied is called abuilding setif all the possible intersections of
subvarieties inB form an arrangemenrs (called the induced arrangement Bj and B

is a building set ofS.

The wonderful compactification X of X° = X —(J,.g b is defined as the closure
of X%in [Tyeg bloX. Li then proves the following.

Theorem 2.9([16, Theorem 1.3]). Let X be a nonsingular variety and B-
{b1, ..., by} be a nonempty building set of subvarieties of X. Lebd the ideal sheaf
of b € B.

(1) The wonderful compactification gXis isomorphic to the blow-up of X along the
ideal sheaf {l,--- I,.

(2) If we arrange B= {by, ..., by} in such an order that the first i terms .., b
form a building set for anyl <i < n, then Xg = bl;_---bl; bl X, where each blow-up
is along a nonsingular subvariety.

Here b; is the dominant transformof by which is obtained by taking the proper
transform when it doesn't lie in the blow-up center or theeirse image if it lies in
the center, in each blow-up. (See [16, Definition 2.7].)

Let X be a smooth variety and &, ..., Y, be transversally intersecting smooth
closed subvarieties. Heréransversal intersectioomeans that for any nonemptg C
{1,...,n} the intersectiorYs := ();.s i is smooth and the normal bundiy, x in X
of Ys is the direct sum of the restrictions of the normal bundigsx in X of Y;, i.e.

Nyg/x = €D Ny/xlve-
ieS

If we denote the ideal of; by I;, the ideal of the uniot J_, Y; is the producti1l- - -1p.
Moreover for any permutation € S, and 1<i <n, B = {Yq), ..., Yz} is clearly a
building set. By Theorem 2.9 we obtain the following.



1126 Y.-H. KEM AND H.-B. MOON

Proposition 2.10. Let Y =Y, U---U Y, be a union of transversally intersect-
ing smooth subvarieties of a smooth variety X. Then the bipvof X along Y is
isomorphic to

bly ---bly__bly,, X

Y2

o
for any permutationr € S, whereY; denotes the proper transform of.Y

3. Moduli of weighted pointed stable maps

Let X be a smooth projective variety. In this section, we decorapgbs map
X[n] — X"

defined by Fulton and MacPherson ([5]) intcsgmmetricsequence of blow-ups along
transversal centers. A. Musagind M. Mustai already considered this problem in their
search for intermediate moduli spaces for the stable mapespm [18, 81]. Let us
recall their construction.

STAGE 0: Let Fp = X" andI'g = X" x X. For a subset of {1, 2,...,n}, we let

55 =1{( ... x) eX"|x =x;ifi,jes, = (] =5
|S|=k

and letoy, C I’y be the graph of thé-th projectionX" — X. ThenXxj =~ X is a smooth
subvariety ofFy. For eachsS, fix anyis e S.

STAGE 1: Let F; be the blow-up ofF, along X{. Let X be the exceptional
divisor and 215 be the proper transform oEOS for |S] # n. Let us definel'; as the
blow-up of Fy xg, I'p along =) x¢, o so that we have a flat family

F1—> F]_X;:0 F0—> Fl

of varieties overF;. Let o] be the proper transform of) in T';. Note thatx for
|S| = n—1 are all disjoint smooth varieties of same dimension.

STAGE 2: Let F, be the blow-up offF; along =7t =" g_, ; £7. Let =3 be
the exceptional divisor lying oveElS if |Sf=n-1 and 223 be the proper transform
of 215 for |S] # n—1. Let us define; as the blow-up ofF, xg, I'; along the disjoint
union of 225 XE, ais for all S with |S| = n—1 so that we have a flat family

Fz —> Fg XF, F]_ —> F2
of varieties overF,. Let o} be the proper transform of} in T',. Note thatx$ for

|S| = n—2in F, are all transversal smooth varieties of same dimension.cél¢he
blow-up of F, along their union is smooth by §2.3.
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We can continue this way until we reach the last stage.

STAGE n—1: Let F,_; be the blow-up ofF,_, along Eﬁ_z = le‘:z Ens_z. Let
T3, be the exceptional divisor lying oveE? , if |S| = 2 and £3 , be the proper
transform ofE,f’_z for || # 2. Let us definel’,_; as the blow-up ofF_1 xf,_, 'n_2
along the disjoint union of£3 | x¢, , 0;%, for all S with |S| = 2 so that we have a
flat family

o1 — Foi Xp,, T2 = Foa

of varieties overF,_1. Let ‘Trilfl be the proper transform ojf,iF2 in 1.
Nonsingularity of the blown-up spacd% are guaranteed by the following.

Lemma 3.1. X2 for |[S| > n—k are transversal in Ei.e. the normal bundle in
F« of the intersection ), E,f‘ for distinct $ with |§| > n—Kk is the direct sum of the
restriction of the normal bundles in,Fof st.

Proof. This is a special case of the inductive constructibthe wonderful com-
pactification in [16]. (See 82.3.) In our situation, the Hirg set is the set of all
diagonalsBy = {£5 | SC {1, 2,..., n}}. By [16, Proposition 2.8]Bx = {7} is a
building set of an arrangement iR, and hence the desired transversality follows.]

By construction,F¢ are all smooth and’yx — F¢ are equipped witm SeCtiOI’lSqi(
and a morphismf: 'y — 'y = X" x X — X where the last map is the projection onto
the last factor. When dinX = 1, £2 , is a divisor and thus,_; = Fn_,. A. Mustaf
and A.M. Musta@ prove that the varietieB, have following moduli theoretic meaning.

DEFINITION 3.2 ([1, Definition 1.2]). LetS be a positive rational number and let
n-8=1(,...,8). Fix B € Ha(X, Z). A family of genus zeron - §-stable mapsover
S to a smooth projective variet)X consists of a flat family of rational nodal curves
m:C — S, a morphismf: C — X of degree one over each geometric fil&r of =,

andn sectionsa?, ..., o" such that for alls € S,
) Every section Iies on smooth locus Gf
2) if o'i(s)=---=0a'(s) foriy,...,ikel, thens-|I| <1;

() wc, +8> 0'(s) is f-ample.
Let Mo ns(X,8) be the moduli stack ofi-8-stable maps withf,[C] = 8. WhenX = P?
and § = 1, then Mon.1(P*, 1) is isomorphic to the Fulton—MacPherson spacgn]
constructed in [5] ([18, p.55]).

Proposition 3.3 ([18, Proposition 1.8]). Let X = P1. Let §; be a rational num-
ber such thatl/(n — k + 1) < §« < 1/(n — k). Then k = I\7Io,n.,;k(]P’1, 1) and it is
a fine moduli space. In particulaf, , = F,_1 is the moduli space of stable maps
Moyn.l(Pl, 1) = ]P’l[n].
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REMARK 3.4. Indeed, Mustat and Musta proved Proposition 3.3 with using
the notion ofk-stable parameterized rational curveé family of k-stable parameter-
ized rational curves ove® consists of a flat family of rational nodal curves C — S,

a morphism¢: C — S x P! of degree 1 over each geometric fib8 of 7 andn
marked sections?, ..., " of = such that for alls € S,

(1) all the marked points are smooth points of the cuB¢e

(2) no more tham — k of the marked points ' (s) in Cs coincide;

(3) any ending irreducible curve €5, except the parameterized one, contains more
thann — k marked points;

(4) Cs has finitely many automorphisms preserving the marked paamd the map
to P2

It is straightforward to check that the category of familielsk-stable parameterized
rational curves are equivalent to the category of families oSy-stable maps t@?! of
degree one.

4. Blow-up construction of moduli of pointed stable curves
In the previous section, we construct a sequence of blow-ups

(7 Mona(Ph, 1) = Fn2 Yog, Fns R QLY Fy LY Fo=(PY)"

along transversal centers. By construction the morphidmeseaare all equivariant with
respect to the action o0& = SL(2). For GIT stability, we use theymmetriclineariza-
tion Lo = O(1, ..., 1) for Fo. For F¢ we use the linearizatiohy inductively defined
by Lk = ¥ L1 ® O(—acEx) where Ey is the exceptional divisor ofy, and {a} is
a decreasing sequence of sufficiently small positive numbket m = |n/2]. In this
section, we prove the following.

Theorem 4.1. (i) The GIT quotient f m.ik//G for 1 <k <m— 2 is isomorphic
to Hassets moduli space of weighted pointed stable rational cuMgs,., with weights
n-ex = (k,...,ek) Wherel/(m+1—K) < ¢x < 1/(m—Kk). The induced maps on quotients

Mo,n-ek = Fo-mik//G = Fnomik-1//G = Mo,n-ek,l

are blow-ups along transversal centers foek2,..., m—2.
(i) If nis odd

Fmt1//G = -+ = Fo//G = (B)"//G = Mo
and we have a sequence of blow-ups
Mo,n = Mo,n-em,z - Mo,n-em,g > > Mo,n-el - MO,n-eo = (Pl)n//G

whose centers are transversal unions of equidimensionabgmvarieties.
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(i) If n is even Moyn.gl is a desingularization of
Fn//G = - = Fo//G = (P)"//G,
obtained by blowing U|()1/2)(:1) singular points so that we have a sequence of blow-ups
Mon = Mone,, = Mone, s = -+ = Mone, = (PH)"//G.

REMARK 4.2. (1) Letdx be a rational number satisfying/th — k + 1) < 8 =<
1/(n —K). Then by Proposition 3.3,

MO,n-ek(Pla 1)//G = Mo,n-an,mk(]P’l, 1)//G = Fn—m+k//G

for 1L <k <m-—2. Thus item (i) of Theorem 4.1 is indeed item (i) of Theorerh. 1.

(2) Whenn is even, Mo, is not defined because the sum of weights does not ex-
ceed 2.

(3) Whenn is even,Mg,., is Kirwan's (partial) desingularization of the GIT quotten
(PH"//G with respect to the symmetric linearizatidny = O(1, . . ., 1).

Let F2° (resp. F?) denote the semistable (resp. stable) parFef By (6), we have
® (RS C FEL o (R C R
Also recall from [14] thatx = (X1, ..., Xn) € (P})" is semistable (resp. stable) if
n/2 (resp.> n/2) of x’s are not allowed to coincide. In particular, whenis odd,
Ui t(FS ) = F$ = F$S for all k and
©) Foyr=Fn=-=Fg,
because the blow-up centers lie in the unstable part. Torerefe have
(10) Fni1//G =--- = Fo//G = (PY)"//G.
Whenn is even,yy induces a morphisni® — F2°, and we have
(1) FY=F2;=---=F"° and Fu/G="---=Fo//G = (P)"//G.

Let us consider the case whemeis odd first. By forgetting the degree one mor-

phism of each member of familyf¢ I'mik+1 = PY Cmake1 = Fmakats ar‘nJrkH) and

stabilizing, we get a morphisrf;, . 1 C Fmyki1 — Mo By construction this mor-
phism is G-invariant and thus induces a morphism

P Fmniks1//G = Mong.
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Since the stabilizer groups i& of points in F§ are all {1}, the quotient

¢m+k+13 Frnik1/G — Fmik//G

of Ymiks1 is also a blow-up along a center which consists of transversaoth vari-
eties by Corollary 2.7.

Since the blow-up center has codimensian2, the Picard number increases by
(m_Ll) for k=1,...,m—2. Since the character group 8{(2) has no free part, by the
descent result in [3], the Picard numberff.1/G = F5/G is the same as the Picard
number of Fy which equals the Picard number Bf. Thereforep(Fm:1//G) =n and

the Picard number oF.k.11//G is

n+é(m—?+1)

which equals the Picard number bfy .., by Lemma 2.4. Sincéop.., and Frixi1//G
are smooth and their Picard numbers coincide, we concluatepthis an isomorphism
as we desired. So we proved Theorem 4.1 for odd

Now let us suppose is even. For ease of understanding, we divide our proof into
several steps.

STeEP 1. Fork > 1, Fn,k//G are nonsingular and isomorphic to the partial de-
singularizationsF ., //G.

The GIT quotientsFy,«//G may be singular because there a&té&-fixed points
in the semistable parE}%,. So we use Kirwan's partial desingularization of the GIT
quotientsFn,k//G (82.2). The following lemma says that the partial desingeddion
process has no effect on the quotidat, /G for k > 1.

Lemma 4.3. Let F be a smooth projective variety with linearized=6SL(2) ac-
tion and let F® be the semistable part. Fix a maximal tor@s in G. Let Z be the
set of C*-fixed points in FS. Suppose the stabilizers of all points in the stable part
Fs are {+1} and Y = GZ is the union of all closed orbits in ¢ — FS. Suppose
that the stabilizers of points in Z are precisely. Suppose further that Y= GZ is
of codimension2. Let F — FSS be the blow-up of F* along Y and letFs be the
stable part inF with respect to a linearization as i82.2 Finally suppose that for
each ye Z, the weights of theC* action on the normal space to Y ikl for some
| > 0. ThenF//G = F$/G =~ F//G and F//G is nonsingular.

Proof. SinceG = G/{+1} acts freely onFS, F$/G is smooth. By assumption,
Y is the union of all closed orbits i35 — F* and henceF /G — F5/G = Y/G. By
Lemma 2.6 (2),F3/G is the blow-up of F//G along the reduced ideal of /G. By
our assumptionZ is of codimension 4 and

Y/G =GZ/G =G xye 2/G = Z/Z
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where N€" is the normalizer ofC* in G. Since the dimension of //G is dimF — 3,
the blow-up centerY /G is nonsingular of codimension 1. By Luna’s slice theorem
([27, Appendix 1.D]), the singularity of /G at any point By] € Y/G is C?//C*
where the weights are-l. Obviously this is smooth and hené¢e//G is smooth along
Y/G. Since the blow-up center is a smooth divisor, the blow-up r&&/G — F//G
has to be an isomorphism. O

Let Zy4k be theC*-fixed locus inF3%, and letYmix = GZnik. Then Yy is
the disjoint union of

S =2 NES L NES, for |§=m S =(1,...,n}—
which are nonsingular of codimension 2 for> 1 by Lemma 3.1. For a point

(f:(C,pr ..., p) > P ezod,

the degree one component 6f (i.e. the unigue component which is not contracted
by f) has two nodes and no marked points. The normal sgEceéo En‘?fk is given

by the smoothing deformations of the two nodes and hencetétdliser C* acts with
weights 2 and-2.

The blow-up Fm,x of F ik along Ymy has no strictly semistable points by [15,
§6]. In fact, the unstable locus iRy« is the proper transform oE3 ek U )Jm+k and
the stabilizers of points iffr3 mik are eitherZ, = {+1} (for points not in the exceptional
divisor of FSJrk — Fydi) or Zy = {1, £i} (for points in the exceptional divisor).
Therefore, by Lemma 4.3 and Lemma 2.6 (3), we have isomarghis

(12) 'fﬁH-k/G = Fmnik//G

and Fn.x//G are nonsingular fok > 1.

STEP 2: The partial desingularizatioR,//G is a nonsingular variety obtained by
blowing up the (¥2)(") singular points ofFn//G = (PY)"//G.

Note thatYy, in F$S is the disjoint union of (12)() orbits =55 for [S| = m.
By Lemma 2.6 (2), the morphlsnF /G — Fny//G is the blow-up at the (ﬂ2)( )
points given by the orbits of the blow-up center. A point 3% is represented by
(PL, p1, ..., pn,id) with oy = p;j if i, j € Sori, j € S. Without loss of generality,
we may letS={1,..., m}. The normal space to an orb‘ilnﬁsc is given by

(TpllP’l)nFl X (TpmH-Pl)mfl — Cmfl X Cmfl

andC* acts with weights 2 and-2 respectively on the two factors. By Luna’s slice the-
orem, étale locally neaE >SS, F35is G x¢- (C™ 1 xC™ 1) and Fy is G x ¢ blo(C™ 1 x
C™ Y while F3, is G xc: [blo(C™ ! x C™ 1) — bloC™* L bloC™]. By an explicit local
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calculation, the stabilizers of points on the exceptioriaisdr of F,, areZ, = {+1,+i}
and the stabilizers of points ovét} areZ, = {£1}. Since the locus of nontrivial stabi-
lizers for the action of5 on F$, is a smooth divisor with stabilizeZ,, Fp,//G = F$,/G
is smooth and hencé%/G is the desingularization of,,//G obtained by blowing up
its (1/2)(1) singular points.

STEP 3: The morphismymiks1: Fmiks1//G — Fmik//G is the blow-up along
the union of transversal smooth subvarietieskar 1. Fork = 0, we haveFs, ., = F$,
and thus

Fni1//G 2= F1,1/G = F/G = Frn//G

is the blow-up along its (12)(7) singular points.

From Lemma 3.1, we knovEs,, for [S| = m —k are transversal ifFp k. In
particular,

S s
U z:m-&-k N 2:m+k
[S|=m

intersects transversely with the blow-up center

U 2:m+k

|9 |=m—k

for Ymaka1: Fmiker — Fmak. Hence, by Proposition 2.10 we have a commutative
diagram

Fmtke1 — Fmik

]

Ptk — Fnk

for k > 1 where the top horizontal arrow is the blow-up along the prapansforms
+k of Em+k, |S| = m—k. By Corollary 2.7, we deduce that f&r> 1, ¥/m k1 IS

the blow-up along the transversal union of smooth subveseétS mk// G = En§+k//G.

For k = 0, the morphismF .1 — Fn, is the blow-up along the proper transforms
of £° and =3 for |S| = m. But these are unstable iRn and hence the morphism
FS .1 — F$, on the stable part is the identity map. So we obt&if,, = Fg, and

Fri1/G = Fs/G.

STEP 4: Calculation of Picard numbers.

The Picard number oF$* = F$SC Fo = (PY)" is n and so the Picard number of
Frm is n+(1/2)(r?]). By the descent lemma of [3] as in the odd degree case, thedPica
number of

Fm+l//G = I:S+1/G - Fm/G
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equals the Picard numbert (1/2)(") of F$,. Since the blow-up center ¢¥m.«//G —
Fmik-1//G has (,_},,) ireducible components, the Picard number fof,//G =
Fm+k//G is

D))

i=2

for k > 2.

Step 5: Completion of the proof.

As in the odd degree case, far> 1 the universal familyry: I'mik — Fmix gives
rise to a family of pointed curves by considering the linegstsm K, + ex ) ; Uri71+k'
Over the semistable paR;>, it is straightforward to check that this gives us a family

of n- eg-stable pointed curves. Therefore we obtain an invariantphiem
Fns']?l—k —> MO,n-ek

which induces a morphism

Finik//G — I\7|O,n-ek-

By Lemma 2.4, the Picard number (I)]lo,n.ek coincides with that ofFy,«//G given
in (14). Hence the morphismy,k//G — Mon. is an isomorphism as desired. This
completes our proof of Theorem 4.1.

REMARK 4.4. For the moduli space aemorderedweighted pointed stable curves
Mone/Sh, We can simply take quotients by tH® action of the blow-up process in
Theorem 4.1. In particulaiMy /S, is obtained by a sequence of weighted blow-ups

from ((B4)"//G)/S = P"//G.

5. Log canonical models ofMg,

In this section, we give a simple proof of the following thewr by using The-
orem 4.1. LetMg, be the moduli space af distinct points in P! up to the action
of Aut(Pl).

Theorem 5.1 (M. Simpson [20]). Let @ be a rational number satisfying/(n —
1) <a <1 and let D= My, — Mo, denote the boundary divisor. Then the log canon-
ical model

Mon(e) = Proj(@ HO (Mo, O(I (K, + aD)J)))

120

satisfies the following
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(1) If 2/(m—k+2)<a <2/(m—-k+1)for 1<k <m-2, then Mgn(a) = Mo,
(2) If 2/(n—1) <« < 2/(m+ 1), then Mon(e) = (PY)"//G where the quotient is taken
with respect to the symmetric linearizati@®(1, .. ., 1).

REMARK 5.2. Keel and McKernan prove ([13, Lemma 3.6]) thag, + D is
ample. Because

Mo,n-em,z = Mo,n-em,l = I\7|O,n
by definition, we find that (1) above holds fer=m—1 as well.

For notational convenience, we denoR)"//G by MO,n-eo for evenn as well. Let
¥2 denote the subvarieties & defined in 83 forSc {1,...,n}, [S| <m. Let

Dks = Ens_m-~-|<//G C Fn-mk//G = Mo,n-ek-

Then DkS is a divisor of Mgp, for |S| =2 orm —k < |S < m. Let Dj =
(Uis=j =8 mi)//G and D = DZ + ¥°,_,, D}. Then Dy is the boundary divisor
of Moyngk, i.e. Moyngk Mo = Dk. Whenk =m—2 so MOnGk =~ MOn, sometlmes we

will drop the subscripk. Note that ifn is even andS| = m, DS = D5 = x> m+k//G
By Theorem 4.1, there is a sequence of blow-ups

Pm-— r Pm-— ¢. — 1% v
(15) MOn—MOne 2—2>M0ne 3—3> —2>M0nel_1>MOneo
whose centers are transversal unions of smooth subvariesiecept forp; when n
is even. Note that the irreducible components of the bloweepter of ¢ further-
more intersect transversely with} , for j > m—k + 1 by Lemma 3.1 and by tak-
ing quotients.

Lemma 53. Letl<k=m-2
(1) (D) ;) =D for j > m—k+1.
(2) ¢i(DE_ ;) = DE + (m*;“) DkHL,
(3) ¢(D})=D}_,for j>m—k+1orj=2
(4) ¢(D))=0for j =m—k+ 1.

Proof. The push-forward formulas (3) and (4) are obviouscaRefrom 84 that
@k = Yn_m+k is the quotient ofyr_mk: Fatmik = Fatmik1. Supposen is not even
or k is not 1. SinceD? for |S| > 2 does not contain any component of the blow-up
center,g; (DS ,) = DS. If |S| = 2, DS, contains a componer®d? ; of the blow-up
center if and only ifS O S. Therefore we have

QOI:F(DI?—l) = Dks"‘ Z Dkg-
§5S9|=m-k+1
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By adding them up for allS such that|S| = 2, we obtain (2).

Whenn is even andk = 1, we calculate the pull-back before quotient. Imetlffn —
F>° be the map obtained by blowing u{gﬂ:m »5% and removing unstable points. Re-
call thatlfrsn/G ~ Fp.1//G = Mo,n.gl and the quotient ofr is ¢;. Then a direct calcu-
lation similar to the above gives us'S2 = ¥2 + 2(7) =i where 22 = (J,g_, =5 and
¥2 is the proper transform of2 while = denotes the exceptional divisor. Note that
by the descent lemma ([3]), the divisaZ and %2, descend toD2 and D?. However
iﬁ does not descend because the stabilizer gibujn G = PGL(2) of points in im
acts nontrivially on the normal spaces. But by the descentria again, £ descends

to DI". Thus we obtain (2). O

Next we calculate the canonical divisors B .,. Since the reduction morphism
is a composition of smooth blow-ups by Theorem 4.1, the pi®ef direct consequence
of Proposition 5.4 and the discrepancy formula.

Proposition 5.4 ([19, Proposition 1]). The canonical divisor oMo, is

Ky _—LD2+2m: 2! +(j—2))D!
Moo = n—1 =\ n-1\2 '

Lemma 5.5. (1) The canonical divisor ofP)"//G is

¢

~ 2 2
K(]pl)n//G = —n — 1D0

(2) For 1 <k <m -2, the canonical divisor 011\7I0,n.€k is

2 n 2 (i _ -
- Df + > (—n_l(Jz)-l-(j—Z))D'i.

j>m—k+1

~ __

Mone, =

We are now ready to prove Theorem 5.1. By [20, Corollary 3th& theorem is
a direct consequence of the following proposition.

Proposition 5.6. (1) KMWU +aDg is ample if2/(n—1) <o < 2/(m+ 1).
(2 Forl1<k<m-2, KMo,n.ek 4+ oDy is ample if2/(m—k+2) <a <2/(m—k+1).

Since any positive linear combination of an ample divisod annef divisor is am-
ple, it suffices to show the following:
(a) Nefness ofK,\;,O’n_ek + aDy for « = 2/(m — k + 1) + s where s is some (small)
positive number;
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(b) Ampleness °ﬂ<l\7lo,n.gk +aDg for o = 2/(m—k + 2)+t wheret is any sufficiently
small positive nhumber.

We will use Alexeev and Swinarski’s intersection numbercukition in [2] to achieve (a)
(See Lemma 5.12.) and then (b) will immediately follow fromr @heorem 4.1.

DEFINITION 5.7 ([20]). Let¢ = ¢ne, pne M(,n — MOnGk be the natural con-
traction map (82.1). Fok =0, 1,...,m—2 anda > 0, define Ak, «) by

Ak, @) := (p*(KMO,n-ek + aDy)
j +j—-2|D!
2

L))o o

Notice that the last equality is an easy consequence of LeBifa

By [11], there is a birational morphismag: Mo, — (P1)"//;G for any linearization
X = (X1,...,%) € Q7. Since the line bundl®piy (X1, ..., Xn)//G over P1)"//xG is
ample, its pull-backLy by 7y is certainly nef.

DEFINITION 5.8 ([2, Definition 2.3]). Letx be a rational number such that
1/(n—1) < x <2/n. SetX = O(x, ..., X, 2—(n—1)x). Define

1
V(X, n) = m @;] an.

Obviously the symmetric grou, acts onX by permuting the components &f

Notice that V(x, n) is nef because it is a positive linear combination of nef
line bundles.

DEFINITION 5.9 ([2, Definition 3.5]). LetC,pcq beanyvital curve class corres-
ponding to a partitiorS,L S US U S of {1,2,...,n} such that|S,| = a,...,|S| =d.
(1) Supposen =2m+1 is odd. LetCi = Ci1mimti—1, fOri =1,2,...,m—1.

(2) Supposen =2m is even. LetCi = Cyimimti2 fori =1,2,...,m—1.

By [13, Corollary 4.4], the following computation is straiforward.

Lemma 5.10. The intersection numbers; CA(k, «) are

if i <Kk,

o

(2 ( ))oz+m—k—2 it =k
((m k+1)—1)a—m—|—k—|—1 it i=k+1,
0

if i >k+1.

C - Ak, ) =
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This lemma is in fact a slight generalization of [2, Lemma]3vhere the inter-
section numbers fox = 2/(m —k + 1) only are calculated.

The S,-invariant subspace of Néron—Severi vector spacéVef, is generated by
D/ for j =2,3,...,m ([13, Theorem 1.3]). Therefore, in order to determine tinedr
dependency ofg,-invariant divisors, we findn — 1 linearly independent curve classes,
and calculate the intersection numbers of divisors witts¢heurves classes. Let be
an (m—1)x(m—1) matrix with entriedJ;; = (C;-V(1/(m+j),n)) for 1 <i,j <m-1.
SinceV(1/(m+ j), n)’s are all nef, all entries ot are nonnegative.

Lemma 5.11([2, §3.2, 83.3]). (1) The intersection matrix U is upper triangular
and if i < j, then U; > 0. In particular, U is invertible.
(2) Leta= ((Cy- Ak, 2/(Mm—Kk+1))),...,(Cm1- Ak, 2/(Mm—k+ 1)))) be the column
vector of intersection numbers. Lét= (c;,C, ..., Cn-1)' be the unique solution of the
system of linear equations@=a. Then ¢>0fori <k-+2l1and ¢ =0fori >k+2

This lemma implies thatA(k, 2/(m — k + 1)) is a positive linear combination of
V(/(m+ j),n) for j =1,2,...,k+ 1. Note thatA(k, 2/(m — k + 2)) = Ak —
1,2/(m—(k—1)+ 1)) and that for 2(m—k +2) <o <2/(m—k + 1), Ak, @) is a
nonnegative linear combination &(k, 2/(m—k + 2)) and A(k, 2/(m—k + 1)). Hence
by the numerical result in Lemma 5.11 and the convexity of & cone, A(k, «) is
nef for 2/(m—k+2) <o <2/(m—k+ 1). Actually we can slightly improve this result
by using continuity.

Lemma 5.12. For each k=0, 1,..., m— 2, there exists s> 0 such that Ak, «)
is nef for2/(m—k+2) <« <2/(m—k+ 1)+ s. Therefore Kone, 1 Dk is nef for
2/((m—k+2)<a=<2/(m—k+1)+s.

Proof. Letd* = ((C1- A, a)), ..., (Cm1-AK, a)))" and letc” = (cf,...,c% ;)
be the unique solution of equatiddc® = a*. Then by continuity, the components
cf,C5, ..., C 1 remain positive when is slightly increased. By Lemma 5.10 and the
upper triangularity ofU, ¢ for i > k4 1 are all zero. Hencé\(k, «) is still nef for
a = 2/(m—k + 1) + s with sufficiently smalls > 0. []

With this nefness result, the proof of Proposition 5.6 isagi#d as a quick appli-
cation of Theorem 4.1.

Proof of Proposition 5.6. We prove that in facmoyn_ek + a Dy is ample for 2(m—
K+ 2)<a<2/(m-Kk+ 1)+ s wheres is the small positive rational number in
Lemma 5.12. Since a positive linear combination of an amplsatr and a nef divisor
is ample, it suffices to show thMMO,n-ek + oDy is ample wherw = 2/(m —k + 2) + t
for any sufficiently smalt > 0 by Lemma 5.12.
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We use induction oik. It is certainly true wherk =0 by Lemma 5.5 becauslég
is ample as the quotient @@(n—1,...,n—1). SupposeK,\;,oyn_Ekil + aDy_1 is ample
for 2/(m—k+3) <o <2/(m—k+ 2)+ s wheres' is the small positive humber in
Lemma 5.12 fork — 1. Sincegy is a blow-up with exceptional divisoDE“k*l,

go: (K Mone,_, + o Dkfl) -4 Dl’;”*kJrl

is ample for any sufficiently small > 0 by [6, Il 7.10]. A direct computation with
Lemmas 5.3 and 5.5 provides us with

(p:(K Mon ey, + o Dk,]_) ) Dlr(“*kJrl

-k+1
:Kmo,n.ek—FaDk—F((m 2+ )a_a_(m—k—l)_(s)DLn—kH_

If & =2/(m—k+2), ("5 —a—(m-k-1)=0 and thus we can find > 2/(m—
k+2) satisfying(”“g*l)a—a —(m—k—1)—68 =0. If § decreases to 0, the solution
decreases to/2Zm—k + 2). HenceK,\;loln_ek + aDy is ample wherw = 2/(m—k 4+ 2)+t
for any sufficiently smalkt > 0 as desired. L]

REMARK 5.13. There are already two different proofs of M. Simpsohsotem
(Theorem 5.1) given by Fedorchuk—Smyth [4], and by Alexe®winarski [2] without
relying on Fulton’s conjecture. Here we give a brief outlimiethe two proofs.

In [20, Corollary 3.5], Simpson proves that Theorem 5.1 isiramediate conse-
guence of the ampleness KfMo,n.sk + aDg for 2/(m—k +2) <o <2/(m—Kk + 1)
(Proposition 5.6). The differences in the proofs of Theot®th reside solely in differ-
ent ways of proving Proposition 5.6.

The ampleness O g, T Dk follows if the divisor A(k,«) = <p*(K,\;,0vn_Fk + o Dy)

is nef and its linear system contracts onjyexceptional curves. Herep: Mg, —
Mo is the natural contraction map (82.1). Alexeev and Swiriapskve Propos-
ition 5.6 in two stages: First the nefness Atk, «) for suitable ranges is proved and
next they show that the divisors are the pull-backs of amjsle bundles onMg ., .
Lemma 5.12 above is only a negligible improvement of the esdnresult in [2, 83].
In [2, Theorem 4.1], they give a partial criterion for a linandle to be the pull-back
of an ample line bundle OMO,n-ek- After some rather sophisticated combinatorial com-
putations, they prove in [2, Proposition 4.2] thatk, «) satisfies the desired properties.
On the other hand, Fedorchuk and Smyth show #gf + oDy is ample as
follows. Firstly, by applying the Grothendieck—RiemanroeR theorem, they represent
KMDMk + a Dk as a linear combination of boundary divisors and tautokmgjc-classes.
Secondly, for such a linear combination of divisor classes for a complete curve in
Mo Parameterizing a family of curves with smooth general memtrey perform
brilliant computations and get several inequalities §iatisby their intersection num-
bers ([4, Proposition 3.2]). Combining these inequaljtib®y prove in particular that
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K Wig g, ¢ Dk has positive intersection with any complete curveMg,., with smooth
general member ([4, Theorem 4.3]). Thirdly, they prove fiidhe divisor class inter-
sects positively with any curve with smooth general membigen it intersects posi-
tively with all curves by an induction argument on the dimens Thus they establish
the fact thatKMO,n.ek + oDy has positive intersection with all curves. Lastly, theyvaro
that the same property holds evenktf,\;,ovn_ék + aDy is perturbed by any small linear
combination of boundary divisors. Since the boundary digsgenerate the Néron—
Severi vector spacey;, —+ aDy lies in the interior of the nef cone and the desired
ampleness follows.

ACKNOWLEDGEMENT. This paper grew out of our effort to prove a conjecture of
Brendan Hassett (passed to us by David Donghoon Hyeon): Wihisneven, I\7I0,n.€1
is the (weighted) blow-up of"//G at the singular point. It is our pleasure to thank
Donghoon Hyeon for useful discussions. We are grateful télYiwho informed us of
[9]. We are also grateful to David Smyth who kindly pointed @ error in a previous
draft. The second author would like to thank Valery Alexeev liis kind explanation
about the proof of the ampleness theorem in [2, 84].

References

[1] V. Alexeev and G.M. Guy:Moduli of weighted stable maps and their gravitational destants
J. Inst. Math. Jussieid (2008), 425—456.
[2] V. Alexeev and D. SwinarskiNef divisors onMoln from GIT, arXiv:0812. 0778.
[3] J.-M. Drezet and M.S. Narasimha@roupe de Picard des variétés de modules de fibrés semi-
stables sur les courbes algébriquésvent. Math.97 (1989), 53-94.
[4] M. Fedorchuk and D. SmythAmple divisors on moduli spaces of weighted pointed rationa
curves with applications to log MMP foMg ,, to appear in J. of Alg. Geom., arXd810. 1677.
[5] W. Fulton and R. MacPhersorA compactification of configuration spa¢esnn. of Math. (2)
139 (1994), 183-225.
[6] R. Hartshorne: Algebraic Geometry, Graduate Text in Mathtics52, Springer, New York,
1977.
[7]1 B. Hassett:Moduli spaces of weighted pointed stable curvedv. Math. 173 (2003), 316—-352.
[8] VY. Hu: Relative geometric invariant theory and universal modpéaces Internat. J. Math7
(1996), 151-181.
[9] Y. Hu: Moduli spaces of stable polygons and symplectic structares?;,, Compositio Math.
118 (1999), 159-187.
[10] Y. Hu and S. Keel:Mori dream spaces and GJMichigan Math. J.48 (2000), 331-348.
[11] M.M. Kapranov: Chow quotients of Grassmannians in I.M. Gel'fand Seminar, Adv. Soviet
Math. 16, Part 2, Amer. Math. Soc., Providence, RI, 29-110, 1993.
[12] S. Keel: Intersection theory of moduli space of stable n-pointedvesrof genus zerdrrans.
Amer. Math. Soc330 (1992), 545-574.
[13] S. Keel and J. McKernarContractible extreamal rays oMo, arXiv:9607009.
[14] F.C. Kirwan: Cohomology of Quotients in Symplectic aAthebraic Geometry, Mathematical
Notes 31, Princeton Univ. Press, Princeton, NJ, 1984.



1140

(15]
(16]
(17]
(18]
(19]

(20]

Y.-H. KIEM AND H.-B. MOON

F.C. Kirwan: Partial desingularisations of quotients of nonsingularieties and their Betti
numbers Ann. of Math. (2)122 (1985), 41-85.

L. Li: Wonderful compactification of an arrangement of subvee&tMichigan Math. J.58
(2009), 535-563.

D. Mumford, J. Fogarty and F. Kirwan: Geometric Invatidineory, third edition, Ser. Modern
Surveys Math34, Springer, Berlin, 1994.

A. Mustag and M.A. Musta: Intermediate moduli spaces of stable mapsent. Math.167
(2007), 47-90.

R. Pandharipandefhe canonical class dfl,(P",d) and enumerative geomefrinternat. Math.
Res. Notices (1997), 173-186.

M. Simpson: On Log canonical models of the moduli space of stable poirdedes
arXiv:0709. 4037.

Young-Hoon Kiem

Department of Mathematics and Research Institute of Mathesnat
Seoul National University

Seoul 151-747

Korea

e-mail: kiem@math.snu.ac.kr

Han-Bom Moon
Department of Mathematics
Seoul National University
Seoul 151-747

Korea

e-mail: spring-l@snu.ac.kr



