
Guillot, A.
Osaka J. Math.
48 (2011), 1085–1094

SOME GENERALIZATIONS OF HALPHEN’S EQUATIONS

ADOLFO GUILLOT

(Received May 24, 2010)

Abstract

Halphen’s equations are given by a remarkable polynomial vector field in C3 hav-
ing only single-valued solutions, defined in domains bounded by a circle or by a line.
By generalizing the Lie-theoretic principle behind Halphen’s equations and borrow-
ing some facts from the theory of deformations of Fuchsian groups, we exhibit a
family of polynomial vector fields inC3 having only single-valued solutions. The
solutions of vector fields within this family are defined in domains which had not
been previously observed as domains of definition of solutions of polynomial vec-
tor fields in C3. For example, we obtain polynomial vector fields having solutions
defined in domains that are bounded by a fractal curve.

1. Introduction

In the complex domain, the solutions of an ordinary differential equation may be
multivalued, as it is the case for the differential equationt dy=dt D 1, whose solution
is given by the logarithm. Even at the level of complex differential equations given by
polynomial vector fields inCn, there is no full understanding of the obstructions that a
vector field must overcome in order to have a single valued solution. Even if a vector
field does have a single-valued solution, it is difficult to know, a priori, its properties.
If a solution is single-valued, we may extend the domain ofC where it is defined in
order to obtain a maximal domain (open subset ofC) where the solution is defined
(this can be taken as the definition ofsingle-valued solution). What can be said about
the nature of this maximal domain? If we restrict to the classof polynomial vector
fields in Cn where every solution is single-valued (this is, the vector fields that are
semicompletein the sense of Rebelo [20]) then, at least inC2, we have the following
result: In a semicomplete polynomial vector field inC2, every solution is defined in the
complement of a countable set of points[10, Corollary C].

We do not have a complete picture of semicomplete polynomialvector fields in
C3. We know, however, that the domains where the solutions of such vector fields are
defined are not as simple as the domains appearing in lower dimensions. A remarkable
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vector field inC3 was introduced by Darboux [7] and studied by Halphen [12] in 1881:

(1) X D (z1z2� z2z3C z1z3)
��z1
C (z2z3� z1z3C z1z2)

��z2
C (z2z3� z1z2C z1z3)

��z3
.

Halphen showed thatX is semicomplete and that its solutions are defined in domains
having a circle (or a line) as a natural boundary. Equations (1) appear in many settings,
such as reductions of Yang–Mills equations [5] and dynamics of magnetic monopoles
[2] and have connections with modular forms and Ramanujan’sfunctions [18], [23],
to cite only a few. There are many generalizations of these equations, the first ones
considered by Halphen himself [11], providing many more semicomplete vector fields
in C3. We will not try to list all these generalizations. Let us just mention that some
were given in [8] and generalizations where the ambient space is no longerC3 but a
three-dimensional singular affine variety have appeared in[6] and [19]. However, in all
the semicomplete generalizations we know of, the solutionsare still meromorphic func-
tions defined in domains having, again, a circle or a line as natural boundary. These
natural boundaries arise as boundaries of components of thediscontinuity domain of a
Fuchsian group.

Do there exist semicomplete polynomial vector fields inC3 having solutions de-
fined in other kinds of domains? We will exhibit a family of vector fields whose solu-
tions are defined in components of the discontinuity domainsof Kleinian groups which
are no longer Fuchsian:

Theorem 1. For every� 2 Cn {0, 1}, there exists a nonempty open bounded sub-
setB� � C such that the vector field

(2)
X�(�) D [z2

1 C z2z3(z2 � z3)({� � �}z2 C �{1� �}z3)]
��z1

C z2(z1 C �z2z3 � �z2
3)
��z2
C z3(z1 C z2

2 � z2z3)
��z3

is semicomplete(has only single-valued solutions) for every� 2 NB� . A solution of any

such X�(�) is defined in the complement of1 in CP1 of an invariant component of the
discontinuity domain of either a quasifuchsian, a totally degenerate or a cusp Kleinian
group (and all these situations appear).

In particular, there exist semicomplete polynomial vectorfields in C3 whose so-
lutions are defined in simply connected domains bounded by a fractal Jordan curve,
or in simply connected domains whose complement is uncountable (for example with
non-empty interior) but whose boundary is not a Jordan curve. To our best knowledge,
the family (2) gives the only examples of semicomplete polynomial vector fields inC3

where such phenomena appear.
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A key point in Halphen’s work is an invariance property that can be infinitesimally
expressed as follows:X and the vector fieldsL DP

i zi �=�zi and Z DP
i �=�zi satisfy

the relations

(3) [L , X] D X, [L , Z] D �Z, [Z, X] D 2L.

Our vector fields enjoy an analogue property and are, in this sense, generalizations of
Halphen’s equations. For the proof of our theorem we will usethe approach developed
in [9]. It is geometric and is expressed in terms of (G, X)-structures on manifolds in
the sense of Thurston [22]. We will use some facts about Kleinian groups and, more
specifically, the deformations of Fuchsian groups, that maybe found in [16, 3, 15].

2. Preliminaries

Let G be a Lie group acting faithfully and transitively on a complex manifold X
via a fixed action8W G�X ! X. A (G,X)-structure on a manifoldM is an atlas for its
complex structure taking values onX and having changes of coordinates inG. In other
words, there exists a covering{Ui } of M and charts�i W Ui ! X (biholomorphisms unto
their image) such that� j Æ��1

i W �i (Ui \U j ) ! X agrees, in each connected component
of its domain, with8(g, � ) for a uniqueg 2 G. A chart for a (G, X)-structure can be
globalized in the universal coveringQM of M: we have adeveloping mapD W QM ! X
and amonodromymorphism� W �1(M) ! G that satisfy the relation

(4) D(� � p) D �(�)D(p).

Reciprocally, a (G, X)-structure may be recovered from the couple (D, �).
A projective structureon a (complex) curveC is a (PSL2(C), CP1)-structure (with

the action of PSL2(C) on CP1 by fractional linear transformations). The projective
structures on a curveC form an affine space directed by the vector space of holo-
morphic quadratic differentials onC: Let {(Ui , �i )} and {(Vi ,  i )} be charts for two
projective structures on a curveC. Their difference is a quadratic differential, given in
Ui \ Vj by { f (s), s}ds2, where

{ f, s} D f 000
f 0 � 3

2

�
f 00
f 0
�2

is the Schwarzian derivativeand f D  j Æ ��1
i (the quadratic differential is globally

well-defined). Reciprocally, given a projective structureon C and a quadratic differen-
tial Q, we may build a new projective structure such that the difference with the orig-
inal one is exactlyQ: if, in a chart of the projective structure,Q is given byq(z) dz2,
a chart for the new projective structure will be given by any solution to the differential
equation{�(z), z} D q(z).

Let G be a complex Lie group,g the Lie algebra of its left-invariant vector fields.
Let M be a complex manifold having the same dimension asG and letX(M) be its Lie



1088 A. GUILLOT

algebra of holomorphic vector fields. For the natural actionof G to the left upon itself
by left translations, a (G,G)-structure (or leftG translation structure) is equivalent to a
representationf W g! X(M) such that f (V)jp ¤ 0 for everyV 2 g and p 2 M. In fact,
given a leftG translation structure{Ui ,�i } on M, for V 2 g define f (V) on Ui as the
pull-back ��i (V). In the opposite direction, iff W g ! X(M) is such that f (V)jp ¤ 0
for every V 2 g, Lie’s third theorem [21] guarantees that there exists a neighborhood
U � M of p and a diffeomorphism� W U ! G such thatD�(V) D f (V), whose germ
at p is unique up to a left translation inG.

3. The geometry of the vector fields

We will set, in order to simplify notation,X D X�(�). Together withX, the vector
fields L D z1 �=�z1 C (1=2) �=�z2 C (1=2) �=�z3 and Z D �=�z1 satisfy the relations
(3). In this way, if W denotes the Lie algebra of vector fields inC3 generated by
X, L and Z and sl2(C) denotes the Lie algebra ofleft invariant vector fields in SL2(C)
(identifying each vector field to its value at the identity),the unique linear mapping W W! sl2(C) for which

(5)  (X) D �
0 1
0 0

�
,  (L) D

0
B�

1

2
0

0 �1

2

1
CA,  (Z) D �

0 0�1 0

�
,

is a Lie algebra isomorphism. In this way,X comes with a representation ofsl2(C)
into the Lie algebra of polynomial vector fields inC3. Let � be the locus of linear
independence ofL, Z and X, which is invariant byX. Its complement is the zero
locus of z2z3(z2 � z3)(z2 � �z3).

The solutions ofX with initial condition in the complement of� are rational. In
the coordinates (x1, x2, 0) for {z3 D 0}; (x1, 0,x2) for {z2 D 0}; (x1, x2, x2) for {z2 D z3};
(x1C�(� �1)x2

2, �x2, x2) for {z2 D �z3}, the restriction ofX is x2
1 �=�x1C x1x2 �=�x2.

For the initial condition (x0
1, x0

2), the solution is (x0
1=(1� t x0

1), x0
2=(1� t x0

1)) and is thus
single valued (in restriction to the complement of�, the vector field is semicomplete).
In view of this, we will focus exclusively on the solutions with initial condition in�.

For any discrete group0 � SL2(C), the vector field (X)0 induced by (X) on0nSL2(C) is complete. This implies that for any open subsetU � 0nSL2(C), the re-
striction of  (X)0 to U is semicomplete. To prove Theorem 1 we will prove that,
for some values of (�, �), there is a discrete group0�,� � SL2(C) and an embedding
i�,� W �! 0nSL2(C) that mapsXj� to the restriction to the image of (X)0. In this
situation, the solutions ofX with initial condition in � are single-valued and hence,
for every p 2 C3, the solution ofX with initial condition p will be single-valued.

Since� has three linearly independent vector fields satisfying therelations (3),
it is endowed with a left SL2(C) translation structure. Fix a pointp 2 �. We have
the universal covering5 W ( Q�, Qp) ! (�, p), a unique developing mapD W ( Q�, Qp) !
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(SL2(C), e) and the corresponding monodromy morphism� W �1(�) ! SL2(C)—that
we will denote by�� [�] whenever we need to stress the dependence upon the param-

eters. LetP D {�
a 0
c a�1

�}� SL2(C). It is a closed subgroup of SL2(C) generated by

 (L) and (Z). The Lie subalgebra ofW generated byL and Z integrates into a free
holomorphic action to the right ofP on � given by

(z1, z2, z3)

�
a 0
c a�1

� D (a2z1 � ac, az2, az3).

The Lie subalgebra ofsl2(C) generated by (L) and  (Z) integrates into the action
by right translations ofP.

Let A be the orbit of this action that containsp and let6� D C n {0, 1,�}. The
orbits of the action are fibers of the fibrationA ! � ! 6� , given by the restriction
of !(z1, z2, z3) D z2=z3. Since�2(6�) D 0, from the homotopy long exact sequence
associated to the fibration, we obtain the short exact sequence

(6) 0! �1(A) ! �1(�) ! �1(6�) ! 0.

We claim that�1(A) � ker�. This is equivalent to the fact thatD is well defined
in a neighborhood ofA. The developing mapD is (locally) equivariant with respect to
the above action ofP on� and with respect to the action by right translations ofP on
SL2(C). Let � W U ! (�, p) a germ of solution ofX with initial condition p (defined
in some suitable neighborhoodU of 0 in C). The mapping� parametrizes locally the
fibers close toA. For each pointq close to A there exists a unique (t, B) 2 U � P
such that� (t) and q are in the same fiber and such that, under the above action ofP,

q B 2 � (U ). We have thatD(q) D �
1 t
0 1

�
B�1 is well-defined in a neighborhood ofA

and thus�1(A) � ker�.
Let N5W N�! � be the Galois covering associated to�1(A), with the group of deck

transformations�1(�)=�1(A)D �1(6�). We have a well-defined mappingN�W �1(6�)!
SL2(C) induced by� and a well defined developing mapND W N�! SL2(C) induced by
D. The couple (ND, N�) satisfies relation (4). If0 D �(�1(�)), we have

N� N5 K
NDK

�
iK

SL2(C)
0n K0nSL2(C).

The quotient0nSL2(C) is a non-Hausdorff manifold (Hausdorff if0 is discrete) andi ,
defined as the class in0nSL2(C) of ND Æ N5�1, is an immersion that is well-defined in
view of relation (4).

Suppose thatND is injective. By the monodromy formula (4),N� is a faithful repre-
sentation. Also, the action of0 on SL2(C) preserves ND( N�) and the restriction of this
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action to ND( N�) is free and properly discontinuous (in particular,0 � SL2(C) is a dis-
crete subgroup). The quotient is, as a manifold with a left SL2(C) translation structure,
isomorphic to� and thus, in this case,� identifies to a subset of0nSL2(C), identi-
fying X to  (X), and X is thus semicomplete. This proves thatX is semicomplete ifND is injective.

The above diagram can be better understood when we “factor out” the action of P.
Let N! the foliation in N� obtained by the pullback of the fibers of! by N5. The quotient
of N� under N! is, by relation (6), the universal coveringQ6� of 6� . The quotient of
SL2(C) under the multiplicative action to the right ofP is CP1 and is given by

(7)

�
a b
c d

�! [b W d], since

�
a b
c d

�� � 0
 ��1

� D � � b��1

� d��1

�
.

Moreover, the standard action to the left of SL2(C) on CP1 is exactly the multiplicative
action to the left of SL2(C) on SL2(C)=P:

�
a b
c d

�� � z0� z1

� D � � az0 C bz1� cz0 C dz1

�
.

Since a leaf of N! is mapped by ND to an orbit of the multiplicative action to the
right of P upon SL2(C), ND induces a mappingD[W Q6� ! CP1 (a local biholomorphism)
and N� induces a representation�[ W �1(6�) ! PSL2(C). The image of�[ is the image0[ of 0 under the projection from SL2(C) to PSL2(C). The previous commutative dia-
gram becomes:

Q6� 5 K
D[K

6�
i [K

CP1 0[nK0[nCP1.

If ND is not injective then there are two different pointsp1 and p2 in N� such
that ND(p1) D ND(p2). The points belong to different fibers of! (we have already es-
tablished that ND is injective in restriction to each fiber). Hence, the fiber contain-
ing p1 and the fiber containingp2 have the same image and henceD[ is not inject-
ive. We have thus proved thatX is semicomplete ifD[ is injective. In this situation,
the solution of X with initial condition p is, by formula (7), defined in the domain
{T 2 CI [T W 1] 2 D[( Q6�)}.

Since D[ and �[ satisfy the relation (4), we have a projective structure on6�
that depends on� and that will be denoted by6� [�]. By equation (7), if z(t) D
(z1(t), z2(t), z3(t)) is a local solution toX, an inverse of a chart of the projective struc-
ture on6� is given by ! Æ z(t). On the other hand, being a subset ofCP1, there
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is a natural projective structure on6� . By comparing these two projective structures,
we have

(8)

{!�1, s} ds2 D 1

(!0)2
{!(t), t} Æ !�1(s) ds2

D s4 � 4�s3 C 2(2� C 2�� � �)s2 � 4��sC �2

2s2(s� 1)2(s� �)2
ds2 D Q��(s) ds2.

In a neighborhood of each of the four punctures (a) the monodromy is parabolic and
(b) its developing map is injective in a neighborhood of these: in a suitable coordinate
z around a puncture,D[ is log(z) [13]. This formula gives every projective structure
on 6� satisfying (a) and (b).

WheneverD[ is injective, D[( Q6�) is, by formula (4), invariant under the action

of the Kleinian group�[. In the terminology of Kleinian groupsQ6� is an invariant
componentfor the Kleinian group and�[ is a B-group. Much is known about these
groups and their relations to projective structures and Teichmüller spaces. We will now
give a rough glimpse of the situation based on [3, 15, 16], where details and more
references may be found (see also the Introduction of [17]).

Via the Bers embedding, the Teichmüller space of6� is embedded into the space
of projective structures on6� that, at the punctures, have parabolic monodromy and
whose developing map is locally injective. This is, the Bersembedding takes values in
the space of quadratic differentials{Q��} of 6� of formula (8). The image of the Bers
embedding is a bounded open setB� � C.

There is a distinguished projective structure in6� , the one given by the uniformiza-
tion theorem: there exists someu� in the interior ofB� such that the developing map of6� [u� ] is injective (and thus the corresponding vector field is semicomplete). Its image
is (up to a fractional linear transformation) the upper halfplaneH D {zI =(z) > 0}. The
image of the monodromy�� [u� ] is a Fuchsiangroup, this is, it preservesH (the func-
tion � ! u� is real-analytic though not holomorphic). For every� 2 B� , � ¤ u� the
group �� [�] is a quasifuchsiangroup: there is a quasiconformal (and not conformal)
homeomorphismf W CP1 ! CP1 such that�� [�] D f Æ �� [�� ] Æ f �1. The develop-
ing map of6� [�] is injective and as explained before, the corresponding vector field is
semicomplete. Its image is aquasidisk, a simply connected open set bounded by a Jor-
dan curve inCP1. The Hausdorff dimension of this curve is strictly greater than one [4].

The boundary ofB� has received a lot of attention since it gives a compactification
of the Teichmüller space of6� . By continuity, if {�i }i2N � B� is s sequence such that
lim i!1 �i D � and� 2 �B� then, since the developing map of6� [�i ] is injective, the
developing map of6� [�] will be injective as well (and the corresponding vector field
will be semicomplete). It will have some simply-connected open set1 as image. We
have the following exclusive dichotomy for1:
• The group�[� [�] is totally degenerate. The set1 is its discontinuity domain and

is a dense subset ofCP1. Its complement, the limit set, is a closed connected set that
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is not locally connected [1].
• The group�[� [�] is a cusp group. The set1 is the only invariant component of

the discontinuity set of�[� [�]. The complement of the closure of1 is a countable
union of round disks that are, by pairs, either disjoint or tangent. The union of the
boundaries of these disks is contained in�1, which is not a Jordan curve. The quotient
of the union of these disks is the union of two triply-punctured spheres (see [15] for
more on these groups).
Both situations effectively appear within�B� [3]. Theorem 1 is now proved.

4. Final comments

4.1. On the existence of first integrals. Halphen’s equations do not have a mero-
morphic first integral [14] (see also [9]) and our generalizations share this property. Semi-
complete vector fields within the family (2) do not have a firstintegral, in view of the
following result [10, Corollary D]:Let X be a semicomplete meromorphic vector field in
C3 and suppose that the maximal solution with initial condition p is defined in a subset
U of C such that the complement of U is uncountable. Then the orbit of X through p is
Zariski dense inC3 and, in particular, X does not have a meromoprhic first integral.

4.2. An example. In the cases whereX�(�) is semicomplete,!(t) is a single-
valued function. Our geometric reasoning implied thatX�(�) is semicomplete whenever!(t) is single-valued. It is legitimate to ask if all this is needed and if the single-
valuedness of! does not imply, in a more direct way, the semicompleteness ofX. This
is, in general, not true. For example, the vector field (z2

1 C z4
2) �=�z1 C z1z2 �=�z2 C

z3(2z2
2� z1) �=�z3 satisfies relations (3) with respect to the vector fieldsZ D �=�z1 and

L D �=�z1C (1=2)�=�z2� (1=2)�=�z3. The three vector fields are linearly independent
in the complement of{z2z3 D 0}. The fibration corresponding to the right action ofP
is now given by! D z3z3 and takes values inC n {0}. A solution to this vector field is
given by �

t

1� t2
,

1p
t2 � 1

,
(t � 1)2p

t2 � 1

�
,

and hence the vector field is not semicomplete. Despite this,!(t) D (t � 1)=(t C 1) is
a single-valued function (it has vanishing Schwarzian).

4.3. Symmetries of the equations. The vector fieldsX�(�) are invariant under
a simultaneous change of sign ofz2 and z3 and can thus be defined in the quotient of
C3 under this involution. For! a primitive cubic root of unity, the functions

X D z1, Y D z1 C z2
2 � z2z3, Z D z1 � (!C 1)z2z3, W D z1 C !z2

3 � !z2z3,
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generate the ring of polynomials invariant by a simultaneous change of sign ofz2 and
z3 and are bound by the algebraic relation

(9) !2(X ZC Y W)C !(XWC Y Z)C (XYC ZW) D 0.

This quadratic cone has a vector field induced byX�(�). For example, if (z1,z2,z3) are
a solution toX�!((1=3)(1� !)), the above functions satisfy the differential relations

W0 C X0 C Y0 D W XC XYC Y W,

W0 C Y0 C Z0 D WYC Y ZC ZW,

W0 C X0 C Z0 D W XC X ZC ZW,

X0 C Y0 C Z0 D XYC Y ZC Z X.

This is exactly the system of equations satisfied by modular forms of level three con-
sidered by Ohyama in [19].

4.4. Some questions. Let us end by formulating some questions:
Does there exist a semicomplete polynomial vector field inC3 having a maximal

solution defined in a domain
(1) with uncountable complement, or
(2) whose complement has nonempty interior,
necessarily part of a Lie algebra of rational vector fields? (the answer is negative if we
restrict to polynomial vector fields, see [8, Section 3]).

In [5], a reduction of the Yang–Mills equations is shown to produce the system (1).
Is there a reduction of these equations yielding the vector fields X�(�)? More generally,
does there exist an interesting partial differential equation admittingX�(�) as a reduction?

Does there exist a polynomial vector field inCn having a single-valued solution
defined in an annulus{r < jz� qj < R}?
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