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Abstract
We give bounds for the number of morphisnis X — Y where X andY are
compact Riemann surfaces. The target surfdde not necessarily fixed.

1. Introduction

A classical result due to Hurwitz [7] asserts that the numbeautomorphisms
f: X - X of a compact Riemann surface is bounded byg84(1) whereg > 2 is
the genus ofX. A natural extension is the study of the number of (non-cmtsholo-
morphic) morphisms onto a compact Riemann surfd¢ef genusg’, 1 < g < g. Let
us denote this number by,

N =N (X, X)) =#{f morphismX — X'}.
De Franchis [2] proved in 1913 thdt’ is finite and that, in fact,

I=1I(X)=)Y_ N(X, X)
X/

is also finite whenX’ runs over all possible target surfaces up to isomorphisras (s
Remark 3.4 in [5] for a short modern proof).

Since then several authors [6], [8], [9], [11], [12] (see geatizations in [1]) have
given effective bounds foA” andZ in terms ofg and ¢’. In contrast with the linear
behaviour whenX = X', all of these bounds show an exponential growthginThe
best known result for\" is due to Naranjo and Pirola [10] who proved

(1.2) N =8g- 1)/0((219 ) (2p)7t + (23? ) (2p)7973 + - )

wherep = (g —1)/(¢' — 1). The second named author has provéd< 2(2g’ + 2)%9+2
when X is hyperelliptic with a different approach based on Werast points [4].
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On the other hand Tanabe got in [12]
(1.2) T = (29— 3)(g - 2)(g — 1)29°(2g — 1)*"*(29)™.

In this paper we give new bounds f&¢ and Z simplifying and sharpening [11]
and [12]. Our results are easier to write in term of the degreéhe morphisms (in
fact the same applies for previous results although theynatealways written in this
way) therefore we define

Ng = Ng(X, X') = #{ f morphismX — X" with deg(f) < d}

and

Ty = Za(X) = ) Nag(X, X)).
=

Theorem 1.1. We have
Ng < 8(g—1)(2d)*.

Theorem 1.2. We have

7y < (zgd_ 2) (20)20+1(2g — 1.

2. Proof of the results

First of all we introduce some notation and recall some bésits following [3].
For a Riemann surfacX of genusg we consider the @dimensional real vec-
tor spaceH(X) generated by real harmonic forms ofy and choose a basis of this

space,{w1, wy, . . ., wyg}, being dual to a canonical basis féti(X, Z). We shall use
Zyx to denote the @-dimensional lattice generated by this basifX) = Zx ® R. In
H(X) there is a natural inner product given iy, n) = [ n A %o, let | - || denote the

corresponding norm.
Any morphism f: X — X’ of degreed induces a linear map, its pullback,
f*: H(X) — H(X) that also mapsZx: into Zx. In fact by the definition of the degree

| f*o| = Vd||w| for any o e H(X)

(note that norms indicated with the same symbol are definedifierent spaces). By
duality there is another linear map, the pushforwafid, H(X) — H(X’), still preserv-

ing the lattices, satisfyingf( o f*)(w) = dw for w € H(X') and with the same norm
operator, in particular

I fnll < Vdlnll for any 75 e H(X).
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Proof of Theorem 1.1. Fix a non-zero forehe Zx. of minimal norm and con-
sider the equivalence relation in the set of morphistns> X' of degree< d given by
f ~hif f*¢ = +£h*e. By Corollary 3.2 of [10] the cardinal of each class is at most
8(g — 1). It remains to prove that the number of equivalence ctasse (2d)%9.

Recall thatf*e € Zx and dimZyx = 2g then the coordinates of*€’ form a vector
in Z?9 and there are at most ¥9 possibilities for its reduction (modd. Assume
that there were more thand®9 equivalence classes, then pigeonhole principle assures
the existence of two non-equivalent morphishsand h such thatf*e — h*e = 2dp
with n € Zx — {0}. By the positivity of (f. — h,)(f* — h*) its kernel coincides with
that of f* —h* and we deducey ¢ (Ker f,) N (Kerh,), in particular

el < max(| f.nll, [Ih.nl) < Vdin].
Connecting this with the triangle inequality
2Vd|€| < [ f*¢ —h*€| < | *€|| + [h*e]| < 2vd]€].
Then inequalities become equalities. The central one eapli‘*e = Ah*€, 1 € R,
and the last ond| f “€|| = ||h*€| (because| f*€|, |h*€| < +/d|€]). Consequently

A ==1and f andh are in the same class against our assumption. []

Proof of Theorem 1.2. Lelgy be the number of equivalence classes of morphisms
of degree exactlyl modulo isomorphisms counted K. We are going to prove

(2.1) Ng < 2(2901_ 2) (2d)*9(2g — 1),
that gives
d
2.2) Tg<2) (Zg j_ 2) (2))%(2g - 1.
j=1

The bound in the statement follows using the monotonicityoioomial coefficients in
the rangej < g—1 (which is assured by the Riemann—Hurwitz formula).

To prove (2.1), givenf: X — X{ and h: X — Xj in the set of morphisms of
degreed, we definef ~ h if f*¢ = +h*e| whereg € Zx, ande] € Zx; are non-
zero fixed elements of minimal norm. By Lemma 3 of [12] we have

Ng < 2(29(; 2) 29— 1)°E

where E is the number of equivalence classes~afand (2.1) follows ifE < (2d)9.



746 F. GHAMIZO AND Y. FUERTES

Suppose on the contrary th&t> (2d)?9, then by pigeonhole principle, there exist
f andh with f*e # +h*e], such that

(2.3) f*g —h"e; =2dy for ne Zx—{0}.

If n € Ker f, then (2.3) impliesdg — f.h*€] = 0 hencell€|| < |&][. The same
applies forn € Kerh, and we have

max(le{|l, 1€ 1) < max(| f.nll, [h.nl) < vd]n]|

whenevem ¢ (Ker f,) N (Kerh,), that we can assume because (Ker f,) N (Kerh,) =
(Im f*)XN(Imh*)*+ = (Im f*+Imh*)* is incompatible with (2.3). Using this inequality
and (2.3) we obtain

2v/dmax(l€|, ll€[) < [ f*& —h*ej|| < || & + [h"e]|| = V(& + [1€] )
and this leads to a contradiction fdr'e/ # +h*e]. O

3. Comparison with previous results

The Riemann—Hurwitz formula implied < p with p =(g—1)/(g'—1) as in (1.1)
and one recovers bounds fof and Z just substitutingd by p (or better by|p]) in
our results.

Note that the bound (1.1) can be written as

4(g - Dol(2p + 1) — (2p — 1)].

In [10] it is claimed that the leading term of the function\ween brackets isg{2p)?9*
but this is a little misleading because the exponential Wieha in g avoids any no-
ticeable cancellation in the subtraction. The ratio witspext to the bound in The-

orem 1.1 is
29 29
0 1 1 .
=1+ — —(1-— ~ psinh@@ —1
2[( +ZP) ( Zp) } P ¢-1

where ~ indicates the same asymptotics for large valuespofNote that then (1.1)
shows an exponential growth igf in comparison with Theorem 1.1.

On the other hand (1.2) divided by our bound in Theorem 1.2h& worst case
scenariod = g — 1 gives

(29 - 3)(@ — 2)(g — )29°(29)*" ewzn_ggz(Zg)zg

(25;:12) (29 _ 2)29+1

where we have employed Stirling asymptotic formia~ NNe=N /27N giving (2,\"\‘) ~
22N/ /7N and @/(g — 1))* — € asg — oo.
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In fact in the proof of (1.2) Tanabe gets a bound depending deee p.3063 in
[12]) to be compared with (2.1). In this case the quotient is

(29—2g' +1)(4d*+1y9 1 )29
2(2d)% = 5@
that still grows exponentially.
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