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Abstract
We give bounds for the number of morphismsf W X ! Y where X and Y are

compact Riemann surfaces. The target surfaceY is not necessarily fixed.

1. Introduction

A classical result due to Hurwitz [7] asserts that the numberof automorphisms
f W X ! X of a compact Riemann surface is bounded by 84(g � 1) where g � 2 is
the genus ofX. A natural extension is the study of the number of (non-constant holo-
morphic) morphisms onto a compact Riemann surfaceX0 of genusg0, 1< g0 < g. Let
us denote this number byN ,

N D N (X, X0) D #{ f morphism X ! X0}.
De Franchis [2] proved in 1913 thatN is finite and that, in fact,

I D I(X) DX
X0 N (X, X0)

is also finite whenX0 runs over all possible target surfaces up to isomorphisms (see
Remark 3.4 in [5] for a short modern proof).

Since then several authors [6], [8], [9], [11], [12] (see generalizations in [1]) have
given effective bounds forN and I in terms of g and g0. In contrast with the linear
behaviour whenX D X0, all of these bounds show an exponential growth ing. The
best known result forN is due to Naranjo and Pirola [10] who proved

(1.1) N � 8(g� 1)���2g

1

�
(2�)2g�1C �2g

3

�
(2�)2g�3C � � � �

where� D (g� 1)=(g0 � 1). The second named author has provedN � 2(2g0 C 2)2gC2

when X is hyperelliptic with a different approach based on Weierstrass points [4].
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On the other hand Tanabe got in [12]

(1.2) I � (2g� 3)(g� 2)(g� 1)22g�3(2g� 1)g�1(2g)4g.

In this paper we give new bounds forN and I simplifying and sharpening [11]
and [12]. Our results are easier to write in term of the degreeof the morphisms (in
fact the same applies for previous results although they arenot always written in this
way) therefore we define

Nd D Nd(X, X0) D #{ f morphism X ! X0 with deg(f ) � d}

and

Id D Id(X) DX
X0 Nd(X, X0).

Theorem 1.1. We have

Nd � 8(g� 1)(2d)2g.

Theorem 1.2. We have

Id �
�

2g� 2

d

�
(2d)2gC1(2g� 1)d.

2. Proof of the results

First of all we introduce some notation and recall some basicfacts following [3].
For a Riemann surfaceX of genusg we consider the 2g-dimensional real vec-

tor spaceH(X) generated by real harmonic forms onX, and choose a basis of this
space,{!1, !2, : : : , !2g}, being dual to a canonical basis forH1(X, Z). We shall use
ZX to denote the 2g-dimensional lattice generated by this basis,H(X) D ZX 
 R. In
H(X) there is a natural inner product given byh!, �i D R � ^ �!, let k � k denote the
corresponding norm.

Any morphism f W X ! X0 of degree d induces a linear map, its pullback,
f �W H(X0)!H(X) that also mapsZX0 into ZX. In fact by the definition of the degree

k f �!k D pdk!k for any ! 2 H(X0)
(note that norms indicated with the same symbol are defined indifferent spaces). By
duality there is another linear map, the pushforward,f� W H(X)! H(X0), still preserv-
ing the lattices, satisfying (f� Æ f �)(!) D d! for ! 2 H(X0) and with the same norm
operator, in particular

k f��k � pdk�k for any � 2 H(X).
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Proof of Theorem 1.1. Fix a non-zero forme0 2 ZX0 of minimal norm and con-
sider the equivalence relation in the set of morphismsX! X0 of degree� d given by
f � h if f �e0 D �h�e0. By Corollary 3.2 of [10] the cardinal of each class is at most
8(g� 1). It remains to prove that the number of equivalence classes is � (2d)2g.

Recall that f �e0 2 ZX and dimZX D 2g then the coordinates off �e0 form a vector
in Z2g and there are at most (2d)2g possibilities for its reduction (mod 2d). Assume
that there were more than (2d)2g equivalence classes, then pigeonhole principle assures
the existence of two non-equivalent morphismsf and h such that f �e0 � h�e0 D 2d�
with � 2 ZX � {0}. By the positivity of (f� � h�)( f � � h�) its kernel coincides with
that of f � � h� and we deduce� � (Ker f�) \ (Ker h�), in particular

ke0k � max(k f��k, kh��k) � pdk�k.
Connecting this with the triangle inequality

2
p

dke0k � k f �e0 � h�e0k � k f �e0k C kh�e0k � 2
p

dke0k.
Then inequalities become equalities. The central one implies f �e0 D �h�e0, � 2 R,
and the last onek f �e0k D kh�e0k (becausek f �e0k, kh�e0k � pdke0k). Consequently� D �1 and f and h are in the same class against our assumption.

Proof of Theorem 1.2. LetNd be the number of equivalence classes of morphisms
of degree exactlyd modulo isomorphisms counted byId. We are going to prove

(2.1) Nd � 2

�
2g� 2

d

�
(2d)2g(2g� 1)d,

that gives

(2.2) Id � 2
dX

jD1

�
2g� 2

j

�
(2 j )2g(2g� 1) j .

The bound in the statement follows using the monotonicity ofbinomial coefficients in
the rangej � g� 1 (which is assured by the Riemann–Hurwitz formula).

To prove (2.1), given f W X ! X0
i and h W X ! X0

j in the set of morphisms of
degreed, we define f � h if f �e0i D �h�e0j where e0i 2 ZX0

i
and e0j 2 ZX0

j
are non-

zero fixed elements of minimal norm. By Lemma 3 of [12] we have

Nd � 2

�
2g� 2

d

�
(2g� 1)d E

where E is the number of equivalence classes of�, and (2.1) follows ifE � (2d)2g.
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Suppose on the contrary thatE > (2d)2g, then by pigeonhole principle, there exist
f and h with f �e0i ¤ �h�e0j , such that

(2.3) f �e0i � h�e0j D 2d� for � 2 ZX � {0}.

If � 2 Ker f� then (2.3) impliesde0i � f�h�e0j D 0 henceke0i k � ke0j k. The same
applies for� 2 Ker h� and we have

max(ke0i k, ke0j k) � max(k f��k, kh��k) � pdk�k
whenever� � (Ker f�)\ (Kerh�), that we can assume because� 2 (Ker f�)\ (Kerh�)D
(Im f �)?\(Imh�)? D (Im f �CImh�)? is incompatible with (2.3). Using this inequality
and (2.3) we obtain

2
p

d max(ke0i k, ke0j k) � k f �e0i � h�e0j k � k f �e0i k C kh�e0j k D pd(ke0i k C ke0j k)
and this leads to a contradiction forf �e0i ¤ �h�e0j .

3. Comparison with previous results

The Riemann–Hurwitz formula impliesd � � with � D (g�1)=(g0�1) as in (1.1)
and one recovers bounds forN and I just substitutingd by � (or better byb�
) in
our results.

Note that the bound (1.1) can be written as

4(g� 1)�[(2� C 1)2g � (2� � 1)2g].

In [10] it is claimed that the leading term of the function between brackets is 4g(2�)2g�1

but this is a little misleading because the exponential behaviour in g avoids any no-
ticeable cancellation in the subtraction. The ratio with respect to the bound in The-
orem 1.1 is �

2

��
1C 1

2�
�2g � �1� 1

2�
�2g� � � sinh(g0 � 1)

where� indicates the same asymptotics for large values of�. Note that then (1.1)
shows an exponential growth ing0 in comparison with Theorem 1.1.

On the other hand (1.2) divided by our bound in Theorem 1.2 in the worst case
scenariod D g� 1 gives

(2g� 3)(g� 2)(g� 1)22g�3(2g)4g�2g�2
g�1

�
(2g� 2)2gC1

� e2p�g

2
g2(2g)2g

where we have employed Stirling asymptotic formulaN! � NNe�N
p

2�N giving
�2N

N

��
22N=p�N and (g=(g� 1))2g ! e2 as g!1.
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In fact in the proof of (1.2) Tanabe gets a bound depending on� (see p. 3063 in
[12]) to be compared with (2.1). In this case the quotient is

(2g� 2g0 C 1)(4d2C 1)2g

2(2d)2g
� 1

2
(2d)2g

that still grows exponentially.
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