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Abstract

Let F be a smooth flow on a smooth manifold and D(F) be the group of
diffeomorphisms ofM preserving orbits of. We study the homotopy type of the
identity component®iq(F)" of D(F) with respect to distinct Whitney topologi&g',
(0 <r < 00). The main result presents a class of fldws$or which Djg(F)" coincide
for all r and are either contractible or homotopy equivalent to theleci The group
Diq(F)° was studied in the author’s paper [13]. Unfortunately thdicke contains
a gap in estimations of continuity of local inverses of thecatted shift map. The
present paper also repairs these estimations and showthélyatold under additional
assumptions on the behavior of regular points~of

1. Introduction

Let M be a smooth@*), connectedm-dimensional manifold possibly non-compact
and with or without boundary. Let aldé be a smooth vector field ol tangent too M
and generating a global flow: M x R — M. Denote byXg (or simply by ¥) the set
of singular points off.

Let £(F) be the subset of>°(M, M) consisting of mapsf such that
(1) f(o) C o for every orbito of F;

(2) f is a local diffeomorphism at every singular pong k.

Let alsoD(M) be the group ofC*-diffeomorphisms ofM and

DF) £ ¢(F) N D(M)

be the group ofdiffeomorphisms preserving orbits of. F

For everyr =0, 1,..., co denote by&qy(F)" (resp.Dig(F)") the path-component
of the identity map ig in £(F) (resp.D(F)) with respect to the weakv' Whitney
topology, see Definition 1.4. In particulafy(F)° (resp.Diq(F)°) consists of mapsf
which are homotopic to ig in £(F) (resp.D(F)).

Define the following mapy: C*°(M, R) — C®(M, M) by ¢(a)(X) = F(x, a(x))
for « € C*(M, R) and x € M. We will call ¢ the shift mapalong orbits of F and
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denote bySHF) its image¢(C*(V, R)) in C>*(M, M). Then the following inclusions
hold true:

SHF) C &a(F)™® C -+- C Ea(F)* C Ea(F)°.

The idea of replacing the time in a flow map with a function wageesively used
e.g.in [8, 3, 31, 12, 27, 10] for reparametrizations of meagreserving flows and in-
vestigations of their mixing properties, see also [19, &rooth shifts functions were
applied in [13, 15, 16, 14, 17] for study of homotopical prdjgs of certain infinite
dimensional groups of diffeomorphisms and their actionsspaces of smooth maps.
Also in [19, 18] some applications to parameter rigidity @fctor fields are given.

SupposeF is linearizable at eaclz € X¢, see e.g. [29, 30, 32, 2, 11]. In [13]
the author in particulaclaimed that if in addition M is compact, therDg(F)° and
Eq(F)° are either contractible or homotopy equivalent to the ei®t when endowed
with W -topologies. Unfortunately, it turned out that in such a eyatity this state-
ment fails and it is necessary to put additional restrictiom the behavior of regular
orbits of F. In fact it was shown thaSh(F) = &q4(F)° and the mistakes appeared in
estimations of continuity of local inverses @f see [13, Definition 15, Theorem 17,
Lemma 32] and also Remarks 7.4 and 8.1 for detailed disaussio

Furthermore, the above description Dfy(F)° was essentially used in another au-
thor’'s paper [15] concerning calculations of the homotopyes of stabilizers and orbits
of Morse functions on surfaces.

The aim of the present paper is to repair incorrect formoregtiand proofs of [13]
and using [14, 19, 17] extend the classes of vector fields fuchvthe homotopy types
of &q(F)" and Diy(F)" can be described (Theorem 3.5). In particular it will be show
that the results of [13] used in [15] remain true (Theorem).3.7

1.1. Structure of the paper. For the convenience of the reader and due to the
length of the paper we will now briefly describe its contents.

In 82 we recall the notion of shift map and review (correctjules obtained in
[13]. Also notice that if a flowF of a vector fieldF is not global, then we can find
a smooth functionu: M — (0, +00) such that the flowF" generated by vector field
F’' = uF is global, e.g. [6, Corollary 2]. Moreovelr and F’ have the same orbit
structure, whence& (F) = £(F') and D(F) = D(F'). Thus it could always be assumed
that F is global. Nevertheless, in 810 and 811 we will considerrietgin F|y of
F to open subset$V ¢ M and compare shift maps & and F|y. The latter vector
field usually generates non-global flow, therefore in thipguat is chosen to work with
local flows from the beginning. In particular, the domain bffsmap ¢ of F changes
to certain open and convex subsetc(F) C C™(M, R).

In 83 we introduce a certain class of vector fiefdé) on M and formulate the prin-
cipal result of the paper: for evely € F(M) its shift mapy is a local homeomorphism of
func(F) onto its imageSh(F) with respect t&5*°-topologies (Theorem 3.5). It follows that
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SHF) is either contractible or homotopy equivalent to the eirelnd so is the subspace of
SHF) consisting of diffeomorphisms. On the other hand, in [18 iconsidered a class of
vector fieldsF'(M) which containsF(M) and such that for ever € F'(M) the image
of its shift mapSHF) coincides with eithe€i4(F)* or £4(F)° for eachF € F(M). Thus
we obtain thatiy(F)" (Dig(F)") coincide with each other at least for all> 1 and these
spaces are either contractible or have homotopy typ&'ofAs an application we prove
Theorem 3.7 which extends [15, Theorem 1.3]. The rest of #pepis devoted to the
proof of Theorem 3.5.

The assumptions of Theorem 3.5 imply thatis locally injective, therefore in
order to prove this theorem it suffices to show thais open with respect t&* top-
ologies. In 84 we present a characterizationSbf*-openness ofp for somer, s >
0, (Theorem 4.2). First we describe local inversespof as certaincrossed homo-
morphismsand then show that like for homomorphisms of grogds-openness of the
whole mapg is equivalent toS>"-continuity of its local inverse definednly on arbi-
trary small S*>-neighbourhood of the identity mapyid

Further in 85 we recall notorious examples of irrational 8oan the torus and
some modifications of them. It is shown that shift maps of ¢hBlews are not local
homeomorphisms onto their images. This provides couraenples to [13, Theorem 1]
and illustrates certain properties prohibited by Theoref 3

In 86 we repair [13, Lemma 28] by giving sufficient conditiofts S"*-openness
of ¢ to be inherited by regular extensions of vector fields.

87 summarizes the formulas for local inverses of shift mapsinear flows ob-
tained in [13] and “reduced” Hamiltonian flows of homogengqolynomials in two
variables obtained in [19, 14]. Estimations of continuitfytbese formulas for linear
flows were based on incorrect “division lemma” [13, Lemma, 38e Remark 7.4. We
will show how to avoid referring to this lemma.

88 provides a correct version of [13, Theorem 17], see Thede2. It reduces
verification of openness af to openness of a familyey,} of “local shift maps” cor-
responding to any locally finite covd;} of M e.g. by arbitrary small smooth closed
disks. The essentially new additional object here is a finitbsetA’ C A which ap-
pears due to the construction (8.3) %-open set\ and by existence of singular-
ities for which “local shift map” isS*>°-open but nots™")-open for some function
d: N — N. Without finiteness ofA’ the shift mapg is open if its image is endowed
with the so-calledvery-strong topology[9]. This effect appears of course only on non-
compact manifolds.

89 splits the “global analytical problem” of verification openness of local shift
map ¢y into the following two problems
(i) openness of local shift mapy v corresponding to the restrictioR|w to arbitrary
open neighbourhoodV of V, and
(ii) openness of the imag8hFw, V) in SKF, V).

Due to Theorem 8.2 the s&t can also be taken arbitrary small. Hence to solve (i)
it suffices to consider vector fields iR". Thus (i) is a “local analytical” problem. Its
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Fig. 1. D-submanifoldsV and W.

solutions for certain vector fields are given in 87.

810 and 811 present sufficient conditions for resolving dtiregular and singular
points respectively (Theorem 10.1 and Lemma 11.2). In ba#es the assumptions on
F are formulated in the terms of dynamical systems theory, smdhe problem (ii)
can be regarded as a “global topological” one. In the regedae these conditions are
also necessary. Moreover, in the singular case they arearglevith the notion of an
isolated block introduced by C. Conley and R. Easton in [ §emma 11.5.

Finally in 812 we prove Theorem 3.5.

1.2. Preliminaries. PutNo = N U {0} and Ny = N U {0, co}.

Let M be a smooth manifold of dimensian. Glue toM a collaraM x [0, 1) by
the identity mapiM x 0 — dM and denote the obtained manifold by. If oM = &,
then M’ = M. Evidently, M’ has a smooth structure in which it is diffeomorphic with
the interior IntM. Moreover M is a closed subset dfi” and dM’ = @. We will call
M’ a collaring of M, see Fig. 1.

DEeFINITION 1.3. A closed subse¥ C M will be called aD-submanifoldif there
exists anm-dimensional submanifold/’ C M’ possibly with boundary and such that
V = M NV’ and the intersectio@M N dV' is transversal, see Fig. 1.

Denote by Intv the interior of V in M. Then IntV =V \ 9V’'. We will also say
that V is a D-neighbourhoodof every pointz € IntV.

Let V € M be aD-submanifold. IfV NaM = @, thenV is a manifold with
boundary, otherwisey is a manifold with cornersin which oM N 9V’ is set of cor-
ners. Evidently,M is a D-submanifold of itself, and eache IntM has arbitrary small
D-neighbourhoods each diffeomorphic to a closedlisk.

Let N be another smooth manifoldy’ be its collaring, andf: V — N be a map.
We say thatf is of classC', r € Ny, (embeddingimmersion etc.) if it extends to a
C" map (embedding, immersion, etd) — N’ from some open neighbourhodd of
V in M’ into the collaringN’ of N.

Then it is well-known thatf is C" if, and only if, the restrictionf | v\om is C”
and all its derivatives have continuous limits whertends to some poiny € aV’, see
e.g. [33, 28, 24, 5] for manifolds with boundary and e.g. [P2oposition 2.1.10] for
manifolds with corners.
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Denote byC'(V, N), r € Ny, the space of alC" mapsV — N. Then similarly
to [7] this space can be endowed witteak W'- and strong S"-topologies. IfV is
compact theW'" andS" coincide for allr € No. For a subsef’ C C'(V, N) denote by
(X)) (resp. @)) the setX’ with the inducedw' -topology (resps'-topology),r € No.

DEFINITION 1.4. A homotopyH: V x| — N will be called anr-homotopy (r €
No), if for everyt e | the mapH; = H(:,t): V — N is C" and all its partial derivatives
in X € V up to orderr are continuous inx, t). In other words,H is anr-homotopy
if and only if it yields a continuous path — C"(V, N) from the standard topology of
| to the W'-topology of C"(V, N).

Hence for everyf € X' its path connected component i), consists of allg €
X which arer-homotopic tof in X.

Now let V1, V, be D-submanifolds of some smooth manifoldsé,, N> be two smooth
manifolds, X c C*®(Vy, N;) and) C C*(V,, Np) be two subsets, anfi: X — ) be
a map.

DEFINITION 1.5. We say thafF is W'S-continuous(-open etc.) for some, s €
Np if it is continuous (open, etc.) as a map: (X)W = Ow-

Similarly we can defines"S-continuous(-open etc.) maps with respect to strong
topologies.

Notice that the statement th&t is W *°-continuous at some g X means that
for everys > 0 and aw?®-open neighbourhoo¥g C Y of F(x) there exist > 0 and
a W'-neighbourhoodJ, C X of x both depending ors and Vg () such thatF(Uy) C
Ve(y. But in general such a map can be mgt*-continuous for any, s, see e.g. [23,
p. 93 Equation (2)], and [25].

2. Shift map

Let F be a vector field onM tangent todM. Then for everyx € M its orbit
with respect toF is a unique mappin@y: R D (ax, bx) — M such thato,(0) = x and
(d/dt)ox = F(0x), where by, by) C R is the maximal interval on which a map with the
previous two properties can be defined. By standard theoien@DE the following
subset ofM x R

dom(F) = U X x (ay, by),

xeM

is an open, connected neighbourhoodhdfx 0 in M x R. Then thelocal flow of F is
the following map

F: M xR D dom(F) > M, F(x,t) = ox(t).
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Fig. 2. Domaindom(F) of the flow F of the vector fieldF(x) =
x2d/dx.

If M is compact, therlom(F) = M x R, e.g. [26].
Notice that ifx € M is either fixed or periodic foF, thenx x R C dom(F).

EXAMPLE 2.1. LetF(x) = x?>d/dx be a vector field orR. Then it is easy to
see that it generates the following local fldwx, t) = x/(1 — xt). HenceF is defined
on the subsetiom(F) C R? bounded by the hyperbolat = 1, see Fig. 2.

Let V C M be either an open subset or R-submanifold andiy: V C M be
the identity inclusion. Denote by (F, V) the subset o’>(V, M) consisting of maps
f: V — M such that (i) f(oN V) C o for every orbito of F, and (ii) f is an em-
bedding at every singular poizte V N Xg. Let alsoD(F, V) C £(F, V) be the subset
consisting of immersionyY — M.

Let &q(F, V)" and Dig(F, V)" be the path-components of in the space€(F, V)
and D(F, V) respectively endowed with the corresponding topologiés

Denote byfunc(F, V) the subset ofC*>(V, R) consisting of functionsx whose
graphT, = {(x, «(X)): X € V} is contained indom(F). Then we can define the follow-
ing map

ov: C(V, R) D func(F, V) — C¥(V, M)

by v (a)(X) = F(X, a(x)). We will call gy the (ocal) shift mapof F onV and denote
its image inC*(M, M) by SHF, V). Put

I = {a € func(F, V): de(F)(X) > —1, VX € V},

where da(F) is a Lie derivative ofe along F. Since func(F, V) is an S%open and
convex subset of*(V, R) and the map

Le:C®(V,R) > C®(V,R), Lg(x)=da(F)

is evidently linear an&™'° continuous, we see thRg; is convex and-open inC>®(V,R).
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It also follows from [13, Lemma 20 and Corollary 21] that
(2.1) Iy = oy (Du(F, V)Y, SHF, V) C EF, V).

Lemma 2.2 ([17]). The following inclusions hold true

ov(Iy) C Dig(F, V)™® C--- C Dig(F, V)" C--- C Dig(F, V)°,
SHF, V) C &q(F, V)® C -+ C Eq(F, V) C --- C Eq(F, V)°.

If SKF, V) C &q(F, V)", thengy (I'y) = Dig(F, V).

The set kergy) &' o7l(iv) will be called thekernel of gy .

Lemma 2.3. The following properties of shift map hold true

(1) @v is W'~ and S""-continuous for all r> 0, [13, Lemma 2]

(2) du(F) =0 for everyu € ker(py), [13, Lemma 7]

(3) Leta, B € func(F, V). Then [13, Lemma 7]the following conditions are equivalent
(@) ov(@) = ov(B)
(b) a — B € func(F, V) and gy (e — B) = iv, i.e.a — B € ker(py).

(4) @y is locally injective with respect to each 8§ - or S"-topologies offunc(F, V)

if and only if X NV is nowhere dense in M13, Proposition 14]

(5) Suppose that V is connected and that\\E¢ is nowhere dense in V. Thefl3,

Theorem 12 (2)],
(a) either ker(py) = {0} and thusgy is injective. This case holds if V contains
either a non-periodic point oF or a fixed point z= V N ¢ such that the tangent
linear flow T,F; on the tangent space,M is the identity
(b) or ker(py) = {nv}nez for some smooth: V — (0, c0). In this case VxR =
dom(F), so func(F, V) = C>*(V, R).

3. Main result

Let M be a smooth manifold of dimensiom. We will introduce a classF(M)
of smooth vector fieldd= on M satisfying certaintopological conditions on regular
points and certairanalytical conditions on singular points. The main result describes
the homotopy types of the identity path components£(¥) and D(F). First we give
some definitions.

Recurrent points. Let F be a vector field onM andz € M be a regular point
of F, i.e. F(2) # 0. Thenz is calledrecurrentif there exists a sequendg }ijcy Of
real numbers such that lim4|ti| = co and lim_ F(z, tj) = z. In particular, every
periodic point is recurrent.



422 S. MAKSYMENKO

First recurrence map. Let z be a periodic point ofF, o, be its orbit, andB C
M be an openrh — 1)-disk passing througlz and transversal t@,. Then we can
define a germ at of the so-calledfirst return (or Poincard map R (B, z) — (B, 2)
associating to everx € B the first point R(x) at which the orbito, of x first returns
to B. It is well-known thatR is a diffeomorphism ar, e.g. [26].

Reduced Hamiltonian vector fields. Let g: R> — R be a homogeneous poly-
nomial of degreep > 2, so we can write

(3.1) g:L'll...LLIa.Q‘il...Q%,

whereL; is a non-zero linear functiorQ; is an irreducible oveR (definite) quadratic
form, li, g; > 1, Li/Li # const fori #i’, and Q;/Qj- # const forj # j’. Denote

D= |_'11*l oLt Qflll—1 . ng—l_

Theng=1L;---Ls-Q1---Qp-D and D is the greatest common divisor of the partial
derivativesg, andgj. The following vector field orR?:

9 9 g0
PO =55 T bay

will be called thereduced Hamiltonianvector field of g. In particular, if g has no

multiple factors, i.el; =q; =1 for alli, j, thenD = 1 andF is the usuaHamiltonian

vector field ofg.

Notice thatdg(F) = 0 and the coordinate functions df are homogeneous
polynomials of degree def§ = a + 2b — 1 being relatively prime in the ring of poly-
nomialsR[X, y].

“Elementary” singularities. Let F be a vector field ofR¥. It can be regarded as
a mapF: R — RX. Define the followingtypes(Z), (L), and (H) of such vector fields.

Type (2). F(x)=0.

Type (L). F(X) = a(X)- Ax, where A is a non-zero K x k)-matrix, ande: R" —
(0, +00) is aC™ strictly positive function. Letry, ..., Ax be all the eigen values of
A taken with their multiplicities. We can also assume thahas areal Jordan normal
form. Then we will distinguish the following particular &5
(L1) R(x;) #0 for some j=1,...,k;

(L2) The real Jordan normal form has a block

0 1
0 1
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(L3) The real Jordan normal form has a block

- O

0b
b0
2n, n>2,b#0.

SO - 0oOr
oT -

10
01
0b
b0
In all other casesA is similar to the matrix:

0 by
—b; O

0 b, _
by O , n>1,b#£0,Vj=1,...,n

0

Then we will also distinguish the following two cases:
(L4) there existst > 0 such that hr € Z for all j;
(L5) such a number as in (L4) does not exist.

Type (H). F(x,y) = a(X, y)-(—0y/D, g;/D) for some strictly positivec™ func-
tion a: R? — (0, +00), and a homogeneous polynomial (3.1) such that2b—1> 2,
so F is not of type (L). Again we separate the following cases:

(HE) a =0 and b> 2, i.e. g is a product of at least two distinct definite quadratic
forms and has no linear multiples. In this caBes R? is a degenerate globadxtreme
of g;

(HS)a> 1 and a+ 2b > 3, so g has linear multiples. In this cagee R? is a degen-
erate saddlecritical point for g.

REMARK 3.1. The types (L), (H), (HE), and (HS) coincide with the orcem-
sidered in [18].

Also notice that in the case (L4) almost all orbits 6fare periodic, while in the
case (L5) almost all orbits are non-periodic and recurrent.

Regular extensions and products of vector fields. Let M, N be manifolds,
G: M — TM be a vector field orM, and F be a vector field orM x N. ThenF can
be regarded as a mdp: M x N — TM x TN. We say thatF is aregular extension
of G if

F(x, y) = (G(x), H(x, y)), (x,y) € MxN,
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for some smooth mapd: M x N — TN, so G is the “first” coordinate function of
F and does not depend oy see e.g. [1, 32]. IfH does not depend oR, so it is a
vector field onN, then

F(x, y) = (G(x), H(Y))

will be called theproductof G and H. Moreover, ifH =0, i.e.

F(x,y) = (G(y), 0),

then F is said to be arivial extensionof G.

In the caseN = R" we will also say thatF is a (regular or trivial)n-extension
Evidently, a regular (trivial)m-extension of a regular (trivialh-extension is a regular
(trivial) (m + n)-extension, see e.g. [32, 13]. The following simple staetris left for
the reader:

Lemma 3.2. (a) A trivial extension is the same as a product with zero vecbd:fi
(b) a product of vector fields is a regular extension of each ofrthe
(c) every non-zero linear vector field is a regular extension dfingar vector field

defined by one of the following matricelg||, H f‘b gH (b # 0), or H 8 (%H

DEerFINITION 3.3. Letze F and (T) denotes one of the types (2), (L), (L1), etc.,
defined above. We will say that the germ Bfat z is of type(T)' if the germ of F
at z is equivalent to a regular extension of some vector field petyT). By (M and
=™ we will denote the set of singular points &Ff or types (T) and (T)respectively.

Evidently, a singular point can belong to distinct types.

DEFINITION 3.4. We will say that aC*> vector field F on aC*® manifold M
belongs to classF(M) if it satisfies the following conditions:
(@) F is tangent tooM and X is nowhere dense iM;
(b) every non-periodic regular point df is non-recurrent;
(c) for every periodic poing of F the germ at of its first recurrence mag: (D, z) —
(D, 2) is either periodic or the tangent m@pR: T,D — T,D has eigen valug such that
Al # 1
(d) for everyz € X the germ ofF at z is either
(%) a product of finitely many vector fields each of which is of type (L) or (H)
or
(xx) belongs to one of the types (L1)XL2), (L3), or (HY, but z is anisolated
singular point ofF.

Thus if the germ ofF at z is a regular extension of an (L4)-vector field, thEn
must in fact be a product of such a vector field with vector fietd types (L) or (H)
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only. Also notice that singularities of type (L5) are notogled at all since they have
recurrent orbits. Moreover, we will present examples of eeéields with singularities
of type (L5) for which the statement of our main result fadge the end of 85.

The following theorem summarizes the results obtained 8] find in this paper.

Theorem 3.5 (cf. [13, Theorem 1] and [18]). Let F € F(M), ¢ be the shift map
of F, andI't = {«a € func(F): da(F)(X) > —1, Vx € M}. Then

SHF) = &a(F)', (") = Du(F)".
If =3O UxHS then SKF) = E(F)° and p(I't) = Dig(F)°.

Suppose that the closurg \ (2D U =) is compact(this is always true for
compact M. Then both maps

@ func(F) — E(F)', ¢lr: T — Dig(F)*

are either homeomorphisms @&-covering maps with respect t8>-topologies. If M

is compact then the inclusiorDiy(F)* C &q(F)! is a homotopy equivalence and both
spaces are either contractible or homotopy equivalent ® ¢hcle. If F has at least
one non-closed orhitor a singular point at which the linear paii.e. 1-jet) of F van-
ishes then Dig(F)! and &qy(F)* are contractible.

The first statement about the image of shift maps is estauligh [18] under more
general assumptions dn. Therefore we will be proving the second part of Theorem 3.5,
see §12. Notice that in comparison with [13, Theorem 1] twditiahal assumptions are
added: “non-ergodicity” condition (like absence of reemtrorbits) and compactness of
certain subset of singular points. On the other hand theetasf admissible singularities
for F are extended due to results of [14, 19, 20].

3.6. Functions on surfaces. As an application of Theorem 3.5 we will now
show that [15, Theorem 1.3] which used incorrect results1@i femains true. More-
over, we extend the latter theorem to a large class of funstion surfaces with de-
generate homogeneous singularities satisfying certandisdary” non-degeneracy con-
ditions.

Let M be a compact surfacd® be either the real lin® or the circleSt. For a
smooth mapf: M — P denote byx; the set of its critical points. Let als8(f) = {h e
D(M): foh = f} be the stabilizer off with respect to the action @(M) onC*(M, P)
and Si4( ) be the identity component &(f) with respect to thav>-topology.

Theorem 3.7 (cf. [15, Theorem 1.3]). Let f € C>*°(M, P). Suppose that
(iy f takes constant values on connected componenid/ofind has no critical points
on daM;
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(i) for every ze X1 the map f isC* equivalent near z to a homogeneous polynomial
g; without multiple factorssuch thatdegg, > 2.

If M is orientable andX; consists of non-degenerate local extremes ,ondy f
is a Morse map without critical points of indely then Siq(f) is homotopy equivalent
to the circle. In all other casesiq(f) is contractible as well.

Sketch of proof. It suffices to assume thdtis orientable. A non-orientable case
will follow from an orientable one by arguments of [15, §4.7]

Similarly to [15, Lemma 5.1] using (i) and (ii) it is possibte construct a vector
field F on M with the following properties:

(A) df(F) = 0, in particularF is tangent tooM;

(B) F(27 =0 if and only if ze M is a critical point of F, i.e. X = Z¥;

(C) for every critical pointz € X; there exists a local presentatidin R? — R of f
in which z =0, f is a homogeneous polynomial of degree2 and without multiple
factors, andF(x, y) = (—fy, f) is a Hamiltonian vector field off.

Then it follows from (A), (B), and arguments of [15, Lemma]3sat Sig( ) = Dig(F)°.

Notice thatF belongs to classF(M). Indeed, conditions (a) and (b) are evident.
Moreover, for each periodic point of its first recurrent map is the identity, which
implies (c).

Finally by (C) each non-degenerate saddlef aé of type (L1), each non-degenerate
local extreme off is of type (L4), while all degenerate critical points 6fare of types
(H). This implies (d).

HenceSy(f) = Dig(F)™ is either contractible or homotopy equivalent$b. If M
is orientable andC¢ consists of non-degenerate local extremes only, theis Morse
and belongs to one of the types (A)—(D) of [15, Theorem 1.8].tHis case the cor-
responding shift map is not injective, whensg(f) is homotopy equivalent t&".

In all other cases is injective and saSiq(f) is contractible. Indeed, iff has a
saddle critical point therF has a on-closed orbit, while if has a degenerate local
extremez then j1F(z) = 0. O

4. Openness ofp

Let V C M be aD-submanifold. Our aim is to find sufficient conditions for the
shift map ¢y : func(F, V) — SHF, V) to be a local homeomorphism with respect to
S*>-topologies. Sincepy is S™"-continuous for allr € Np, this is equivalent tas>>-
openness opy. Moreover, aspy is locally injective, we can also require that its local
inverses ares® *°-continuous and defined aB>-open subsets oBHF, V).

In this section we show tha&"S-openness oy for somer,s e Ny is equivalent to
sS'-continuity of its local inverse definednly on some neighbourhood of the identity
inclusioniy: V C M in SHF, V).
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DEFINITION 4.1. Let A be a group andS be a semigroup with unie. Then
the right action of S on A is a map*: Ax S — A such thate * e = o and « *
(fg)=(exf)xgforalle e Aandf,ge S. Amapo: S— As called acrossed
homomorphisnif

a(fg) = (o(f) * 9)a(9).

Suppose for the moment th& generates a global flokr. Put S = SHF) and
A = func(F) = C>*(M, R). Then A is an abelian group and by [13, Equation (§]is
a subsemigroup of>°(M, M) acting from the right onA as follows:

aos:M—S>Mi>]R, ae A seS.

Suppose also that the shift mapof F is injective, i.e.,p: C*°(M, R) — SHF) is a
bijection. Then it follows from [13, Equation (8)] that thaverse map

o =¢ 1 SHF) — C®(M, R)
is a crossed homomorphism, i.e.
o(fog)=o0(f)og+o(g), VFf,gesS

If ¢ is not injective, then the local inverse ¢f near idy is a “local crossed homo-
morphismi. Moreover, if F is not a global flow, therfunc(F) is an open subset of
C*(M, R) containing the zero function, i.e. dotal group.

Notice that if SHF) were a group ang* were a homomorphism, then continuity
of ¢! would be equivalent to its continuity at the unit elemeny, ionly, which of
course is a simpler problem. In our caS&F) is just a semigroupyp* is a local
crossed homomorphism, ardnc(F, V) is in general a local group. Nevertheless we
will now show that continuity of local inverses @f is equivalent to continuity of the
local inverse ofp atiy:V C M.

Theorem 4.2. Let VC M be a D-submanifold and,is € Ny. Then the following
conditions are equivalent
(1) The shift mappy : func(F, V) — SHF, V) is S"5-open
(2) For everya € func(F, V) there exists ars®-neighbourhood\s of f = ¢y (a) in
SHF, V) and anS®>'-continuous section apy, i.e. a map

o: Nt = C®(V,R),
such thato(f) = @ and ¢y oo = id(N5). In other words
f(x) = F(x, o (f)(x)),

for all g € N7 and xe V.



428 S. MAKSYMENKO

(3) Property (2) holds for the zero functiow = 0: V — R and the identity inclusion
f =§0v(0)=ivl V C M.

Proof. (1)= (2). Suppose thapy: func(F, V) — SHF, V) is S"5-open. Since
v is locally injective with respect to thg®-topology, condition (1) means that for every
a € func(F, V) there exists ais'-open neighbourhood,, in func(F, V) such that
a) the restrictionpy |, : My — @v(M,) is a bijection,

b) ¢v(M,) is S%-open inSHF, V), so ¢y (M,) = SHF, V) N N, for someS®-open
Nt neighbourhood off = gy («) in C*(V, M),

c) the inverse mapy = ¢y t: pv(M,) - M, is S*'-continuous.

Then NV¢ £y (M,) = SHF, V) N N and oy satisfy condition (2).

The implication (2)= (3) is evident.

(3) = (1). It suffices to show that for every € func(F, V) there exists an
S'-open neighbourhood\,, in func(F, V) satisfying conditions a)—c) above. Condi-
tion (3) means that such a neighbourhabdy, exists for the zero functio.

For everya € C*(V, R) define the following subset af*°(V, M)

Uy = {f e C®(V, M): (f(X), x(x)) € dom(F), Vx € V}
and consider a mag,: U, — C>*(V, M) defined by
Qo (F)(X) = F(f(X), @(X)), T €Uy, Xe V.

It is easy to see thdf, is S°-open inC*(V, M). Also notice thatg, is S""-continuous
for all r € Ny and thatiy € U, if and only if « € func(F, V).

Lemma 4.3. The image of g coincides with¢/_, and g, is its inverse i.e,
0o =0 : U4 — U, Thus g is an S""-homeomorphisn(Vr € Np) between the
s%open setdd, and U_,.

Proof. Letf €U,, i.e. (f(x), ®(x)) € dom(F) for all x € V. Then

(0 (F)(X), —a(x)) = (F(f(X), «(x)), —a(x)) € dom(F),
0« © Gu(f)(x) = F(F(T (%), (X)), —(x)) = F(f (), a(X) — a(x)) = f(x).

Henceq,(U,) C U, andg_, 00, = idy,. Interchangingy and —« will give the result.
O

Now we turn to the proof of Theorem 4.2. For everye func(F, V) set

Ma (Mo N o7 (Uy) + ) N func(F, V).

Then M, is S"-open infunc(F, V).
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Moreovera € M,. Indeed, sincex € func(F, V), we have thaty € U,, whence
0 € gyl(iv) C oy*(U) and thuse € M,.
We will show that M, satisfies the conditions a)—c) above.

a) The restriction ofpy to M, is 1-1, since SO iy |-
Conditions b) and c) are implied by the following lemma:

Lemma 4.4. Let M/ C M, be anyS'-open subset. Thepy(M.) is S*-open
in SHF, V).

Proof. DenoteM; = M, —a. Then My C MoNgy*(U,) and by the condition b)
for My there exists ars®-open subsefV” of C>°(V, M) such that

gﬂv(./\/l6) = SHF, V)N N,
Define the followingS""-homeomorphism
8 :C(V,R) — C™(V,R), a(B)=oa+p.

Then we obtain the following commutative diagram:

My —2 oy (M) = SKF, V) NN N U,

(4.1) aal lqu

M, —2 5 SHF, V) N au (V' NUy)

simply meaning thaF(x, B(X) + «a(x)) = F(F(x, B(X)), «(x)) for all B € My andx € V.
We claim that

ov(M.) = SHF, V) N g (N NUy,).
Indeed, by (4.1)py (M) C SHF, V) N g, (N NU,).
Conversely, letg € SHF, V) N q,(N' NU,), i.e., there existd € func(F, V) and
f e N/ NU, such that
(4.2) ag(x) = F(x, B(X)) = F(f(x), (X)), VYxeV.
Then f(X) = F(x, B(X) — a(X)), i.e. f € SHF, V) and therefore
f=ov(B—a) € SHF, V) NN N U, = ¢y (My).

Thus there existy € My, possibly distinct fromg —«, such thatf = ¢y (y). Denote
B =y +a Thenp' e M/, and

9(x) = F(f(x), a(x)) = F(F(X, ¥(X)), a(x)) = F(x, B'(X)).



430 S. MAKSYMENKO

In other words,g = ¢v(B’) € pv(M)). Lemma 4.4 and Theorem 4.2 are completed.
O

5. Examples when shift map is not open

In this section we discuss four examples of well-known flowsge shift maps turn
out not to be homeomorphisms onto their images. They havédasimature, but are
given on different types of manifolds. These examples alewige counterexamples to
[13, Theorem 1]. All manifolds in this section are compabgrefore we will not dis-
tinguish weak and strong topologies. In all the examplesvbedur vector fields will
satisfy the assumptions of the following simple lemma:

Lemma 5.1. Let F be a vector field on a compact manifold M tangenbid.
Suppose that the shift mapof F is injective and for every £ Ny, a W' -neighbourhood
N of idy, and arbitrary large T > 0 there exists t€ R, regarded as a constant func-
tion t: M — R, such thatt| > T andF; = ¢(t) € . Theng is not W"3-open for
any r, s € Ng. In particular, ¢ is not a homeomorphism onto its image with respect to
We-topologies ofC*(M, R) and SKF).

Proof. Consider the followingv°-neighbourhood of the zero function:
Mo = {a € C°(M, R): |a(X)| < 1}.

Suppose that there existsVe -neighbourhoodV of idy such thatN' C ¢(Mo). By
assumption there exists a constant function 1 such thatp(t) € A/. Sinceg is inject-
ive, andt ¢ M, we obtain thatp(t) ¢ ¢(Mo), whenceN ¢ ¢(Mo). This contradiction
implies thate is not W"S-open for anyr, s € No. O

Irrational flow. For simplicity we will consider the irrational flow off2. Let
w € R be an irrational number anfé be theirrational flow on the 2-torusT? = R?/Z?

given by F(x, y,t) = (X +t, y +t/u).

Lemma 5.2. The shift mapp: C*(T?, R) — C®(T?, T?) of F is not W'S-open
for any r, s € Np.

Proof. Notice that every orbit of is non-closed and everywhere dense,¢s
injective. First we give convenient formulas for the medrigeneratingV' -topologies
on C®(T?, T?). Let f: T2 — T2 be aC™® map. Thenf lifts to someZ?-equivariant
map f = (f, f2): R2 > R2. Let 12 =0, 1] x [0, 1] € R? be the fundamental domain
for the covering mapp: R? — T2. Define ther-th norm of f by

)" = Z( sup min((|fil}, 1-(|fiID+ >

j=1,2 \(x.y)el? 1<i,+ip<r KY)€I?

§irtiz

9xi19y2
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where {|t|} is the fractional part of the absolute value tof R.

Lete > 0andN! = {f € C>®(T2 T2): | f —idy2||" < ¢} be a bas&Vv'-neighbourhood
of idt2 = ¢(0) € C>®(T?, T?) for somes > 0. We will show that there exists arbitrary
large (by absolute value) € Z such thatp(ny) = Fn, € N!. Then our lemma will
follow from Lemma 5.1.

Notice thatFy,(X,y) = (X+nu,y+n) = (X+nu,y) forallne z, i.e., F,, is just
a “rotation along the first coordinate”. Since this map is ki by adding constants to
coordinates, it follows from formula fof f |" that for eachr € Ny the distance between
idr2 and F,, with respect to then'-topology is equal to

|Fnu — idr2]|" = min({{nu]}, 1— {Inw|})

and therefore does not depend on

Sincep is irrational, the sef, = {min({|nw|}, 1—{|nw|})}nez iS everywhere dense
in St = R/Z. Hence there are arbitrary large (by absolute valued Z such that
[Fn. —idre|" <, i.e.Fn, € NI O

Irrational flows on a solid torus. Let D? = {z e C: |z| < 1} be the unit disk
in the complex plane] = S' x D? be the solid torus, angk be an irrational num-
ber. Define the following flow oril by F(¢, z,t) = (¢ + t mod 1,e?""/#z). Then by
the arguments similar to Lemma 5.2 is can be shown Ehatatisfies assumptions of
Lemma 5.1.

The main feature of this example is thathas periodic orbity = S' x 0 and all
other ones are recurrent. LBt= 1x D? be andR: B — B be the first recurrence map
of y defined byR(z) = €/#z, i.e. it is the rotation by 2/u. Then R is not periodic,
eigen values of its tangent mapR at 0€ B have modulus 1, and the iterations Bf
can be arbitrary close to gd ThusF satisfies all assumptions but (b) of Definition 3.4
of classF(T?).

Periodic linear flows. Given iy, ..., A, € R define the following linear flow on
R?" = C" by

(5.1) Fzi,..., za, t) = (€7, ..., d™iz).

Evidently, the closed rdisk D; of radiusr and centered at the origin is invariant with
respect toF.

Lemma 5.3. The following conditions are equivalent

(1) F; =idcn for somer >0, ie.rjreZ forall j=1,...,n
(2) every ze C" is either fixed or periodic with respect t6;
(3) at least one point = (z, ..., z,) with all non-zero coordinates is periodic.

A flow satisfying one of these conditions will be calfeefiodic
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Proof. The implications (13 (2) = (3) are evident. (3> (1) Letze C" be a
periodic point with all non-zero coordinates afidoe the period ofz with respect to
F. Thené*fz; =z; #0 for all j =1,...,n, whencex; -0/2r € Z. O

Lemma 5.4. If F is not periodic then its shift mag is injective and is not
W'S-open for any [ s € Np.

Proof. By Lemma 5.3 every poirt € C" with all non-zero coordinates is non-
periodic and it is easy to see that its orbit is dense on sore@ spbset of the sphere
%2)3‘1 = 0Dy of radius |x|. In particular, this orbit is non-closed, whence the shift
map of F is injective. Then similarly to Lemma 5.2, we can find arbigréarget € R

such thatF; is arbitrary close to ighn in any of W'-topologies. O

Flow on $", n > 2. We will now extend the last result for the construction of a
flow on the spheres® with two fixed points at which this flow is linear.

Let R2" and R3" be two copies ofR™ = C". Define a diffeomorphismy: R2" \
{0} — R2"\ {0} by n(z) = z/||z||?, where| z|| is the usual Euclidean norm iR?". Then
n maps every sphere of radiuscentered at 0 to the sphere of radiys .1Gluing Rf”
andR2" via  we obtain a B-sphere.

Notice that Equation (5.1) defines the flows BRA" and R3" so that the following
diagram is commutative:

R2"\ {0} —— R\ (0}

R2"\ {0} —— R2"\ {0}.

Hence these flows determine a unique fl6ivon S with two fixed points. Moreover,
F' is linear on the chartR?" andR3" at these points.

Now suppose thaF is not periodic. Then we can find arbitrary large R such
that F is arbitrary close to igks in any of W' -topologies. This implies thaE’ satisfies
assumptions of Lemma 5.1.

6. Regular and trivial extensions

The results of this section will allow to estimate contiguitf shift maps for vector
fields of types (L) and (H).

Let M, N be two manifolds,G be a vector field orM, F be some regular exten-
sion, andG be the trivial extension o6 on M x N. Thus

F(x, y) = (G(x), H(x, ¥)), G(x,y) = (G(x), 0),
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for some smooth mapi: M x N — TN. By F, G, andG we will denote the corres-
ponding local flows, and by, v, andy the corresponding shift maps &f, G, and
G. It is easy to see that

(6.1) dom(F) ¢ dom(G) = dom(G) x N.
Moreover,
(6.2) F(X, y, 1) = (G(x, 1), H(X, ¥, 1)),  G(X, ¥, 1) = (G(x, 1), y),

for some smooth mapi: dom(G) — N.
Let V C M x N be a connected compabt-submanifold. Then it follows from (6.1)
that func(F, V) is W°-open infunc(G, V). Define the map

P: SKHF, V) — SKG, V)

by the rule: if f € SHF, V), and f(x,y) = (A(X, Y), g(X, y)), then P(f)(x,y) =
(A(X, y), y). It follows from (6.2) thatP is well defined and isn""-continuous for
everyr € Ng. Moreover, we have the following commutative diagram:

func(F, V) ——~ 5 SKF, V)

(6.3 [ d lp
func(G, V) — 2 SHG, V).

Theorem 6.1. Suppose thaEg is nowhere dense in M and that, is W™S-open
for some 1 s € Np.
(1) If ¥y is injectivg then gy is W"S-open as well.
(2) If @y is W"S-open then P is locally injective with respect to th&®-topology
of SHF, V).
Suppose in addition thafy is also W>!'-open for some & No.
(3) If P is locally injective with respect to the/s-topology of StF, V), then ¢y is
W' t-open.
(4) If both ¥y and ¢y are not injectivethen P is locally injective with respect to the
WO-topology of StF, V), whence by (3), ¢y is W"t-open.

Proof. (1) If yv: func(G, V) — SHG, V) is a bijection, it follows from (6.3)
that so ispy. Let M C func(F, V) be aw'-open subset. Then

ov(M) = P~ o gy (M)

is Ws-open inSHF, V) due tow"s-openness offy and WSS-continuity of P.
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(2) Leta € func(F, V) and f = ¢y (). We will find a w-neighbourhood off
such thatP|yr is 1-1.

Since bothpy andy, arew"S-open and locally injective with respectud-topologies
of func(F, V) andfunc(G, V) respectively, there exists\&"-neighbourhoodM of « in
func(F, V) such that\" = ¢y (M) is aw®-neighbourhood of in SHF, V) and the restric-
tions of gy andyn, to M are 1-1. Then it follows from (6.3) tha|, is 1-1 as well.

(3) LetM c func(F, V) be aw'-open subset and € M. We will show that there
exists aws-neighbourhoodM’ ¢ M of « such thatpy (M) is Wt-open in SHF, V).
Sincea € M is arbitrary, we will obtain thaty, (M) is W'-open inSHF, V).

It follows from W'-S-openness of/y | o, and WSS-continuity of P that the setP~*o
Vv (M) is aws-open neighbourhood afy («) in SHF, V). Moreover, sinceP is locally
injective with respect to th&s-topology of SHF, V), there exists avs-neighbourhood
N € P10y (M) of gy () such that the restrictioR |, : N — SHG, V) is injective.

Denote M’ = M N ¢y*(N). We claim that

ov(M) = P Lo gy (M) NN,
whencegpy (M) will be Wt-open inSHF, V). Indeed,

injectivitl of Pl

PLogyM)NN E PLoPopyM)NN pv(M).

(4) Suppose that botil, and ¢y are not injective. We will show that for some
m > 0 there exists a fre€-equivariant action of the grou,, on SHF, V) such that
P(f) = P(g) if and only if f, g belongs to the samé&p-orbit. This will give us
a decomposition

P: SKF, V) % SHF, V)/Zm % SHG, V)

in which g is a covering map, and is a bijection with the imageP(SHF, V)) C
SHG, V). Thenq will be locally injective with respect to th&v°-topology sinceZm,
is a finite group. Hence so will b@.

By Lemma 2.3 (5bYunc(G, V) = func(F, V) = C®(V, R), ker@v) = {Nij}nez, and
ker(py) = {nn}nez for some smooth functions, n: M x N — (0, oo) such that

G(X, y, t+1(x ¥) =G(x, y, 1), F(X, y,t+n(x,y)=F(Xy,t).
In other words

(G(x, t + 1), y) = (G(x, 1), y),

(6.4)
(G, t +n), HX, y, t + 1)) = (G(X, 1), H(X, Y, t)).

It follows that G(x, y,t + 1) = (G(X, t + 1), y) = (G(x, 1), y) = G(x, y, t), whence
n € ker@y), i.e.n = mij for somem € Z.



LOCAL INVERSES OFSHIFT MAPS 435

In particular, by (2) of Lemma 2.3 is constant along orbits df. Since for every
a € func(F, V) the mapgy (o) preserves every orbit of, we have thafj o gy (@) = 7,
whence

13, Equation (8)]

ov (i) o pv(a) : ov(a + 1 ogy(@) = ov(a + 7).

Then we can define an action of the groupZ,, on SHF, V) by
kx f=gpykn)of, keZnyn feSHF,V).

Evidently this action is free and by (6.4) is equivarianthwiespect toP.

Moreover, let f = ¢y(x), g = ¢v(B) for someqw, g € func(F, V) and suppose
that P(f) = P(q), i.e. Y (a) = ¥v(B). Then it follows from (3) of Lemma 2.3 that
a — B = ki for somek € Z, whence f = ¢y (k) o g. Moreover, sincey = mzy, we
may takek modulom. In other words,P(f) = P(g) if and only if f = kxg for some
keZn. O

7. \Vector fields of types (L) and (H)

The following lemma shows that property of openness of shidips near singular
points is invariant under reparametrizations.

Lemma 7.1 (cf. [20].). Let F be aC* vector field on M v: M — (0, +00) a
C* strictly positive functionand G= vF. Let also VC M be a D-submanifold and
oy and ¥, be shift maps for F and G respectively. The(FSWV) = SHG, V). More-
over ¢y is S"S-open iff so isyy .

Proof. Define the functions: dom(F) — R and 8: dom(G) — R by

dr

B(x, s) = [0 v(G(x, 1)) dr, alX,s) = /0 v(F(x, 7))’

Then it is well-known that for eacl e func(F, V) and g € func(G, V), see e.qg. [20],

G(x, 9(x)) = F(x, B(x, g(x))),  F(x, f(x)) = G(x, a(x, F(x))),
for all x € V. Define the following map
¢: func(G, V) — func(F, V), ¢(g)(X) = B(X, g(X)).
Then ¢ is a homeomorphism with respect to topologis for all r, and its inverse is

given by ¢71(f)(x) = a(x, f(x)). Moreoveryn, = gy o ¢. Hencegy is S"5-open iff
S0 is Y. O
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Thus for the study of vector fields of types (L) and (H) is s@fficto consider
linear and reduced Hamiltonian vector fields only.

Lemma 7.2 ([19, 14]). Let g: R? — R be a homogeneous polynomi&@ be its
reduced Hamiltonian vector figld= be a trivial n-extension of G oRR" x R?, and V
be a D-neighbourhood od € R"2. Then the shift magy of F is W*>-open. If
degG > 2, i.e. G is of type(H), then for every regular n-extension of G its shift map
is W*>°-gpen as well.

Proof. It follows from [19, 14] that the shift mapy of G has aw®*>°-continuous
local section on some neighbourhood of the identity indosi,: V C R"*?, see also
[19, Theorem 11.1]. By Theorem 4.2 this impliés* *°-openness of}y .

Moreover, if degG > 2, i.e. the linear part of at 0 vanishes, then by Lemma 2.3
@y is injective. Hence by (1) of Theorem 6.1 the shift map3fs W**°-open as well.

0J

Lemma 7.3. Let B be a non-zergk xk)-matrix, G(y) = By be the corresponding
linear vector field onR¥, G(y, t) = eBly be its flowand F be a vector field olR"+*
being a regular(possibly trivia) n-extension of G with respect to the origins R«
and R¥ as indicated in the third column of the table below. Let alsaC\R"** be a
D-neighbourhood of the origi® € R™%. Then the shift magy of F is W"S-open for
the values rs described in the following table.

type | B F openness ofy
1| (L) | B=|al,a#0, regular | W-'tl r >0
2 | (L1) | B= g _ab H ab#0 regular | W2 r >0
3|(L2 | B= 8 é ‘ regular | W'l r >0
0-b1l O
4 | (L3) | B= g g 8—1b ,b#0 regular W0
0 0b O
5 (4 |B=|0D ‘ b0 trivial Wooroe
0 —b;
by O
6 B= 1 =>2
0 —b
bh 0
(a) bjr € Z for somer > 0 and all - 0,00
6a | (L4) j=1,...,1 (periodic casg trivial w
6b | (L5) | (b) otherwise(non-periodic case — —
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Proof. In Cases 1-3 we will first suppose tHatis a trivial n-extension ofG.
Then F is linear and is generated by the following matl»%‘ g H where @ is the
zero f x n)-matrix. Let r denote the coordinates iR".

CAse 1. In this caseF(zr, X) = axd/ox, (@ # 0), F generates the following
global flow F(z, x, t) = (7, xé®) on R"™?, ¢y is injective (becausé has non-closed
orbits), its imageSHF, V) consists of mapsf = (f;, f;) € C*(V, R" x R) satisfying
the following conditions:

fi=1, for,0)=0

%‘;’O)>o, xfa(r, X) >0 (VX #D0),

and the inverse mapping;*: SHF, V) — C*(V, R) is given by

(7.1) oM ()T, x) = fZ(T X) _ —I / 8f2(r tx) "

see [13, Equation (23) and (27)]. Hengg' is W' +1r_continuous for alk > 0, whence
pv is W' T1open.

CASE 2. We will regardR"*? asR" x C. Sincea # 0, we have thaF has non-
closed orbits, whence again its shift map is injective but now the imag&HhF, V)
can not be described so simply as in the previous casesu lkee€>°(V, R) and f =
(f1, f2) = pv(@) € C°(V, R" x C). Then f; = 7. Notice that we can define complex
conjugate f, and its partial derivatives f,/9z and 8 f,/9z in z and z in a usual way.
Then it follows from [13, Equation (29) and Lemma 34] that

L mhdf@) _ 1 Im(e: f (@ B2 + (0 7/026)
ot )= I —em) 2" y(@ + b?)

and that the numerator of the last fraction is equal to zerdeernmy = 0. It follows
from this formula and the Hadamard lemma that the expressfom via f contains
partial derivatives off up to order 2. Hence)gl is W' +2"_continuous for allr > 0.

CASE 3. Now F(z,x,y) = ya/dx for (r,x,y) € R"*2 and it generates the follow-
ing flow F(z,x,y,t) = (r,Xx+Vyt,y). Thengy is again injective (sincé& has non-closed
orbits), its imageSHF, V) consists of mappings = (f1, f2, f3) € C*°(V,R" xR xR)
such that

fi=1, fAr,x,00=0, fz3=y,

and the inverse mapgl: SHhF, V) — C*(V, R) is given by

(7.2) o) = AT XN =X /01 Afalr, X, ty)

y ay

see [13, Equation (26)]. Henag,! is W' 1" -continuous for allr > 0.
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Since in Cases 1-3y is injective, it follows from (1) of Theorem 6.1 that the
same estimations of continuity ef,* hold for regular extensions d.

Notice that in the remaining Cases 4+6is a regularn-extension of the linear
vector fieldGs = —byd/dx +bxd/dy defined by the matrixBs = H 8 Bb H In fact, it
is easy to see that this vector field is the Hamiltonian vefiedd of the homogeneous
polynomial g(x, y) = (b/2)(x? + y?). Also notice that the shift mapy of any trivial
extensionF of Gs is not injective and its kernel kes() consists of integer multiples
of constant function 2/b.

Caseb. ltfollows from Lemma 7.2 that local inverses@§ arew>°-continuous.
An independent proof dfv>>>°-continuity of ¢y for this case is also given in [21] under
more general settings. Notice that in this case we claimingtabout openness of shift
maps of regular extensiors of Gs, since due to Theorem 6.1 it is necessary to have
additional information abouf .

CAsE 4. We will regardR* asC?. Suppose at first thaf is a trivial n-extension
of G. Since G is a regular 2-extension dbs, we see thatF is a regular § + 2)-
extension ofGs. Let alsoG be a trivial fi + 2)-extension ofGs. Thus F and G are
defined onR" x C x C and generate the following global flows:

ibt

F(t,z1, 22, t) = (7, €"(z1 + t2), € ibt

), G(r, 71, 25, 1) = (1, z1, €”2).

Denoted = 27/b and letV c R" x C? be a D-neighbourhood of @& R" x C2. For
everya € C*(V, R) put

f(a)(z, 21, 22) = €22z gla)(t, 71, 25) = P22z,
Then the shift mapgy andyy of F and G respectively are given by

(7.3) ov(@) = (t, f(&) + @ - g@), 9@)), Vv (@) = (7, 21, 9@)).

Similarly to (6.3) defineP: SHF, V) — SKG, V) by the following rule: ifh =
(z, f,09) € SHF, V) C C*(V,R" x C x C), then P(h)(z, z1, ) = (7, z1, 9(z1, 22)).
Evidently, yv = P o ¢y .

By Case 5 the shift magy: C*(V, R) — SKG, V) is W>>-open. We claim
that so isgyv: C®(V, R) — SHF, V). Since G has non-closed orbitsjy is always
injective, whence it will follow from (1) of Theorem 6.1 thahe shift map of any
regular extension oG is W *-open as well.

By (3) of Theorem 6.1 it suffices to show th& is locally injective with respect
to the Wl-topology. Evidently,y? o ¥y (e) = {a + ON}nez, Whence we obtain from
(7.3) that

P~ o Yy (@) = {gv(e) + (0,6n-g(e), 0)| n € Z}.
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Now, define the followingC¥,-neighbourhood ofpy () in SHF, V):

v ={testEv| i1 -waiy <51

We claim that the restrictiofP|y is 1-1.
Sincegy is injective map, it suffices to establish that= 0, whenever bothpy (B8)
and gy (B8 + 0n) belong to for somep € C*(V, R). Notice that

9B = 19(B),, 21,290 = €2 (ibZ2pL, + 1)lzy,2)—0 = 1.
Then

lov(B) — ev (B + NIV < llov(B) — v (@)Y + llov (B + 0n) — v (@)1}
_lo]
= 7

On the other hand,

lov(B) — v (B + On)lly, = [0, 6ng(B), Oy, = |on|.

Hencen = 0.

CAsE 6a. In this case- is a regular extension dBs. Since the flowF is peri-
odic, we have that the shift maps & and Gs are not injective and by Case 5 the
shift map of Gs is W**°-open. Then by (4) of Theorem 6.1 so is the shift mag-of

CASE 6b. In this casepy is injective, but as it is shown in Lemma 5.4 its inverse
map is not evenw®*-continuous.

Lemma 7.3 is completed. []

REMARK 7.4. Incorrect estimations of continuity of local invers#spy given in
[13, pp. 199-200] were bases on at the following “divisiomiea”, which was wrongly
formulated in [13].

Lemma 7.5 (cf. [13, Lemma 32]). Let F be eitherR or C, V C F be a D-
submanifoldand z C*(V,F) — C>*(V,F) be a map defined by the formulZ («)(x) =
X -a(x). If F = R then the inverse map 2: im Z — C®(V, F) is W' *1'-continuous
forallr >0. If F = C, then Z! is only W>*-continuous.

The caseéF = R easily follows from the Hadamard lemma, see also [25]. Theeca
F = C is more complicated and can be established by methods ofLlfl%ut during
the proof of Lemma 7.3 we avoided referring to it.

1n [13, Lemma 32] it was claimed thaZ ! is W""-continuous for allr € No. But the latter
inequality in the proof of [13, Lemma 32] actually show# " -continuity of Z but not of its inverse.
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8. Fragmentation

The aim of this section is to repair [13, Theorem 17] by givangufficient condi-
tion for the shift mapy: func(F) — SHF) to be either a homeomorphism or an infinite
cyclic covering map with respect 18°°-topologies, see Theorem 8.2.

REMARK 8.1. The error occurred in the third paragraph of [13, TheotE/],
where it was claimed that.?. the imageVN; = ¢y, (M) is a C),-neighbourhood of
fly, in C*(U;, M) for all r € Np.” First of all this phrase contains a misprint: in-
stead ofC*(U;, M) the author supposed to be written ¢y. But nevertheless the
statement that\; is C|,-open inim ¢y, does not follow from the assumptions of [13,
Theorem 17] and must be included into the formulation of tise property S)° of
[13, Definition 15]. This is the point which was missed.

Theorem 8.2 (cf. [13, Theorem 17]). Let F be a vector field on M such that
3k is nowhere dense. Suppose that there existsNg, a function ¢ Ny — Np, a lo-
cally finite cover{V;};c, of M by D-submanifoldsand a finite(possibly empiysubset
A’ C A such that{Int V;}ic, is also a cover of Mand the local shift map

v, . func(F, Vi) — SHF, Vi)
is S>>-open if ie A’ and S"9)-open for all r>a if i € A\ A’. Then the shift map
¢: func(F) — SHF)

is S®>-open. Moreoverif A’ = @, theng is S"9)-open for every r> a.
Hence ifgp: func(F) — SHF) is injective then it is a homeomorphism with respect
to S*°-topologies. Otherwisep is a Z-covering map.

Proof. The proof follows the line of [13, Theorem 17]. Sin&k is nowhere
dense, there exists a continuous functianM — (0, co) such that for every periodic
point x of period 6x we have thati(x) < 30, see [13, Proposition 14].

Let « € func(F), r > a, d' be a metric on the manifold" (M, R) of r-jets,v: M —
(0, 1) be a strictly positive continuous function such that §, and

M EB e func(F) | d'(j a(x), j'BX)) < v(X), VX € M}

be a bases'-neighbourhood ofr, where " 8(x) denotes the -jet of g at x. Then the
restriction ofp to M is injective, [13, Proposition 14]. We will show that(M) is
S®-open inSHF) and if A’ = @, then (M) is evens¥-open in SHF). This will
complete Theorem 8.2.

For everyi € A let

(8.1) M E'(8 e func(F, Vi): d' (" a(x), | B(X)) < v(X), VX € Vi}
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be ansS'-neighbourhood ofx|y, in func(F, V). It follows from assumption about open-
ness ofpy, that

oy (M) = SHF, Vi) N\,

where\; is S®-open inC*(V;, M) for i € A’ andS%)-open fori € A\ A’. Moreover,
the restriction ofpy, to M; is one-to-one.

Let pi: C*°(M,R) — C*(V;,R) andqi: C*(M, M) — C*(V;, M) be the “restriction
to V;” maps. Then we have the following commutative diagram

func(F) ——— SHF)
8.2) pil lw
func(F, Vi) ——s SKF, V}).

By definition ¢ and ¢y, as surjective. It also follows from definitions @fnc(F) and

func(F, Vi) and assumption tha¥; is a D-submanifold, that every € C*(V, R) ex-

tends to somer € C*°(M, R). Moreover, ifo € func(F, Vi), we can assume that €

func(F), whencep; (func(F)) = func(F, V;). Thereforeq; is surjective as well. It follows
from definition that

M=) p (M)
ieA
Put
(83) NE ).
ieA

Since{V,}iea is a locally finite cover and\’ is finite?, it follows from [13, Lemma 18]
that\ is S®-open inC>(M, M) and evers®)-open if A’ = @. We will now show that

(8.4) p(M) = SHF) N N.

This will complete our theorem.

It follows from (8.2) and (8.3) thap(M) € SHF)NA. Conversely, leg € SHF)N
N. Thengly, = qi(g) € SHF, Vi)NN; = ¢y, (M;) for all i € A andg = ¢(8’) for some
B € C>*(M,R). We have to find (possibly another) functigne M such thatg = ¢(B8).
Since the restriction opy, to M; is injective, gly, = ¢y (8i) for a unique g € M;.

It remains to show thag; = g; onV, NV; for all i, j € A. Since{IntVi}ica is a
cover of M as well, the family of functiongg;}ic, will define a unique smooth func-
tion B € U, pr (M) = M such thatg|y, = g and¢(B) = g. This will prove (8.4)
and complete our theorem.

2If A’ were infinite, then\/ would be open in the so-called very-strong topology, see [9]
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Let x e IntV; NIntV; for somei, j € A. Theng(x) = F(x, Bi(x)) = F(x, Bj(x)).

If x is a non-periodic regular point, thesi(x) = Bj(x).

If x is periodic of perioddy, then g; (x)—p;(x) = bby for someb € Z. But |B;(x)—
Bi(X¥)| = la(X) = Bi(X)] + la(x) = Bj(X)| < 25(x) < Ox, whenceb = 0.

Thus g = B; on (IntV; NIntV;j) \ Xr. Since X¢ is nowhere dense, we see that
Bi = pi on all of V; NV, as well. ]

9. ReplacingM with an open subset

Theorem 8.2 reduces the verification of openness of the istaft to openness of a
family of shift maps{¢y, }, where{V;} is any locally finite cover oM by D-submanifolds.
Our next aim is to “localize” the verification an opennesgefby replacing all the mani-
fold M with an open neighbourhood// of V.

Let F be a vector field orM, W C M be a connected, open subset, &hd: W x
R D dom(Fw) — W be the local flow generated by the restrictibhy of F to W. Then

dom(Fw) C dom(F) N (W x R)
and F = Fy on dom(Fy). Let V C W be aD-submanifold. Therfunc(Fy, V) is an
s%-open subset ofunc(F, V), and the corresponding shift magy v of Fy coincides
with ¢y on func(Fw, V), i.e.
(9.1) ow,v = @V lunc(Fw,v): func(Fw, V) — SHFw, V) C SHF, V).

The following statement characterizes opennesgofvia openness ofyy v .

Theorem 9.1. Let VC W be a D-submanifoldand r, s € Np. Then the following
conditions(A)—(C) are equivalent
(A) The shift mappy is S"*-open
(B) The shift mappw v is S"%-open and its image $Bw, V) is SS-open in SKF, V),
i.e. there exists ars®-open subsetV' C C*(V, W) such that

SHF, V) NN = SHFw, V).

(C) The shift mappw, v is S"°-open and there exists a®®-neighbourhood\ of the
identity inclusion y: V. C M in C*®(V, M) such that

ShF, V) NN C SHFw, V).

Proof. (A)= (B). Sincefunc(Fw, V) is anS%-open subset ofunc(F, V) and ¢y
is an S"-open map, it follows that the restriction

@V [func(Fw.V) = W,V
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is an S"*-open map and its imag8h(Fw, V) is S*-open inSHF, V).

The implication (B)= (C) is evident.

(C) = (A). Suppose thatpy,y is S"'°>-open. Then by (2) of Theorem 4.2 there
exists anS®-neighbourhood/ of the identity inclusioniy: V C W in ¢*(V, W) and
an S*'-continuous section opy v defined oni/’ = U N SHFy, V):

o: SHF, V) D SHFw, V) DU’ > func(Fw, V) C func(F, V),

i.e., Pw,y 00 = idz,{'.
SinceSHF, V)NN C SHFw, V) andC>®(V, W) is anS%-open subset of>(V, M),

we obtain that/” = U’ N N is an S°-neighbourhood ofiy: V C M in C®(V, M).
Moreover, ¢y coincides withew v on func(Fw, V). Thereforeo is also a section of
oy defined oni/”. Then by (2) of Theorem 4.2y is S"5-open. O

Emphasize that in this theorelV is an arbitrary open neighbourhood o¥.

10. Openness ofsh(Fy, V) in Sh(F): Regular case

Let z be a regular point of, i.e. F(2) # 0. In this section we present necessary
and sufficient conditions folW'"-openness of local shift mapy, whereV is arbi-
trary small D-neighbourhood of, see Theorem 10.2. As a consequence we will obtain
the following

Theorem 10.1. Suppose that z is a regular point of F having one of the follow-
ing properties
(a) z is non-periodic and non-recurrent
(b) z is periodic and the germ at z of its first recurrence map(B, z) — (B, 2) is
periodic
(c) z is periodic and the tangent magR: T,B — T,B has at least one eigen value
A such that|r| # 1.
Then for any sufficiently small connected D-neighbourhoodf\z the corresponding
shift mapgy of F is W""-open for all r> 1. Moreover if z satisfies eithefa) or (b),
then ¢y is W%-open as well.

The proof will be given in §10.8.
Sincez is a regular point ofF, there existe > 0, a neighbourhoodV’ of z, and
a diffeomorphism

n: W — R x (—4e, 4e)
such that in the coordinatey,(s) on W’ induced byn we have that

F((y,s), t) = (Y, s+1),
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W " 0. | p_ | g
v
I
dg £ 0 ¢ 4¢

Fig. 3. Flow box.

whenevers, s + t € (—4e, 4¢). We will call W a 4e-flow-box atz, see Fig. 3. Let also
W = n}(R™1x(—¢,€)) C W be the “central’s-flow-box atz. For everyD-submanifold
V C W denote

(10.2) Uy = {a € func(F, V): ¢y (@)(V) C W}.
Then func(Fw, V) C Uy and
(10.2) ov(Uy) = SHF, V)N C®(V, W)

is a WP-open neighbourhood df, in SHF, V).
Let p1: W — R™?! and po: W' — (—4e, 4¢) be the standard projections. Then
we can define two mapB;: Uy — C®(V, R™ 1) and P,: Uy — C®(V, (—¢, €)) by
Pi(a) = progy(@): V2% Wa R (e, 6) B RM L

Py(a) = paogy(a): V wv—(a)> W~ R™ ! x (—e¢, ) P (—e, ¢),

for o € Uy. Thusgy(a) = (Py(w), Pa(a)).

Theorem 10.2. Let V C W be aconnectedcompact D-submanifolcand 0: V —
R be the zero function.
(1) Then the map Pis locally constant with respect to th&°-topology oft4, and its
image R(Uy) C C*(V, R™1) is at most countable.
(2) The shift mappy : func(F, V) — SHF, V) is W""-open if and only if R0) is an
isolated point of R(Uy) in C®(V, R™ 1) with respect to then" -topology.

Proof. (1) We need the following lemma:

Lemma 10.3. Leta, B8 € Uy. Then one of the following conditions holds true
() Ja(x)—B(X)| < 2¢ for all x € V,
(i) a(x)—B(x) > 6¢ for all x € V,
(i) B(X) —a(x) > 6¢ for all x € V.
Moreovery condition (i) implies that
(iv) Py(B) = Pi(e) and R(B) = Px(a) + B —c.
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Proof. Define the following three open, mutually disjoinbsats ofV:
Ki={xeV:|a(x)—B(X)| < 2},
Ky = {X e V:a(x)— B(X) > 6¢},
Kz ={x e V: B(X)—a(x) > 6¢}.

Let x € V and suppose thdiB(x) — a(X)| > 2¢, i.e.x ¢ K;. SinceW is the central
e-flow-box of a 4-flow-box, and

pv(@)(V) Uev(B)(V) C W,

we see thatB(x) —a(X)| > 6¢, i.e.x € K, U Kgz. ThusV = K; UK, UKj3. SinceV is
connected and; are open and disjoint, we obtain thét coincides with one of them.
(i) = (iv). Denote f = gy (@), g = ¢v(B), andt(x) = B(X) — a(X). Then

(10.3) 9(x) = F(x, B(x)) = F(F(x, a(x)), B(x) — a(x)) = F(f(x), (x))

for all x € V. Suppose thair| < 2¢ on all of V. Recall thatF(y, s;t) = (y, s+ 1)
whenevers, t, s +t € (—4e, 4¢) andy € R™ 1. Since|Py(«)|, |P2(B)| < &, we obtain
that | P(«) + 7| < 3¢ and

(PL(B), Po()) = g "= F(Pi(e), Pole); 7) = (Py(e), Po(e) + 7).
Hence P(B) = Pi(«) and Py(B) = Py(a) + B —«. Ll
Corollary 10.4. Define the followingequivalencerelation onif, by
a~p ifand only if Jo— B| < 2e.

Then every class igv°-open and by(iv) of Lemma 10.3the map R is defined on the
equivalence classesvhence PP is locally constant.

Moreover there is a well-defined strict order on the equivalence dassf~: if
A and B are two distinct classes of then

A>B ifandonly if « — 8 > 6¢

on V for somex € A and 8 € B. Hence there are at most countable many classes of
~, and therefore the image of;Rs at most countable.

Proof. We have only to show that the definition of ™ does not depend on a
particular choice otx and 8. Let o’ € A and 8’ € B be another functions. Then

a—B =@-a)+(@—B)+(B—B)>—2c + 6c —2¢ = 2e¢.

Hence by Lemma 10.3y — B’ > 6¢ as well. []
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This corollary proves statement (1) of Theorem 10.2.
(2) Let Ag be the equivalence class ef containing the zero functiof, i.e. Ag =
{a € Uy: |a| < 2¢}. Then it is easy to see that

Ao = func(Fw, V), whence ShFw, V) = ¢ow,v(Ad) = ¢v(Ao).
Thus we obtain the following commutative diagram

Ag = func(Fy, V)« Uy © func(F, V)

Pw,v=¢v Pv Pv
ov(Ao) = SHFw, V) —— ov(Uy) = SHF, V) N C>*(V, W) —— SHF, V)
p; Py

Pl(AO) € im P;.

Lemma 10.5. The image Sfrw, V) is W'-open in SkF, V) for some re Ny
if and only if R(0) = Py(Ap) is an isolated point of the imagen P; = Py(Uy) C
C*®(V, R™1) with respect to then'-topology.

Proof. Sufficiency Suppose thatP;(0) is an isolated point of infP; in the
W' -topology, i.e.P1(0) is a W'-open subset of ifR;,. Since pj is W"'-continuous, we
obtain thatShFw, V) = ¢ov(Ag) is W'-open in ¢y (Uy) being W -open in SHF, V).
Hence SHFw, V) is W'-open in SHF, V) as well.

Necessity. Conversely, suppose thaP;(0) is not isolated in imP; with the
W' -topology. We will construct a sequence of functioffs} such that
(i) Pu(B) # Pu(0),
(i) the sequencdoy(Bi)} converges tdy: V C M in the W'-topology.
It will follow from (i) that ¢v(8i) ¢ SHFw, V) = ¢v(Ap), and in particulag; ¢ Ay =
func(Fw, V) for all i € N. Then from (i) we will obtain thatSHFw, V) = ¢w.v(Ao) is
not aw"-neighbourhood ofy in SHF, V), i.e. SHFw, V) is not W' -open inSHF, V).

Since P;(0) is not isolated in inPy, there exists a sequence of clas§As} distinct
from Ao such that their image®;(A;) converge toP;(Ag) in the W'-topology.

It is easy to see that for everye N there exists a functior; € A; such that
P2(Bi)(X, s) = P2(0)(x, s) = s. Indeed, take any/ € A; and setg; = g/ — Po(B)).

We claim that the sequendg }icy Satisfies conditions (i) and (ii). Property (i)
holds sincePi(8i) = Pi(A) # Pi(Ap) for all i € N.

Moreover, we have thaP,(B;) = P»(0) = p, o iy and {Py(5;)} C C>®(V,R™1)
converges tdP;(0) = pyoiy in W'-topology. Hencepy (i) converges tay with respect
to the W' -topology. This proves (ii). O

Lemma 10.6. The mapgw v is W""-open for all r> 0.
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Proof. Notice that
func(Fw, V) = {@ € C*(V, R): |x(y, )| < &, |s+ «a(y, s)| < &},
and
ow,v (@)(Y, 8) = (¥, a(y, 8) +9).
Hence
SHFw, V) = {f € C¥(V, W): pro f(y,s) =Y, [pz0 f| <&}

and the inverse map,}, : SHFw, V) — func(Fw, V) is given by

ouiv(F)(Y, 8) = pao f(y, 5) —s.
Evidently, this map isnv"™"-continuous for allr € Ny, whencegy v is W""-open. []

Now statement (2) of Theorem 10.2 follows from Lemmas 10(&6.1land state-
ment (B) of Theorem 9.1. Theorem 10.2 is completed. O

10.7. Periodic case. Let z be a periodic point ofF. We will show that for a
sufficiently small flow-box atz the images of--classes defined i€orollary 10.4can
be described in terms of that first recurrence map of orhitod z only see (10.5).

Let 6 be the period ofz, B be a codimension one open disk which transversally
intersects the orbib, at z, and R: (B, z) — (B, z) be the first recurrence map. Let also
e <6/5andn: W — R™ ! x (—4¢, 4¢) be a 4-flow-box atz. DecreasingV’ we can
assume, in addition, that

(10.4) 0, N W' = F(z x (—4e, 4¢)),

B c W, and B is transversal to all orbits of\’, so that the restrictiorpi|g: W' D
B — R™1 is a diffeomorphism. Put

1 PL g (Pule)?
d=(pilg) " op:V—->R"" ——

B.
Thend preserves the first coordinate.

Let W C W’ be the centrak-flow-box, V C W be a connectedd-neighbourhood
of z, and A be the~-class oft/,. Then it follows from (10.4) that there exists a unique
k € Z such thatja(z) — k6| < ¢ for everya € A, and

k
(10.5) P(A) = proRod: VS B B A R
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10.8. Proof of Theorem 10.1. Due to Theorem 10.2 it suffices to find a
4e-flow-box neighbourhoodN’ of z such that for every connecteld-neighbourhood
V of z, contained in the central-flow-box neighbourhoodV, the imageP;(0) is an
isolated point ofPy(l4,) in the W'-topology, wherer > 0 in the cases (a) and (b), and
r > 1 in the case (c).

(&) Suppose thatr is non-recurrent. Then there exist> 0, and a 4-flow-box
neighbourhoodW’ of z such thatF(z,t) € W' iff |t| < 4e. Let W C W’ be the cen-
tral e-flow-box andV C W be a connected-neighbourhood. Then it follows from
Lemma 10.3 that there exists only one equivalence class.oflence imP; = P;(0),
and thusP(0) is isolated in imP; in any of W' -topologies.

Suppose that is periodic. LetB be a codimension one open disk which transver-
sally intersects the orbiv, at z, R: (B, z) — (B, 2) be the first recurrence map, and
W', W, andV be such as in §10.7.

(b) If the germ ofR at z is periodic of some period, then we can assume that
there exists an open neighbourhoBdC B of z such thatR(E) = E andd(V) C E.
Then it follows from (10.5) that the image d?; is finite and consists of points.
Hence P1(0) is isolated in imP; in any of W'-topologies.

(c) Suppose that the tangent madpR: T,B — T,B has at least one non-zero
eigen vectow € T,B C T,V with eigen valuex such thatjA| # 1. ThenT,R¥(v) = A v.
Let T,p;: T,B — ToR™ ! be the tangent map op; at z andu = T,pi(v). Then for
every classA corresponding to somk € Z we have that

T,(Pi(A)) "2V T,(p1 0 R¥ 0 d)(v) = AFu.

Since|r| # 1, we see thaP(0) is isolated in imP; in any of W'-topologies forr > 1.
O

11. Openness ofSh(Fw, V) in Sh(F): Singular case

Let W C M be an open subset and ¢ W be a D-submanifold. Similarly
to (10.1) put

(11.2) Uy = {a € func(F, V): v (@)(V) C W}.
Then func(Fw, V) C Uy and
(11.2) ov(Uy) = SHF, V)N C*®(V, W)

is a WP-open neighbourhood df, in SHF, V). We will now present a sufficient con-
dition which guarantees thétinc(Fw, V) = Uy. Due to (11.2) this will imply that

(11.3) SHFw, V) ' oy (func(F, V)) = oy () = SHF, V) N C¥(V, W)
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\ F(;,a)

’b F(xt'a)

a) b)
Fig. 4.

is WP-open inSHF, V). In particular, we will prove (11.3) for vector fields of tgp
(2), (L), (H) and their products.

DEFINITION 11.1. LetV C W be a subset. We will say that a paW( V) has
proper boundary intersectioproperty (p.b.i.) if for anyx € V, ae R, and T > 1
such that
e F(x,7a) e W for r €[0, 1)U {T}, but
o F(x,a)eFr(W)=W\W,
there existsr’ € (1, T) such thatF(x, 'a) ¢ W, see Fig. 4 a).

Roughly speaking, if the orbib, of any x € V leavesW for a certain amount of
time and comes back int@, then during this time it must leave the closié In
Fig. 4 b) the pair {V, V) does not satisfy p.b.i. The following lemma is the crucial
implication of p.b.i.:

Lemma 11.2. Letze W, F(z) =0,and VC W be a connected D-neighbourhood
of z such tha{W, V) has p.b.i. Therunc(Fw, V) = Uy.

Proof. Leta € Uy, SO F(x, a(x)) € W for all x € W. We have to show that
a € func(Fw, V). It suffices to verify that the following subset &f:

Ky = {x e V:F(X,sa(x)) e W for all se | =0, 1]}

coincides with all of V. Notice thatz € K,. Moreover, sinceW is open inM, it
follows that K, is open inV. Therefore it suffices to show that \ K, is open inV
as well. SinceV is connected, we will get tha, = V.

Let x € V\ K,. Thenx = F(x, 0- «(x)) and F(x, 1-«(x)) belong toW and there
exists tp € (0, 1) such that~(x, ra(x)) € W for all T € [0, 7o) while F(x, toa(X)) €
Fr(wW). Now it follows from p.b.i. for the pair\v, V) that there exists’ € (to, 1) such
that F(x, t’a(x)) ¢ W.

Then there is an open neighbourhodd of x in V such that

F(y, T'a(y)) ¢ W
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for all y € V. HenceV, C V \ K,, and thusV \ K, is open inV. [l

The following simple lemma is left for the reader.

Lemma 11.3. (1) If (W, V) has p.b.i, then for every subset "M V the pair
(W, V') also has that property.
(2) Let W be an open neighbourhood &¥. Then(W, V) has property p.b.i. with
respect to F if and only if it has this property with respectth@ restriction Hy. In
other words p.b.i. is determined by the behavior of F on arbitrary smatighbour-
hood of W only.
(3) For every xe W denote byyy the connected component of @ W containing x.
Suppose thafr(W) is a smooth submanifold of M and for everyexV its orbit o
is transversal toFr(W) at each ye 3% N Fr(W) whenever such a point exists. Then
(W, V) has p.b.i.

11.4. Isolating blocks. Statement (3) of Lemma 11.3 is relevant with one of the
principal results of [4]. An open subset C M is anisolating neighbourhoodor the
flow F if o, ¢ U for all x € FrU) = U \ U. A closed F-invariant subsetX ¢ M
is isolated if X is the maximal invariant subset of some isolating neighboad U
of X.

Let W be a compactD-submanifold ofM and w = W \ Int W be its boundary.
Denote

w = (X € w: I > 0 with F(x x (=&, 0)NW = @&},
w = {xe€w:Ie >0 with F(x x (0,¢)) "W = &},

T = {x € w: F is tangent tow}.

Then W is called anisolating blockfor F if w* Nw™ =t and r is a smooth sub-
manifold of w with codimension one. Thus™ and w~ are submanifolds (possibly
with corners if so isW) of w with common boundary. It follows that the interior of
an isolating block is an isolating neighbourhood. Moreoyemm (3) of Lemma 11.3
we obtain

Lemma 11.5. If W is an isolating blockthen for any subset \& IntW the pair
(Int W, V) has p.b.i.

Theorem 11.6 ([4]). Let X € M be a closed isolated= invariant subset and
U D X be its isolating neighbourhood. Then there exists an tswablock W such
that X C IntW C U.

This result was established for the case whris a manifold with boundary, but
if 9M is F-invariant andXN9M # @, then the proof easily extends @-submanifolds.
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Corollary 11.7. Suppose z is an isolated singular point of F. Then there exist
basep = {W,}sca Of Open neighbourhoods @ e R¥ such that for every W g and
any subset M\c W the pair(W, V) has p.b.i.

11.8. Semi-invariant sets. We say thatV is negatively(positively invariant with
respect toF if for every x € W andt < 0 (t > 0) such thatX, t) € dom(F) we have
F(x, t) € W. In this case we will also say th&V is semi-invariant

Lemma 11.9. If W is semi-invariant with respect tB, then for any subset \*
W the pair(W, V) has p.b.i.

Proof. Notice that ifx, F(x, Ta) € W for somea e R and T > 1, then it follows
from semi-invariance ofV that F(x, ra) € W for all = € [0, T]. Hence there are no
xeV,aeR andT > 1 satisfying assumptions of Definition 11.1. Therefov¥, (V)
has p.b.i. [

11.10. Product of flows. Fori = 1,2 let M; be a manifold,F; be a vector field
on M;, Wi C M; be an open subset, ang C W, be a subset. Denot®l = My x M,
and W = W; x W,. Consider the product of these vector fiel&x, y) = (F1(X), F2(Y))
on M. It generates a local flow(x, y, t) = (F1(X, t), Fa(y, t)).

Lemma 11.11. Suppose thafW, V;) has p.b.i. with respect toiF(i = 1, 2), and
let V C V3 x V, be a subset. ThefW, V) has p.b.i. with respect to F.

Proof. Letx = (X1, X2) € V, a€e R, andT > 1 be such that

F(x, ta) = (F1(X1, ta), Fo(x2, T@)) € W, 1t €[0, 1)U (T},
F(x, a) = (F1(x4, @), Fa(xz, @)) € Fr(W) = (Fr(Wi) x W2) U (Wy x Fr(Wy)).

In particular,Fi(x, a) € Fr(W;) for at least one indekx = 1, 2. For definiteness assume
that F1(Xxq, @) € Fr(W;). Sincex; € Vi, it follows from p.b.i. for Wy, ;) that there
exists T/ € (1, T) such thatFi(x;, 7’a) ¢ W;. Then F(x, t’a) ¢ W as well. Hence
(W, V) has p.b.i. with respect t&. O

Corollary 11.12. Let F be a product of vector fields of typés) or (H) on R™.
Then there exist a base = {W,}.ca Of open neighbourhoods @ e R* such that for
every We g and any subset \C W the pair(W, V) has p.b.i. In particularif V is
a connected D-neighbourhood 6f then func(Fy, V) = Uy and thus by(11.2)

SHFw, V) = SHF, V) NC*(V, W)

is Wo-open in SKF, V).
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Proof. Due to Lemma 11.11 it suffices to assume thais of type (L) or (H).
If F is of type (HE), then O has an arbitrary small invariant nbmirhoodsW and
by Lemma 11.9 W, V) has p.b.i. for any subsé&f C W. If F is of type (HS) then
{0} C R? is an isolated invariant subset of any of its small neighboad, whence
existence ofW follows from Theorem 11.6, though it can easily be consedatwithout
referring to this theorem.

It remains to consider the case whEifx) = Bx, where B is a Jordan cell corres-
ponding either to some eigen valaes R or to the pair of complex conjugaie=+ ib,
(a, b eR).

1) If a> 0 (@ < 0), then, e.g. [26], 0 has arbitrary small positively (nagdy)
F-invariant neighbourhood®V. Moreover, if B = H 8 _Ob H then Oe R? has arbitrary

small F-invariant neighbourhoodg/. Then again by Lemma 11.9 such neighbourhoods

have desired properties.
01

2) Suppose thaB = is nilpotent. Then the coordinate functions fare

01
0
given by the following formulas:

Fi(x, t) = x +xt+xt2+ + X i F-—aFi*l
1A, — Al 2 32' m(m_1)|1 - Bt )

fori =2,..., m. In particular, for eachx € R™ these functions are polynomials tn

of degree< m— 1. Hence for every > 0 there existsT > 0 such that if|xg| < and

Xo Is not a fixed point ofF, then ||F(x, t)|| strictly monotone increases when increases
t > T (decrease$ < —T).

For everyr > 0 let V; C R™ be the closedn-disk of radiusr centered at the
origin andW; = Int(V;) be its interior. Since~(0,t) = 0 for all t € R, it follows that
for every R > O there exists < T such thatF(V; x[-T, T]) C Wk, i.e.|[F(x, )] < R
for ||x|]] =r and|t| < T. We claim that the pairWg, V;) has p.b.i.

Suppose that for some e V; anda € R we haveF(x, ta) € Wk for r € [0, 1) and
F(x,a) € Fr(WRr) = dVR, i.e.||F(X,ta)|| < R and||F(x,a)|| = R. Then|a| > T, whence
|IF(x, t)|| strictly monotone increases when increafi¢sIn particular, |F(x, za)| > R
for all T > 1, i.e.F(x, ra) ¢ Vg = Wk.

3) Suppose that = ib, (b # 0), is purely imagine bum = 2k > 4 for somek > 2.
ib 1
Then regardingR™ as CK we have that in complex coordinates = |b 1
Hence the coordinate functions Bfare given by formulae similar to the caselg). De-
notez = (z1,...,z) and p(z, t) = z1 + 2ot + z3t?/21 + - - + ztk=1/(k — 1)I. Then
o OFi-1

Fi(z,t) =€®p(2), Fi=¢ T i=2,...,k
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Since |€°| = 1, it follows that ||F(x, t)|| satisfies monotonicity conditions analogous to
the case 2). Then by the similar arguments we obtain thatveryeR > 0 there exists
r > 0 such that the pairWg, V;) has property p.b.i.

O

12. Proof of Theorem 3.5

Let F be a vector field of clas&(M). It follows from results of [18] thaSHF) =
Eq(F)X, wherek =1 if £ # O U xHS andk = 0 otherwise.

Therefore we should prove that the map func(F) — SHF) is a homeomorphism
with respect toS*-topologies. Actually we want to apply Theorem 8.2.

Claim 12.1. Suppose that F belongs to claggM).
(1) If z e X, then for any sufficiently small connected compact D-neightmod V of
z the shift mappy : func(F, V) — SHF, V) is W>>-open. Moreoverif z € ™)' U
> then gy is evenW " +2-open for all r > 0.
(2) If z is a regular point of F then for any sufficiently small connected compact D-
neighbourhood V of z the shift mappigg : func(F, V) — SHF, V) is W""-open for
all r > 1.

Proof. By (C) Theorem 9.1 it suffices to find a neighbourhadof z such that
for every connected-neighbourhoodv C W of z
(i) the shift mapgw v: func(Fw, V) — ShFw, V) is W' 3-open for the corresponding
valuesr, s, and
(i) its image SHFw, V) is WX-open inSHF), wherek = 0 in the cases (1), ankl=1
in the case (2).

(1) Letze Xg. Then by definition of classF(M) there exists a neighbourhood
W of z on which in some local coordinates either
(@) F is a product of finitely many vector field&,, ..., G, each of which belongs
to one of the types (2), (L), or (H), or
(b) F belongs to one of the types (L1)L2), (L3), (H)Y andz is an isolated singular
point of F.

DecreasingW we can also assume th&h(Fy, V) is WP-open inSHF), i.e. con-
dition (ii) is satisfied. In the case (a) this follows from ©bary 11.12, while in the
case (b) from Corollary 11.7.

Then (i) directly follows from Lemmas 7.1-7.3.

(2) Suppose that is a regular point for=. Since F belongs toF (M), it follows
that the assumptions of Theorem 10.1 are satisfied, whencanfo sufficiently small
D-neighbourhood ofz the shift mapgy is W''-open for allr > 1. []

For everyz € M let V, be a neighbourhood guaranteed by Claim 12.1. By as-
sumption of Theorem 3.5 the s& \ (ZY' U =(2)) is compact.




454 S. MAKSYMENKO

Therefore using paracompactnessMfwe can find a locally finite covefV,}ica
of M by compact connecte®-submanifolds and a finite subsat C A such that the
map gy, is W>*>-open fori € A’ andW""*2-open for allr > 0 wheneveri € A\ A’.
Hence by “fragmentation” Theorem 8¢ is a local homeomorphism with respect to
S*™-topologies. All other statements concerning homotopyesypf Dig(F)" and Eq(F)"
follow by the arguments of the proof of [13, §9]. Theorem 3s5completed.
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