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Abstract

The purpose of this paper is to study the limit distributiodniradividual eigen-
value of 1-dimensional Schrédinger operators with randastemtials derived from
the derivatives of compound Poisson processes possessirty positive jumps or
purely negative jumps. The central limit theorem for “migldtigenvalue” is also
investigated.

1. Introduction

Consider a one-dimensional Schrédinger operator

d2  dQy

L= 3 T ax

on an interval [0a], where Qy is a one dimensional compound Poisson process. Im-
posing a suitable boundary condition, the operdtohas countably many eigenvalues
denoted by

{r(@) < 228) < < A(@) <+ ).

In this paper, we investigate limit behavior of individuagenvalue. This problem has
been considered by [3], [5]. In [5], McKean studié¢dwith Gaussian white noise po-
tential and showed

aN((a)) 22 e dx

asa — oo, where N is the integrated density of states studied by [2]

o 3 dx
N()\.)il — /271,/ ef(x /6+2)»X)_l
0

N
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His result shows, whatever boundary condition we imposehathtoundary of [0a],
the limit distribution remains unchanged. However our Teeo 3.9 asserts that i©
has only positive jumps, then the limit distribution depgrwh the boundary condition.
If the process has purely negative jumps, then the situapproaches to the Gaussian
white noise case. Although we have to assume the exponeligtaibution for random
variables describing jumps for a technical reason, we cpuéive Theorem 4.6. We
remark they expressed in [1] the distribution Jof(a) by using the drift formula.

In [3], Grenkova et al. tried to show the joint distributiofi p.(a)} has a limit
distribution after a suitable normalization. They assurtteat the magnitude of jumps
of the compound Poisson process obeys an exponentialbdisbn with parametey.
What they pointed out was the independenceuoof the limit distribution of individual
M(@). However the reality is contrary, and their method does se#m to work to
obtain a joint limit distribution. It would be interestingwe could obtain some results
in this respect.

The above problems are related to some properties of thargpeof L defined
on R in infinitesimal neighborhood of the bottom. When we look tiéh eigenvalue,
assumingn increases according to the expansion ofd]),the situation changes dras-
tically and we can obtain a central limit theorem, namely dreen 5.1.

A beautiful introduction to this and related field is given bynami [6]. We are
grateful to professor Minami for his kind suggestion when warevpreparing this paper.

2. Eigenvalues and zeros of eigenfunctions

Let {Q(X); x € [0, o0)} be a function which is of bounded variation on each finite
interval of [0,00). Then we can define a selfadjoint operatoformally given by

d>  dQ(x)
= me

on each finite interval [0a] if we impose a boundary condition

£(0) cosg + £’(0) sind =0, £(a) =0.
The boundary condition at = 0 is general, however at = a we assume the Dirichlet
condition for technical reason. For anye C, let & be a solution of the follow-
ing equation
(2.1) LE = A& and &(0)= —sing, &'(0) = cosb.

&.(x) is an analytic function ofk. The eigenvalues of the operatbrcoincide with

(LeR:&(a) =0)
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and we denote them bjy,(a) < rz(a) <--- < Ak(a) <---}. Eachig(a) is a decreasing
function of a. Putn,(x) = & (x) and ¢(x) = (£.(x), n,.(x)). Then¢(x) satisfies

d&(x) = n(x) dx,

(2.2) {dn(x) = —A§(x) dx + £(x) d Q(X).

Let G be a continuous map fro?\ {0} to R U {co} defined by
n
G() = “F for ¢ =(,n).

Setting Z(x) = G(¢(x)), we see thatZ(x) satisfies

_ 2 _
(2.3) {d Z(x) = (- + Z(x)?) dx — d Q(x),

Z(0) = z = coté,

as far ast(x) does not vanish. Sincg (x) is a solution ofL& = A&, it is known that
the set of zeros of;(x) has no accumulating points. Let(r) be thek-th zero from
the left end point 0 of; (x):

71(A) = inf{x > 0; Z(x) = o0},
w(A) = inf{x > t_1; Z(X) = o0}, k=2,3,....

The following lemma can be proved easily (see [4]).

Lemma 2.1. If A > limg_ Ak(a), then x(L) < co and we have
1. For any fixed#, (1) is a decreasing continuous function of
2. Z(x) is continuous atry(1) and

Z(tx(A) —0) =00, Z(w(A) + 0) = —o0.

Owing to the Sturm oscillation theorem, we can replace theysiof A(a) with
that of 7«(1) as follows.

Proposition 2.2. For each a andx, A(a) > A if and only if 7 (}) > a.

3. Limit theorem of eigenvalue: positive jump case

From now on we assumgQ(x)}x=o be a compound Poisson process whose de-
rivative is formally expressed as

Q'(x) =) qjs(x—x),
j=1
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where {q;}j=iarei.i.d. random variables anix;};~1 are random variables such that

(3.1) {O=X0<X1<X2<---<Xj<--- and

{Xj+1—Xj}jz0 areiid.with P(Xji1—X; >Xx) =e™

We assume also that two families of random variables arepenident.{ Q(X)}x-0 be-
comes a Lévy process with a Lévy measure

n(du) = mF(du),

where F is the distribution ofg;. From the equation (2.3), the generatdrof the
strong Markov procesZ(x) has the form

At =Z+1)f'@+ /w{ f(z—u)— f(2}n(du), for z# oo
Af(c0) = — lim z{f(2) —Of (c0)}.
In this section we assume the measuofdu) has non-negative support, i.e.
(3.2) supm(du) € [0, +00) (& g; =0 a.s.).

In order to get the asymptotics af, we employ the method used by Kotani in ([4]) when
he obtained the asymptotics Bf (). His method is illustrated as follows. Assume

/ (logu)n(du) < oco.
u>1

For anyz € R U {co} and A > 0, E,(r;) is finite and f(z) = E,(r1) is the unique
solution of

(Z+ 02+ /oo[f(z— u) — f(2In(du) = -1,
0

f(+o00,1) =0, |f(—o0, )| < oo.

(3.3)

To investigate the equation (3.3) we apply Fourier tramsfgion to the both sides
and obtain

(3.4) o'(9) = (x—@)w(s), p0)=1, (o) =0,
where
(s) = / e T dz with T(-2) = — &2
¢ R E_OO‘L’]_’

V(s) = /0 (€'Y — D)n(du).
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The integrated density of staté()) is equal to E_,,71)~* and can be identified with

N(L) = —% Rey'(0+),

To study the asymptotic behavior (1) neari = 0, it is more convenient to make
analytic continuation of (3.4) up to the positive imaginaris and we reach an equation

f7(x, 1) = {2 + U(X)} f_(x, 1),

X
fo(X, A) ~ exp{—i [ Vi=U(y) dy} as X — +oo,
Xo
where X is any positive number such that— U (Xp) # 0 and

U) = % fooo(l — e "n(du).

With this f_ we have

7| f.(0, )7
3.5 E ouu(l) = ———,
(3.5) 1(2) NG
and after non-trivial calculation we can see tBat, 71 (1) (= N(1)™1) has the asymptotics
(3.6) E_ti(2) ~ 7| fo(O) exp(”—”) as |0
. —ootl 0 \/X '

wheren = [;* n(du) and f, is a unique solution of the equation

{ fo (X) = U(x) fo(X),
(3.7)

X

fo(x) ~ U(x) ¥4 exp{—/ VU(y) dy} as X — +o00.
0

Now we turn to the study of the distribution @f. Set

NG) = (B oo(m) ™

What we should investigate is the normalized random vagi&b(\)z;. Let us denote
by p; its Laplace transform:

p:(2) = E,eNWn for o > 0.

Then p,(2) can be interpreted by the following lemma. The proof is agaus to that
of Kotani ([4]) and is omitted.
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Lemma 3.1. p,(2) is a unique solution of the equation

(ZZ+X)f’(Z)+/OO{f(Z—U)— f(2)}n(du) = aN() f(2),
0
f(+o0) =1, |f(—00)| < 1.

(3.8)

Let us introduce a functiof;(z) by
T.(=2) = p;(D[L — pr(—o00)] .
Then T,(z) dz becomes a probability measure and satisfies

p(=2)aN (%)

00 Z+u
(3.9) @+ 0T — /O n(du) / LMy =7"—"""20"

Set

@i(s) = /_ ” e 57T, (2) dz

(3.9) implies

@(8) = (A + aN() = V()}ga(s),
(3.10)

@n(£o0) =0, ¢.(0) =1,
where

1 = jus _ :
V(s) = E/o (€"® = 1n(du), U(s) = V(is)).
One can show an equation
f7(x) = {A = aN@®) = U(x)} f(x),

f(x)~exp{—i /X \/A—aN(A)—U(y)dy} as X — 400,

(3.11)

has a unique solution, which is denoted Iy(x). The lemma below can be proved
similarly as Theorem 3.2 and Theorem 4.7 in [4].

Lemma 3.2. Under the conditionfu>1(logu)n(du) < 00, the followings are valid

o
0 =

£/(0) 1 n
M0~ T TRhoP exp(_m-am) as 240,

(3.12)




EIGENVALUES FOR RANDOM SCHRODINGER OPERATORS 75
Now we can connecp;(—oo) with f;(0).

Lemma 3.3. For eachi > O it holds that
pr(=0) -1, 5O

1—pu(—00)  maN(L) f,(0)

Proof. From (3.9), lettingg — +o0, we see
N(A
w — ||m (Z +)\.)T)L(Z)
1-pi(—00) 2z
i 2 el isz
_Zﬂrpoo(z +A)2n/ €%, (s) ds.

—00

(3.13)

The identity ¢, (S) = ¢.(—s) implies [ €%, (s) ds = 2 Re;° €5%p,(s) ds. On the
other hand, the equation (3.4) shows tlgatis a holomorphic function inC, with
exponential type at most/A and is bounded omR, for fixed » > 0. This together
with the boundedness @f, on R, implies thatg,(2) is bounded on the first rectangle
of the plane, which guarantees an identity

(3.14) f e‘szm(s)ds:i/ e S%,(is)ds for z> 0.
0 0

Hence, by (3.12) we obtain
aN(@)p;(=00)

1— pi(—o0)
= —% ZETOO(ZZ + 1) /oo e‘szlm( ;18))) ds
—lim %. 0
Then
Lemma 3.4. Asi — 0
pr(=o0) = 1—]i:a'

Proof. Let fo(x) be the unique solution of (3.7). Then from (3.6) and (3.12) i
follows that ash — 0
pr(=00) 1 ;0 1
—

1—py(—00)  maN@R)  £,00) o =




76 S. KOTANI AND P. VAN QuocC
Now we proceed to the study ¢f,(z). By the definition ofT,(z) we have

7@ =1- (1 p(~o0) / Ty dy

= pu(—00) + (1 — p;(—00))Fi(—2),

(3.15)

where F; (2) = fz°° T, (y) dy. Therefore, to get the asymptotics pf(2), it is sufficient
to find the behavior of~;, (z) asi — 0. First we have
Lemma 3.5. For all fixed ze [0, c0), it holds that ash — 0

li_rpo F.(2) = 0.

Proof. Rewrite the equation (3.9) in terms Bf(2)

_F() = ap(—o0)N(A) aF (2N(A)
’ (22 + W1 — pa(—o0)] 2+
B fooo[F)»(z +u) — F.(2)]n(du)
2+ 2 '

Or equivalently
(3.16) 9D, (2)] + c(1)[e"?] = &9 Jo FAZ j— ;j)n(d Y
where

_ (7 (n+aN@) _ ap; (—o0)N(X)

o= Lo i O S T T ln + aNGY)

Integrating both sides of (3.16) fromto +oco0, we have
% gd(y)-9(2)

F(2) = C()\)[eg(ﬂo)—g(z) —-1]- [ m dy/ooo n(du)F;.(y + u)
< c(1)[e9+)-9@ _ 1]

Moreover, note that as — 0, we have

c(r) ~ @ ~ constx exp(—%)

and ash — 0
" zs0
(n+aN@®)) [~ dx z

Vi JE XL |
2k

g(+o0) —g(2) =
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Consequently we see that<0F;(z) - 0 asA — O. [

Now, we consider lim..q F;,(2) for z € [—o0, 0). The equation (3.17) below for-
mally comes from (3.16) by integrating both sides and théting 2 — 0.

Lemma 3.6. The following equation has a unique solution f @oo) satisfying
0<f(2) <1

o @n/y y
(3.17) f(2=e2 4 e‘“/Z/ e;_z dy/ f(y — u)n(du).
0

z

Proof. First we show (3.17) has a solution<0f(z) < 1. Introduce an integral

Operator
o0 en/y y
Kf(2) = *n/Z/ § dy/ f(y — u)n(du).
z y 0

Define a sequence of functiod$m(2)}m=0 by
fo(@ =e™?  fne1(@ = fo(2 + Kfn(z2) for m>0.
We show for allm > 0
O<e™=f@< h@ << @=L

Since the operator preserves the positivity, the abovee@&sing property is trivial. On
the other hand,

0 gn/y y
Ki(z) = e‘”/Z/ — dy/ n(du)
z y 0
0 gy
< ne‘”/Z/ v dy=1—e™"?
X
is valid. Hencefn(2) < 1 holds for anym > 0. Therefore there exists
Sim () = 17(2)

andeV? < f*(z) < 1. Clearly it satisfies (3.17) on (6¢). The uniqueness of solution
is easy to prove. []

Lemma 3.7. For all fixed ze (—o0, 0), as A — 0, it holds that
lim F.(2) = 1(-2),

where f(z) is the unique solution 0{3.17)
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Proof. Integrating both sides of (3.16) frorro to z, we have

Lo |
+ u)n(du
Sy R uney

e e .
o e[ Rosunds

F.(2) = €99 — (1)1 — e 9] + /

Moreover, the facg(z) = —n/z + o(1) asi» — 0 and Lemma 3.5 imply

z gn/y -y
Fi(2 =€V? + e“/zf dy[ F.(y + u)n(du) + o(1).
—0o0 0
Hence, from Lemma 3.6 it follows that limg F;(2) = f(—2). ]

Corollary 3.8. For z € [—o0, ), asx — 0

1 k—1,4—X ;
Xre "t dx if ze[—o0,0],
Weakly (k — l)! c [ o ]

N w(h) ——
1-1(2) o1« f(2)
e e

xk2e™>dx if ze (0, 0),

where the last term should be understood gg)d(dx) if k = 1.

Proof. Combining (3.15) and Lemmas 3.4, 3.5, 3.7, we can sti@wvresult as
follows. Forz € [—o0, 0]

1
lim E,emeN®n =~
A—0 z 1+«
is valid, hence the distribution dfl(1)z; converges to the exponential distribution with
parameter 1. For > 0, similarly, from (3.15)

lim E,e “N®Wn —
A—0

o
— f
+ T1a (2)

1- (2
1+«

1+«
= f(2+

we seeN(1)t; converges tof (2)5p(dx) + (1 — f(2))e * dx. Hence, we have the proof
for k = 1. Fork > 2, we know that undel,, the random variable$zy.1 — t«}k>1
are identically distributed with distributio®_..(71(2) < X). Therefore the conclusion
is clear. O

Now the asymptotic ofic(a) can be obtained without difficulty. Recall we are
treating a random Schrddinger operator

d? N dQ(x)

T dx2 dx ’
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on a finite interval [0a] imposing the boundary conditions
£(0) cosp + £'(0)sing =0, £(a) =0,
and we are setting

Z = coto.
Theorem 3.9. Assume
o0
/ (logu)n(du) < oo.
1

For k> 1, as a— +oo,

1

Xk_le_x dx if ze —00, 0 ,

aN(u (@) =24 (k —1)! | |
1- f(Z) Xk—le—x dx + f(Z) Xk—2e—X dx if ze (0 00)
(k—1)! (k—-2)! o

where f(2) is introduced in(3.17),and the last term should be understood gg)do(d x)
if k=1

Proof. Proposition 2.2 implies

P,(aN((0)) < X) = Pz(xk(a) - Nl(g)) — BNM)m() < %),

where A is introduction byN(A) = x/a for fixed x > 0. Then the rest of the proof is
obvious from Corollary 3.8. O

REMARK 3.10. One can replachl(A) with its asymptotic from

w10 Zexp( - %)

in the statement of Theorem 3.9.

4. Negative jump case

The method used in the positive jump case may not work henee ssome diffi-
culties arise in analyzing the equations (3.3) or (3.4).réfuge, in this case we restrict
ourselves only in a special case

1 if x=<0,

Pl=6i > x) = {exp(—ux) if x>0,
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where v is a positive constant. We assume= 1 in (3.1), hencen(du) takes a spe-
cial form:

0 ifu > 0,

n(du)z{ue’“‘du if u<o.

Thus, the generatoA of the processZ(x) becomes

0
Af(z):—f(z)+(zz+k)f’(z)+u[ f(z—y)e¥dy, for z# oo,

Af(o0) = — lim 2(f(2) - f(c0)). )
To get the asymptotics of,, we use the method of moments. Set
u2 = u(z, @) = E,e ™.

u(z) is support to be a unique solution of the equation

0
—U@)+ @+ D)+ f u(z-vy)e" dy = au(2),

—00

U(Hoo) =1, 0=<u(2) <1,

which is non-trivial to be shown. For the time being we pratdy assuming the ex-
istence. Introduce a new function by

v(@) = n /O u(z—y)e" dy = pe' /Oo u(x)e " dx.

(e¢]

We get the boundary value problem fotz), v(2):

Z+ U@ +v(@) ~ 1+ a)u2) =0,
{v’(z) = n(v(2) —u(2),
u(+o0) =1, wv(oo) =1.

Hence, by excluding(z) we get an equation fou(z)

@.1) {(z2 + U2 + (—puZ? + 22— pr — 1 — a)u'(2) + pau = 0,

u(eo) =1, U'(o0) =0.
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This procedure was found in [3]. Introducing

aku(z, )
u(2) = Toak a=O'
we see that
uo(2) = 1,
U(2) = (-1}Ezf, k= 1.

Differentiating (4.1) with respect ta and settinge = 0, we come to a system
of equations

(Z + MW@ + (—uZ + 22— ph — DUi(2) — K(U_4(2) — puk-a(2)) = 0.
For simplicity we set
B = ~—n

Lemma 4.1. For k > 1 the equation

@.2) {(22 — B + (—nuZ% + 22+ uB? — 1), — k(Uj_y — pUk-1) = O,

ug(oo) =0, u(oo) =0, up(2) =1
have unique continuous and bounded solution.

Proof. Since the coefficient of the second derivative haguamity, we separate
the equations in three cases below by transforming themimémgral forms.
1. ze (B, )

o0 giX(x — ﬂ)l/(Zﬁ)—l o - t+ 8 1/(28)
ux(2) = k/Z (x + B)Y@A+L dX/X (U1 (t) — nuk-a(t)]e ”t(m) dt.

2. ze(—B,B)

B enx(g — x)M@H-1
uk(2) = k/Z B 1 V@ dx

X t 1/(28)
S IRCE a0l (BE1) T at+ uge.

3. ze€ (—o0, —f)

B ex(pg — x)Y@A-1
uk(2) = k/z Cp V@i dx

B o\ 1)
X/X ﬂ[UL—1(t)—N«Uk—l(t)]e_“t(%) dt + ux(—B).
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Then it is not difficult to show thati, (+8) are finite and these integrals are convergent,
which shows the lemma. Ul

Now to simplify the situation we introduce
Uk(2) = u(B2).
Lemma 4.2 (z> 1 case). For each k> 1, there exists a constanf such that
|Gk(2)] = o«
holds for all z>1 and g > 1.

Proof. The formula fortk(2) is

00 anBX(y — 1)H/(28)-1
Uk(2) = k / ( ) dx
. (X + D)Y@+

IO A A
X/X [—ﬂ O dt.

By induction, we will show for eaclk > 1, there exist two constants; x, ¢k which
depend only ork such that for allz € [1, o0]

oy < Qe @D (S 1 24
(4.3) G (2)] = ;k (z + 1)L+1/2p) {Z ,B_( 1) ,

|Uk(2)] < o

holds for allz, 8 > 1. Fork = 1, we have

eBz(z — 1)/@2B)-1 poo t+1 1/(28)
a2 = n &1 1)(2 i / ot (L) at
(z + 1) /(2B)+ . t—1

Changing variable = z + s/(uB) leads us to

1 (Z— 1)1/(213)71 /oo o zZ4+ S/(M,B) +1 1/(28) ds
B (z+ 1)@ Jo z+s/(np) -1
d1 (z—1)¥@A-1

B (z+ LH@P+1’

Uy(2) =

Then (1(2) is bounded and (4.3) is valid fdt = 1. Now for k > 2, suppose (4.3) is
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true fork — 1. Observing log + 1)/(z— 1)) is decreasing, we have far> 1

G (2] =k

eMﬁZ(Z 1)1/(213) 1 poo |uk l(t)| - t+1
@+ e 8 t1

—vep-1 (K2, 1\™ oo
(z+ D)Y@AFL| &= pmil z—1 ; t=1t+1)
_ 1)M/@p-1 kL
< dus (z 1) Z z + 1 ,
(Z + 1)1/(2ﬁ)+1 ,Bm _
with di x = Kk(d1 k-1 Vv c_1d1). Noting for fixede > 0 and largep

l+e (X _ 1)1/(2;3)—1 X+ 1 m el
~ |
/1 (X DY@ (Iog = 1) dx ~ (26)"" " ml

140 (X + 1Y@+ 9% "1 mr1\ 9 ’

we seeli is bounded and (4.3) is true fér as well, which completes the proof.[]

1/(28)
) dt 1 ko 1]5,(2)

Lemma 4.3 (-1 <z < 1 case). For any k> 1, as 8 — oo, we have
Ok(2) ~ (—1)k! exp(Kpup).

Proof. In this case

~ 1 e“f‘x(l _ X)l/(Zﬁ)fl
(@) =k | S

X[/ 1 1/(28)
« / I[WT}“) _ uakl(t)]e“ﬂt (1—ftt) dt + G(8)

is valid. We show by induction that fg8 > 1

= [log(1—2)|m
O] = dp &AL z)”‘””l{z g—m}

(4.4) B

m=0

Uc(2) ~ (—1)k! e as B — oo
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holds. Fork = 1, changing the variables leads us to

Gy(2)

Lenb(1—x)/@0)-1 X 14t Y@
— I S —upt ~
(4.5) = M/; L L) dx/_le (_1—t) dt+0a(1)
e2up 2up Vg Y/ (uB)A(1-2) 31/(2A‘3)*1 Y/(Mﬂ)—s
[ — 67
5 Jo y/o (2—8)1+1/‘25’(2+S—y/(uﬂ)

Qb oo K/ BIAA—2)
(46) ~— | eXd x/ sY@A- s~ —e*F,
2B Jo 0

1/(2p)
) ds+0y(1)

since we already know from the last lemma thai(1l) remains bounded. Conse-
quently, from

z 14+t 1/(28)
4.7) / e Mt (ﬁ) dt < 2e#f(z + 1)V@)+1
-1 -
(4.4) follows fork = 1. Suppose the statement is true kor 1 (k > 2). Since
b, (2)

eﬂﬁz(l_z)l/(Zﬂ)—l z u/kfl(t) y ot 1+ 1/(2p)
- [ o] (T5) e

using (4.4) fork — 1, we see

/-Z |a/k—1(t)|efuﬂt 141t 1/(28) dt
. B 1—t

_ k—2
alB(2k=3) (Z N 1)1/(25)_” Z |Iog(1— Z)|m+1 .
5 24 (m+ Dp™

<dyk 1

Moreover, by (4.7) we have

z 1 +t 1/(25)
/ . 11|G_a ()] e (1_—t) dt < constx e#@D(z 4 1)Y/@A+L
Therefore

<X log(1—2)|™
|0(2)] < dpyeP@1+2(1 — z)1/<2ﬂ>1{2 — }

m=0

with some constantl, x, which proves (4.4). Noting

/ l(1 — X)) (—log(1—x))" dt = (28)™"*m!,
0
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similarly as (4.6) we see

k!

1 1/(2B)-1  px 1/(28)

ePX (1 — x)Y(@P) 1+t

= (—1)ke?k-Dup / / e —— dt + o(e**#
(-1) ) i oy =l - + o(e??)

~ (_1)ke2kuﬁ'
which completes the proof.

Lemma 4.4 (—oo <z < —1 case). As 8 — oo, we have
U (2) ~ (—1)k! 21 + o(1)].

Proof. It is enough to show that fg# large,

(4.8) {|ﬁ’k(2)| < d3k X e2k-up

Uk(2) — k(—1) = o(e™+*)

holds for all z € [-00, —1], wheredsy is a constant depending only dn
In this case we have

-1 @uxB(_y 4 1)M(@A)-1
0(2) = k / (x+1)
, (—x — )Y@+

Py _t_1\Yen
x/x [WT}()—Mak_l(t)}e"f“(_t—H) dt + G(—1).

The estimate (4.8) can be shown by inductionkoas follows. Fork = 1,
01(2) - Gy (-1)
-1 1/(28)—1 -1 1/(28)
- —,u[ g X+ DV dx/ ] it dt
2 (—x — 1)M@p)+1 M —t+1
~(1+2)up =1-s/(up) (_ 1/2A)-1 / _y _ _ 1/(2p)
_ 1 eﬁds/* (-x+1) ( X — /(1) 1) i
B Jo z (—x = YA+ —x —s/(up) + 1

dx

Moreover, it is easy to see that

-1 i1\ Y@
[ e‘“‘“( ) dt
(4.9) 7 —t+1

1
=e ”ﬁz%[(—z + YO s (D) + Lo 1yl

85
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Then we have

() < 2D

Therefore we know the statement (4.8) is true koe= 1. Now suppose (4.8) is true
for k—1 (k > 2). The estimate (4.9) shows

{IUL(Z)I ~ Kk 26D (2)],
|0(2) — (= 1)] ~ kt 680y (2) — 0a(—p)],

which concludes the proof. [l
The integrated density staté()) is equal to E_,,t1(1))"t. Lemma 4.4 implies.
N(A) ~e2Y7 as A | —co.

Corollary 4.5. For z € [—o0, 00) and k> 1, as A — —oo the random variables
N(A)t(1) converge weakly to

1

k—1,4—X
mx e “dx.

Proof. Since we have for alt € [—00, c0) andm > 1, asf — oo
E, " = m! e™*[1 + o(1)],

the conclusion holds fok = 1. Fork > 2, since undeP;, {th+1 — Th}n>1 are identi-
cally distributed and the distribution coincides with ttwdtz;(1) underP_.,, we have
the proof. ]

Now the asymptotics of.,(a) can be obtained similarly as Theorem 3.9.

Theorem 4.6. For z € [—o0, o0) and k> 1, as a— oo it holds that

w! 1
aN(uw (@) 2224 mxk—le—x dx.

5. Central limit theorem for “middle eigenvalue”

In this section we consider a limiting property af(nc) for a fixed constant.
Since we have

P,(An(NC) < A) = P,(11(A) < NC).
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and underP;, {t;1(A) — w(A)}k=1 are identically distributed with distribution
P_,(71(2) < a), therefore

M) LB (mG) = NG as.

holds, hence we see, as— oo
An(nc) > N7 or equivalently cN(in(nc) — 1

in probability. Now we consider the central limit theorenr the difference.
Let X be the spectrum of globally defindd and set

lo = inf X.
Assume
A E_,7i(2) is Cl-class and E_,,t7() is continuous on Xp, oc).

In most cases including the two cases treated in the abowemart, this condition is
satisfied. Let us introduce;(1) by

E_wti(e + 1) = E_11(A) + €01(X) +0(¢) as € — 0.
Actually
d
o1(A) = d_}L]E—oofl()")'
For simplicity of the notation, set
k= N1c™?).

Define

02 =E_1i(k)>—c? (= Var{ri(k)}),
{M = —o1(x) > 0.

Denoting by ®(x) the standard normal distribution, we have

Theorem 5.1. Under the assumptioriA), for any ¢> 0 and ze€ [—o0, 00) it
holds that

i Py(Vn(n0) ~ N e ) < ) = <1>(§M).
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Proof. Note

Po(i(hn(10) = N1 ) < 2) = Pz(xn(n@ - % n K)

- pz(fn(% " ) < nc)

n A
= ]P’Z(Xn£ < —M),
o

o
where

T(A/ /N + k) A
f—c+ %M.

We compute their characteristic functions. Sideg— 7j_,} arei.i.d., we see

(oo ) o ) ol )

where

Xn=

A A
YZTl(% +K)_C+ﬁM-

Apparently the first term converges to 1 as— oco. To compute the second term,
we remark

- 1
(5.1) X =1+ix— Exza(x)
with a smooth function satisfying

(5.2) [6(x)] <1 forall xeR and §(x) >1 as x— 0.

Applying (5.1) yields

. & ., & 182 ,( &
exp(la—ﬁY) = 1+|0_JﬁY_ EﬁY S(G—ﬁY).

Taking its expectation, we have
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Each term can be computed as follows:

A A
1 (= ]E_OOY) = ]E_oo.[l(\/_ﬁ +K) —C+ ﬁM

s A 1
=Eoni(k) + o1(k)—= —C+ —=M + o(—)

Vn VN VN
(%)

and by (5.2), &)

(el x50

=E_.11(k)?> — c® + o(1).

Consequently it follows that

E » (exp(i ai\/ﬁY)) =1- i—; + 0(%),

which implies the present central limit theorem. []

(1]
(2]
E
(4]
(5]
(6]
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