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Abstract
To a closed braid in a solid torus we associate a trace graphtliickened torus
in such a way that closed braids are isotopic if and only ifrthace graphs can be
related by trihedral and tetrahedral moves. For closeddbraith a fixed number of
strands, we recognize trace graphs up to isotopy and tahedoves in polynomial
time with respect to the braid length.

1. Introduction

1.1. Motivation and summary. There is still no efficient solution to the conju-
gacy problem for braid groupB, on n > 5 strands, i.e. with a polynomial complexity
in the braid length. Very promising steps towards a polyrareolution were made by
Birman, Gebhardt, Gonzalez-Meneses [2, 3, 4] and Ko, Lee. [A3tlear obstruction
is that the number of different conjugacy classes of bramdsvg exponentially even in
B3, see Murasugi [14].

The conjugacy problem for braids is equivalent to the isptdpssification of closed
braids in a solid torus. To a closed braid in a solid torus weoeiste a 1-parameter
family of closed braids, which is encoded by the labelteate graphin a thickened
torus. We call this construction adarameterapproach to links.

We establish the higher order Reidemeister theorem foedldsaids:trace graphs
determine families of isotopic closed braids if and onlyhiéyt can be related by a fi-
nite sequence of the trihedral and tetrahedral moves showhid. 5 and Fig. 6, see
Theorem 1.4. We recognize trace graphs of closed braids igptopy in a thickened
torus and trihedral moves in polynomial time with respecthe braid length, see The-
orem 1.5. This is one of very few known polynomial algorithrasognizing complicated
topological objects up to isotopy.

1.2. Basic definitions of braid theory. We work in the C*-smooth category.
To explain important constructions we may draw piecewigedr pictures that can be
easily smoothed. Fix Euclidean coordinatesy, z in R®. Denote by Ry the unit disk
at the origin O of the horizontal plane XY. Introduce thelid torus V = Dyy x SZl
where the oriented circl&} is the segment-{1, 1], with the identified endpoints, see
the left picture of Fig. 1.
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V= ny x S; a non-trivial braid B aclosedbraidp = V
Fig. 1. A braid and its closure in the solid toris
DEFINITION 1.1. Markn points py, ..., pn € Dyy. A braid g on n strandsis

the image of a smooth embedding mfsegments into [, x [-1, 1], such that

e the strands off are monotonic with respect to prg — S! (see Fig. 1);

e the lower and upper endpoints gfare | J(pi x {—1}), U(pi x {1}), respectively.
Identifying the bases fj x {z = %1}, the cylinder Q, x [-1, 1], is converted into the
solid torusV = Dyy x Szl, while a braidg C Dyy x [-1, 1], becomes thelosedbraid
B C V, see the right picture of Fig. 1.

DEFINITION 1.2. Braids are considered up to &wotopy a smooth deformation
of the cylinder Qy x [-1, 1],, fixed on its boundary. The equivalence classes of braids
form the group denoted bi,. The productof braidsg;, 8- is the braids; 8, obtained
by attaching a cylinder containing, over a cylinder containingg;. The trivial braid
consists ofn vertical straight segments|’_,(pi x [—1, 1],).

The braid groupB, is generated by elementary braids i = 1,...,n—1, where
oi is a right half-twist of strands, i + 1, the remaining strands are vertical. The braid
B in the middle picture of Fig. 1 is isotopic 1@22 Any braid induces germutationof
its endpoints, e.g. the brai induces the trivial permutation on 1, 2, 3. Such a braid
B € B, is calledpure and its closure consists of components.

1.3. Trace graphs of closed braids. Closed braids are usually represented by
plane diagrams with double crossings. A classical appréadhe isotopy classification
of closed braids is to use diagram invariants, i.e. funstidefined on plane diagrams
and invariant under Reidemester moves I, Il in Fig. 2. Aatameter approach pro-
posed by Fiedler and Kurlin [9] is to consider the 1-paramé&eily of diagrams of
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Fig. 3. Diagrams of rotated braids ¢#) for the braidg in Fig. 1.

braids rotated around the core of the solid toxus This family contains more combi-

natorial information about a closed braid than just one @ldiagram and involves such
features of braids as meridion@isecants straight lines meeting a braid in 3 points and
contained in a meridional disk ,§ x {z} of the solid torusV.

A long knotin R3, a single curve approaching the vertical axis Z4ato, can be
also rotated inR® around Z, but closed braids are more naturally rotated inlt is
essential to work in the solid torus instead ®f since our 1-parameter family repre-
sents a non-trivial rational homology class in the space lofliagrams. A. Hatcher
has proven that the space of diagrams of a prime knd®3rhas a finite fundamental
group [12]. Consequently, its rational first homology grotgmishes.

DEFINITION 1.3. Given a closed brai@ c V in a general position (see more
details in Subsection 2.1), considetated braids rot(8) C V obtained by the rotation
of B through an angle € [0, 27). Project each of the rotated braids;(8) to the fixed
annulusA¢; = [-1, 1}k x St C V, see Fig. 3. The crossings of the resulting diagrams
form thetrace graphTG(B) that lives in thethickenedtorus T = Ay, x g, see Fig. 4,
where the time circle§! is [0, 27] with the identified endpoints.

For the braidg from Fig. 1, a triple point occurs in a diagram of (@), t €
(m/4,7/2), where strand 1 crosses over strand 3, which crosses tregrds2. The
associated vertex of T@] and its image undet > t + 7 are in Fig. 4.

Label arcs of a pure braidd € B, by 1, 2,...,n as in the middle picture of Fig. 1.
Any general pointp of the trace graph T@) C T is a crossing of arcs, j in the
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=0 w4 tn2 =34 = =S4 S3n2  =Tn4 p=on
Fig. 4. The trace graph of the closed braidn Fig. 1.

diagram of a rotated braid §¢B), i.e. the pointp evolves inT following a trace of
crossings in the diagrams. Label the pomby the ordered pairi|) if the arci is over
the arcj in the diagram of re{) and by the ordered pairji() otherwise. For non-
pure braids, other well-defined markings will be introdu@edefinition 3.2. The trace
graph maps to itself under the time shift> t 4+ 7, each labelif) reverses to ji).
Each labelled closed loop of T@) is monotonic with respect to the vertical circi,
but not with respect to the time circlg'.

The trace graph of the piecewise linear closed bgith Fig. 1 is projected to the
torus ZT= S} x § and is shown in Fig. 4. A vertical section TN (A, x {t))
of a trace graph consists of finitely many points, which amessings of the diagram
of rot,(B), e.g. the zero section T@B] N (A4, x {0}) contains 2 points associated to
the crossings of the original brajél. The section TG§) N (A, x {7/4}) has 2tangent
vertices, when the rotated braid ,rp.I(B) has 2 simple tangencies (arc 1 over arcs 2, 3),
so the diagram of rgp(ﬁ) changes under Reidemeister moves II.

The braidg has two meridional trisecants associated to tigle vertices of TGg).
Under the rotation of8 through some € (7 /4, 7/2) andt € (7/2, 37 /4), the trisecants
become perpendicular to the plane of projection, so triplersections appear in the cor-
responding diagrams of r¢B). Around these singular moments the diagrams change
under Reidemeister moves lll, notice that the labels dondnge at triple points, see
more details about singularities and general position aidsrin Subsection 2.1. A given
closed braid can be reconstructed from its trace graph wafibl$, see also combinatorial
constructions of a trace graph in Subsection 2.2.

Theorem 1.4. Closed braidsgo, B: are isotopic in the solid torus V if and only
if their labelled trace graphd'G(Bo), TG(B1) C T can be obtained from each other by
an isotopy inT and a finite sequence of moveshiyg. 5 and Fig. 6.

The trihedral move is associated to the singular situatiothé space of all closed
braids, when the path of rotated braids touches the singulbspace of triple inter-
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Fig. 5. Trihedral move on trace graphs.

Fig. 6. Tetrahedral moves on trace graphs.
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sectionsX, i.e. under the rotation 3 crossings approach each othem &gidemeister
move I, but then go back in the reverse direction withoumpteting Reidemeister
move lll. The tetrahedral move is associated to passingutfirahe singular subspace
of quadruple intersections, when a 1-skeleton of some tetrahedron collapses in the
trace graph to a point and then blows up again in a symmetrio.fo

Theorem 1.4 can be used to construct invariants of closedsoraflecting such
geometric features as meridional trisecants. Similarleasimputable lower bounds on
the number of fiber quadrisecants in knot isotopies were dooy Fiedler and Kurlin
[8]. On the other hand trace graphs turned out to be complicadpological objects
that can be recognized up to isotopy in a polynomial time.

Theorem 1.5. Let 8, 8’ € B, be braids of length< 1. There is an algorithm of
complexity Gn/2)"/8(61)""+1 to decide whetheTG(B) and TG(8') are related by
isotopy inT and trihedral movesthe constant C does not depend on | and n. In the
case of pure braidsthe power R/8 can be replaced by. If the closure of a braid is
a knot a single circle in the solid torysthen the complexity reduces to ®h" .

2. Studying closed braids in terms of their trace graphs

2.1. Singularities and general position of closed braids. Here we outline of
the proof of Theorem 1.4, which follows from a more generauteby Fiedler and
Kurlin [9, Theorem 1.4] on links in the solid torug.

Codimension 1 singularities of closed braids with resped¢hé plane projection are
tangencies of order IC and triple intersections associated to Reidemeister moves |l
and lll, respectively, see Fig. 2. The Reidemeister theosags that any isotopy in the
space SB of all closed braids (with respect to the Whitneyltgy) can be approxi-
mated by a path transversal to the singular subsﬁaieu E>K C SB. We extend this

approach to 1-parameter families of rotated closed braids.

Codimension 2 singularities of plane diagrams of closeddbrare quadruple points
>, tangent triple pointsY and tangencies of order 2. A closed braid c V can
be put in ageneral positionsuch that thecanonicalloop of rotated braidgrot;(8)} C
SB is transversal to the codimension 1 subspﬁ% U EX C SB and avoids the co-

dimension 2 subspacﬁ% U EX U EJ’ C SB. Similarly any isotopy of closed braids

can be approximated by a pa(t,ﬁg}gj such that the cylinder of canonical loofrst; (3s)}
is transversal t(il% U ZX U Zf C SB. Passing through these singularities leads to

tetrahedral moves in Fig. 6, trihedral move in Fig. 5 and aenehere a triple vertey<

of a trace graph passes through a tangent veftewhich does not change the combina-

torial structure of the trace graph with labels, see moraildein Fiedler and Kurlin [9].
A geometric interpretation of a trihedral move and tetrabkdnove at the level

of closed braids is shown in Fig. 7. In a tetrahedral move tws antersect a wide

band bounded by other two arcs, so two intersection poinggpstheir heights. The
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Fig. 7. A trihedral move and a tetrahedral move for braids.

first move in Fig. 6 applies when the intermediate orientezs @jo together from one
side of the band to another likez. The second move in Fig. 6 means that the arcs
are antiparallel as in the British rail mark.

2.2. Combinatorial constructions of a trace graph. First we show how to cre-
ate the trace graph using an algebraic form of a braid.

Lemma 2.1. Let B € B, be a braid of length I. Then the closufeis isotopic in
the solid torus V to a closed braid whose trace graph cont&irfs —2) triple vertices.

Proof. LetA € B, be Garside’s element [10], i.e\? is a generator of the center
of By, the full twist of n strands. The rotation of a brajél € B, can be considered as
a commutation of8 with A2. So the canonical loop of rotated closed braids(ftis
represented by the sequence of the closures of the follotiagls:

B— AATIB > ATIBA > ATIAB = B > AATIS > ATIBA > ATIAB — B.

The first arrow in the sequence consists of Reidemester nmbwsating couples
of symmetric crossings. The second arrow represents aopigaif the diagram when
we pushA through the trivial part of the closed brajgl, i.e. we cyclically shift the
letters of AA™1p to get A='BA. The third arrow shows howA acts onp from the
right. After we get a new braig’, we apply the same transformation and finish with
B since BA = A’ implies thatg’A = AB.

For n = 3, we haveA = o10201. We need to consider only the two generators
o, and their inverses. We apply braid relations correspontbnBeidemeister moves Il
and Il associated to tangent and triple vertices of F)G(

01A = 01(010201) — 01(020102) = Aoy,
022 = 02(010201) — (010201)01 = Aoy,
oy A= o1 Yo10901) — 0901 — (010, Nopop — o1(02010, h= Aoy L

oy IA = oy 1((710201) — (010201 l)01 — 0107 — 0102(010; 1) = Aoy 1
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(12) | a3 a4

Fig. 8. Half trace graphs of the 4-braids, o, € By.

Notice that the sequence is canonical in the case of a geneaatl almost ca-
nonical in the case of an inverse generator. Indeed we cdaceephe above sequence
by al’lA — Ao*z’l by 01’1(010201) — 0901 — 0'201(6202’1) — (010201)02’1. Pushing
A through a generator or its inverse creates exattly?2 triple points. So we end up
with 2I(n — 2) triple points, because we pugh twice through the braid. O

Now we construct a trace graph of a closed braid in a geometic

Lemma 2.2. Let B € B, be a braid of length I. Then the closug is isotopic
in the solid torus V to a closed braid whose trace graph cdssi$ elementary blocks
associated to the generatofand their inversesof B, similar to Fig. 8.

Proof. Fig. 8 shows the trace graphs of the elementsand o, in the braid
group Bs. In general we mark out the pointg, = 2%z, k =0,...,n—1 on the
boundary of the bases,px {+1}. The O-th pointy = 2r is the n-th point.
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The crucial feature of the distributiofy} is that all straight lines passing through
two points ¥, ¥ are not parallel to each other. Firstly we draw all strandghie
cylinder 9Dy x [-1, 1],. Secondly we approximate with the first derivative the stsan
forming a crossing by smooth arcs, see the left hand sideirptof Fig. 8.

Then each elementary braig constructed as above has exaatly- 2 meridional
trisecants, one trisecant through the strands+ 1 andj for eachj #1i,i 4+ 1. Each
trisecant is associated to a triple vertex of the trace grapk 4 meridional trisecants
in the left hand side pictures of Fig. 8. The right hand sidetyses in Fig. 8 contain
the trace graphs of the corresponding 4-braids. The bra@sat in general position,
e.g. parallel strands 3 and 4 lead to the vertical arc latheNgh (34), but we may
slightly deform such a braid, which makes the projection GS' generic. []

3. Two splittings of trace graphs of closed braids

3.1. A trace graph splits into trace circles.

Lemma 3.1. For a braid 8 € By, let (n4, ..., ny,) be the lengths of cycles in the
induced permutatior8 € S,. Number all components of the closyseby 1,..., m. Set
N(@B) =Y (i — 1)+ 23 _; 9cd(i, nj), gedis the greatest common divisor.

(@) The trace graphTG(8) c T splits into N(8) circles such that each circle is a
trace of crossings formed k¥ points simultaneously travelling along.

(b) If the braid g is pure i.e. the permutatiorg is trivial, then N(8) = n(n — 1). If
the closuref of the braid 8 is a knot then N(8) = n — 1.

For any braid 8 € B,, we have n—1 < N(8) < n(n —1).

Proof. (a) Denote byp, ..., p, the intersections of with Dyy x {—1}, ordered
by the orientation of3. Suppose thap;, ps belong to theg-th component of3. This
component corresponds to a cycle of the lenghof the permutation € S,.

If we push p;, ps along their strands ir8, the associated point in T@) goes
along a circle and comes to the point corresponding to thé peix (say) @1, Psi1)-
This process continues until we come to the original pgir, fs) after ny steps along
the cycle of 8 having passed throughg of ng(ng — 1) ordered pairs. For each cycle
of length ng of BeS, we getny — 1 circles that can be distinguished by non-zero
differencesr —s (modng) € {1,..., ng —1}.

Assume thatp;, ps are in different components # j of B, associated to cycles
of lengthsn;, nj. Then the process above terminates after fgni(j) steps, lcm is the
lowest common multiple, since at each step indicesshift by 1 in two sets of lengths
ni, nj. For any two cycles of lengths;, n; in B, we get 2 gcdf;, n;) circles split into
pairs symmetric with respect to the time sHift>t + 7.

(b) If B is a knot then the permutatiof is cyclic, i.e.m =1, N(8) = n—1. For
a pure braidg € B, we haven; = --- = nn, = 1, henceN(B) = n(n — 1). The upper
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Fig. 9. Trace circles in TG&() for the non-pure 4-braid; € Bj.

estimateN(B8) < n(n — 1) geometrically follows from the fact that all circles fro(a)
are monotonic in the directio®! and each meridional disk & x {z} intersectsg in
exactly n points leading ton(n — 1) crossings appearing under the rotation.

Let n; be minimal among all lengthe; > 1. Under the mapr(, nz, ..., Ny) —
f—B; . .
a,...,1,ny...,ny), the numberN(B) of circles from (a) increases by

ni(n — 1)+ 2n(m—1)— (. — 1) — 2 )~ geda, ny)
i=2

m
> (-1 +2m(m-1)—2) n=(n -1 > 0.
i=2

So N(B) is minimal if B is a knot and maximal if§ is pure. ]

DEFINITION 3.2. For a braidg € B,, a trace circle of the trace graph TG}
is a circle consisting of crossings formed by 2 points siamdbpusly travelling along
B, e.g. a trace circle does not change its direction at triglgices, compare Figs. 8
and 9. By Lemma 3.1 trace circles can be denotedTfy;q as follows. In the case
i = ] the trace circledjiuq are associated to crossings formed by the points gf xD
{z)) N B from thei-th component of8. If we index these points by 1,.,n; according
to the orientation of thé-th component then the numbére {1,...,n; — 1} in the
notation {i)[k] is well-defined as the difference between the indices nmawl The
trace circlesTgjyq with i # | are generated by theth and j-th components of3.
Thenk € {1,..., gcdfy, n;)} is defined up to cyclic permutation, i.e. if a trace circle
is marked by 1, this defines markings on other circlggq, Ty, K > 1.

ExAMPLE 3.3. Fig. 8 contains halfs of the trace graphs #3(TG(o,!) of the
non-pure braids, o, € B4. The labels on edges in Fig. 8 correspond to numbers 1, 2,
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T(qS)Li]

T(rS)[m]

Fig. 10. Markings of crossings and trace circles.

3, 4 of the strands in the 4-braids. Fig. 9 shows the comptetetgraph TGY;) split
into trace circles with markinggj()[k] from Definition 3.2. The closure of; € B4 has
m = 3 components, the lengths of cycles in the permutadipr S, are f1, ny, n3) =
(2,1, 1), hence TG{) splits into N(oy) = 7 trace circles by Lemma 3.1 (a). One of
these 7 trace circles is marked by (11)[1] and is formed bf+r@eksings of the first
component consisting of strands 1, 2. The remaining 6 tracdes are marked by
(ij)[1] and are formed by crossings of different componentsjj.j € {1,2,3,1i # j.
Trace graphs of some pure braids are in Fig. 11.

If B is pure then the markings reduce to ordered pdif$ (see Fig. 10. If the
closure is a knot, the markingsk] have well-defined numbers € {1,..., n—1}.

Lemma 3.4. Let B € B, be a braid. Consider trace circlesghyij, Tgsij1» Ters)imi
passing through a triple vertex € TG(B).
(a) The trace circle fgrj; Passes betweenglyi; and Tes)m) at the vertexv.
(b) If B is pure then each trace circlegly maps to Tjy under t—t 4+ 7. If B is a
knot then each trace circle; maps to Ja_m under t—t + .

Proof. (a) Let the components gf indexed byq, r, s form a triple intersection
(qrs) associated to the vertaxe TG(B), see Fig. 10. Consider a diskx {z} slightly
above the triple intersectioms). In the disk we see 3 points of the amgg,s. These
points form a triangle, the angle at the pointrofs close tor.

Denote byty, trs, tgs € S the time moments when the corresponding arcs in the
closed braidB form a crossing under py. Thentys is betweenty, andts. So the
crossing (s) is associated to the middle circlgqsj; betweenTqryi; and Tys)my.

(b) For a pure braig, let a point p € Tgjy correspond to a crossingi( p;) C
Bm(nyx {z}). Undert — t+, the crossing |, p;) converts to the reversed crossing
(pj, pi) associated to the trace circle marked hy)( see Fig. 11.
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Fig. 11. Splittings of TGt020,), TG(o20207) into trace circles.

If B is a knot, order all intersectionsy, . . ., pn) C AN (Dyy x {2z}) according to
the orientation ofﬁ. Then the markingr] of a crossing fr, ps) is r —s (modn),
hence the reversed crossings,(pr) has the markingg —r = n—m (modn). ]

3.2. A trace graph splits into level subgraphs. Here we split the trace graph
TG(B) of a closed braid3 into level subgraphs, trivalent grapt®, where 8 € B,

DEFINITION 3.5. Any point p € TG(B) that is not a vertex corresponds to an
ordered pair i, p;) C BN (Dxy x {z}). Lett be the time moment whep;, p; project
to the same point under gt B — A,. Then rof() in a thin slice Dy x (z—¢, Z+¢)
looks like a braid generatar, or o,;l, all other strands do not cross each other, see
Fig. 12. The index is calledthe levelof the point p € TG(B).

From another point of view we may compute the level of a cras$p;, p;) as fol-
lows. Take the oriented straight segmenhaving endpoints 0@Dyy x {z} and passing
through p; first and p; after. Completed with the arc ofdDyy x {z} to get an oriented
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Fig. 12. Levels in trace graphs of closed braids.

circuit bounding a diskD, see Fig. 12. The number of intersectiofs) Int D plus 1
is called thelevel (k) of the point p. We chose the namkevel since any crossing of
prxz(ﬁ) is located at its horizontal level with respect to X.

Lemma 3.6. Going along a trace circle of a trace graplthe level of a point p
may change only at a triple vertex as follaws— k + 1, seeFig. 12

Proof. The number of intersections gfwith the disk D from Definition 3.5 re-
mains invariant until the segmedtpasses through other points #f (Dxy x {z}) apart
from p;, p; defining p € TG(B). While p passes through a triple vertex of T&(
the segmentl intersects exactly one strand gf hence the number of points N D
changes byt1. This also follows fronoyoy 10k = Ok+10kOk+1- O

Orient the 2-dimensional torus ZF S! x § in such a way that the first direction
is vertical along St and the second one Isorizontal opposite toS'.

DEFINITION 3.7. Let TG@) be the trace graph of a closed braigd whereg €
B,. For eachk = 1,...,n—1, denote byS® the k-th level subgraphconsisting of
all edges having the leved. Orient each edge of T@] vertically along Sk A right
attractor is an oriented cycle R ¢ S® such that at each triple vertex, where two
edges ofS®¥ go up, the cycle R& goes to the right. Denote by{, r®) the winding
numbersof RAX in the vertical directionS! and reversed horizontal direction-§'),
respectively. Lee®: SK — ZT be thek-th level embeddingnduced by the torus pro-
jection pr,: SW ¢ TG(B) — ZT = S} x §, see Lemma 3.8 (b) below.

One right attractor of eacl$®, k = 1, 2, 3, is shown by fat arcs in Fig. 13. In
both pictures the 6 marked right attractors have the samdimgnnumbers (1, 0).
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Lemma 3.8. LetTG(B) C T be the trace graph of a closed brafj whereg € B,
(@) Any level subgraph @ has only trivalent verticesat each vertexl edge goes
down 2 edges go up or vice versa with respect to the projecpion TG(B) — S
(b) Any level subgraph @8 projects 1-1 to its image undewpr,,: S¥ — ZT.
(c) Subgraphs ® and S™ have common points under,, if and only if [k—m| = 1;
the adjacent subgraphs can meet only in triple vertices abign12.
(d) If k > m+ 1 then the edges of cross over &) under pr,,: TG(8) — ZT.
(e) Each level subgraph (@ has at least one right attractor. Its vertical winding num-
ber g® is positive. Any two right attractors in($ have no common points.
(f) Under the shift t—t + 7 each level subgraph® maps to the subgraph(S".

Proof. (a) A triple vertexs € TG(B) corresponds to a triple intersectioqré) of
strands fromg, see Fig. 10. Lek be the level of the crossing formed by the distant
strands ofq and s right below @rs). By Lemma 3.4 (a) the crossing is associated
to a point belowv in the middle trace circle passing through Right abovep the
crossings formed by the strandgr] and ¢s) have the same levdéd. The 3 other types
of crossings have the same lewek- 1 or k — 1, see Fig. 12.

(b) If the trace graph TG{) has a crossing under the projectiorhprTG(ﬁ) —
ZT then the points forming the crossing have the sarveoordinate and different
x-coordinates. Hence they correspond to 2 crossings of sdagran p;z(rott(B)).
Definition 3.5 implies that the levels of these crossing$edift least by 2.

The items (c) and (d) follow directly from the above argunsersee Fig. 13.

(e) Starting with any vertex ir8% and going always to the right in finitely many
steps we will get a closed cycle oriented vertically,g€ > 0. If two right attractors
in S have a common vertex then they go along the same path andidminc

(f) Let a point p € S¥ correspond to a pairg, p;) € 8 in a meridional disk
Dyy x {z} C V. The levelk is equal to 1 plus the number of intersections Dnt B,
see Fig. 12. Undet — t + 7, the pair (3, p;) converts to p;, pi), the diskD goes
to the complementary dis®’ = Dyy x {z} — D. Then the level of p;, pi) is 1 plus
the number of intersections IBY N B, i.e. 1+ (n—2— (k — 1)) = n — k. ]

4. Combinatorial encoding trace graphs up to isotopy

4.1. Reconstructing a closed braid from its trace graph. The moves on trace
graphs are in Fig. 5 and Fig. 6. The trace graph of a closed linageneral position
has the combinatorial features summarized below.

DEFINITION 4.1. An embedded finite grapB C T is a generictrace graph if
e undert >t + 7 the graphG maps to its image under the symmetry Sk
e G splits into trace circles monotonic with respect to pr G — S, they should
intersect intriple verticesof G and verify Lemmas 3.1, 3.4;
e G gplits inton — 1 level subgraphsatisfying the conclusions of Lemma 3.8.
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Fig. 13. Splittings of TG&@) and TGéZr—\faz) into level sub-
graphs.

A smooth family of trace graph&Gs}, s € [0, 1], is calledan equivalencef

e for all but finitely many moments € [0, 1], the trace graph&s are generic;
e at each critical momeniGs changes by a trihedral or tetrahedral move.
An isotopy of trace graphs is an equivalence through generic tracehgraply.

Now we reconstruct a closed braid from its generic trace tynajth markings.

Lemma 4.2. For a braid B € By, the closuref C V can be reconstructed up to
isotopy in the solid torus from its generic trace graph G witiarkings.

Proof. Consider a vertical sectiod = G N (Axz x {t}) not containing vertices of
G. ThenP; is a finite set of points with markingsj([k], wherek  {1,..., gcdfi, nj)},
see Lemma 3.1 (a). The points Bf will play the role of crossings of a diagram gf

The labelled seP; defines theGaussdiagram GD as follows. Take|_|im=l S,l, split
each oriented circlefS,l into n; arcs and number them by 1,., n; according to the
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orientation. Mark several points in tleeth arc of §t in a 1-1 correspondence and the
same order with the points d% projected under pr P, — S! and having labelsi)[k]
or (ji)[k] for k =1,..., gcdf, nj).

So each point ofP; gives 2 marked points i |, S labelled with {j)[k] and
(ji)[K]. Connect them by a chord and get the Gauss diagram. Glbe zero Gauss
diagram GRQ is realizable by the given diagram of the closed brgid The Gauss
diagram GI gives rise to a diagram of a closed braid isotopicAtsince the trans-
formation from GIQ) to GD, is clearly realizable by an isotopy of closed braids.]

Using Lemma 4.2, we state Theorem 1.4 in a slightly differfenm.

Proposition 4.3. Closed braids, and j; are isotopic in the solid torus V if and
only if TG(Bo) and TG(B1) are equivalent in the sense definition 4.1

4.2. Trace codes of trace graphs. Any curve in ZT= S x § has a homology
class (1, w), whereu is the winding number in the vertical directid}, w is the wind-
ing number in the direction opposite ®. Take a generic trace gragh from Defin-
ition 4.1.

DEFINITION 4.4. A cycle in a level subgrap8®¥ c G is calledtrivial if it bounds
a disc under the embeddim): S¥ — ZT. Any trivial cycle has an orientation induced
by the oriented torus ZT. Any non-trivial cycle can be orehin such a way that its
vertical (possibly, horizontal too) winding number is noegative.

A level subgraph is said to bdegenerateif all its non-trivial cycles have homology
classes that are multiples of each otheH(ZT) = Z & Z. Let a level subgrapts®
be non-degenerate. Denote mfq, r ©) the homology class of a right attractor. Among
all non-trivial cycles inS® choosemaximalcycles with homology classesi,(w) such
that the valueM = u/q® — w/r® is non-zero and maximal.

Recall thatqg® > 0 by Lemma 3.8 (e). 1f® = 0, then setM = w. The non-
degenerate grapf®) should contain non-trivial cycles witM # 0. If there are maximal
cycles with different homology classes, then take one witiximal vertical numbeu.
Now the maximalhomology classu®, w®) of S(k) is well-defined.

By Lemma 3.1 trace circles in a trace graph are distinguighedheir markings.
Any right attractor can be oriented in such a way that itsieaktwinding number is
positive. So right attractors are encoded by cyclic wordvestices.

DEFINITION 4.5. Choose a base point in each trace circle of a generie tnaph
G. Enumerate all vertices of a trace cirdigpyij C G by (@b)[i]1, @b)[i]o,.... A triple
vertexv € G can be encoded by aordered triplet{(ab)[i]{, (ac)[j1=", (bc)[m]%¥}.
The trace codeTC contains the following Piecesof data.
e Thefirst piececonsists of the ordered triplets associated to the vert€es.
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e The second pieceontains the homology classeg®{, r ®) of right attractors for
each level subgraps®, k=1,...,n—1.

e The third pieceis the set of maximal homology classagX, w®) introduced for
each level subgrap8® in Definition 4.4,k =1,...,n—1.

Two trace codes are calleédenticat TC; = TC, if theirs three pieces coincide.

Our aim is to reconstruct the embedding of a generic closacetgraphG into
the thickened torud from its trace code T@%), see Lemma 5.1. Lemma 4.6 proves
this for a level subgrapis® c G. Recall that arisotopyin the torus ZT is a smooth
family of diffeomorphismsFs: ZT — ZT, wheres € [0, 1], Fp = idzr.

Lemma 4.6. Let G be the trace graph of a closed bra#tj where 8 € B,
(@) The embedding®@: S¥ — ZT of a degenerate level subgrapH¥Sc G can be
reconstructed by its ordered triplets and the homology si@g?, r ©) of its right at-
tractor up to Dehn twists around a right attractor and isoyom ZT.
(b) The embedding®: S® — ZT of a non-degenerate level subgraph can be recon-
structed up to isotopy irZT by its ordered tripletsthe homology clas$q®, r®) of
its right attractor and the maximal homology clag@s®, w®) of S¥.

Proof. (a) A right attractor R® c S®¥ can be recognized using the set of ordered
triplets of vertices. Embed R into ZT according to its winding numbers®), r ®).
Add other vertices and edges 8¢ to get an embedding of the connected component of
S containing the chosen attractor.9¥) is non-connected, there is another right attractor
with the same homology clasg®, r ®).

We repeat the above steps for all connected componen89ofThe image of the
resulting embedding is contained in one or several annuh thie prescribed homology
class g®, r®). The whole embedding® — ZT is well-defined up to Dehn twists
around a right attractor and isotopy in ZT.

(b) For a non-degenerate subgragl, we construct an embeddirg c ZT as
in (a). We have to improve this embedding by a suitable Dehisttaround a right
attractor in such a way that the maximal homology clasauf§,(w®).

The number of different homology classes is linear with eesfgo the number of
vertices in S%. We look at non-trivial cycles in the constructed embeddihgt J
be the algebraic intersection number of a right attractof*RA S¥ and a non-trivial
cycle with a homology classu( w).

The Dehn twist around RR acts on the homology:u( w) — (u 4+ Jg®, w +
Jr®). ThenM = u/q® — w/r® is invariant under all Dehn twists around A In
the already embedded grag) c ZT we may recognize all non-triviahaximalcycles
with the maximal valueM computed usingu®, w®).

If there are two maximal cycles with different classesy) and ¢/, w’), then (—
u)/q® = (w —w)/r® =i, hence ¢, w) = (U, w’) +i(@Q®, r®) for somei. Since
q® andr® are coprime them is integer. Then both cycles have the same intersection
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numberJ with the right attractor R&). So a Dehn twist around R acts on the set
of the homology classes of all maximal cycles as a shiftJgg®, r ).

We know that among maximal cycles we can find one with the hogylclass
u®, wk), the vertical numbeu® is maximal possible. Letu w) be the homology
class of a maximal cycleCc with the maximal vertical numbeu in the embedding
SK ¢ ZT. There is an integer such that ¢®, w®) — (u, w) =iJ(qW, r®).

Thei Dehn twists around the right attractor EAconvert the cycle into a required
cycle C with the maximal classu®, v®). The final embedding® c ZT contains a
basis consisting o€ and RAY with the prescribed homology classes. Therefore the
embedding is well-defined up to isotopy in ZT. O

If all level subgraphs ofG are non-degenerate, we may forget about levels in the
trace code TGE). The subgraph§® c G should be connected and two adjacent sub-
graphs meet at each triple vertex, see Lemma 3.8 (c). Hercdetkels of subgraphs
can be reconstructed up to the inversion (1,2,n—1)+~ (n—1,..., 2, 1), which cor-
responds to the time shift— t 4+ 7. In the second and third pieces of T&)(we may
leave only the homology class of a right attractor RAand the maximal homology
class (@, wW) of the first level subgrapts®.

5. Recognizing trace graphs in polynomial time

5.1. Recognizing trace graphs up to isotopy.

Lemma 5.1. Two generic trace graphs gand G; are isotopic in the thickened
torus T if and only if their trace codeS C(Gy) and TC(G;) become identical after
suitable cyclic permutations of vertices in trace circles.

Proof. The parbnly if follows from the fact that the trace code is invariant under
isotopy inT. The partif says that the embedding of a trace gr&plinto the thickened
torusT = Ay, X Sﬂ can be reconstructed from its trace code.

By Lemma 4.6 we may reconstruct embeddings of level subgr&h c G into
the torus ZT. Two embeddings &% and S® can be joint together since the union
S U S? should be embedded into ZT by Lemma 3.8 (c). The resultingeeiting
is well-defined up to isotopy in ZT provided that either onetlsé subgraphs®) and
S@ is non-degenerate or their right attractors have distimchdlogy classes.

We embed the third subgra@® into ZT to get a joint embedding?uS® c ZT
as above. The unio®? U S? U S® can be already considered as an embedding into
the thickened torud since the edges o8® should cross oveBY in ZT.

The final embeddings C T is well-defined up to isotopy if either one of the sub-
graphsS® is non-degenerate or there are two right attractors witferdifit homology
classes. Otherwise a8 are degenerate and the embedd@®g T is invariant under
3-dimensional Dehn twists around the common right attracto ]
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Proposition 5.2 gives a (surprisingly) polynomial alglonit recognizing complicated
topological objects: trace graphs up to isotopy in a thiekktorus.

Proposition 5.2. Let 8, B’ € B, be braids of length< |. There is an algorithm
of complexity Gn/2)™/8(61)™-"*1 to decide whetheTG(B) and TG(8') are isotopic
in the thickened torudr, where the constant C does not depend on | and n. In the
case of pure braidsthe power R/8 can be replaced by. If the closure of a braid is
a knot a single circle in the solid torysthen the complexity reduces to GhH" .

Proof. By Lemma 2.1 we may assume that the trace graphg)TGG(8’) have
Q =< 2(n—2) triple vertices. If we fix number& in markings {j)[k] with i % j and
a base point in each trace circle then we can construct tradescTCR), TC(8') of
TG(B), TG(B'), see Definition 4.5. The trace codes BY(TC(8') can be compared in
linear time with respect to the numb€ of triple vertices.

By Lemma 3.1 (a) the graph T@) splits into N(B) trace circles. Denote by
ki, ..., kg the number of triple vertices in the trace circles of BE(Then there are
exactlykikz - - -kn(g) choices of base points in the trace cirles. Sikge--- -+ Ky =
3Q < 6l(n—2), we have

k1+~-+kmm)Nw><(eun_a)NW
N(8) N(8)

due to the estimates — 1 < N(8) < n(n—1) from Lemma 3.1 (b).

Let (N4, ..., nm) be the lengths of cycles of the induced permutatfoa S,. There
are < n/2 non-trivial cycles with lengthan; > 1. For each pair of non-trivial cycles
with lengths i, n;), there are gcdi, n;) choices of number& in markings {j)[K],
i.e. totally [];_; gcd(y, nj). Since the number of pairs is ("?) and ged@i,nj) < n/2,
the number of choices: (n/2)(%) < (n/2)"/8-1 for n > 4.

With a fixed choice of markings and base points, we check veneftC() =
TC(ﬁ/) with complexity Cl(n — 2). So, the final complexity of the algorithm is
C(n/2)"/8(6l)™ "1, For pure braids, markingsj) without [k] are well-defined and
we may replacen?/8 by 1. If B is a knot, thenN(8) = n—1, markings k] € {1,...,
n— 1} are well-defined and the complexity reducesCa(6l)". []

kikz - - kngg) < ( < (61"

5.2. Recognizing trace graphs up to trihedral moves. Now we extend Prop-
osition 5.2 to recognize trace graphs up to trihedral moves.

DEFINITION 5.3. LetG be a generic trace graph from Definition 4.1. téhe-
dron T C G is a subgraph homeomorphic to the graplwith 3 edges connecting 2
vertices. A trihedron in a generic trace gra@his calledembeddedf the interiors of
its edges do not contain vertices &f After eliminating (in any order) all embedded
trihedra of TG) we get areducedtrace graphTG(AB).
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Fig. 14. Simulation of the appearance of a trihedron.

Lemma 5.4. Let TG(B), TG(8') be reduced trace graphs of closed braifisp’,
respectively. The original trace graphEG(8), TG(8') are equivalent through trihedral
moves if and only if the reduced grapfi&(8), TG(8') are isotopic inT.

Proof. The parif is trivial since reduced graphs are obtained by trihedralero

The partonly if. The given equivalence between the original graphs previle
equivalence G} through trihedral moves only, wheee [0, 1], Go = TG(B) and G, =
TG(B'). The trihedral moves ifGs} can create or delete only embedded trihedra. We
simulate the creation of each trihedrdnas shown in Fig. 14.

Either T will disappear completely by a further trihedral move {i@s} or an ad-
jacent trihedron will be deleted and will destrdy In both cases we miss the deleting
move in the simulation. After simulating all trihedral mevéhe equivalencéGs} be-
comes a required isotopy between reduced graphs. ]

Proof of Theorem 1.5. Embedded trihedra in a trace graph earetognized in
quadratic time with respect to the number of vertices. Fahepair of vertices, we
check if they are connected by three edges not containingy ettrtices. After that the
algorithm of Proposition 5.2 can be applied to the reducadetrgraphsTG(8), TG(8')
and gives the required polynomial complexity in the braidgl. O

A meridional quadrisecanbf a closed braidd in the solid torusV is a straight
line in a meridional disk By, x {z} meeting 8 in 4 points. For an equivalencis}
without meridional quadrisecants, the canonical loopsotdted braids re¢ss) can pass
only through EX , Ef and can touchS>K, see Subsection 2.1. Passing thro
creates a a meridional quadrisecant in a closed braid. igatsiough a tangency with
E>K corresponds to a trihedral move in Fig. 5.

Corollary 5.5. Let 8, B’ € B, be braids of length< 1. There is an algorithm
of complexity @n/2)"/8(61)" "1 to decide whether there is an equivalerigg} such
that CL(Bs) can pass only througrEX, Ef and can touchE>K for s € [0, 1].
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Proof. The closed braidg, 8’ are equivalent in the above sense if and only if
their trace graphs T@), TG(8') are equivalent through trihedral moves only. So the
algorithm of Theorem 1.5 can be applied to BR(TG(B)). O

The following conjecture implies that, for closed braidwvihg trace graphs with-
out trihedra, the conjugacy problem can be solved in a pohjabtime similarly to
Theorem 1.5 since tetrahedral moves do not change the nuofiligple vertices.

Conjecture 5.6. If trace graphs of isotopic closed braids have no trihedrarth
they are related by tetrahedral moves only.

The idea is to simplify an equivalence of trace graphs céingeinoves that create
and remove trihedra. The ultimate aim is to extend Conjecku6 to all closed braids
making an equivalence of trace graphs monotone with regdpettte humber of triple
vertices, which would give a polynomial algorithm for allalts.

6. A geometric recognizing 3-braids up to conjugacy

According to Gonzéalez-Meneses [11], if two braigdsand g satisfy o = g% in B,
for somek # 0, thenwe and g are conjugate. It follows that braids and g are con-
jugate if and only ifa® and g% are conjugate for somk # 0, see Gonzéalez-Meneses
[11, Corollary 1.2]. For any braig € By, there is a powek such that the permutation
B¢ € S, induced bygK is trivial, hencegX is pure. So the conjugacy problem for the
braid groupB, reduces to the case of pure braids.

6.1. Cyclic invariants based on 3-subbraids. In this subsection we recognize
closed pure 3-braids up to isotopy in the solid torus by usiwvariants of their trace
graphs calculable in a linear time with respect to the braigth. Then trace circles
in the trace graph TG) can be denoted simply bYij), wherei, j € {1,...,n}. We
shall define cyclic invariants depending on 3-subbraidg @nd distinguishing all pure
3-braids up to conjugacy.

Take a pure braig8 € B, and enumerate the components by 1,...,n. Fix
three pairwise disjoint indices j, k € {1,..., n}. We shall define the cyclic invariants
Ciij) depending on the 3-subbraftjx based on the strands j, k.

DEFINITION 6.1. Take the reduced trace graﬂi_m(ﬁijk) well-defined up to iso-
topy of gijx by Lemma 5.4 since tetrahedral moves are not applicable-fmafls. For
each triple vertexw € Ty, we write the ordered triplet of the markings of trace ciscle
passing throughv in the order from left to right below, see Fig. 16. The vertices and
their triplets are ordered vertically in the directi@}. Then C(ij)(B) is a vertical col-
umn of triplets, the invariant is defined up to cyclic perntiota, see Fig. 15. Similarly
we defineCgiy(B), Cijk(B)-
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Due to the symmetry of T@) under the shiftt > t + =, the other invariants
Ciii)» Ciiy» Cwjy can be reconstructed from the already defined ones.

EXAMPLE 6.2. Fig. 15 contains the trace graphs of the closures of thei8ls
(01051)% and 0?0207 205 2. Both closures are Borromean links, i.e. the braids are con-
jugate. In fact the second graph is isotopic to the first onesloyinating the couple
of embedded trihedra. The cyclic invariar@»), C(13), C(23) are shown below the pic-
tures. The vertices of the embedded trihedra in the secawe yraph are encoded by
(12)(13)(23) and (23)(13)(12), i.e. the extreme markings&s their positions. More-
over, the cyclic invariants show that the braids are nofativ

6.2. Recognizing 3-braids up to conjugacy in a linear time.

Lemma 6.3. Number components of two closed p@draids g, 8’ by 1, 2, 3
Suppose that the ordered linlgs g’ are isotopic in the solid torus V. Then the cyclic
invariants Gij)(8) and Gjy(B’) coincide for all disjoint i j € {1, 2, 3. The invariant
Cqij)(B) is calculable in linear time with respect to the length fif

Proof. By Proposition 4.3 the trace graphs of isotopic dolsmids are connected
by an isotopy in the thickened toruB, trihedral moves and tetrahedral moves. The
cyclic invariants are not changed under isotopy of tracehysa Tetrahedral moves are
not applicable for 3-braids. Trihedral moves create trihethat are recognizable by
cyclic invariants and deleted in the construction of Deifimit6.1. To computec(i,-)(ﬁ)
we need to look at all triple vertices of the trace cirdlg). The total number of ver-
tices is not more thanl2by Lemma 2.1. O

Recall that closed pure 2-braids are classified up to conjufs the linking num-
ber |k, of closed strands 1 and 2. Proposition 6.4 implies that 8brean be recog-
nized up to conjugacy in linear time with respect to theirglin

Proposition 6.4. Fix closed pure3-braids 8, g/ with ordered components. The
braids g, B’ are conjugate if and only if the linking numbetis;»(8) = lk1»(8’) and
the cyclic invariants @2)(8), Caz(B’) coincide up to cyclic permutation.

Proof. The parbnly if is Lemma 6.3. The paif says the original 3-braid can be
reconstructed from its invariants;tkand C(12). Simply assume that |k = 0, e.g. strands
1, 2 are straight, i.e. multiply both braids ky2k2 where A = (010,)%.

Consider a meridional disk, = Dyy x {z} in the solid torusV, where the closed
braid 3 lives. Mark the intersection point®, N 8 by 1, 2, 3 according to the compo-
nents of 3. Since points 1, 2 do not move iR, while z varies, we need to know only
how point 3 moves through the line connecting points 1, 2.r&lee 6 cases that are
distiguished by ordered triplets from@;y).
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Fig. 16. Dynamic interpretation of triple vertices.

In Fig. 16 the arrow at point 3 shows its meridional velocithil z increases. In
the left hand side picture, the line connecting points 1, 8dsg to have a positive
slope in D,, hence the trace circl@s; is increasing as a function(t). So triplets
describe neighbourhoods of associated triple verticeschwban be joined together to
get a complete trace graph leading to a braid by Lemma 4.2. O
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