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Abstract

We consider hyperbolic Cauchy problems with charactedstif variable multi-
plicity and coefficients of polynomial growth in the spaceri@bles; we focus on
second order equations and admit finite order intersectimt&een the characteris-
tics. We obtain well posedness resultsS(R"), S’(R") by imposing suitable Levi
conditions on the lower order terms. By an energy estimatevéighted Sobolev
spaces we show that regularity and behavior at infinity of dbkeition are different
from the ones of the data.

1. Introduction and main result

In this paper we deal with the Cauchy problem for hyperbotjcaions with co-
efficients of polynomial growth in the space variables. Angiering work on this topic
is the book by Cordes [9], where strictly hyperbolic equasiare considered. The au-
thor proves well posedness for the related Cauchy probleS(if), S'(R") and in the
scale of weighted Sobolev spackl, s,, s1, 2 € R, of all u € S'(R") such that

(1.1) ulls,s, = 11(8)* Freme (X)*W) | Loy < o0,

(F denotes here the Fourier transform afad = (1 + |a|?)¥? for a € R"). The case
s, = 0 corresponds to the standard Sobolev spaces. We recall that

1.2) (] Has=S®RY, [J Hss=S®.

s1,%2€R s1,92€R

Results in [9] have been extended to weakly hyperbolic égusitwith constant multi-
plicities by Coriasco [11], Coriasco and Rodino [12] by irspm Levi conditions on the
lower order terms. This improvement was possible thanks saitable Fourier integral
operator calculus developed in [10]. Analogous results @earey framework have been
proved in [5] (see also the recent paper by Gourdin and Gramft]). In this paper
we admit variable multiplicity for the characteristicsgising on second order operators.
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Local well posedness for the hyperbolic Cauchy problem wihble characteristics has
been intensively studied, see [15], [18], [19], [20] and th&erences therein.

In our paper we consider equations globally definedRdnin the space variables
and investigate global existence and uniqueness of a @oluth this setting, for uni-
formly bounded coefficients, some important results havenbgroved under an inter-
mediate condition between effective hyperbolicity (cfl]2[22]) and Levi conditions.
Namely, Colombini, Ishida and Orru [6] prove@> well posedness of the Cauchy
problem for the operator

(1.3) P(t, Dy, Dx) = DZ —a(t, Dy) + b(t, Dy)

with

at, £) = > aj(t)&E;, bit, &) =D bj(t)E,
j=1

ihj=1

a(t,&)>0, tel0, T], |§] =1,

by assuming the existence of an intedgeer 2 such that

k
> 1adatt, £)] #0,
(1.4) j=0
Ib(t, £)] < Ca’(t, &), y =
vte[o,T], ¢ =1.

NI
=

Notice that fork = 2 the operatorP is effectively hyperbolic and the Levi condition
is void (i.e.y = 0); on the other hand, ik = co no assumption on the degeneracy of
the roots is required to ge€> well posedness, see [7]. As shown in [17], the bound
y in (1.4) is sharp. Colombini and Nishitani [8] allowed a degence onx in the
lower order terms of (1.3) and proved the same result of [@]fbu the larger value

y =1/2—1/(2(k—1)), cf. (1.4). Recently, the first author and Cicognani [8hl with
the Cauchy problem for operators of the form

P(t, x, Dy, Dyx) = DZ —a(t, x, Dx) + b(t, X, Dy) + c(t, X),
a(t, x, Dx) = a(t)Q(x, D),

b(t, x, £) = > bj(t, X)§,
j=1

(1.5)

(t, x) € [0, T] x R", assuming that(t) > 0 and

(1.6) Q(x, &) = > qj(0E& = qlé[>, go > 0.

ihj=1
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They provedC> well posedness by assuming the existence of an intege such that

k
>l #0, telo, T,

j=0

1 1
|95b; (6, )| < Cpa” (), v =5 — 1.
tel0, T, xeR", j=1,...,n, BeZ.

1.7)

The result in [3] comes out fronH*> well posedness of the Cauchy problem for
(1.5), obtained by means of an energy estimate in SobolesespaNotice that condi-
tion (1.7) is clearly consistent with (1.4); this allowed itaprove the result of [8] at
least in the casa = 1. A more general) in (1.5) depending also ohwas considered
in [4].

In the present paper we study the Cauchy problem

P(t, x, D¢, Du(t, x) =0, (,x)e][0, T] xR",
(1.8) u(o, x) = f(x),
3u(0, x) = g(x)

for P = D? —a(t)Q(t, X, Dx) + b(t, X, Dy) + c(t, X) and we assume that:
e aeC>(0, TI;R), a(t) > 0 for t € [0, T], and there existk > 2 such that

k
(1.9) pICRAGIEA
j=0

e Q(t, x, Dy) is a pseudodifferential operator with symb@Qt, x, &) satisfying the
estimate

(1.10) sup|agaf Q(t, x, &)| < cap(x)7 Pl(g)21* for some o €0, 2]
te[0,T]

for everya, g € Z', and the global ellipticity condition
(1.11) Q. x, §)] = C(x)7 (€)%, te0,T] x| +[§] =R,

for some positive constants, R; concerning the regularity with respect tave require
that Q is in CY[0, T];
e Db(t, X, Dy) is a pseudodifferential operator with symbul, x, £) such that

(1.12) |0gafb(t, x, £)] < cypa’ (1) ()7/>Pl(g) 1,y =

NI
Xl

for some constant,s > 0 and for every f, x, &) € [0, T] x R" x R"; moreover,b is
continuous with respect toe [0, T].
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We are going to prove the following

Theorem 1.1. Under the assumptiond.9), (1.10), (1.11), (1.12he Cauchy prob-
lem (1.8) is well posed inS(R"), S'(R"). Furthermore there exist positive constants
81, 82 such that for every £ Hg o, (R"), g € Hg_15,1(R") the solution (t, x) of (1.8)
satisfies the energy estimate

(1.13) IU1Z 5,55, + 18UOIZ 5, 16,5,1 = CUTIE s, + 1915 -1.6-1)

for every te [0, T].

Our results apply to operators with coefficients of polynaingirowth inx. A typ-
ical model is the operator

Lo = D? - at)(x)" (1 - 2),

o € (0, 2], with a(t) satisfying the assumptions of Theorem 1.1. We underlira it
the cases # 0 the global ellipticity assumption (1.11) will be crucial the proof of
our results in order to reduce (1.8) to a suitable system afiatial form, while the
assumption (1.12) is instrumental to estimate the remaiteten in (3.14).

As a novelty with respect to [3], [6], [8], the energy estimdl.13) reveals a loss
8, in the second Sobolev index (the one related to the behavimfiaity). This phe-
nomenon has been already observed in other degeneratebbljpgaroblems with poly-
nomial coefficients inx, cf. [1], [2]. As we shall see in Section 4; depends orv.
This also allows to relate our result in the case= 0 with the one proved in [3]. We
address the reader to Section 4, Remark 3, for a precise czmpa

2. Preliminaries

In this section we recall some basic facts about pseudoeiffial operators of SG
type that will be useful in the proofs of our results. We staytintroducing the class
of symbols we are dealing with.

DEFINITION 2.1. For anym;, m; € R we shall denote bysG™™) the space of
all functionsa(x, £) € C*(R?") such that

sup_ (x)-M+Pl(g) "Ml DEDfa(x, §)| < +oo
(x,§)eR? '

for all o, B € Z". We shall denote byLG(™ ™) the space of all pseudodifferential
operators of the form

(2.1) Au(x) = a(x, Dy)u(x) = (Zn)’n/ e*fa(x, £)0(g) d&, ue S(R"),
]Rn
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with a € SG™M) where(l denotes the Fourier transform af We shall write SG®
for SG°%9 and LGP for LG©.9),

A detailed calculus for the class defined above can be founddny papers, see
for example [9], [13], [23], [24]. Here we limit ourselves temind some basic re-
sults. For everya e SG™™)  the operator (2.1) is linear and continuous fratR")
to S(R") and extends to a continuous map frat(R") to itself. Moreover, for any
S1, S, A maps continuoushHs, s, iNto Hs,_m,.s,—m,. We also recall that

(| SG™™ = SE®R™.

mg,myeR

Operators with symbol ii5(R?") map continuouslyS’(R") into S(R"). They are called
regularizing and their class will be denoted in the following Iy.

Theorem 2.1. Let A= a(x, Dy) € LG™M™) B = b(x, Dy) € LGM™), Then
there exists (x, £) € SGM+M.Mm+m) gych that AB= c(x, Dy) + R, where R € K and

22) ox, ) ~ Y Z-aalx, £)DYb(x, §)

o

Similarly, the commutatof A, B] = d(x, Dy) + Ry, where de SGM+mM-Lm+m—1) phag
the following asymptotic expansion

(2.3) dx, &) ~ > %(358(& §)Db(x, &) — :'b(x, §)Dya(x, §))
a0

and B € K.

DEFINITION 2.2. A symbola e SG™ ™) js said to be md-elliptic (or SG-elliptic)
if there exist positive constants, R such that

(2.4) la(x, §)] = C{x)™ (&)™ for |x|+[¢] = R

Theorem 2.2. Let A= a(x, Dy) € LG(M ™) Then there exist fe LG M),
i =1, 2 such that

EiA=1+R, AE=I+R

for some Re K if and only if a is md-elliptic(I denotes here the identity operajor

The operatorsk;, E, in the theorem above are callddft (respectively right
parametrix of A.
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3. Reduction to a system

In this section we factorize the operatBrand reduce the equatiddu = 0 in (1.8)
to a first order system of diagonal form; in Section 4 we shalive an energy esti-
mate for that system.

First of all we separate the characteristic rootsPoflefining

(3.1) At %, §) = /a(t) + (57 (6)2/QLt. x. &),

where we denotéx), = (h? + |x|?)Y/?, with h > 1 to be chosen later on. We remind

that (x), € SG®Y and that for everys € Z", we have|d (x)n| < Cs(x): ! for some
positive constanCg independent oh. Now by Theorem 2.1 and by (3.1) we get

(Dt _S"(tv X, DX))(Dt + S"(tv X, DX))
= D? — A(t, X, DYA(t, X, Dx) + (DiA)(t, X, Dy)

DZ — a(t)Q(t, x, Dx) —op{ D 3 At, X, £)Dy Alt, X, g))

(3.2) 2
+op(— 2OVALXE |, J/al) + K €7D x s))
220 + X7 &) 2 2JQ0, % 8)
+ ro(t, X, Dy),

for somerq(t, x, £) € C([0, T], SG). Developing further in the right-hand side of (3.2)
we obtain

(Dt - X(L X, Dx))(Dt + j‘(t- X, Dx))

(3.3) ,
= Dt - a(t)Q(t, X, DX) - Sj_(t, X, DX) - SQ(t, X, DX) + r]_(t, X, DX)

wherer; € C([0, T], LG?),

ia'(t)/Qlt, x, &)
3.4 t, X, =
oy PN GERE
and
_Jalt) + (x);7 (§)2DQ(t, X, &)
S(t, X, &) = N R
(3.5) n
a(t)

+ 20, x. 8) J; 5, Q(t, X, £)Dy, Q(t, X, £).

Let now

(3.6) oft, x, £) = |1+ a)(X)} (£)? € C((0, T], SG*/2).
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We observe that the symbo)af(t, x, £€) has order (0, 0) since(t) may vanish at some
points. Nevertheless, we have that

at)
o(t, X, &)

Moreover, the operatap(t, X, Dy) is invertible. Namely, we have the following result.

e C([0, T], SG1/2),

Proposition 3.1. Let w(t, X, £) be defined by3.6). There exists > 1 such that
for every h> hg, the operatorw(t, X, Dy) is invertible. The inverse operator is given by

(w(t,x, D)) =0 ( T x 1 )) oS(t, X, Dy), S=1+ S,

| the identity operatqrfor some S; € C([0, T], LGC1-D),

Proof. By Theorem 2.1 we have
o(t, X, Dy)ocopl ———=) = | + R(t, x, Dy)
[e]
1 1 X (t’ X, é) 1 1 X/

where R(t, X, €) has principal part

a(t)(x)p ()
rt.x, &) = (2(1+a(t)(xg< )Za& "Dy X

We notice thatr € C([0, T]; SG~1~1); moreover, for every, g € 7', we have
IDEDLr (t, X, £)] < Cap (X)) 721,

for someC,s > 0 independent ofi. Choosingh > 1 sufficiently large, we obtain that
R is a bounded operatdr? — L? with norm

IRl zL2@my < 1,

cf.[9], Corollary 1.3 p. 102. Then,+ R is invertible by Neumann series, and the inverse

S=1+ > Ri(t,x, D)

=1

belongs toC([0, T], LG?). Thus, op(¥w(t, X, £)) o S'is the inverse ofw(t, x, Dy). [
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We can now define

Uo = o(t, X, Dy)u,
u; = (D¢ + A(t, X, DY))u.

(3.7)
Then by (3.3), (3.7) we get
(Dt + A(t, X, DY))Uo = (t, X, D)u1 + (Dro)(t, X, De)(@(t, X, Dx)) " Uo
+[A(t, X, Dx), @(t, X, Dl(@(t, X, Dx)) *Uo
and
(D¢ — A(t, X, Dy))uz
= —b(t, X, De)(@(t, X, Dx)) o — c(t, X)((t, X, Dx)) *uo
—s1(t, X, DY)(@(t, X, Dx))""to — Sx(t, X, Dx)(@(t, X, Dx))"*uo
+ ra(t, X, Dy)(o(t, X, Dy)) ™ uo.
Taking into account (2.3) we obtain that

[A(t, X, Dx), o(t, X, DY)l(@(t, X, Dx))™

)\.D D
=0 Z R Tt )+r2(t,x, D)

with r, € C([0, T], S@). Since

Dy oo(t, X, §) _ a(t)Dx; (x)7 (€)?
ot, X, )  2w2(t, X, &)

€ C([0, T]; SG°D)

and

9 o(t, X, &) alt)(x)d, (§)?

o(t, X, &) 202t X, £) e C([0, T]; SG™19)

we obtain that f, w]o™! has order (0, 0). Moreover,

(3.8) Dro)(t, X, Dy)(@(t, X, Dy))™L = So &(t, X, Dy) + ra(t, X, Dy)
where
(3.9) &(t, x, £) = —ia'

2(a(t) + (x)p? (€)72)

andrz € C([0, T], LG?). On the other hand, sincg(t, x, Dy) € C([0, T], LG®/2)),
by (3.4) we can write

si(t, X, Dy)(w(t, X, Dy))™t = So §(t, x, Dy) + ra(t, X, Dy)
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wherer, € C([0, T], LG?) and

&(t, x, Dy) = op( ia’(t) vQ(t, x, §) )

2,/@@(®) + ()" (€)(T + aO) ()7 (€)?)
_ Op(ia/(txx);“”(s)-lﬂ—iq L X2 )
260 + 7€) )

Finally, c(t, X)(w(t, X, Dyx)) ™%, s2(t, X, Dy)o(w(t, X, Dy))t andr(t, x, Dy)o(w(t, X, Dy)) ™t
belong toC([0, T], LG®). Hence, problem (1.8) is reduced to the equivalent problem

(3.10)

(3.11) [Llu =0

U(0, x) = Uo(x),
whereU = (ug, u;) and

_ f —A(t, X, Dy)  o(t, X, Dy)
Li=a _'( 0 i(t, X, Dy)

+ Ax(t, X, Dy)S(t, x, Dy) + As(t, X, Dy)3i(t, X, Dy) + R(t, X, Dy)

) + Au(t, X, DyY)b(t, X, Dy)(w(t, X, Dy))?

where A1, Ao, Az, R are matrices of pseudodifferential operatorsCi(i0, T], LG°). No-
tice now that the matrix

(—X(t,x, §) ot X, 5))
0 AL, X, &)

can be diagonalized by

GG
M = 2/Q(t, x, &)
0 1

which is of order (0, 0) thanks to the condition (1.11). Thprgblem (3.11) is equiva-
lent to

LV =0,
(3.12) [v(o, X) = Vo(X),
where
(3.13) Vi=MU
and
L=d—i ( _k(t’(;(' > i, >(<), DX)) + Aut, x, Db(t, X, Da)((t, x, D)™

+ Ao(t, x, DY3(t, X, Dx) + Ag(t, X, D)3(t, X, Dx) + R(t, X, Dy)
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with A, A, As, R e C([0, T], LG®). Now by (3.9) and (3.10) we get

la’(t)
a(t) + (x),°(§)2

IS(t, x, &) + [151(t, %, §)I =

Furthermore,
(3.14) bt x, Dy)(w(t, X, Dy))™t = So op( 14?(;:)((';))0 @)2) +rs(t, X, Dy),
h

with rs € C([0, T], LGP). Finally, by the Levi condition (1.12)

bt x, &)l _ b(t, x, &) ‘ 1
(3.15) 1+a®)(x)o(€)2  (x)2(&)@t) + (x);,7(€)72)r  (a(t) + (x),,7 (£)2)VX
' 1

=@l + )i B K

Hence,L in (3.12) can be written in the form

—A(t, X, Dy) 0

(3.16) L=20d— i( 0 A(t, X, Dy)

) + A(t, x, Dy),

whereA(t, x, Dy) is a 2x 2 matrix of pseudodifferential operators with symladt, x, &) €
C([0, T], SG®Y) thanks to the condition € [0, 2]. Moreover

(3.17) |At, x, §)] = e(t, X, &),

for

3.18) ot x, &) = c( L30) ! )

a) + 7 (&) 2 T @) T (X (&) DI

C a positive constant.
In proving an energy estimate for the system (3.16), (3.1ffe symbol

fOT o(t, X, &) dt will play an important role. We conclude this section by gyithe
following lemma.

Lemma 3.1. Let us consider the function(t, x, &) in (3.18) Then for every
a, B € Z', there exists a positive constafifs; independent of h such that

]
(3.19) /0 10200 6(t, x, £)] dt < 8,507 (£) ! log((x)3 (£)2).
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Proof. Fora = g =0, by (1.9) we immediately obtain the inequalities

T A )
/ I gt < clog((x)3 (52,
a(®) + ()57 (€)2

3.20 0

(3.20) )

.
/o (@(t) + (x)p (&) A

Indeed,a(t) has finitely many isolated zeroes of orderso we can reduce ourselves to
prove (3.20) not on the whole interval [D] but only in a neighborhoodt{— p, ty + o]
of a zeroty such thata(t) > co|t —to|¥ for t € [to — p, to + p]. Then, estimate

dt < clog((x)7(£)?), c> 0.

to+p |a/(t)| ) ,
/to_p a(t) + (X)57 ()2 dt =< clog((x)p, (§)°)

immediately follows; on the other hand,

to+p 1 1
/ —0 (£\—2)\1/k dt = / —o/k k dt
o—p (a(t) 4+ (X);7(€)72) lt—tol< (07 (8)-2% (X), 7 (€)%

1
“, o
)2k <it—tol<p Cal It — to
< clog((x)f (£)?)-

For (@, B) # (0, 0), we only need to notice that

’ &)l

ofoge(t, x, £) = a (e, x, £) T

a2 a(t) + (X); (i) 2
+ a5t %, £)

@) + ()7 (§)-2) %’

q*? e c([0, T]: SG-lel-18D), i = 1, 2, and we immediately obtain (3.19) by (3.20)
and (3.21). O

4. Energy estimate

In this section we give an energy estimate for the systém= 0, with L in (3.16)
under the conditions (3.17), (3.18). We are going to pro fthlowing:

Theorem 4.1. Consider L in(3.16)under assumption€3.17), (3.18) There exists
a constants > 0 such that for all Ve C([0, T]; Hs,.s,) N C([0, T]; Hs,+15,+1) it holds
the energy estimate

t
(@.1) IVOIZ pre, s < C(||V<0>||§1,s,z + [ ||LV(r)||§l,szdr).
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In the proof of Theorem 4.1 we are going to use the following:

Lemma 4.1. Let A(X, &) > 0 be a symbol such that

4.2) 1829 A(X, )] < 8ap (X 71 (£) T log((x)7 (£)2),

for o € [0, 2] and for all «, B € Z", with positive constants,s independent of h.
Then there existsyg > 0 such that

(4.3) |90 D] < 8 (1)) P,
Thus the operator é%Px) = op(Ee**:#) e LG@o:7%),

Proof. By a direct computation, applying Faa di Bruno foramwe get for
o, pell:

109 €29 < 8 0PI (£) 7 Tog” P ()7 (6)7).
Furthermore, by (4.2) witth = 8 = 0 we have
M8 < (X)) P,
while for everye > 0
log“I*PI((x)7 (£)7) < cup (X7 (E)*.
Thus, (4.3) holds withSg = 8oo + €. O
Proof of Theorem 4.1. We defineo(t, X, Dy) the operator with symbol
(4.4) wo(t, X, &) = e vmxodr

By (3.19) and Lemma 4.1yo(t, X, Dy) € LG@0.7%) for somesy > 0. Moreover, argu-
ing as in Proposition 3.1 and using (4.3), it is easy to prdw for h large enough
wo(t, X, Dy) is invertible with inverse given by

(wolt, X, Dy)) t = op(e* Jo #(z.%.8) df) o (I + S,(t, X, Dy)),

S, € C([0, T]; SG="~), n € (0, 1) arbitrary. We also observe thag?! is of order
(2¢, o€) for everye > 0, since

op(e‘ft; ¢(T'X'5)d’) e LG®9, ¢ 0.
We now define

(4.5) Ly, = wy L wo.
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The transformation (4.5) carries a loss in the energy estimnfi2; in the first Sobolev
index and ofod; in the second one, with; = 89 + €. Computation gives

(-1 O
(4.6) Lw0=8t—|( 0 i)+A+¢(t,x, Dy)!l + By,

where B (t, X, &) satisfies an estimate of the form
4.7) 8¢9 Ba(t, X, §)| =< bu s(®)(x)1(§) I log((x) (£)?),
for someb, g € C([0, T], Ry).
We can now apply the sharp Garding inequality for SG symb@se [16], The-
orem 18.6.14 for the metrig = |dx|?/(x)? + [d&|?/(£)? and withh(x, £) = (x)"%(&)71)

to the matrix of operatord+ ¢(t, X, Dy)|, since it has non negative eigenvalues by (3.17).
Hence there exist

Q e C([0, T]; LG™D)
a positive operator, that is
(4.8) (QU,U) >0, U eC([0, T]; Hi1),
and B, satisfying an estimate of the form (4.7) such that
A+ o(t, X, DY)l = Q + B,.

Thus,

(4.9) Lw0=at—i(_0’\ g)+Q+B,

where B = B; + By, and again from (4.7) there existse C([0, T], R,) such that
(4.10) [(BU(t), U(t))] = b(t)(op(log((x)” (§)?))U (1), U(t)).

Next, we introduce a second change of variable definiaff, X, D) the operator with
symbol

(4.12) wa(t, X, £) = (X)fo‘ b(r)dr@)fo‘ b(r)dr
which is obviously invertible with inverse

(wa(t, X, D))t = (Dy)~ Jo POV IT ()= Jo blr) d
We define

(412) Lu)1 = wzll—wowl;
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this second transformation brings a loss 08,(&§,) in the Sobolev indices, where
8 = fOT b(t) dt andb is the function in (4.10). We have

(4.13) Ly, = 8 —i ( _OA g) + Q + B + b(t) op(log(x)? (£)?))| + R,

with R € C([0, T];LGP). Notice that, by (4.10)B+b(t)op(log(x)? (£)?))! is a positive
operator in the sense of (4.8).
Now, for s; = s, = 0 we consider, for anyV € C*([0, T]; L?) N C([0, T]; Hy,1)

d
SeIWOIE = 2(W' (1), WD)z = BOIWOIG + CllLu, WOIG

thanks to (4.13), (4.8), witls a function inC([0, T], R,). An application of Gronwall's
inequality gives

t
W2 < C(||vv<0)||é + [ ||Lw1W<r)||%dr)-

The case g, $) # (0, 0) immediately follows, since
(X)2(Dy)% Ly, (Dx) 8 (X)™® = Ly, + R, Re C([0, T];: LGY).

We have so:
t
IWOIZ ., < C(HW(O)HQ,SZ + [ LMW(r)ng,szdr),

for any W € CY([0, T]; Hs,.s,) N C([0, T]; Hs,+1.5,41)- Finally, to recover (4.1) we only
need to remind that

L,2W=0%&LV =0 V=wwW,
and there exists a positive constahtsuch that for any e C([0, T]; Hs,,s,) it holds
IV©Ollsi-2s.8-05 = CIW(O)lls,.s,»
3 = 81+ 82. Theorem 4.1 is completely proved. ]

REMARK 1. The positive constartonly depends on th&’s in (3.19); precisely,
the Calderon-Vaillancourt’s theorem gives fothe estimated > oo + SURy|+ 5/<c, Sap>
with ¢, a positive constant only depending on the space dimensiddence, by (1.2),
Theorem 4.1 gives well posedness of the Cauchy problem éosyhtem (3.16) i5(R"),
S’(R") with the loss of 2 derivatives.
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REMARK 2. We remark that the energy estimate (4.1) holds more gigndoa

a system of the form (3.16) with(t, x, &) real valuedA(t, x, £) € LY([0, T]; SGLY)
and |A(t, x, &)] < ¢(t, X, §) for a functiong satisfying (3.19). Hence, the regularity of
% and A actually is not necessary to prove Theorem 4.1, while it icial to reduce
the problem (1.8) to the formbV = 0.

REMARK 3. To derive the energy estimate (1.13) from (4.1), we neegotdack

to (3.7) and (3.13). In this way we obtain that (1.13) holdshwd;, = 26 + 1, §, =
08+ 1. Then in the case = 0, (1.13) has the form

IUOE —25-1,6-1 + 1BUD 525252 = CUIFIIE, s, + 1915 _1,6,-0)-

On the other hand, fos = 0 our approach to the proof of Theorem 1.1 reduces to the
one adopted in [3], and condition (1.11) can be replaced bgdstrd ellipticity as in
(1.6). Moreover, all the operators involved in the changesasfables (3.7) and (3.13)
are of order zero with respect ta Then, taking anyf € Hg ,(R"), g € Hs,—1,5,(R")

and repeating readily the argument of the proof, we obtaat tift, x) satisfies the
energy estimate:

(4.14) U3, s, 5, + 18UD15 5,15, = CUITIZ, 6, + 1915-1,)

for everyt € [0, T] and for anys;, s, € R. In particular, fors, = 0 we recapture the
result of [3] in standard Sobolev spaces. In general, beditie™ well posedness, we
get also well posedness $i(R"), S'(R").
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