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Abstract
We consider hyperbolic Cauchy problems with characteristics of variable multi-

plicity and coefficients of polynomial growth in the space variables; we focus on
second order equations and admit finite order intersectionsbetween the characteris-
tics. We obtain well posedness results inS(Rn), S 0(Rn) by imposing suitable Levi
conditions on the lower order terms. By an energy estimate inweighted Sobolev
spaces we show that regularity and behavior at infinity of thesolution are different
from the ones of the data.

1. Introduction and main result

In this paper we deal with the Cauchy problem for hyperbolic equations with co-
efficients of polynomial growth in the space variables. A pioneering work on this topic
is the book by Cordes [9], where strictly hyperbolic equations are considered. The au-
thor proves well posedness for the related Cauchy problem inS(Rn), S 0(Rn) and in the
scale of weighted Sobolev spacesHs1,s2, s1, s2 2 R, of all u 2 S 0(Rn) such that

(1.1) kuks1,s2 D kh�is1Fx!� (hxis2u)kL2(Rn) < C1,

(F denotes here the Fourier transform andhai D (1C jaj2)1=2 for a 2 Rn). The case
s2 D 0 corresponds to the standard Sobolev spaces. We recall that

(1.2)
⋂

s1,s22R Hs1,s2 D S(Rn),
⋃

s1,s22R Hs1,s2 D S 0(Rn).

Results in [9] have been extended to weakly hyperbolic equations with constant multi-
plicities by Coriasco [11], Coriasco and Rodino [12] by imposing Levi conditions on the
lower order terms. This improvement was possible thanks to asuitable Fourier integral
operator calculus developed in [10]. Analogous results in aGevrey framework have been
proved in [5] (see also the recent paper by Gourdin and Gramchev [14]). In this paper
we admit variable multiplicity for the characteristics, focusing on second order operators.
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Local well posedness for the hyperbolic Cauchy problem withdouble characteristics has
been intensively studied, see [15], [18], [19], [20] and thereferences therein.

In our paper we consider equations globally defined onRn in the space variables
and investigate global existence and uniqueness of a solution. In this setting, for uni-
formly bounded coefficients, some important results have been proved under an inter-
mediate condition between effective hyperbolicity (cf. [21], [22]) and Levi conditions.
Namely, Colombini, Ishida and Orrù [6] provedC1 well posedness of the Cauchy
problem for the operator

(1.3) P(t , Dt , Dx) D D2
t � a(t , Dx)C b(t , Dx)

with

a(t , � ) D n
∑

i , jD1

ai j (t)�i � j , b(t , � ) D n
∑

jD1

b j (t)� j ,

a(t , � ) � 0, t 2 [0, T ], j� j D 1,

by assuming the existence of an integerk � 2 such that

(1.4)



























k
∑

jD0

j� j
t a(t , � )j ¤ 0,

jb(t , � )j � Ca
 (t , � ), 
 D 1

2
� 1

k
,

8t 2 [0, T ], j� j D 1.

Notice that fork D 2 the operatorP is effectively hyperbolic and the Levi condition
is void (i.e.
 D 0); on the other hand, ifk D1 no assumption on the degeneracy of
the roots is required to getC1 well posedness, see [7]. As shown in [17], the bound
 in (1.4) is sharp. Colombini and Nishitani [8] allowed a dependence onx in the
lower order terms of (1.3) and proved the same result of [6] but for the larger value
 D 1=2�1=(2(k�1)), cf. (1.4). Recently, the first author and Cicognani [3] dealt with
the Cauchy problem for operators of the form

(1.5)



















P(t , x, Dt , Dx) D D2
t � a(t , x, Dx)C b(t , x, Dx)C c(t , x),

a(t , x, Dx) D �(t)Q(x, Dx),

b(t , x, � ) D n
∑

jD1

b j (t , x)� j ,

(t , x) 2 [0, T ] � Rn, assuming that�(t) � 0 and

(1.6) Q(x, � ) D n
∑

i , jD1

qi j (x)�i � j � q0j� j2, q0 > 0.
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They provedC1 well posedness by assuming the existence of an integerk � 2 such that

(1.7)



























k
∑

jD0

j�( j )(t)j ¤ 0, t 2 [0, T ],

j��x b j (t , x)j � C��
 (t), 
 D 1

2
� 1

k
,

t 2 [0, T ], x 2 Rn, j D 1, : : : , n, � 2 ZnC.

The result in [3] comes out fromH�1 well posedness of the Cauchy problem for
(1.5), obtained by means of an energy estimate in Sobolev spaces. Notice that condi-
tion (1.7) is clearly consistent with (1.4); this allowed toimprove the result of [8] at
least in the casenD 1. A more generalQ in (1.5) depending also ont was considered
in [4].

In the present paper we study the Cauchy problem

(1.8)







P(t , x, Dt , Dx)u(t , x) D 0, (t , x) 2 [0, T ] � Rn,
u(0, x) D f (x),�tu(0, x) D g(x)

for P D D2
t � a(t)Q(t , x, Dx)C b(t , x, Dx)C c(t , x) and we assume that:

• a 2 C1([0, T ]I R), a(t) � 0 for t 2 [0, T ], and there existsk � 2 such that

(1.9)
k
∑

jD0

ja( j )(t)j ¤ 0I
• Q(t , x, Dx) is a pseudodifferential operator with symbolQ(t , x, � ) satisfying the
estimate

(1.10) sup
t2[0,T ]

j��� ��x Q(t , x, � )j � c��hxi��j�jh�i2�j�j for some � 2 [0, 2]

for every �, � 2 ZnC and the global ellipticity condition

(1.11) jQ(t , x, � )j � Chxi� h�i2, t 2 [0, T ], jxj C j� j � R,

for some positive constantsC, RI concerning the regularity with respect tot we require
that Q is in C1[0, T ];
• b(t , x, Dx) is a pseudodifferential operator with symbolb(t , x, � ) such that

(1.12) j��� ��x b(t , x, � )j � c��a
 (t)hxi�=2�j�jh�i1�j�j, 
 D 1

2
� 1

k
,

for some constantc�� > 0 and for every (t , x, � ) 2 [0, T ] � Rn � Rn; moreover,b is
continuous with respect tot 2 [0, T ].
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We are going to prove the following

Theorem 1.1. Under the assumptions(1.9), (1.10), (1.11), (1.12)the Cauchy prob-
lem (1.8) is well posed inS(Rn), S 0(Rn). Furthermore, there exist positive constantsÆ1, Æ2 such that for every f2 Hs1,s2(Rn), g 2 Hs1�1,s2�1(Rn) the solution u(t , x) of (1.8)
satisfies the energy estimate:

(1.13) ku(t)k2s1�Æ1,s2�Æ2
C k�tu(t)k2s1�Æ1�1,s2�Æ2�1 � C(k f k2s1,s2

C kgk2s1�1,s2�1)

for every t2 [0, T ].

Our results apply to operators with coefficients of polynomial growth in x. A typ-
ical model is the operator

L0 D D2
t � a(t)hxi� (1�4),

� 2 (0, 2], with a(t) satisfying the assumptions of Theorem 1.1. We underline that in
the case� ¤ 0 the global ellipticity assumption (1.11) will be crucial in the proof of
our results in order to reduce (1.8) to a suitable system of diagonal form, while the
assumption (1.12) is instrumental to estimate the remainder term in (3.14).

As a novelty with respect to [3], [6], [8], the energy estimate (1.13) reveals a lossÆ2 in the second Sobolev index (the one related to the behavior at infinity). This phe-
nomenon has been already observed in other degenerate hyperbolic problems with poly-
nomial coefficients inx, cf. [1], [2]. As we shall see in Section 4,Æ2 depends on� .
This also allows to relate our result in the case� D 0 with the one proved in [3]. We
address the reader to Section 4, Remark 3, for a precise comparison.

2. Preliminaries

In this section we recall some basic facts about pseudodifferential operators of SG
type that will be useful in the proofs of our results. We startby introducing the class
of symbols we are dealing with.

DEFINITION 2.1. For anym1, m2 2 R we shall denote bySG(m1,m2) the space of
all functionsa(x, � ) 2 C1(R2n) such that

sup
(x,� )2R2n

hxi�m2Cj�jh�i�m1Cj�jjD�� D�
x a(x, � )j < C1

for all �, � 2 ZnC. We shall denote byLG(m1,m2) the space of all pseudodifferential
operators of the form

(2.1) Au(x) D a(x, Dx)u(x) D (2�)�n
∫

Rn

ei x ��a(x, � ) Ou(� ) d� , u 2 S(Rn),
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with a 2 SG(m1,m2), where Ou denotes the Fourier transform ofu. We shall writeSG0

for SG(0,0) and LG0 for LG(0,0).

A detailed calculus for the class defined above can be found inmany papers, see
for example [9], [13], [23], [24]. Here we limit ourselves toremind some basic re-
sults. For everya 2 SG(m1,m2), the operator (2.1) is linear and continuous fromS(Rn)
to S(Rn) and extends to a continuous map fromS 0(Rn) to itself. Moreover, for any
s1, s2, A maps continuouslyHs1,s2 into Hs1�m1,s2�m2. We also recall that

⋂

m1,m22R SG(m1,m2) D S(R2n).

Operators with symbol inS(R2n) map continuouslyS 0(Rn) into S(Rn). They are called
regularizing and their class will be denoted in the following byK.

Theorem 2.1. Let AD a(x, Dx) 2 LG(m1,m2), B D b(x, Dx) 2 LG(m0
1,m0

2). Then
there exists c(x, � ) 2 SG(m1Cm0

1,m2Cm0
2) such that ABD c(x, Dx)CR1 where R1 2 K and

(2.2) c(x, � ) �∑�
1�!
��� a(x, � )D�

x b(x, � ).

Similarly, the commutator[ A, B] D d(x, Dx)C R2, where d2 SG(m1Cm0
1�1,m2Cm0

2�1) has
the following asymptotic expansion

(2.3) d(x, � ) �∑�¤0

1�!
(��� a(x, � )D�

x b(x, � ) � ��� b(x, � )D�
x a(x, � ))

and R2 2 K.

DEFINITION 2.2. A symbola 2 SG(m1,m2) is said to be md-elliptic (or SG-elliptic)
if there exist positive constantsC, R such that

(2.4) ja(x, � )j � Chxim2h�im1 for jxj C j� j � R.

Theorem 2.2. Let AD a(x, Dx) 2 LG(m1,m2). Then there exist Ei 2 LG(�m1,�m2),
i D 1, 2 such that

E1AD I C R1, AE2 D I C R2

for some Ri 2 K if and only if a is md-elliptic(I denotes here the identity operator).

The operatorsE1, E2 in the theorem above are calledleft (respectively right)
parametrixof A.
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3. Reduction to a system

In this section we factorize the operatorP and reduce the equationPuD 0 in (1.8)
to a first order system of diagonal form; in Section 4 we shall derive an energy esti-
mate for that system.

First of all we separate the characteristic roots ofP defining

(3.1) Q�(t , x, � ) D √a(t)C hxi��h h�i�2
√

Q(t , x, � ),

where we denotehxih D (h2C jxj2)1=2, with h � 1 to be chosen later on. We remind

that hxih 2 SG(0,1) and that for every� 2 ZnC, we havej��x hxihj � C�hxi1�j�jh for some
positive constantC� independent ofh. Now by Theorem 2.1 and by (3.1) we get

(Dt � Q�(t , x, Dx))(Dt C Q�(t , x, Dx))

D D2
t � Q�(t , x, Dx)Q�(t , x, Dx)C (Dt Q�)(t , x, Dx)

D D2
t � a(t)Q(t , x, Dx) � op

(

n
∑

jD1

�� j
Q�(t , x, � )Dx j

Q�(t , x, � )

)

C op

(� ia0(t)pQ(t , x, � )

2
√

a(t)C hxi��h h�i�2
C
√

a(t)C hxi��h h�i�2Dt Q(t , x, � )

2
p

Q(t , x, � )

)

C r0(t , x, Dx),

(3.2)

for somer0(t , x, � ) 2 C([0, T ], SG0). Developing further in the right-hand side of (3.2)
we obtain

(Dt � Q�(t , x, Dx))(Dt C Q�(t , x, Dx))

D D2
t � a(t)Q(t , x, Dx) � s1(t , x, Dx) � s2(t , x, Dx)C r1(t , x, Dx)

(3.3)

wherer1 2 C([0, T ], LG0),

(3.4) s1(t , x, � ) D ia0(t)pQ(t , x, � )

2
√

a(t)C hxi��h h�i�2

and

s2(t , x, � ) D
√

a(t)C hxi��h h�i�2Dt Q(t , x, � )

2
p

Q(t , x, � )

C a(t)

4Q(t , x, � )

n
∑

jD1

�� j Q(t , x, � )Dx j Q(t , x, � ).

(3.5)

Let now

(3.6) !(t , x, � ) D √1C a(t)hxi�h h�i2 2 C([0, T ], SG(1,�=2)).
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We observe that the symbol 1=!(t , x, � ) has order (0, 0) sincea(t) may vanish at some
points. Nevertheless, we have that

a(t)!(t , x, � )
2 C([0, T ], SG(�1,��=2)).

Moreover, the operator!(t , x, Dx) is invertible. Namely, we have the following result.

Proposition 3.1. Let !(t , x, � ) be defined by(3.6). There exists h0 � 1 such that
for every h� h0, the operator!(t , x, Dx) is invertible. The inverse operator is given by

(!(t , x, Dx))�1 D op

(

1!(t , x, � )

) Æ S(t , x, Dx), SD I C S�1,

I the identity operator, for some S�1 2 C([0, T ], LG(�1,�1)).

Proof. By Theorem 2.1 we have

!(t , x, Dx) Æ op

(

1!(t , x, � )

) D I C R(t , x, Dx),

where R(t , x, � ) has principal part

r (t , x, � ) D �( a(t)hxi�=2h h�i
2(1C a(t)hxi�h h�i2)

)2 n
∑

jD1

�� j h�i2Dx j hxi�h .

We notice thatr 2 C([0, T ]I SG(�1,�1)); moreover, for every�, � 2 ZnC we have

jD�� D�
x r (t , x, � )j � C��hxi�1�j�j

h h�i�1�j�j,
for someC�� > 0 independent ofh. Choosingh � 1 sufficiently large, we obtain that
R is a bounded operatorL2! L2 with norm

kRkL(L2(Rn)) < 1,

cf. [9], Corollary 1.3 p. 102. Then,ICR is invertible by Neumann series, and the inverse

SD I C 1
∑

jD1

R j (t , x, Dx)

belongs toC([0, T ], LG0). Thus, op(1=!(t , x, � )) Æ S is the inverse of!(t , x, Dx).
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We can now define

(3.7)

{

u0 D !(t , x, Dx)u,
u1 D (Dt C Q�(t , x, Dx))u.

Then by (3.3), (3.7) we get

(Dt C Q�(t , x, Dx))u0 D !(t , x, Dx)u1C (Dt!)(t , x, Dx)(!(t , x, Dx))�1u0

C [ Q�(t , x, Dx), !(t , x, Dx)](!(t , x, Dx))�1u0

and

(Dt � Q�(t , x, Dx))u1

D �b(t , x, Dx)(!(t , x, Dx))�1u0 � c(t , x)(!(t , x, Dx))�1u0

� s1(t , x, Dx)(!(t , x, Dx))�1u0 � s2(t , x, Dx)(!(t , x, Dx))�1u0

C r1(t , x, Dx)(!(t , x, Dx))�1u0.

Taking into account (2.3) we obtain that

[ Q�(t , x, Dx), !(t , x, Dx)](!(t , x, Dx))�1

D op

(

n
∑

jD1

�� j
Q�Dx j! � �� j!Dx j

Q�!
)

C r2(t , x, D)

with r2 2 C([0, T ], SG0). Since

Dx j!(t , x, � )!(t , x, � )
D a(t)Dx j hxi� h�i2

2!2(t , x, � )
2 C([0, T ]I SG(0,�1))

and

�� j!(t , x, � )!(t , x, � )
D a(t)hxi� �� j h�i2

2!2(t , x, � )
2 C([0, T ]I SG(�1,0))

we obtain that [Q�, !]!�1 has order (0, 0). Moreover,

(3.8) (Dt!)(t , x, Dx)(!(t , x, Dx))�1 D SÆ Qs(t , x, Dx)C r3(t , x, Dx)

where

(3.9) Qs(t , x, � ) D �ia0(t)
2(a(t)C hxi��h h�i�2)

and r3 2 C([0, T ], LG0). On the other hand, sinces1(t , x, Dx) 2 C([0, T ], LG(1,�=2)),
by (3.4) we can write

s1(t , x, Dx)(!(t , x, Dx))�1 D SÆ Qs1(t , x, Dx)C r4(t , x, Dx)
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where r4 2 C([0, T ], LG0) and

Qs1(t , x, Dx) D op

(

ia0(t)pQ(t , x, � )

2
√

(a(t)C hxi��h h�i�2)(1C a(t)hxi�h h�i2)

)

D op

(

ia0(t)hxi��=2h h�i�1pQ(t , x, � )

2(a(t)C hxi��h h�i�2)

)

.

(3.10)

Finally, c(t , x)(!(t , x, Dx))�1, s2(t , x, Dx)Æ(!(t , x, Dx))�1 andr1(t , x, Dx)Æ(!(t , x, Dx))�1

belong toC([0, T ], LG0). Hence, problem (1.8) is reduced to the equivalent problem

(3.11)

{

L1U D 0,
U (0, x) D U0(x),

whereU D (u0, u1) and

L1 D �t � i

( �Q�(t , x, Dx) !(t , x, Dx)
0 Q�(t , x, Dx)

)C A1(t , x, Dx)b(t , x, Dx)(!(t , x, Dx))�1

C A2(t , x, Dx) Qs(t , x, Dx)C A3(t , x, Dx) Qs1(t , x, Dx)C R(t , x, Dx)

where A1, A2, A3, R are matrices of pseudodifferential operators inC([0, T ], LG0). No-
tice now that the matrix

( �Q�(t , x, � ) !(t , x, � )
0 Q�(t , x, � )

)

can be diagonalized by

M D






1
hxi�=2h h�i

2
p

Q(t , x, � )

0 1







which is of order (0, 0) thanks to the condition (1.11). Then,problem (3.11) is equiva-
lent to

(3.12)

{

LV D 0,
V(0, x) D V0(x),

where

(3.13) V D MU

and

L D �t � i

( �Q�(t , x, Dx) 0
0 Q�(t , x, Dx)

)C QA1(t , x, Dx)b(t , x, Dx)(!(t , x, Dx))�1

C QA2(t , x, Dx) Qs(t , x, Dx)C QA3(t , x, D) Qs1(t , x, Dx)C QR(t , x, Dx)



432 A. ASCANELLI AND M. CAPPIELLO

with QA1, QA2, QA3, QR 2 C([0, T ], LG0). Now by (3.9) and (3.10) we get

j Qs(t , x, � )j C j Qs1(t , x, � )j � ja0(t)j
a(t)C hxi��h h�i�2

.

Furthermore,

(3.14) b(t , x, Dx)(!(t , x, Dx))�1 D SÆ op

(

b(t , x, � )
√

1C a(t)hxi�h h�i2
)C r5(t , x, Dx),

with r5 2 C([0, T ], LG0). Finally, by the Levi condition (1.12)

jb(t , x, � )j
√

1C a(t)hxi� h�i2 D
jb(t , x, � )jhxi�=2h�i(a(t)C hxi��h h�i�2)
 � 1

(a(t)C hxi��h h�i�2)1=k
� C

1

(a(t)C hxi��h h�i�2)1=k .

(3.15)

Hence,L in (3.12) can be written in the form

(3.16) L D �t � i

( �Q�(t , x, Dx) 0
0 Q�(t , x, Dx)

)C A(t , x, Dx),

whereA(t , x, Dx) is a 2�2 matrix of pseudodifferential operators with symbolA(t , x, � ) 2
C([0, T ], SG(1,1)) thanks to the condition� 2 [0, 2]. Moreover

(3.17) jA(t , x, � )j � '(t , x, � ),

for

(3.18) '(t , x, � ) D C

( ja0(t)j
a(t)C hxi��h h�i�2

C 1

(a(t)C hxi��h h�i�2)1=k
)

,

C a positive constant.
In proving an energy estimate for the system (3.16), (3.17),the symbol

∫ T
0 '(t , x, � ) dt will play an important role. We conclude this section by giving the

following lemma.

Lemma 3.1. Let us consider the function'(t , x, � ) in (3.18). Then, for every�, � 2 ZnC there exists a positive constantÆ�� independent of h such that

(3.19)
∫ T

0
j��� ��x '(t , x, � )j dt � Æ��hxi�j�jh h�i�j�j log(hxi�h h�i2).



DEGENERATE HYPERBOLIC EQUATIONS WITH POLYNOMIAL COEFFICIENTS 433

Proof. For� D � D 0, by (1.9) we immediately obtain the inequalities

(3.20)



















∫ T

0

ja0(t)j
a(t)C hxi��h h�i�2

dt � c log(hxi�h h�i2),

∫ T

0

1

(a(t)C hxi��h h�i�2)1=k dt � c log(hxi�h h�i2), c > 0.

Indeed,a(t) has finitely many isolated zeroes of orderk, so we can reduce ourselves to
prove (3.20) not on the whole interval [0,T ] but only in a neighborhood [t0��, t0C�]
of a zerot0 such thata(t) � c0jt � t0jk for t 2 [t0 � �, t0C �]. Then, estimate

∫ t0C�
t0��

ja0(t)j�(t)C hxi��h h�i�2
dt � c log(hxi�h h�i2)

immediately follows; on the other hand,
∫ t0C�

t0��
1

(�(t)C hxi��h h�i�2)1=k dt � ∫jt�t0j<hxi��=k
h h�i�2=k

1

hxi��=kh h�i�2=k dt

C ∫hxi��=k
h h�i�2=k�jt�t0j��

1

c1=k
0 jt � t0j dt

� c log(hxi�h h�i2).

For (�, �) ¤ (0, 0), we only need to notice that

��x ��� '(t , x, � ) D q(�,�)
1 (t , x, � )

ja0(t)j
a(t)C hxi��h h�i�2

C q(�,�)
2 (t , x, � )

1

(a(t)C hxi��h h�i�2)1=k ,

(3.21)

q(�,�)
i 2 C([0, T ]I SG(�j�j,�j�j)), i D 1, 2, and we immediately obtain (3.19) by (3.20)

and (3.21).

4. Energy estimate

In this section we give an energy estimate for the systemLV D 0, with L in (3.16)
under the conditions (3.17), (3.18). We are going to prove the following:

Theorem 4.1. Consider L in(3.16)under assumptions(3.17), (3.18). There exists
a constantÆ > 0 such that for all V2 C1([0, T ]I Hs1,s2)\C([0, T ]I Hs1C1,s2C1) it holds
the energy estimate:

(4.1) kV(t)k2s1�2Æ,s2��Æ � C

(kV(0)k2s1,s2
C ∫ t

0
kLV(� )k2s1,s2

d�).
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In the proof of Theorem 4.1 we are going to use the following:

Lemma 4.1. Let 3(x, � ) � 0 be a symbol such that

(4.2) j��� ��x3(x, � )j � Æ��hxi�j�jh h�i�j�j log(hxi�h h�i2),

for � 2 [0, 2] and for all �, � 2 ZnC, with positive constantsÆ�� independent of h.
Then, there existsÆ0 > 0 such that

(4.3) j��� ��x e3(x,� )j � Æ��hxi�Æ0�j�j
h h�i2Æ0�j�j.

Thus, the operator e3(x,Dx) D op(e3(x,� )) 2 LG(2Æ0,�Æ0).

Proof. By a direct computation, applying Faà di Bruno formula we get for�, � 2 ZnC:

j��x ��� e3(x,� )j � Æ��e3(x,� )hxi�j�jh h�i�j�j logj�jCj�j(hxi�h h�i2).

Furthermore, by (4.2) with� D � D 0 we have

e3(x,� ) � hxi�Æ00
h h�i2Æ00,

while for every� > 0

logj�jCj�j(hxi�h h�i2) � c��hxi��h h�i2� .
Thus, (4.3) holds withÆ0 D Æ00C �.

Proof of Theorem 4.1. We definew0(t , x, Dx) the operator with symbol

(4.4) w0(t , x, � ) D e
∫ t

0 '(� ,x,� ) d� .
By (3.19) and Lemma 4.1,w0(t , x, Dx) 2 LG(2Æ0,�Æ0) for someÆ0 > 0. Moreover, argu-
ing as in Proposition 3.1 and using (4.3), it is easy to prove that for h large enough!0(t , x, Dx) is invertible with inverse given by

(w0(t , x, Dx))�1 D op
(

e� ∫ t
0 '(� ,x,� ) d�) Æ (I C S��(t , x, Dx)),

S�� 2 C([0, T ]I SG(��,��)), � 2 (0, 1) arbitrary. We also observe thatw�1
0 is of order

(2�, ��) for every � > 0, since

op
(

e� ∫ t
0 '(� ,x,� ) d�) 2 LG(2�,��), � > 0.

We now define

(4.5) Lw0 D w�1
0 Lw0.
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The transformation (4.5) carries a loss in the energy estimate of 2Æ1 in the first Sobolev
index and of�Æ1 in the second one, withÆ1 D Æ0C �. Computation gives

(4.6) Lw0 D �t � i

( �Q� 0
0 Q�

)C AC '(t , x, Dx)I C B1,

where B1(t , x, � ) satisfies an estimate of the form

(4.7) j��� ��x B1(t , x, � )j � b�,�(t)hxi�j�jh�i�j�j log(hxi� h�i2),

for someb�,� 2 C([0, T ], RC).
We can now apply the sharp Gårding inequality for SG symbols,(see [16], The-

orem 18.6.14 for the metricgD jdxj2=hxi2C jd� j2=h�i2 and withh(x, � ) D hxi�1h�i�1)
to the matrix of operatorsAC'(t , x, Dx)I , since it has non negative eigenvalues by (3.17).
Hence there exist

Q 2 C([0, T ]I LG(1,1))

a positive operator, that is

(4.8) hQU, Ui � 0, U 2 C([0, T ]I H1,1),

and B2 satisfying an estimate of the form (4.7) such that

AC '(t , x, Dx)I D QC B2.

Thus,

(4.9) Lw0 D �t � i

( �Q� 0
0 Q�

)C QC B,

where B D B1C B2, and again from (4.7) there existsb 2 C([0, T ], RC) such that

(4.10) jhBU(t), U (t)ij � b(t)hop(log(hxi� h�i2))U (t), U (t)i.
Next, we introduce a second change of variable definingw1(t , x, Dx) the operator with
symbol

(4.11) w1(t , x, � ) D hxi∫ t
0 b(� ) d� h�i∫ t

0 b(� ) d� ,
which is obviously invertible with inverse

(w1(t , x, Dx))�1 D hDxi� ∫ t
0 b(� ) d� hxi� ∫ t

0 b(� ) d� .
We define

(4.12) Lw1 D w�1
1 Lw0w1I
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this second transformation brings a loss of (2Æ2, �Æ2) in the Sobolev indices, whereÆ2 D ∫ T
0 b(t) dt and b is the function in (4.10). We have

(4.13) Lw1 D �t � i

( �Q� 0
0 Q�

)C QC BC b(t) op(log(hxi� h�i2))I C R,

with R2 C([0,T ]ILG0). Notice that, by (4.10),BCb(t)op(log(hxi� h�i2))I is a positive
operator in the sense of (4.8).

Now, for s1 D s2 D 0 we consider, for anyW 2 C1([0, T ]I L2) \ C([0, T ]I H1,1)

d

dt
kW(t)k2L2 D 2<(W0(t), W(t))L2 � �(t)kW(t)k20C CkLw1W(t)k20,

thanks to (4.13), (4.8), with� a function inC([0, T ], RC). An application of Gronwall’s
inequality gives

kW(t)k20 � C

(kW(0)k20C
∫ t

0
kLw1W(� )k20 d�).

The case (s1, s2) ¤ (0, 0) immediately follows, since

hxis2hDxis1 Lw1hDxi�s1hxi�s2 D Lw1 C R, R 2 C([0, T ]I LG0).

We have so:

kW(t)k2s1,s2
� C

(kW(0)k2s1,s2
C ∫ t

0
kLw1W(� )k2s1,s2

d�),

for any W 2 C1([0, T ]I Hs1,s2)\C([0, T ]I Hs1C1,s2C1). Finally, to recover (4.1) we only
need to remind that

Lw1W D 0, LV D 0, V D w0w1W,

and there exists a positive constantC such that for anyV 2 C([0, T ]I Hs1,s2) it holds

kV(t)ks1�2Æ,s2��Æ � CkW(t)ks1,s2,

Æ D Æ1C Æ2. Theorem 4.1 is completely proved.

REMARK 1. The positive constantÆ only depends on theÆ�� ’s in (3.19); precisely,
the Caldéron–Vaillancourt’s theorem gives forÆ the estimateÆ > Æ00C supj�jCj�j�cn

Æ�� ,
with cn a positive constant only depending on the space dimensionn. Hence, by (1.2),
Theorem 4.1 gives well posedness of the Cauchy problem for the system (3.16) inS(Rn),
S 0(Rn) with the loss of 2Æ derivatives.
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REMARK 2. We remark that the energy estimate (4.1) holds more generally for
a system of the form (3.16) withQ�(t , x, � ) real valued,Q�(t , x, � ) 2 L1([0, T ]I SG(1,1))
and jA(t , x, � )j � '(t , x, � ) for a function' satisfying (3.19). Hence, the regularity ofQ� and A actually is not necessary to prove Theorem 4.1, while it is crucial to reduce
the problem (1.8) to the formLV D 0.

REMARK 3. To derive the energy estimate (1.13) from (4.1), we need togo back
to (3.7) and (3.13). In this way we obtain that (1.13) holds with Æ1 D 2Æ C 1, Æ2 D�Æ C 1. Then in the case� D 0, (1.13) has the form

ku(t)k2s1�2Æ�1,s2�1C k�tu(t)k2s1�2Æ�2,s2�2 � C(k f k2s1,s2
C kgk2s1�1,s2�1).

On the other hand, for� D 0 our approach to the proof of Theorem 1.1 reduces to the
one adopted in [3], and condition (1.11) can be replaced by standard ellipticity as in
(1.6). Moreover, all the operators involved in the changes ofvariables (3.7) and (3.13)
are of order zero with respect tox. Then, taking anyf 2 Hs1,s2(Rn), g 2 Hs1�1,s2(Rn)
and repeating readily the argument of the proof, we obtain that u(t , x) satisfies the
energy estimate:

(4.14) ku(t)k2s1�Æ1,s2
C k�tu(t)k2s1�Æ1�1,s2

� C(k f k2s1,s2
C kgk2s1�1,s2

)

for every t 2 [0, T ] and for anys1, s2 2 R. In particular, fors2 D 0 we recapture the
result of [3] in standard Sobolev spaces. In general, besides H�1 well posedness, we
get also well posedness inS(Rn), S 0(Rn).
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