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Abstract

Let (M, I, J, K, g) be a hyperkéhler manifold, dignM = 4n. We study posi-
tive, d-closed (2, 0)-forms on M, |). These forms are quaternionic analogues of
the positive ¢, p)-forms, well-known in complex geometry. We construct a mon
morphismVy, p: AZP%(M) — AP P(M), which mapsa-closed (, 0)-forms to
closed O + p, n + p)-forms, and positive (@, 0)-forms to positive if + p, n + p)-
forms. This construction is used to prove a hyperkahlerioeref the classical
Skoda—EIl Mir theorem, which says that a trivial extension alased, positive cur-
rent over a pluripolar set is again closed. We also prove ttpeikahler version of
the Sibony’s lemma, showing that a closed, positive, @)-form defined outside of
a compact complex subvarie® c (M, I), codimZ > 2p is locally integrable in a
neighbourhood ofZ. These results are used to prove polystability of derivedatli
images of certain coherent sheaves.
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1. Introduction

1.1. Hypercomplex manifolds and hyperkahler manifolds. Let M be a smooth
manifold, equipped with an action of the algebra

H=(1,1,J,K|12=02=1JK =-1)

of quaternions on its tangent bundle. Such a manifold isedah almost hypercomplex
manifold The operatord, J, K define three almost complex structures Mn If these
almost complex structures are integrabld, (, J, K) is calleda hypercomplex manifold

Hypercomplex manifolds can be defined in terms of complexmgdoy, using the
notion of a twistor space ([16], [26]). A scheme-theoret&fikition of a hypercomplex
space also exists, allowing one to define hypercomplexti@sieand even hypercomplex
schemes ([26]).

Still, in algebraic geometry, the notion of a hyperkahlernif@d is much more
popular. A hyperkahler manifold is a hypercomplex maniféM, |, J, K), equipped
with a Riemannian forng, in such a way thag is a Kahler metric with respect tb,

J and K.

Historically, these definitions were given in opposite erdealabi defined the hyper-
kéhler structure in 1978, and constructed one on the totdespf a cotangent bundle
to CP" ([9]), and Boyer defined hypercomplex structures and diasiscompact hyper-
complex manifolds in quaternionic dimension 1 in 1988 ([8]he hyperkahler structures
are much more prominent because of Calabi—-Yau theorem, {@%th can be used to
construct hyperkahler structures on compact, holomogtligicymplectic Kahler mani-
folds ([7]).

Let (M, I, J, K, g) be a hyperkahler manifold. Sinagis Kéhler with respect to
I, J, K, the manifoldM is equipped with three symplectic forms:

wl('!')::g('rl'), CUJ(',')::g(',J'), CL)K(,):g(,K)

A simple linear-algebraic calculation can be used to shoat the formQ := w; +
V—1wk is of Hodge type (2, 0) with respect to the complex structurgsee e.g. [7]).
Since Q is also closed, it is holomorphic. This gives a holomorphimplectic struc-
ture on a given hyperkahler manifold. Conversely, each rmolphically symplectic,
compact, Kahler manifold admits a hyperkéhler metric, Wwhis unique in a given
Kéhler class ([7]).

In algebraic geometry, the words “hyperkéhler” and “holopiically symplectic”
are used as synonyms, if applied to projective manifoldsrdtare papers on “hyper-
kahler manifolds in characteristip” dealing with holomorphically symplectic, project-
ive manifolds in characteristip.

The first occurrence of hyperkahler manifolds precedes ¢fiaition given by Calabi
by almost 25 years. In his work on classification of irredieciholonomy groups on
Riemannian manifolds, [6], M. Berger listed, among othergsy the group o) of



PosITIVE FORMS ON HYPERKAHLER MANIFOLDS 355

guaternionic unitary matrices. The holonomy of the Levivai connection of a Kéhler
manifold preserves its complex structure (this is one ofdéfnitions of a Kéahler mani-
fold). Therefore, the holonomy of a hyperkahler manifolégarvesl, J, and K. We
obtained that the holonomy group of a hyperkéhler manif@d in Sgn). The converse
is also true: if the Levi—Civita connection of a Riemanniaamfold M preserves a com-
plex structure, it is Kéhler (this is, again, one of the d¢ifims of a Kéhler manifold),
and if it preserves an action of quaternions, it is hyperhl

In physics, this is often used as a definition of a hyperkastarcture.

Summarizing, there are three competing approaches to kéfger geometry.

(i) A hyperkdhler manifold is a Riemannian manifold1(g) equipped with almost
complex structures, J, K satisfyingl oJ = —Jol =K, such that i, 1,g), (M, J,q)
and M, K, g) are Kéhler.

(i) A hyperkahler manifold is a Riemannian manifold withlboomy which is a sub-
group of Sgn).

(iii) (for compact manifolds) A hyperkahler manifold is arapact complex manifold
of Kahler type, equipped with a holomorphic symplectic stuse.

Returning to hypercomplex geometry, there is no hypercermphalogue of Calabi—
Yau theorem, hence no definition in terms of algebro-gedmeéta such as in (iii). How-
ever, hypercomplex manifold can also be characterizedrmg@f holonomy.

Recall thatObata connectioron an almost hypercomplex manifold is a torsion-
free connection preserving, J and K. Obata ([19]) has shown that such a connec-
tion is unique, and exists if the almost complex structuresd and K are integrable.
The holonomy of Obata connection obviously lies@Gb(n, H). The converse is also
true: if a manifoldM admits a torsion-free connection preserving operatord, K €
End(T M), generating the quaternionic action,

12=02=K?=1JK = —ld7p,

then the almost complex structure operatbys], K are integrable. Indeed, an almost
complex structure is integrable if it is preserved by somsitm-free connection.

We obtain that a hypercomplex manifold is a manifold equippéth a torsion-
free connectionV with holonomy HolV) c GL(n, H). If, in addition, the holonomy
of Obata connection is a compact grouy, is hyperkahler.

Some notions of complex geometry have natural quaternianalogues in hyper-
complex geometry, many of them quite useful.

By far, the most useful of these is the notion of HKT-forms,iethis a quaternionic
analogue of Kahler forms ([13], [3], [1]). Generalizing HKdrms, one naturally comes
across the notion of closed, positive (2, 0)-forms on a hygaplex manifold.

1.2. Positive (2, 0)-forms on hypercomplex manifolds and caternionic Hermit-
ian structures. Let (M, I, J,K) be a hypercomplex manifold. We denote the space of
(p,q)-forms on M, 1) by A{"%(M). The operators and J anticommute, and therefore,
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J(APY(M)) = AT'P(M). The mapy — J(7) induces an anticomplex endomorphism of
APY(M). Clearly,

32| spaqmy = (—1)P*Id.

For p + g even,n — J(i) is an anticomplex involution, that is, a real structure on
ATP(M). A (2p, 0)-form 5 € AZ*%(M) is calledreal if n = J(7). The bundle of real
(2p, 0)-forms is denotech (M, R).

The real (2, 0)-forms are most significant, because they eantbrpreted as quater-
nionic pseudo-Hermitian structures.

Recall that a Riemannian metricon an almost complex manifoldV, 1) is called
Hermitian if g is U(1)-invariant, with respect to the(1)-action onT M defined by

t — cost -idry + sint - |.

This is equivalent tay(l -, 1 -) =9(-, -).

When M is almost hypercomplex, it is natural to consider a gréu@ End(T M)
generated byJ (1)-action associated with, J, K as above. It is easy to see thatis
the group of unitary quaternions, naturally identified witt2). Thus obtained action of
SU?2) on A*(M) is fundamental, and plays in hypercomplex and hyperk&gemetry
the same role as played by the Hodge structures in complebiaiy geometry.

Recall that bilinear symmetric forms (not necessarily pasidefinite) onT M are
called pseudo-Riemannian structures

A (pseudo-)Riemannian structugen an almost hypercomplex manifoli( 1, J, K)
is calledquaternionic(pseudoHermitianif g is SU(2)-invariant. In other words, a quater-
nionic pseudo-Hermitian structure is a bilinear, symnee8lJ2)-invariant form onT M.

Given a real (2, 0)-form € A|2*°(M, R), consider a bilinear form

g, (X, y) :=n(x, Jy)

on T M. Sincen is a (2, 0)-form, we have

n(Ix, 1y) = =n(x, y)

for all x, y € TM and therefore

g, (1%, 1y) = g,(X, ).

Similarly, we obtaing, (Jx, Jy) = g,(X, y), becausey(J(X), J(¥)) = n(X, y).

Since 5 is skew-symmetric, and? = -1, g, is symmetric. We obtained tha,
is a pseudo-Hermitian form off M. This construction is invertible (see Section 3),
and gives an isomorphism between the bunHleof real (2, 0)-forms and the bun-
dle A,Z'O(M, R) of quaternionic pseudo-Hermitian forms (Claim 3.1). Theerse iso-
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C H
complex manifold hypercomplex manifold
APP(M, R) APO(M, R)
d, d° 9, 93
real (1, 1)-forms real (2, 0)-forms
closed positive definite (1, 1)-forms HKT-forms
Kéahler potentials HKT-potentials

morphismH — A,Z'O(M, R) is given as follows. Starting from a quaternionic pseudo-
Hermitian formg, we construct 2-forms,, wj, wk as in Subsection 1.1. TheRy :=
w3 + v/—1wx is a real (2, 0)-form.

A real (2, 0)-formy is calledpositive definitéf the corresponding symmetric form
g, is positive definite.

There are two differentials onAT'O(M): the standard Dolbeault differential
3: APO(M) = APTHO(M), and 8, which is obtained fromd by twisting with n —
J(7). One could definé; as d;(n) := —J3(In).

The pair of differentialsd, 9; behaves in many ways similarly to the operators
d, d® on a complex manifold. They anticommute, and sat&fy= 8§ =0.

A positive definite (2, 0)-formy € AZ%(M, R) is called HKT-formif a7 = 0. The
corresponding quaternionic Hermitian metric is caltad HKT-metric This notion was
first defined by string physicists [17], and much studied esititen (see [13] for an
excellent survey of an early research).

In [3] (see also [1]), it was shown that HKT-forms locally a@ys have a real-
valued potentialp, known as HKT-potentialny = 99;¢. This function is a quaternionic
analogue of the Kahler potential.

We obtain the dictionary as in the above table of parallelsvéen the complex
and hypercomplex manifolds. This analogy can be built ugombtain the notion of
positive (2p, 0)-forms.

1.3. Positive (P, 0)-forms on hypercomplex manifolds.

DerINITION 1.1 ([1]). A real (2, 0)-form n € A|2'°(M, R) on a hypercomplex
manifold is calledweakly positiveif

n(X1, I(X1), X2, I(X2), . .., Xp, I(Xp)) = O
for any xq, . .., X, € T"°M, andclosedif 95 = 0.

In modern complex geometry, the positive, clospd) forms and currents play a cen-
tral role, due to several by now classical theorems, whictevpeoven in 1960-1980-ies,
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building upon the ideas of P. Lelong (see [11] for an elemgnéxposition of the the-
ory of positive currents).

The hypercomplex analogue of these results could be jusigaffisant.

In [1], a hypercomplex version of the classical Chern—LeviNirenberg theorem
was obtained. In the present paper, we prove quaterniomigiovs of two classical
theorems, both of them quite important in complex geometry.

Theorem 1.2 (“Sibony’s Lemma”). Let (M, I, J, K, g) be a hyperkahler mani-
fold, dimg M = 4n, and Z C (M, I) a compact complex subvarietgodimZ > 2p.
Consider a weakly positiveclosed formy € AZ*(M\Z, R). Theny is locally inte-

grable around Z.
Proof. See Theorem 5.5. L]

The classical version of this theorem states that a closesitiye (p, p)-form de-
fined outside of a complex subvariety of codimensiorp is integrable in a neighbour-
hood of this subvariety. Its proof can be obtained by slicing

In hypercomplex geometry, the slicing is possible only onaa rihanifold, because
a typical hypercomplex manifold has no non-trivial hypenmdex subvarieties, even lo-
cally. In earlier versions of [28], Theorem 1.2 was proven ffat hypercomplex mani-
fold using slicing, and then extended to non-flat manifoldapproximation. The ap-
proximation argument was very unclear and ugly. In 2007, & peoof of Sibony’s
lemma was found ([33]), using the emerging theory of pluisrmonic functions on
calibrated manifolds ([14], [15]) instead of slicing. In &en 5, we adapt this argu-
ment to hyperkdhler geometry, obtaining a relatively senphd clean proof of The-
orem 1.2

Theorem 1.2 was used in [28] to prove results about stahilitgertain coherent
sheaves on hyperkahler manifolds (Subsection 1.4). Thedr@ was used to show that
the form representing;(F) for such a sheaf is integrable. To prove theorems about sta-
bility, we need also to show that the corresponding currerdiésed. Then the integral
of the form representing;(F) can be interpreted in terms of the cohomology.

Given a formn on M\ Z, locally integrable everywhere okl, we can interpref
as a current ori,

o —> nAQ.
M\Z
This current is calleda trivial extension ofy to M. A priori, it can be non-closed.
However, in complex geometry, a trivial extension of an gnédble, closed and posi-
tive form is again closed. This fundamental result is knownSkoda—E| Mir theorem
(Theorem 6.2). In Section 6, we prove a hypercomplex analogfuSkoda—El Mir
theorem.
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Recall that hypercomplex manifolds can be defined in term&addnomy (Sub-
section 1.1), as manifolds equipped with a torsion-freeneation V, with Hol(V) C
GL(n, H). A hypercomplex manifold M, I, J, K) is calledan Sl(n, H)-manifold if its
holonomy lies inSL(n, H) C GL(n, H). Such manifolds were studied in [31] and [4]. It
was shown thatMl, I, J, K) is an SL(n, H)-manifold if and only if M admits a holo-
morphic, real (B, 0)-form. In particular, all hyperk&hler manifolds saisflol(V) C
Sl(n, H).

Theorem 1.3. Let(M, I, J, K) be an Sin, H)-manifold and Zc (M, I) a closed
complex subvariety. Consider a closgubsitive form

n e AP (M\Z, R),

and assume tha is locally integrable around Z. Lef be the current obtained as a
trivial extension ofy to M. Thenan = 0.

Proof. Theorem 6.3. O

Theorem 1.3 is deduced from the classical Skoda—EIl Mir theoie Subsection 4.3,
we constructa mappq: APT(M) — AT P"9(M), which has the following properties.

Claim 1.4. Letn e Afp’O(M) be a(2p, 0)-form on an S(n, H)-manifold. Then
the (n + p, n + p)-form (v —1)°V, p(n) is real (in the usual sengef and only if n is
real, positive if and only ify is positive and closed if and only if;n = dn = 0.

Proof. Follows immediately from Proposition 4.10. ]

To prove Theorem 1.3, takge AZP°(M) which is closed and positive. As follows
from Claim 1.4, the if + p, n + p)-form (v'=1)PV; p(n) is closed and positive, in the
usual complex-analytic sense. lIts trivial extension isetband positive, by the Skoda—
El Mir theorem. Then {/—1)PV, (7)) is closed. Applying Claim 1.4 again, we find
that closedness of(—1)PV,, p(7) implies thatdi = 0.

1.4. Hyperholomorphic bundles and reflexive sheaves.The results about posi-
tive (2, 0)-forms on hypercomplex manifolds are especiafigful in hyperkahler geom-
etry. In [28], we used this notion to prove theorems aboubiktya of direct images of
coherent sheaves. The earlier arguments were unclear ameldfland the machinery
of positive (2, 0)-forms was developed in order to obtain clear proofs ek¢hresults.
Here we give a short sketch of main arguments used in [28]oudirout this paper,
stability of coherent sheaves is understood in Mumford—iTadte sense.

Let (M, I, J,K) be a compact hyperk&hler manifold, aBda holomorphic Hermit-
ian bundle on 1, ). Denote the Chern connection d» by V. We say thatB is
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hyperholomorphicif its curvature ®g € A?(M) ® EndB is SU(2)-invariant, with re-
spect to the natural action &U2) on A?(M). This notion was defined in [24], and
much studied since then.

It is easy to check thaBU(2)-invariant 2-forms are pointwise orthogonal to the
Kéahler form w,. Therefore, B, V) satisfies the Yang—Mills equation®g = 0. In
other words,V is Hermitian—Einstein.

One can easily prove that Yang—Mills bundles are alwpglystable that is, ob-
tained as a direct sum of stable bundles of the same slopecdrwerse is also true: as
follows from Donaldson—Uhlenbeck—Yau theorem [34], a YaMlgls connection exists
on any polystable bundle, and is unique.

In [24], it was shown that a polystable bundle avi,(1) admits a hyperholomorphic
connection if and only if the Chern classegB) and c,(B) are SU(2)-invariant.

In [25], it was shown that for any compact hyperkahler mddifgM, 1, J, K) there
exists a countable set

PcS={abcla’?+b>+c®=1)

with the following property. For anya( b, c) ¢ P, let L := al + bJ + cK be the
corresponding complex structure dvi induced by the quaternionic action. Then all
integer (, p)-classes on NI, L) are SU2)-invariant. In particular, all stable bundles
on (M, L) are hyperholomorphic.

Many of these results can be extended to reflexive coheremtvafie Recall that
a coherent sheaF on a complex manifoldX is called reflexiveif the natural map
F — F** is an isomorphism. Herel-* denotes the dual sheaf,* := Hom(F, Ox).
The following properties of reflexive sheaves are worth rieen{see [20]).
e Holomorphic vector bundles are obviously reflexive.
e Let Z C X be a closed complex subvariety, codi>= 2, and j: X\Z — X the
natural embedding. Thei.F is reflexive, for any reflexive shed on X\Z.
e The sheafF* is reflexive, for any coherent sheé&f.
e For any torsion-free coherent shelf, the natural mapF — F** is a mono-
morphism, andF** is reflexive. MoreoverF** is a minimal reflexive sheaf contain-
ing F.
e For any torsion-free coherent sheBf the singular set Sing() has codimension
> 2. If F is reflexive, SingF) has codimensiore 3.
e A torsion-free sheaf of rank 1 is always reflexive.
e A torsion-free sheaf is stable if and only ifF** is stable.

In [27], the definition of a hyperholomorphic connection wadended to reflexive
coherent sheaves, using the notion of admissible conmedgfined by Bando and Siu
in a fundamental work [2].

IHere
APY(M)® EndB — AP9(M) ® EndB
is the standard Hodge operator, which is Hermitian adjaint 7)) = w, A 1.
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Let us recall what Bando and Siu did.

DEfFINITION 1.5. Let X,w) be a Kahler manifoldZ C X a closed complex sub-
variety, codimZ > 2, andF a holomorphic vector bundle oK\ Z. Given a Hermitian
metric h on F, denote byV the corresponding Chern connection, and @gt be its
curvature. The metriti and the connectiofV are calledadmissibleif
(i) A®g is uniformly bounded, where\: AM*(M) ® EndB — EndB is the Hodge
operator, which is Hermitian adjoint th(n) = w, A 1.

(i) The curvature®g is locally L2-integrable everywhere oM.

Bando and Siu proved the following.
e Let (X, w) be a Kéhler manifoldZ c X a closed complex subvariety, codiin>

2, and F a holomorphic vector bundle oX\Z <y X. Assume thatF is equipped
with an admissible connection. TheyF is a reflexive coherent sheaf. Conversely,
any coherent sheaf admits an admissible connection outdide singularities. Such a
connection is callegan admissible connection on.F

e Aversion of Donaldson—Uhlenbeck—Yau theorem is valid fabk reflexive sheaves.
Let F be a reflexive sheaf on a compact Kahler maniféldThe admissible connection on
F is calledYang—Millsif A®¢ = cldg, where®¢k is its curvature, and some constant.
Bando and Siu proved that a Yang—Mills connection is uniqod,exists if and only ifF

is polystable.

In [27], these results were applied to coherent sheaves oyperkéahler manifold
(M, 1, J3,K,g). A hyperholomorphic connectioon a reflexive sheaF on (M, I) is an
admissible connection witlsU(2)-invariant curvature. Since aryU(2)-invariant form
Of satisfiesA® = 0, a hyperholomorphic connection is always Yang—Mills. 17][2
it was shown that any polystable reflexive sheaf w8hy(2)-invariant Chern classes
c1(F), c(F) admits a hyperholomorphic connection.

In [28], this formalism was used to prove polystability ofrided direct images of
hyperholomorphic bundles. Lé¥l;, M, be compact hyperkdhler manifolds, amda
hyperholomorphic bundle oW; x M,. Denote the natural projectiod; x M, — M, by
7. It was shown that the derived direct image shedes, B admit a hyperholomorphic
connection, outside of their singularities. Were this amtion admissible, Bando—Siu
theorem would imply polystability oR'7z, B outright. However,L2-integrability of its
curvature is difficult to establish. In [28], we proposed arrdabout argument to prove
polystability of F := (R, B)**.

Let (M, 1, J,K, g) be a compact hyperkahler manifold, gifMl = 4n, and F a re-
flexive coherent sheaf orM, 1). Assume that outside of its singularities,is equipped
with a metric, and its Chern connection hak(2)-invariant curvature. Consider a sub-
sheafF; C F. Then, outside of singularities df, Fy, the class—c,(F) is represented
by a formv with v — J(v) positive, and vanishing only if = F; & F,. This follows
from an argument which is similar to one that proves that imaigphic subbundles of
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a flat bundle have negative: the SU(2)-invariance of the curvatur®g is equivalent
to ® — J(®F) = 0. From positivity and non-vanishing af— J(v), one needs to infer
that degei(F1) < 0, which would suffice to show thét is polystable.

The expression

(1.1) degey(F1) = — /M VA0 = —% /M V=3 At

would have been true were the fonm- J(v) integrable, and closed as a current idn
However, the (2, 0)-forns2, corresponding t@ as in Section 3 i9-closed, because is
closed. This form is positive, because J(v) is positive, and2, satisfies 2, = Q,_3;,,
which is clear from its construction. This form is definedsidé of the seS C M where
the sheave$, F; are not locally trivial. Since these sheaves are reflexigdjm S > 2,
and we could apply the hyperké&hler version of Sibony’s lenffifeeorem 1.2) to obtain
that 2, is integrable. Now, the hypercomplex version of Skoda—El M&orem (The-
orem 1.3) implies that the trivial extension Qf, is ad-closed current. Therefore, dEg
can be computed through the integral (1.1). Simce J(v) is positive, this integral is
negative, and strictly negative unleBs= F; & F,. Therefore,F is polystable. We gave
a sketch of an argument showing that= (R z,.B)** is polystable. For a complete
proof, please see [28].

2. Quaternionic Dolbeault complex

In this Section, we introduce the quaternionic Dolbeaulinplex

(@)
used further on in this paper. We follow [29].

2.1. Weights of SU(2)-representations. It is well-known that any irreducible
representation o8U(2) over C can be obtained as a symmetric powg(V;), where
V: is a fundamental 2-dimensional representation. We sayahapresentatiohV has
weight i if it is isomorphic to S (V). A representation is said to bgure of weight
i if all its irreducible components have weight If all irreducible components of a
representatioV; have weight< i, we say thatw, is a representation of weight i.
In a similar fashion one defines representations of welglnt

REMARK 2.1. The Clebsch—Gordan formula (see [18]) claims that teeght is
multiplicative in the following sense: if < j, then

i
ViV = @Vi+j72k,
k=0
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whereV; = S (V;) denotes the irreducible representation of weight

A subspaceV c W, is pure of weight iif the SU2)-representatio®WV’ C W, gen-
erated byW is pure of weighti.

2.2. Quaternionic Dolbeault complex: a definition. Let M be a hypercomplex
(e.g. a hyperkahler) manifold, dgM = n. There is a natural multiplicative action of
SU2) Cc H* on A*(M), associated with the hypercomplex structure.

REMARK 2.2. The spaca*(M) is an infinite-dimensional representation3ii(2),
however, all its irreducible components are finite-dimenal. Therefore it makes sense to
speak ofweightof A*(M) and its sub-representations. Clearly(M) has weight 1. From
Clebsch—Gordan formula (Remark 2.1), it follows ta(M) is an SU(2)-representation
of weight < i. Using the Hodges-isomorphismA! (M) = A%~ (M), we find that for
i > 2n, A'(M) is a representation of weight 2n —i.

Let VI ¢ A'(M) be a maximalSU(2)-invariant subspace of weight i. The space
V' is well defined, because it is a sum of all irreducible repre@onsW c A'(M) of
weight < i. Since the weight is multiplicative (Remark 2.3} = 9, V' is an ideal
in A*(M). We also haveV' = A'(M) for i > 2n (Remark 2.2).

It is easy to see that the de Rham differentahcreases the weight by 1 at most.
Therefore,dV! Cc VI*1, andV* c A*(M) is a differential ideal in the de Rham DG-
algebra A*(M), d).

DErINITION 2.3. Denote by 4% (M), dy) the quotient algebrav*(M)/V* It is
calledthe quaternionic Dolbeault algebra of Mor the quaternionic Dolbeault complex
(qD-algebra or qD-complex for short).

The spacer’, (M) can be identified with the maximal subspacerd{M) of weight
i, that is, a sum of all irreducible sub-representations afjima . This Way,AL(M) can
be considered as a subspaceA{M); however, this subspace is not preserved by the
multiplicative structure and the differential.

REMARK 2.4. The complex £% (M), d,) was constructed much earlier by
Salamon, in a different (and much more general) situatiod, rauch studied since then

([21], [10], [5D).

2.3. The Hodge decomposition of the quaternionic Dolbeaultomplex. Let
(M, I, J, K) be a hypercomplex manifold, and a complex structure induced by the
quaternionic action, say,, J or K. Consider theU (1)-action onA*(M) provided by
1 2 cosepld + sing - L. We extend this action to a multiplicative action axi(M).
Clearly, for a @, g)-form n € AP9(M, L), we have

(21) IOL((/));] = e“/jl(p_Q)‘ﬂn_
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This action is compatible with the weight decomposition /0f(M), and gives a
Hodge decomposition oA’ (M) ([29]).

A(M)= P A%T(m).

p+q=i

The following result is implied immediately by the standaralculations from the
theory of SU(2)-representations.

Proposition 2.5. Let (M, I, J, K) be a hypercomplex manifold and

AyM)y= P abiv

p+g=i

the Hodge decomposition of gD-complex defined above. Thexe th a natural iso-
morphism

(2.2) ARI(M) = APFIO(M, 1).

Proof. See [29]. O

This isomorphism is compatible with a natural algebraic udtire on
Dpig=i AP+aO(M, 1), and with the Dolbeault differentials, in the following wa

Let (M, I, J, K) be a hypercomplex manifold. We extend

J: AY (M) - AY(M)
to A*(M) by multiplicativity. Recall that
J(APYM, 1)) = ATP(M, 1)
becausel and J anticommute onA(M). Denote by
d3: APA(M, 1) = APTLA(M, 1)

the operator o d o J, whered: AP9(M, |) — APAtY(M, |) is the standard Dolbeault
operator on ¥, 1), that is, the (0.1)-part of the de Rham differential. Siriée= 0,

we haved? = 0. In [29] it was shown that and d; anticommute:

(2.3) {9;, 8} = 0.
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Consider the quaternionic Dolbeault complex*(M), d,) constructed in Sub-
section 2.2. Using the Hodge decomposition, we can reprebén complex as

A% (M)

d%7
/ﬂéﬁ\\;

(2.4) ARG (M) A% (M)
JASYAY:
a9 a9
AT (OIS () BN (Y)

wheredi'y?, di’yl, are the Hodge components of the quaternionic Dolbeaulerdifftial

d;, taken with respect td.
Theorem 2.6. Under the isomorphism
API(M) = APHAO(M, 1)

constructed inProposition 2.5d7° corresponds ta and df** to 9;:

A% (M) AVO(M)
dgr,l 9
(2.5) AYMY  A%Y(wm) = APAM) AT

ATARAYA

AZOM)  ATHM) ARAM)  APUM)  ATAM)  ATM)

Proof. See [29] or [32]. For another proof Theorem 2.6, messe Claim 4.2.
O

3. Quaternionic pseudo-Hermitian structures

Further on in this paper, we shall use some results aboubdédigation of certain
(2, 0)-forms associated to quaternionic pseudo-Hermiitanctures. The results of this
section are purely linear-algebraic and elementary. Wevo[29], [30] and [1].

Let (M, I, J, K) be a hypercomplex manifold. A quaternionic pseudo-Heamitorm
on M is a bilinear symmetric real-valued forgmwhich is SU(2)-invariant. Equivalently,



366 M. VERBITSKY

g is quaternionic pseudo-Hermitian if

If g is in addition positive definiteg is called quaternionic Hermitian Notice that a
guaternionic Hermitian structure exists, globally, on drngpercomplex manifold. In-
deed, one could take any Riemannian form, and average it SIR)

As in Subsection 1.1, we can associate three 2-fasmsw; and wx with g,

o ) =90, 1), @3 ) =0, 39, ex(, ) =g(- K.

An easy linear-algebraic calculation shows thaf := w; + v—1wk has Hodge type
(2, 0) underl:

Qg € AZYM).

The involutionn — J(#7) gives a real structure orAf'O(M). A (2, 0)-form n is called
real if n = J(7). The bundle of real (2, 0)-forms is denoted” (M, R). It is easy

to see that the forn2g is real. In [30], it was shown that the converse is also true:
any real (2, 0)-formn is obtained from a quaternionic pseudo-Hermitian form, clthi
is determined uniquely fromny.

Claim 3.1. Let(M, 1, J, K) be a hypercomplex manifqltH the bundle of quater-
nionic pseudo-Hermitian formsnd A|2’°(M ,R) the bundle of rea(2, 0}forms. Consider

the map H-> Af’O(M,R) constructed above(g) = 4. Thenv is an isomorphismand
the inverse map is determined byxgy) = Qg(x, J(¥)), for any x y € Tll’O(M).

Proof. This is Lemma 2.10, [1]. 0

The standard diagonalization arguments, applied to quiatdc pseudo-Hermitian
forms, give similar results about real (2, 0)-forms on hypenplex manifolds.

Proposition 3.2. Let (M, 1, J,K) be a hypercomplex manifgldimg M = 4n, and
n,n € A,Z*O(M,]R) two real (2, 0xforms. Thenlocally around each pointy and n” can

be diagonalized simultaneouslthere exists a framéy, J(£1), &, J(£2), ..., &, J(&n) €
ATO(M), such that

n= Zaiéi AJIE), 0= Zﬂiéi A (&),

with «;, Bi real-valued functions.
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Proof. Follows from Claim 3.1 and a standard argument whigksga simultan-
eous diagonalization of two pseudo-Hermitian forms. ]

In a similar spirit, the Gram—Schmidt orthogonalizatioogedure brings the follow-
ing statement.
A real formn € A,Z'O(M, R) is calledstrictly positive if it satisfiesn(x, J(X)) > O
for any non-zero vectok € T (M).
Let Xq,...,%n € T,l'O(M) be a set of vector fields. The sgt} is calledorthogonal
with respect ton if
n(xi, Xj) = n(x, I(Xj)) =0

wheneveri # j.

Proposition 3.3 (Gram—Schmidt orthogonalization procedurd)ety e A,Z'O(M,]R)
be a rea] strictly positive form on a hypercomplex manifodohd x, ..., X, € T|1'°(M) a
set of vector fieldswhich are linearly independent everywhere. Then therdskisictions
@i j, i > j, such that the vector fields

Y1 1= Xu,
Y2 1= X2 + a2,1Y1,

Y3 1= X3 + a3,2Y2 + a3,1Y1,

Y := X+ Zak,iyi
i<k
are orthogonal.

Proof. Use Claim 3.1 and apply the Gram—Schmidt orthogpatdin to the quater-
nionic Hermitian form associated with ]

4. Positive, closed (g, 0)-forms

; i A PHA,0y Rea  pg
4.1. The isomorphismA M) — AL T(M). Let (M, 1, J, K) be a hyper-
complex manifold. In Proposition 2.5, an isomorphism

B AP m) = @ Al

was constructed. As shown in [29], this isomorphism is rplittative. It is uniquely
determined by the values it takes ant(M): on A,l'O(M), W is tautological, and on
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A?’l(M), we haveW(x) = J(x). This isomorphism has an explicit construction, which
is given as follows.

Claim 4.1. Let (M, I, J, K) be a hypercomplex manifqléind
Rpq: APTYOM) - API(M)
map a formy € AP**%(M) to R q(n), which is defined by

Rp,q(n)(xl, ey Xp, )_/1, ey )_/q) = 77(X]_, ey Xp, J)_ll, ey qu)

ThenRpq is multiplicative in the following sense

Rpq(n Amnz) = Z Ropra (1) A Ropy,, (172)-

P1+P2=p,
Qq1+02=q

Moreover R, q induces the isomorphism

D AP = P A2 )
constructed above.

Proof. The multiplicativity of R, q is clear from its definition. The isomorphism
R is uniquely determined by the values it takes &%(M) and multiplicativity, hence
it coinsides withRp q. O

This map also agrees with the differentials, and the antexrinvolutionn — J#
acting on APT*°(M).

Claim 4.2. Let (M, I, J, K) be a hypercomplex manifqléind
Rpq: APTOM) = AP (M)

the map constructed i€laim 4.1. Then
0} 7zp,q(\]ﬁ) = (_1)quq,p(77)y

(i) Rpq(dn) = di'ORp—l,q(n)v

(iii) Rp,q(aJ n = d%lRp,q—l(’?)-

Proof. Claim 4.2 (i) is clear from the definition. Using Leibridentity, we find
that it suffices to check Claim 4.2 (ii) and (iii) on some setmfltiplicative gener-
ators ofEprq A,p+q’0(M). For functions, these identities are clear. Beexact 1-forms,
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Claim 4.2 (ii) is clear, becaus#? = 0 and @>%?2 = 0, hence
0=Rpq(@f), and d+°R, 14(df) = (d}%9?f = 0.

For a 0-exact 1-formn = dy, with ¢ a holomorphic function, Claim 4.2 (iii) fol-
lows from

Rpq(030%) = —Rpq(803%) = —Rpq(dJdy) = 0.

The functions, together with 1-formg= dr, with ¥y a holomorphic function, generate
the aIgebraAT'o(M) multiplicatively. Now, the Leibniz identity can be used poove
that Claim 4.2 (ii) and (iii) is true on the WhoIAT'O(M).

Please notice that we just gave a proof of Theorem 2.6. ]

4.2. Strongly positive, weakly positive and real (@, 0)-forms. The notion of
positive (2o, 0)-forms on hypercomplex manifolds was developed in [1J anongoing
collaboration with S. Alesker.

Let n € AP9(M) be a differential form. Sincé and J anticommute,J(n) lies in
AYP(M). Clearly, J2|ypayy = (—1)P*9. For p + g even, J|,paqy is an anticomplex

involution, that is, a real structure ah%(M). A form n € A?P°(M) is calledreal if

J(7) = n. We denote the bundle of real §20)-forms by AZ”°(M, R).
For a real (3, 0)-form,

n(x1, I(X1), X2, I(Xa), - - -, Xp, I(Xp))
(4.1 = 7(I(X), I2(%0), I(X2), J2(R2), - - ., I(Xp), I%(Xp))
= (X1, I(X1), X2, I(X2), . .., Xp, J(Xp))

for any xy, . .., X, € T"%M). From (4.1), we obtain that the number
r](xlv ‘]()_(1)1 X2, ‘]()_(2)1 ey Xp! J(Xp))
is always real.

DerINITION 4.3. Let M, I, J, K) be a hypercomplex manifold, ande Alzp’o(M)
a real (2, 0)-form. It is calledweakly positiveif

n(X1, I(X1), X2, I(X2), . .., Xp, I(Xp)) = O
for any xy, . .., Xp € THM).

Let dimg M = 4n. The complex line bundleA®%(M) is equipped with a real
structure, hence it is a complexification of a real line bendf™°(M, R). This real
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line bundle is trivial topologically. To see this, take a tgraionic Hermitian formg
on M (such a form always exists: see Section 3). Ket= w; + ~/—lwk be the
corresponding (2, 0)-form. Sincéw; = w;, J(wk) = —wk, the formQ is real. Then,
Q" is a nowhere degenerate, real section which trivializé%o(M, R).

The pairing

AZPOM, R) x AZ2PO(M, R) — AZ"O(M, R)
is nowhere degenerate. Denote By C Alz*'o(M,]R) the cone of weakly positive forms,
and Cs C A,z*'O(M, R) the dual cone. This cone is calléde cone of strongly posi-
tive forms
This notion is well known in complex geometry; a complex agale of the follow-
ing claim is often used as a definition of strongly positivene€oand then the above
definition becomes a (trivial) theorem.

Claim 4.4. Let M be a hypercomplex manifold. The cofiec A%*°(M, R) of
strongly positive real2p, O)-forms is multiplicatively generated by products of forms
£ A J(E), for & € ATOM).

Proof. A formn is weakly positive if
(& AJIE)AELAIE)A-AIE)) =0

for any &,...,&p € All*O(M). Therefore, weakly positive cone is dual to the cone
generated by such products. ]

The strong positivity of a form implies its weak positivitynlike the complex
case, in the quaternionic case this is not immediate frondéfinition.

For p = n, this implication can be seen as follows. For &fy..., &, € AY(M),
we have

_ _ - 1
EANIED)NEANIE) A A I = HQH,
whereQ = > & A J(€1) is a (2, 0)-form, which is obtained from a quaternionic Hiérm

ian form g as in Claim 3.1. The fornf2" is positive, because fo(xi, J(X;)} pairwise
orthogonal with respect tq, we have

Q"(x1, I(Ka), .- -, X, IG) = [ axi, %),

and for{x;} non-orthogonal, this set can be orthogonalized, withoahgimgn(xz, J(X1),
...y Xn, J(Xn)), as shown in Proposition 3.3.
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This gives
1 _ _
(4.2) mQ”(xl, J(X0), ..., %0, J(Xn)) =0

For p < n, we restricty to a quaternionic subspace generatedxby. .., x,, and
find that the positivity of

ELAIE)ANEAIE) A A I(Ep) (X, I(Ka), X, I(X2), - - .\ Xp, J(Xp))

follows from (4.2).
Recall that a real §, p)-form p on a complex manifoldX is calledweakly posi-
tive if

(—\/—_].)pp(Xj_, X1y . us Xps )_(p) >0

for any xa, ..., Xp € THY(X).
Claim 4.5. Let(M, I, J, K) be a hypercomplex manifqlénd
Ropp: APOM) - APP(M)

the map constructed iSubsection 4.1Consider a(2p, 0)-form 5 € Afp’O(M). Then
(i) nis real if and only if (v/—=1)PRp p(n) is real (in the usual sen3e
(i) n is weakly positive if and only ifv—1)PR, (1) is a weakly positivép, p)-form.

Proof. Claim 4.5 (i) is clear from the definition. Indeed,
R, p(m) (X1, X1, . . ., Xp, Xp) = n(X1, I(X), - . ., Xp, I(Xp))-

It is easy to see that g( p)-form p is real if and only if (/—1)Pp satisfiesp(X1, X1, -- -,
Xp, Xp) € R.
Claim 4.5 (ii) is also clear. Indeed,

77(X1, J()Zl), X2, \]()22), ey Xp, J()Zp))
= (—1)PPDy(xq, Xa, . . ., Xpy I(K0), I(K2), . . ., I(%p))-

Therefore,

Rp,p(n)(xly )211 LR | Xpl )_(p)Rp,p(n)(le LR Xpy )_(ly L )zp)

(4.3)
= r](Xl ..... Xp, J()z]_) ..... J()_(p)) = 77(X1, J()z]_), X2, J()zz) ..... Xp, J()ip))

Then, (4.3) is non-negative if and only if is weakly positive, and this is equivalent
to (V—1)PRp, p(n) being weakly positive, by definition of positivep( p)-forms. [
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4.3. The map Vyq: APT*(M) — A]P™9(M) on SL(n, H)-manifolds. Let
(M, I, J, K) be a hypercomplex manifold, dignM = 4n, and

Rpq: APTHOM) = API (M)
the isomorphism defined in Subsection 4.1. Consider thesgtion
(4.4) APYM) = APT (M),
and let
R: APY(M) — APFHO(M)

denote the composition of (4.4) aﬂd;i].

Lemma 4.6. In these assumptions
(4.5) R(él/\"'/\ép/\‘gp+l/\"'/\§p+q) =& A AEpA J(gpﬂ)/\"'/\ J(§p+q),
for any &, . .., £prq € ATYM).

Proof. Denote byR the map defined by the formula (4.5). From the definition
of the SU22)-action on A*(M) it is apparent thatR'() belongs to the sam&U(2)-
representation ag. Since R'(n) lies in Af’*q’O(M), it belongs toA’% (M). Therefore,

R’ vanishes on the kernel of (4.4). By definitioR is the unique mapA"9(M) —
APT%(M) vanishing on the kernel of (4.4) and satisfying
RO'Rp,q = IdAl’”q'O(M)'

To prove thatR’ = R it suffices now to check thaR(Rp q(1)) = n, but this is obvious
from the definition. O

REMARK 4.7. The formula (4.5) could be used as a definitionRof
The mapR is compatible with Dolbeault differentials, in the followg sense.
Lemma 4.8. Let (M, I, J, K) be a hypercomplex manifqlénd
R: APY(M) = APT4O(M)
the map defined above. Then

(4.6) R(@1) = 8R(1), and R@n) = d;R().
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Proof. Lemma 4.8 follows immediately from Claim 4.2 aRdRp,q = Idp+ao(yy,
which is a part of the definition oR. O

Let @, be a nowhere degenerate holomorphic sectiomfﬂ‘o(M). Assume that
@, is real, that is,J(®) = &, and positive.

Existence of such a section is highly non-trivial. Whighis hyperkahler, we could
take the top power of the holomorphic symplectic fofn= w; + ~/—lwk. For a
general hypercompleM, such a form®, is preserved by the Obata connection, and
reduces the holonomy of Obata connection to a subgroupLef, H). Such manifolds
were studied in [31] and [4].

A manifold with a nowhere degenerate, real, positive fabme Af“'O(M) is called
an Sl(n, H)-manifold

REMARK 4.9. Let M, I, J, K, @) be anSL(n, H)-manifold. For any section
n e Af“'O(M), positivity of n in the quaternionic sense is equivalent to positivity of

nA® € AZ*(M), in the usual sense.

Define the map
Vpa: APFUM) — AP (M)
by the relation
(4.7) Vpa(m Aa =nAR@) AP

for any test forma € A~ P"7Y(M).
The mapV, , is especially remarkable, because it maps closed, pogiipe0)-
forms to closed, positiven(+ p, n + p)-forms, as the following proposition implies.

Proposition 4.10. Let (M, I, J, K, ®,) be an Sin, H)-manifold and
Vog: APTYOUM) — AP0\

be the map defined above. Then

() Vp,a(m) = Rp,q(n) A Vo,o(2).

(i) The mapV,q is injective for all p, q.

(i) (v/=1)"=P*V, ,(n) is real if and onlyn € AZ”°(M) is real, and weakly positive
if and only if n is weakly positive.

(|V) Vp’q(aﬂ) = 8Vp_1’q(7]), and Vp'q(a:j 77) = 8Vp,q_1(n).

(V) Voo(1) = ARnn(P)), wherea is a positive rational numbedepending only on the
dimension n.
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Proof. The mapR: AP%(M) — AP**%(M) is by construction multiplicative, and
satisfies

(4.8) R(Rp,q(m) =n
for all n € APT*°(M). This gives
(4.9 Vogmra=nAR@)A® =RRpgm) Aa) AP =Voo(1) A Rpq(n) A

(to obtain the last equation, we take the test-farm= R, q(n) A « and apply (4.7)).
Since« is arbitrary, (4.9) gives

Vp.q(m) = Vo,0(1) A Rp,q(n)-

This proves Proposition 4.10 (i).
Injectivity of V, q is clear, because for anye A
nAx A®d #0. Using (4.8), we find that

P+0(M) there existsy such that

Vo.q(m) A Rn—pn-q(x) = 1A RRn—pngq(X) AP =nAx AP #0.

We proved Proposition 4.10 (ii).
From Claim 4.2 (i), we obtain thaR(@) = (-1)PIR(x), for any a € A]Y(M).
Then

Vp,q (JIn) = (_1)(n_ p)(n_Q)Vq, p('?)

as follows from (4.7). Then,\(—_l)pvp,p(n) is real if J7 = n. The “only if” part
follows from injectivity of Vp .

To check the weak positivity of\(—1)PVp p, takea = & AEL A - An_p An_p,
With &, ..., & p € A7%(M). Then (+/—1)" P« is positive. Such forms generate the
strongly positive cone. TheR(x) = &1 A J(E1) A+ - - Aén_pA J(En_p) iS Strongly positive
by definition, and, moreoveiRR(«), for all sucha, generate the strongly positive cone.

The weak positivity of £+/=1)" PV, (1) is equivalent to

(—vV=1)"PVpq(n) Aa =0,
and the weak positivity ofy is equivalent to
n A R@) A d = 0.

These two inequalities are equivalent by the formula (4.Tjctv is a definition of
Vp.q(m). We proved Proposition 4.10 (iii).
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Proposition 4.10 (iv) follows from the Stokes’ formula

/Maa/\ﬂ:(—l)deg“/’vla/\Bﬂ,

wherea or 8 have compact support.
Take an § —q, n — p)-form o with compact support. By Lemma 4.8,

/Mvp,q(an)Aa=/M an A R(@) A Py =(—1)P+q*1/M n A dR(@) A P
— (— p+gq-1 o T
(1) /Mn/\R(8 YA
= O [ Vooaq0n) A da

=/ Vp-1,4(n) A .

M

Applying complex conjugation to both sides ¥ 4(917) = dVp_1,4(n) and using
Vpq(IN) = (_l)(nip)(niq)vq,p(’])

and Jon = 3;J(;7), we obtain the second equation of Proposition 4.10 (iv).

Proposition 4.10 (v) follows from a direct (but tedious)dar-algebraic calculation.
The bundleA’,‘:i(M) is 1-dimensional, by Proposition 2.5. The fory o(1) lies in
AT (M). Indeed,

Vo,0(1) Ao = R(e) A D,

and thereforex — 1V o(1) A vanishes on all forms of weight less than. ZT'herefore,
Vo,0(1) has weight 8, hence belongs ta\|" (M). The form R, n(®)) is a nowhere
degenerate section dﬁ?;'}r(M), by construction; therefore}s o(1) is proportional to
Rn'n(q)|):

VO,O(]-) = )\Rn,n(q)l ),

where ) is a smooth function oM. To prove Proposition 4.10 (v), we need to show
that A is a positive rational number depending only fram Since §/—1)"R n(®))
and (/—1)"Vo(1) are both real and positive, by Proposition 4.10 (iii) aPldim 4.5,

A is real and positive. Taking = ®, and applying (4.7), we obtain

IAND AD = R(Rnn(®1)) A o = V0,0(1) A Ran(@1) = ARnn(®1)) A Rin(P)).
This gives an expression for.

q)|/\<i>|

h= Rn,n(‘bl) A Rn,n((bl).
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From this formula, it is clear that is independent from the choice df,. Therefore,
we may assume thab, is associated with a quaternionic Hermitian fogras above:
@, = Q", where2 = w; + vV—1wk, andw;, wx are the Hermitian skew-linear forms
of (M, J) and M, K). From the definition ofRpq, it is clear thatRi1(R2) = w;.
Using multiplicativity of Rp, p, we obtain

Ron(Q") = ML (R1,2(Q)") = M4 (]),

where IT, is the SU(2)-invariant projection to theA’ (M)-part. Since the metric on
A*(M) is SU2)-invariant, the weight decomposition of*(M) is orthogonal; therefore,
I1, is an orthogonal projection ta.* (M).

Consider the algebré\* = @ A? generated byw,, wj, and wk. In [25], this
algebra was computed explicitly. It was shown, that, up ® riddle degreeA* is a
symmetric algebra with generatots, wj, wx. The algebraA* has Hodge bigrading
A = ®D+Q=k APA  and its AP P-part is generated by the forms

ol A QA Q),
i,j=0,1,2,.... From the Clebsch-Gordan formula, we obtain tAgt:= A2 (M)N
AZ, for i <n, is an orthogonal complement Q(A?~%), where Q(n) = n A (w? +
w3 + w%). The spaceA}" = ker Q*|an is 1-dimensional, as we have shown above,
and generated bR, ,(2"). Clearly,
QW AQADN) =0 PA(QAQ) + 0l AQAQ)2
Therefore, keQ*|;" is generated by

(410) E:=ol -0 PAQAQ+ o] A(QAQP -] PAQAQ+---.

Since Rn,n(R2") is equal to the projection ab} to kerQ*, this gives

]
~

(w

=
o

n
|

Rn,n(Qn) =E-

[1]

)

wherey is a rational coefficient which can be expressed throughrbiabcoefficients
using (4.10). A similar calculation can be used to express

q>|/\(i)| _Q”/\K_Z“

A= =
7en,n((bl) A 7—\)«n,n(qDI) J/ZE A B

through a combinatorial expression which would take halfagep O
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5. Sibony’s lemma for positive (D, 0)-forms

5.1. wY-positive (1, 1)-forms. Recall that a real ff, p)-form n on a complex
manifold is calledweakly positivef for any complex subspac¥ C TcM, dim¢ V = p,
the restrictionp|y is a non-negative volume form. Equivalently, this meang tha

(v—l)pp(Xl, X1, X2, X2, . . ., Xp, )_(p) =0

for any vectorsxy, ..., X, € TF°M. A form is called strongly positiveif it can be
expressed as a sum

n = (V-1 Z iy, by NEG A ANENE

..... p

running over some set gb-tuplesé;,, &,,...,&, € ALO(M), with ai,, i, real and non-
negative functions orM.

The strongly positive and the weakly positive forms formseld, convex cones in
the spaceAPP(M, R) of real (p, p)-forms. These two cones are dual with respect to
the Poincare pairing

APP(M, R) x A™P"=P(M, R) — A™"(M, R)

wheren = dim¢ M. For (1, 1)-forms andn(— 1, n — 1)-forms, the strong positivity is
equivalent to weak positivity.

DEFINITION 5.1. Let M, w) be a Ké&hler manifold. A real (1, 1)-formy €
AYY(M, R) is called w9-positive if w91 A 5 is a weakly positive form.

This notion was studied in [33], in connection with plurialomonic functions on
calibrated manifolds ([14], [15]). In [33], a charactetiba of »%-positivity in terms
of the eigenvalues was obtained. At each poire¢ M, we can find an orthonormal
basiséy, . . ., & € ALYO(M), such that

n =—\/—_lZO(i§i /\éi.

The numbersy; are calledthe eigenvaluesf n at x.
The following theorem was proven in [33].

Theorem 5.2. Let(M,w) be a Kahler manifoldand n € A»(M,R) a real (1, 1)
form. Letai(X), a2(X), ..., an(X) denote the eigenvalues gf at x € M. Then the
following conditions are equivalent.

(i) n is w9-positive.
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(i) nA o9t is weakly positive.
(i) n A w971 is strongly positive.
(iv) The sum of any g eigenvalues pfis positive for any xe M:

q
(5.1) D i (x) =0
k=1

for any g-tuplefis, ..., iq} C {1, 2,...,n}

Proof. This is [33], Theorem 2.4. In [33], this statement vetated for forms
n = dd°, but the proof is purely linear-algebraic, and can be exdntb arbitrary
(1, 1)-forms. Ul

DerINITION 5.3. A formn is calledstrictly w9%-positive if n—hw is w9-positive,
for some continuous, nowhere vanishing, positive functioan M.

5.2. Positive (d, 0)-forms on hypercomplex manifolds. Let (M, I, J, K) be a
hypercomplex manifold. In Subsection 4.2, a notion of pagjt for (2 p, 0)-forms on
M was defined. We say that a real (2, 0)-formis Q9-positive if n A Q91 is posi-
tive, andstrictly positiveif n A Q41 —hQ9 is positive, for some continuous, nowhere
vanishing, positive functiom on M.

As shown in Claim 3.1, quaternionic pseudo-Hermitian forar® in (1, 1)-
correspondence with real (2, 0)-forms. This allows one tgdnalize a given (2, 0)-
form n locally in an orthonormal frame (Proposition 3.2).

Given a real (2, 0)-formy on a hyperkéhler manifold, at any poirte M there
exists an orthonormal framg, J&i, ..., &), J&, € A,l*O(M), such thaty|y is written as

nlx = D g1 A &,

with «; being real-valued functions. The condition @f-positivity is equivalent to the
inequality

q
(5.2) >, (x) =0,
k=1

just like in Theorem 5.2.
Given a (1, 1)-formp € AT} (M), consider a (2, 0)-formR(n) € AZ%M),

Rm)(x, y) == n(x, I(y)).

Clearly, R(n) is real and positive ifp is real and positive. It is easy to see tHat
vanishes onSU(2)-invariant forms, and induces an isomorphisﬁﬁ},(M) — A|2’°(M)
described in Claim 4.1 (see Lemma 4.6 for a detailed argument
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Lemma 5.4. Let M be a hyperkahler manifaldiimg M = 4n, andn € A»Y(M,R)
a real (1, 1)}-form, which is w®"~?P-positive. Then Ry) is Q" P-positive.

Proof. Denote by’ the (1, 1)-formn —niny, Wherenin, = (1/2)(n + J(n)) denotes
the SU(2)-invariant part ofy. Clearly,

7 =50~ 3

Since —J(n) has the same eigenvalues gasby Theorem 5.2 (iv) it is alsaw?"~2P-
positive. Theny' is w?"~2P-positive, too.

Using the orthonormal frame as in the proof of (5.2), we findttfi can be writ-
ten as

N =—vV-1> w& AE,
i
with & an orthonormal basis i "°(M) satisfying
1) =&, J(Ea) = —Ex1
(see Proposition 3.2). Sinc#&(n’) = —n/, the eigenvalues off’ occur in pairs:
(5.3) Q-1 = o

Renumbering the basis, we may assumedhat ay < - - - < ap,. Now, w?"~2P-positivity
of ' is equivalent to

(5.4) a1+ a4+ oanzp = 0.
By definition

R(n) =2 Z oo A &g,

hence (5.2) implies thaf2"P-positivity of R(y’) is equivalent toay + a4 + -+ +
azxn—2p = 0. From (5.3), this is equivalent to (5.4). We proved Lemm 5. ]

5.3. wY-positive forms in a neighbourhood of a subvariety. Now we can prove
the hypercomplex version of Sibony’s lemma.

Theorem 5.5. Let M be a hyperkdhler manifoldz c (M, 1) a compact com-
plex subvarietycodime Z = 3, and n € A>9(M\Z, |) a real and positive formwhich
satisfiesdn = 0. Thenp is locally integrable everywhere in M.
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Proof. We adapt to hypercomplex situation the coordinete-proof of the complex-
analytic version of Sibony’s lemma, obtained in [33]. In [3the following result was
proven.

Proposition 5.6. Let M be a K&ahler manifoldand ZC M a complex subvariety
dimec Z < p. Then there exists an open neighbourhood U ¢fadd a sequencép;}
of wP-positive exact smooth(1, 1)}forms on U satisfying the following.

() For any open subset \& U, with the closureV compact and not intersecting
Z, the restrictionp;|y stabilizes as i— oo. Moreover pi|y is strictly wP-positive for

i > 0.

(i) For all'i, p =0 in some neighbourhood of Z.

(iii) The limit p =lim p; is a strictly wP-positive current on U.

(iv) The formsp; can be written asy; = dd®y;, where g, are smooth functions on U.
On any compact set not intersecting the sequencéy;} stabilizes as i~ oc.

Proof. This is [33], Proposition 5.3. ]

We apply Proposition 5.6 to prove Theorem 5.5. ketbe the sequence of func-
tions defined in a neighbourhodd > Z and satisfying conditions of Proposition 5.6.
From Lemma 4.8, we obtain

(5.5) R(3d¢) = 3J(dg).
Therefore,R(p;) is d-closed. By Lemma 5.4, this form is alse"*-positive. Sincen

is positive, to show that; is locally integrable on an open skt C M, it suffices to
prove that the integral

(5.6) / nAQUTIAQM
D

is universally bounded, for any compact subBetC U\Z. Indeed,

/nAQn’l/\S_Zn=Z/aiVOIM,
D — /b

where {«;} are the eigenvalues of considered as functions okl. In (5.6), we may
replaceQ"* by any strictly positive realn(— 1)-form, and if this integral us bounded,
(5.6) is also bounded. Therefore, Theorem 5.5 would folloewrf a universal bound on

/n/\pAsz“—Z/\fz“,
D

where p = lim R(p;) is the form constructed in Proposition 5.6 (it is smoothsalé
of Z, becausep;} stabilizes). Now, a universal bound gi ApAQ"2AQ" would
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obviously follow from a universal bound on the integral

/ nAR)AQTZAQM
D

this integral is bounded by
/ n AR AQTZAQ
]

because the forms and R(p;) A Q"2 are positive’
The last integral can be expressed by Stokes’ theorem as

(5.7) /nAR(pi)/\Qn_z/\an/ nAI@E)AQTZAQ"
u aU

(see (5.5)). However, the integrd), nAJ(@)AQ2AQN stabilizes as — oo, because
¢ stabilizes in a neighbourhood 6J. This shows that (5.6) is universally bounded.
We proved Theorem 5.5. ]

6. Skoda—El Mir theorem for hyperkahler manifolds

We are going to prove a hypercomplex analogue of the cldsSkada—El Mir
theorem ([12], [23], [22], [11)]).

DEFINITION 6.1. LetM be a connected complex manifold, add_ M a closed
subset. Assume that there exists a nonconstant plurisuoings functiong: M —
[—o0, oof, such thatZ C ¢~Y(—o0). Then Z is called pluripolar.

Skoda—EIl Mir theorem is a result about extending a closedtippsiurrent over a
pluripolar setZ.

Theorem 6.2 ([12], [23], [22], [11]). Let X be a complex manifgldnd Z a closed
pluripolar set in X. Consider a closed positive currghton X\ Z which is locally inte-
grable around Z. Then the trivial extension®fto X is closed on X.

The hypercomplex analogue of this theorem goes as follows.

Theorem 6.3. Let M be a SIn, H)-manifold Z c (M, I) a pluripolar set and
n € A2P9(M\Z, |) a form satisfying the following properties.

(i) n=J3(®) (reality),

2The producty A R(p;) A Q"2 is well defined on the whol&), becauseR(p;) vanishes in a neigh-
bourhood ofZ.
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(i) n(x1, I(X1), X2, I(X2), - .., Xp, J(Xp)) = O (weak positivity,

(i) an = 0 (closednegs

Assume thap is integrable around each point € Z. Then the trivial extension of
to M is a d-closed(2p, 0)-current.

Proof. To prove Theorem 6.3, we could repeat the argumentimydhe Skoda—
El Mir theorem in the hypercomplex setting. However, it is mmugasier to deduce
Theorem 6.3 from the classical Skoda—EI Mir. Consider tpep)-form R, (1) €
APP(M) obtained as

Rp,p(mXa, Y1, - - -+ Xp, ¥p) = (X1, I(Y1), - - -+ Xp, I(¥Yp))-

wherex;, yi € TH9M) (see Subsection 4.1).

From Proposition 4.10, it follows that the& ¢ p, n 4+ p)-form R, p(R™) AR, p(n)
is positive in the usual sense if and onlyrifis positive in the quaternionic sense, and
closed if and only ifan = 0. Now, ) is closed and positive oM\ Z, henceR p n(2") A
Rop,p(n) is closed and positive oM\ Z (in the usual sense). Applying the Skoda—
El Mir theorem, we obtain that a trivial extension &f, p(2") A Ry p(n) is closed on
M. Applying Proposition 4.10 again, we find that the trivialtension ofn to M is
d-closed. We proved Theorem 6.3. ]
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