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1. Introduction

The Gevrey well possedness for the weakly hyperbolic equations has been studied

by many people (see [1], [5], [13], [16] etc.). They got the results concerned with the

relation between the order of Gevrey classes and the maximal multiplicity of charac-

teristic roots.

While F. Colombini, E. Jannelli, S. Spagnolo and T. Nishitani gave the interesting

results concerned with the relation between the order of Gevrey classes and the regu-

larity of the coefficients for the second order weakly hyperbolic equations (see [3],

[12]).

But there are few papers for the weakly hyperbolic systems. K. Kajitani got

the Gevrey well possedness for the weakly hyperbolic systems with Leray-Volevich's

weights (see [8]). As for the analytic well posedness P. D'ancona and S. Spagnolo

treated the nonlinear weakly hyperbolic systems (see [4]). Moreover E. Jannelli treated

the weakly hyperbolic systems with the coefficients which belong Lγ (see [6]).

For the strictly hyperbolic systems E. Jannelli got the result concerned with the

relation between the order of Gevrey classes and the regularity of the coefficients (see

[7]). With a differnt method M. Cicognani also got this result for the strictly pseudo-

differential systems (see [2]). In this paper, we shall extend this result to the weak-

ly hyperbolic systems and investigate the relation among the Gevrey wellposednes and

the regularity and the form of the matrices of the coefficients.

We shall consider the following system in [0, Γ] x R£

u(0,x) =uo(x),

where Ah(t)(l < h < n), B(t) are N x N matrices, while u(t,x), uo(x) are TV-
vectors.
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We denote by Cσ([0, T])(0 < σ < 1) the space of σ-H61der continuous functions.

Now we assume that

(2) Ah(t)(l<h<n)eCσ([O,T}), B(t)€C°([0,T\)

and (1) is weakly hyperbolic, i.e.,

n

(3) ΣAh(t)ξhhas real eigenvalues (allowing multiplicity) for v£ e [0,T], v£ e R£.
/ ι = l

We shall treat the following two cases.

CASE 1. No condition is imposed.

CASE 2. There exists a non-singular matrix P(t, ξ) such that

D2, .Dk} (l<3h<N)

\P(t,ξ)\ 3

where Dj (1 < j < k) are the triangular matrices whose diagonal components are real

and whose sizes are πij x rrij.

We introduce the space of Gevrey functions as follows.

where (ξ)^ = (lίl2 + ̂ 2 ) 1 / 2 (^ > 0).
Then we get the following result.

Theorem. Let 0 < po < oo and f0 > 0. Assume that the coefficients Ah(t)(l <

h < n) and B{t) satisfy (2), (3) and case 1 (resp. case 2). Then there exists u >

0 such that for any u0 € L2
pQ κ ^ ( R " ) , the Cauchy problem (1) has unique solution

u(t,x) e cH[o,τ\, Jw,ΛRnJ

(4) 0 < pi < po, K β < M ( 1 + σ )

where μ is equal to the dimension of the system, i.e.,

(5) μ = N

(resp. the maximal sizes of Dj (1 < j < k)y i.e.,

(6) μ = max rrii

), and s = κ~x.
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We remark that by taking the parameter v > 0 large, p\ (the convergence radius

of the Gevrey solution) does not decrease with time and also can be chosen arbitrarily

close to ρ0.

In case 1, we find that "No condition is imposed" means that the multiplicity of

eigenvalues of Σ Λ = I Ah{t)ξh is variable. As for case 2 the following examples can

be also treated.

EXAMPLE 1. The multiplicity of eigenvalues of Σ £ = i Ah{t)ξh is independent of

t, ξ, i.e.,

det ( λ -γ^Ah(t)ξh) = Πti(λ - λi(t,ξ))mi for
\ h=l )

with 1 <3k < N, 3rπi G N 1 (1 < i < jfe), where \i(t,ξ) (1 < i < k)

satisfy that if i φ j , λ<(ί,ξ) φ λj(t,ξ) for t G [0,Γ], \ξ\ = 1.

We shall show in Appendix that Ex 1 is included by case 2 and μ is equal to the

maximal multiplicity of the eigenvalues of ]Γ^ = 1 Ah(t)ξh> i e > β — maxi<κife mi-

EXAMPLE 2. The multiplicity of factors of all the elementary divisors of

Σ h = i Ah(t)ξh is independent of ί, ξ, i.e.,

d(A) = Π?= 1(λ - λ i ( * , O ) m W ) (1 < i < N) for v ί G [0,Γ], v ξ G R^

with 1 <3k < N, 3m(ij) G N 1 (1 < / < TV, 1 < i < k), where λ<(ί,ξ)

(1 < i < A) satisfy that if i ^ j , λ i ( ί , 0 ^ A^-^O for t G [0,Γ], |ξ| = 1.

By Jordan normal form, we can see that Dj (1 < j < k) are the Jordan

blocks whose sizes are m(ij) x m(i,l) (m(i,l) denotes the multiplicity of the fac-

tor (A — λj) of the elementary divisors e/(λ) of X ^ = 1 Ah(t)ξh) and μ is equal to the

maximal multiplicity of factors of the elementary divisors (or the minimal polynomial)
o f Σh=i Ah(t)ξh, i e , μ = maxi<i<M<j<iv m(i,l).

When the maximal multiplicity for factors of the minimal polynomial of

Σ £ = 1 Ah(t)ξh is equal to 1 in case 3, the system is symetrizable and K. Kajitani

proved that the Cauchy problem (1) is 7s-well posed (1 < s < 1 + σ ) (see [9]). More-

over when Σh^iAhitfξh has real distinct eigenvalues or is Hermitian, the Cauchy

problem (1) is ZΛwellposed (see [11]). Concerned with the higher order single equa-

tion, the conditon corresponding to (4) is 1 < s < μσ~ι/(μσ~ι - 1) (see [13]).
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2. Preliminaries

In this section we shall construct the algebraic lemmas which is necessary to

prove the theorem.

Lemma 1. Let A be a N x N constant matrix which has real eigenvalues λi,

λ2>
 m—> λjv (allowing multiplicity). Then for V7? G (0,1], there exists a non-singular

matrix Pη such that

(7) PηAP-ι=λ + Rn

where A = diag{λi, \%, ,λjv} is Hermitian, and Pψ P'1, Rη satisfy that

(8) \Pη\<Cu IP.ΓM^G.rj1-", | Λ , | < C 8 I J .

The constants CΊ, C 2 > 0 are independent of A, but C3 > 0 depends on \A\.

Proof. From linear algebra we find that there exists a unitary matrix P such that

(9) PAP-1 = A + R

where A — diag{λi,λ2, ,A;v} is Hermitian, and R is a strictly lower triangular

matrix with zeroes on the diagonal (see [15]).

Since |λi | < \A\ (1 < i < N), we get

(10) \R\ < \PAP~ι\ + \A\ < d μ | C 2 + \A\ = (CΊC2 + 1)\A\.

Defining Qη = diag{l,77, ,ηN~x} and putting Pη — QηP, by (9) we have

1 = Qη(A + i ^ Q " 1 = A 4- Rη

where Rη = QηRQ~ι. Hence we get (7).

At last noting that Q~λ = diag j l ,^" 1 , ,η~(N~^}, we can easily estimate Pη,

P~ι as follows

IVI < I ^ ' Ί I ^ 1 ! < c2 -ηι~N = c2η
ι~N.

Here actually C\ = C2 = 1 since P is a unitary matrix.

Noting that (R)ij = 0 for j > i and (10), we can estimate Rη as follows.

l)\A\η = C3η.
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Hence we get (8). D

Lemma 2. Let A(ξ) be a N x N matrix which has real eigenvalues λi(£),

^2(£)> '"> λ n ( 0 (allowing multiplicity), and is continuous and homogeneous of de-

gree one in ξ G R£. Then for *η G (0,1], there exists a non-singular matrix Pη(ξ)

such that

(ID Pη(ξ)A(ξ)p-1(ξ) = A(ξ) + Rη(ξ)

where A(ξ) is Hermitian, and Pη(ξ), P~ι(ξ), Rη(ξ) satisfy that

(12) \Pη(ξ)\<Cu \Pη(ξΓl\<C2η
1-N, \Rη(ξ)\<Cbη\ξ\ for V ( G ^ .

The constant C5 > 0 is independent of ξ.

Proof. 5 n - 1 = { { G R^; \ξ\ = 1} is a compact set, for any fixed ε > 0, there

exists a finite partition Γ { (1 < i < I = l(ε)) of 5 n - 1 such that

S U P \ζi — ̂ 21 ^ £-> UjFj = Sn~1.

Defining

) \ξ\ for ξ / 0, Ϊ^T G Γi (1 < i < I)

0 for ξ = 0,

with 3 ^ ^ G Γi, we get from the hypotheses

(13) \A(O-Aε(ξ)\<Cβε\ξ\.

Now we apply Lemma 1 to each constant matrix A(ξ^). We can construct, for
3η G (0,1], non-singular matrix Piiη such that

where A{ = d iag{A 1 (^)),A 2 (^)), ,λΛr(ί(<))} | P ^ | < Cu | ^ ~ Ί < C2η
ι~N,

\Ri,η\ < C^r). The constant C 3 depends on |A(ξW)|, however C% can be taken inde-

pendently of ξ since \A(ξM)\ is bounded for v f^) G Γ {.

Hence, multiplying the both sides of (14) by \ξ\ and putting

θ for ξ = 0,
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i|ξ| for iφ °' f ί e Γi (1 -{-ι)

we obtain

ξ)-1 + Pη(ξ)(A(ξ) -

where A(ξ) is Hermitian, and Pη{ξ), Pηiξ)'1, Rη{ξ) satisfy that

< CΆη\ξ\ + d\A{ξ) -

using (13) and taking ε = r/^,

Hence we get (11), (12). D

Lemma 3. Let T > 0, >!(£,£) be a N x N matrix which has real eigenvalues

λi (£,£)> λ2 (£,£)> "•» λjv(ί,ξ) {allowing multiplicity), and is o-Holder continuous in

t G [0, T], fl«ύf continuous and homogeneous of degree one in ξ £ R£. 77ίen for vr; G

(0,1], //ẑ r̂  exists a non-singular matrix Pη(t,ξ) such that

(15) Pη(t, ξ)A(t, ξ)P~1 (t, ξ) = A(t, ξ) + Rη(t, ξ)

where A(t,ξ) is Hermitian, and Pη(t,ξ), P^x(i,^), Rη(t,ξ) satisfy that

(16) |P,(ί,OI<Ci, \Pη(t,ξ)-1\<C2η
1-N, \Rη(t,ξ)\<C7η\ξ\

(17) £ \ £ \ N

forvte[0,T], v ξeRf

Proof. Since ξ € R£ is fixed to the end of the proof, we shall omit the letter

ξ



CAUCIIY PROBLEM FOR WEAKLY HYPERBOLIC SYSTEMS 741

For any fixed r > 0, we take a finite collection of disjoint intervals U (1 < i <

I = [t/τ] + 1) of [0, t] such that

ί [(ί- l ) r , i r ) for 1 <i<l-l

1 [[*/ r] r^] f o r i = '•

Defining Ar{t) = A(t&) for t e U (1 < i < /) with 3ί^) G U, we get from the
hypothesis,

(18) \A(t)-AT(t)\<Csτ°\ξ\.

Now applying Lemma 2 to each matrix A(t^), we can get

where A{ is Hermitian,

Hence putting

Pη(t) = Pi>η forteli (1 < i < I),

A(t) = Ai for t e Ii (1 < i < I),

R'η(t) = Ri,v for t e Ii (1 < * < Z),

we obtain

(19) P^A^P^t)-1 = A{t) + Rη(t),

where A(t) is Hermitian, and

(20) \Pη(t)\<d, IPnitΓ^KCiη1-"

\Rη(t)\ = |i?;(i) + P,(*)(A(t) -

< C5r7l€l + Ci\A(t) - AT

using (18) and taking r = ηN^σ,

< C7η\ζ\.

By (19), (20) we get (15), (16).

It remains the estimate (17). For any fixed r > 0, defining with delta function δ(t)

δi(t) = δ(t - IT) for 1 < i < / — 1,
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and noting that Pη(t) is the piecewise constant function satisfying

\Pitη - Pi-hη\ < \Pifη\ + \Pi-i,η\ < 2CΊ (2 < i < I),

we obtain

^ ί< ί V
j0 r-j'

/»OO

) δ(s)ds
J—oo

[ l 2Cι- = 2Cιtη-N/σ,
LrJ r

here we used / ^ (J(β)cfe = 1 and r = r/^/'7. Hence we get (17). D

Lemma 4. Let T > 0, A(f,ξ) be a NxN matrix which has real eigenvalues (al-

lowing multiplicity), and is σ-Hόlder continuous in t G [0, T], αnd continuous and ho-

mogeneous of degree one in ξ G R£. Moreover assume that there exists a non-singular

matrix P(ί , ξ) such that

, ξ)A(t, ξ)P(t, ξ)'1 = dizg{DuD2, ...£>*} (1 <3fc < N)

where Dj (1 < j < k) are the triangular matrices whose diagonal components are

real and whose sizes are πij x rrij. Then for vr/ E (0,1], there exists a non-singular

matrix Pη(t,ξ) such that

(21) Pη(t,ξ)A(t,ξ)p-1(t,ξ) = A(t,O + Rη(t,ξ),

where A(t,ξ) is Hermitian, and Pη(t,ξ), P~x(ί,ξ), Rη(t,ξ) satisfy that

(22) \Pη(t,ξ)\<C9, \Pη{t,ξ)-1\<Clon

ι-ff, \Rη(t,ξ)\<Cliη\ξ\

ί
Jo

~Pη(s,ξ)ds<2C9tη-r/σ

ds

for vt e [0,Γ], v ^ e R^, where r = maxι<j<k rrij.

Proof. Since ξ G R^ is fixed to the end of the proof, we shall omit the letter ξ.

For A(t) using again the disjoint intervals U (1 <i <l) and Aτ(t)(= A(t^) for

teli with 3t^ e U) of Lemma 3, we get (18).

From the assumption, for each matrix A(t^), there exists a non-singular matrix

Pi such that

r ι =di8ig{D[i\D{

2

i\'"D{

k

i)} (1 <3k < N)
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where Dj (1 < j < k) are the triangular matrices whose diagonal components are

real and whose sizes are rrij x rrij.

Defining

and putting PiiT) = Q^-Pi, we obtain

= Ai + Rη,

where Ai is Hermitian, and

Hence we can connect the proof of Lemma 3 and get (21), (22). D

3. Proof of Theorem

For the proof of Theorem for case 1, case 2, we use Lemma 3, Lemma 4, respec-

tively. The defference of the result of each Lemma is only the meaning of the param-

eter μ. Therefore it is sufficient to prove Theorem in the case 1.

Assuming that u is the solution of (1), we shall derive the energy estimates. By

Fourier transform the system (1) can be changed to the form

(23)

where A(f,0 = Σ L i
Furtheremore we shall change the system (23). With some function p(t) G

CX{%T\) and some constant K G (0,1], putting w(t,ξ) = Pη(t,ξ)epW(Mυ(t,ξ), and

multiplying the both sides of (22) by Pη(t,ξ)ep^^, we have the following.

, ξ)A(t, f )e-p ( t ) < o ;P^(t, 0~M*, 0

Then we obtain
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the left side

While by Lemma 3 we obtain

the right side

= iPv(t, ζ)A(t, ξ)Pη(t, ξΓ'wit, ξ) + Pη(t, ξ)B(t, ξ)Pη(t, ξy'wit, ξ)

= iA(t, ξ)w(t, ξ) + iRη(t, ξ)w(t, 0 + B(t, ξ)w(t, ξ),

where B(t,ξ) = Pη(t,ξ)B(t)Pη(t,ξ)-1.

Thus we get the system

(24) dtw(t, ξ) = iA(t, ξ)w(t, ξ) + iRηit, ξ)w(t, 0 + p'(t)(ξ)κMt, 0

+ {dtPη(t, ξ)}{Pη(t, ξΓ'wit, ξ)} + B{t, ξ)w(t, ξ)

Hence we shall derive the energy estimate. Noting that A(t, ξ) is Hermitian, by

(16) we get the estimate

(25) jtWt,ξ)\2 = 2Re(dtw(t,ξ),w(t,ξ))

= 2Re(iRvw + p'(ξ)^w + dtPη • P^w + Bw,w)

< 2(C7η\ξ\ + p'{ξ)l + C2\dtPn\ηι-N + C1C2C13η
1-N)\w\2

where C 1 3 = maxo< t<τ |
Writing the left side of (25) as

jt\w(t,ξ)\2 = 2\w(t,ξ)\jt\w(t,ξ)\

and deviding the both sides of (25) by 2|w(£,£)|, we get the estimate

Moreover by GronwalΓs inequality and (17), we get the estimate

\w(t,ξ)\ < M
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+C2\dsPη(s,ξ)\η1-N + C1C2C13tη
1-N)ds\

< \w(0, ξ)\ exp{C7tη\ξ\ + p{t)(ξ)l - p{O){ξ)l
1) + C1C2Cϊ3tη

1-N}

where Cu = exp{p~ V~pCiC2Cf3T}. Here we used

ab <-ap + -bq (l < p, q < oo, - + - =
p q V p q

and supposing p < 1 + (N

< exp j -{the first factor } p + - { the second factor }q \
(p q )

<

Putting

(26) 0 < κo = ^ ( t + σ - ^ X < K ~

Ht,ζ)\ < Cι4\w(O,ξ)\exp{p(t)(ξ)ΐ -p(O)(ξ)κ

v

<C14\w(0,ξ)\exp{(ξ)ϊ{p(t)-p(0))

+ t(c7(ot°-κ + 3C1c2(ξ)«°-κ(θ

using (0£°~ κ < vκo~κ and ^-i+m+^^-

< C14\w(0,ξ)\exp{{ξ):{p(t) -p(0)

where C15 = C7 + 3CιC2.

Here if we choose p(t) such that in [0, T]

\ p(0) = po, i.e.,

(27) p(t) = p0 - C15v
κ°-Kt (ί€[0,T]) ,
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where p0 = ωpo + (1 - ω)Pι f°r 0 < v ω < 1, 0 < v pi < Po> we have

(28) \w(t,ξ)\<C14\w(0,ξ)\.

Noting that

\w(0,ξ)\ = \

<

\v(t,ξ)\ = |

(28) is changed to the estimate

(29) β'W«>ϊ|t;(t,OI < CiC2C

It holds generally that

{1 ~(30) e - < n ! χ - for x > 0, n =\{

L

and for v\ > u2

^ - (0:2 = ( î - V*) I dv{£)ll=V2+HVi-Jo

Γ1

= {yi - Vϊ) J K{»2 + 9(1/1

(31)
Jo

r1

,dθI/I - I/o)

- 2

If we put 1/ = (C15T/{ω(po-pι)})1/{κ~Ko) and take 0 < ω < min{l,CΊ5Γ/{(po
- p x ) ^ " " 0 } } , we get v > ί/0. Hence by (30), (31) the right side of (29) is changed
to

(32) the right side of (29) < CiC 2 Ci 4 ( i>?" l c o ) ( i V " 1 ) e"" ( p o " A > ) < 0 ;

lco)^"2

βPθ(Oϊo | V (0, ξ)\.

While, noting that

ρ(t)>p(T) = po - C15v
KQ-*T
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= ωpo-(l-ω)p1-CVy{( lS_—r)* * *° }*° *T

= pi for v * e [ 0 , T ] ,

the left side of (29) is changed to

(33) the left side of (29) > epl{^\v(t,ξ)\.

Thus by (29), (32), (33) we get

(34) epl^\v(t,ξ)\ < CιC2C^n\{{l - ω)(p0 - Pι)}~n

< const. e

p o < ξ ) ί o \υ(0,ξ)\ for v ί G [0,Γ], v ξ G R^,

where p\ and /ί satisfy

respectively from (26), (27). This implies (4) and (5) of the case 1.

From (34) we have the following energy inqualities

(35) || u(t) \\L2 κ v< C\\ u0 | |L2o κ UQ for v t e [0, Γ],

and

I I ^ W I I ^ , . , , < c \ \ ( D ) u ( t ) \ \ L l i κ u

< C\\u0 HLJ KV for V ^ [0,Γ].

To show the existence of solutions for system (1), we consider the following sys-

tem in [0, T) x R£

/ n

. _ . Λui = V Ah(t)ilsm(Dh/l)Uι + B(t)u,

< 3 6 ) < tΊ
uι(0,x) = uo{x).

Here we remark that ζι(ξ) = (lsin(ξi/l), • • • ,lsin(ξn/l)) satisfies

) 10(01 < l ί l

iϋ) |C,(β)(OI < Cc
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Since il sin(Dh/l) (h = 1,2, , n) belong to OPS0 for any fixed /,

Σh ilsm(Dh/l) is a bounded linear operator on L2

PiKV{Rn). Thus the solvability and

uniqueness of (36) is elementary.

With the same methods, we can get the analogous estimate

(37) || er«

<C\\e^D^ouo\\^=C\\u0

for v ί € [ 0 , Γ ] ,

(38) || ep^ζ'{D^du,(t) \\L2 < C ||

< C\\epo{DKouo\\L*=C\\u0\\L2
PQ,K.,VQ

for v ί£[0,Γ] .

Futhermore by (38) it holds that

( 3 9 ) || entoiD)): (U|(t) _ Uι{t )) \\L2 < f || e"'«'iD)>Ifttt,(r) ||L2 dr

From (37) and (39), we find that the sequence {e^^^-u^t)}^ is bounded in L2

and has a weak limit epl^D^u(t) which is also a solution of (1) and satisfies

(40) || «(ί) - u{f) \\Lli^ < C\t - ί'| || uQ | |L2o i ( t i i / o .

we also get

(41) || <£>> («(ί) - u(t')) | | L ? i κ ^ < || «(ί) - «(f) | | L , 2 i ^ (Pl <*p2 < p0)

<C\t-t'\\\ no \\L2o_o.

By (40), (41) we can see u(t), dhu(t) € C°([0,T],L2
pi κ v). Thus by (1) we find

H2

This concludes the proof of Theorem under the case 1. Theorem under case 2 also

can be proved quite similarly.

Appendix

We shall show that the Ex 1 is included by case 2 and μ is equals to the maximal

multiplicity of the eigenvalues of Ah(t)ξh> i.e., μ = maxi<j<fcra;. Since the multi-

plicty of the eigenvalues is constant, it is sufficient to consider the constant matrix A.

Moreover for the simplicity we may suppose that the TV x N matrix A has two dis-

tinct real eigenvalues λi and λ2 whose multiplicity are πi\ and ra2 respectively. Then
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similarly as Lemma 1, we can get a non-singular matrix P such that

λi 0 ••• . . . . . .

α2,i \\

PAP'1 =

0 \

^mi,mi — 1 ^1

Gmi+1,1 '•

D1 0\
E DJ

• • • ®N,N-1

As it is well known, if Ό\ and D2 have no eigenvalues in common, the matrix

equation D2X — XD\ = E has a unique solution X (see [14]). Hence putting P =

( X / ) P ' w e find t h a t

- D2X + E
= diag{D1,D2}.

Here we can easily see that D\ and D2 are the triangular matrices whose sizes are

mi x mi and m2 x m 2 respectively. Therefore μ is equals to the maximal multiplicity

of the eigenvalues of A.
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