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0. Introduction

Minimal immersions from a Riemann surface M into S" were studied by Calabi
([3]) and Chern ([4]), among many authors. To each such immersion F in S*%,
they found a holomorphic quartic form Qy (to be defined in Section 1) on M. A
superminimal immersion is one for which Qr=0, which is always the case when
M=S? In [2], Bryant studied a superminimal immersion of a higher genus into
S* by lifting it to CP3, the twistor space of S* The lift of a superminimal
immersion is a holomorphic curve, of the same degree as that of the immersion,
which is horizontal with respect to the twistorial fibration; more precisely, it is a
holomorphic curve in CP? satisfying the differential equation zydz,—z,dz,
+z,dzy—25dz,=0. Setting zo=1, z, +z,z3=fand z, =g, one can solve z,, z,, z; in
terms of the meromorphic functions f and g, which serves as a kind of “Weierstrass
representation”. Via this representation, Bryant showed the existence of a
superminimal immersion from any compact Riemann surface into S*. However,
his existence result does not specify the degree d of the immersion, which is the
simplest global invariant of the surface.

In Loo ([12]) and Verdier ([17), f;=z,/z, and f, =z3/z, were chosen in place
of the aforementioned f and g. Generically, f; and f, are of degree d which satisfy
ram(f;)=ram(f}), where ram(f) denotes the ramification divisor of the meromorphic
function f. This gives a scheme of constructing the moduli space of all branched
superminimal surfaces in S* with a fixed degree d. For M =52, Loo ([12]) showed
that the moduli space is connected and has dimension 2d+4; Verdier ([17]) in
addition pointed out that the moduli space has three irreducible components.

In this paper, we propose to carry the investigation over to higher genera. Let
F:M — S* be a superminimal immersion of degree d and let F: M — CP? be its
horizontal lift. Let Ly be the pullback bundle via F of the hyperplane bundle of
CP3. We may regard z,,--,z; as four sections in H°Ly) without common
zeros. Now there is a natrual map Za~» which sends the 1-dimensional linear
system {zo,z,)> (called a gj), i.., the plane spanned by z,, z, in the Grassmann
manifold G(2, H°(L)) of two-planes is H°(L;), to the zero divisor of zodz, —z,dz,
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in H°(K® L}) with K the canonical bundle of M. Set f, =[z,:z,] and f,=[z,:2,],
which are two holomorphic maps from M to CP!. One defines Ran(f,)
=Ram({zy,2,)). Ran(f;) may be thought of as the “virtual” ramification divisor
of f since Zan(f;)=ram(f,)+2B, where B is the base locus of {zy,z), i.e., is the
divisor of the common zeros of z, and z, counted with multiplicity. With these,
one obtains Rawlf)=Ra(f,) as an immediate consequence of z,dz,—z,dz,
= —(z,dz; —z3dz,) satisfied by F. It is now clear that if we let G} be the space of
all g}, R} be the space of all maps [s:f] from M to CP' associated with the
linear systems (s,¢) in G;, W/} be the space of holomorphic line bundles L of
degree d such that dimH°L)>2, and consider the map u:R}— G} - W} given

Ty kg
by [z4:2,]+><2¢,21)> > L, then the moduli space of horizontal holomorphic curves

of degree d of a Riemann surface M, denoted by .# (M), is essentially the set of
(f1, f2), where Ram(f1)=Ram(f3), W(f1)=u(f>2), and mn\(f;) and n((f;) have disjoint
base loci. (The last condition ensures that the four sections z,,---,z; have no
common zeros, so that F is of degree d.)

We can now picture .# (M) as the set of such pairs (f;, ;) sitting over W},
and thus may slice #4(M) by Le W}. Let u(f;)=up(f>)=L, and let x=m=,(f;) and
y=m,(f,)eGS. Then on the G} level, each slice is just the collection of pairs
(x,y) with x,ye G(2, H°(L)) such that Zam(x)=ZRam(y) and x and y have disjoint
base loci, where Zas now is the restriction of a projection # from P(A\%(H°(L)))
to P(H°(K®L?). Notice that if x=y, then the branched superminimal immersion
constructed out of (f, f3) is totally geodesic. We assume henceforth that x#y. It
follows that x and y generate a sub-Grassmann G(2,4) in G(2, H°(L)). By looking
at the singular locus of Zas restricted on this G(2,4), one sees immediately that
one can always continuously deform (x,y) to an element of the form (¢,¢) for
some 1€ G,; consequently the connectedness of G} ([1]) enables us to assert the
connectedness of .# (M) when M is a Riemann surface of genus g with d>(g+2)
/2. It should be mentioned that the connectedness of .# (M) has recently been
proved by Guest-Ohnita [8] via loop group analysis when the ambient sphere is of
arbitrary dimension.

As to the existence of a nontotally geodesic branched surperminimal surface
of degree d, one must distinguish small degrees from large ones. Notice that the
existence of a nontotally geodesic branched superminimal immersion, or rather
the existence of the G(2,4) generated by x and y above, implies that dim H%(L)>4
indeed. Employing this condition and Clifford’s Theorem about special divisors
on Riemann surfaces, we can show that if Min(g, 6)>d the branched superminimal
immersions of degree d and genus g are all totally geodesic, except in the case
when d=6 and M is hyperelliptic, where # (M) is isomorphic to .#,(CP").
Furthermore, by analyzing all complete linear systems of degree 5 on Riemann
surfaces of genus <4, we are able to conclude that all branched superminimal
immersions of degree 5 and genus <4 are totally geodesic. The upshot of these
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results, which is the context of Theorem 1 in Section 4, is: For g> 1, all branched
superminimal immersions of degree <5 from any Riemann surface into S* are
totally geodesic.

When the degree is 6, one readily sees the existence of nontotally geodesic
branched superminimal immersions if the Riemann surface is hyperelliptic: Just
take a nontotally geodesic branched superminimal sphere of degree 3 and pull it
back onto the Riemann surface via its branched double covering onto the sphere. In
fact, that M is hyperelliptic is not fortuitous, since by looking into the interrelation
between the Weierstrass points and the complete linear systems of degree 6 on
nonhyperelliptic Riemann surfaces of genus 3 and 4, with the aid of Clifford’s
Theorem and the notion of correspondences between Riemann surfaces, we will
assert in Theorem 2, Section 4, the following conclusion: For g>1, a Riemann
surface of genus g admits a nontotally geodesic branched superminimal immersion
of degree 6 into S* if and only if the Riemann surface is hyperelliptic.

This naturally brings forward the question of classifying all nontotally geodesic
superminimal immersions of degree 6 for a given hyperelliptic Riemann surface. We
have succeeded in carrying out the classification for g#2 in Theorem 3, Section
4. Namely, all the nontotally geodesic branched superminimal immersions of
degree 6 from a hyperelliptic Riemann surface of genus g>3 into S* are just the
pullback of nontotally geodesic branched superminimal spheres of degree 3 via
the branched double covering. For g=1, the closure of the space of nontotally
geodesic branched superminimal tori of degree 6 in the moduli space is essentially
a fiber bundle over the underlying torus, where each fiber in turn is a fiber bundle over
a certain cubic curve whose fiber is a principal PGL(2,C) x PGL(2,C)-bundle
over the 4-dimensional complex Grassmann G(2,4). This is to be proved in
Section 6. It seems, suggested by g=1, that a study of the Riemann ®-function
would lead to the classification when g=2. In fact, our classification answers a
question raised in [19] affirmatively for d<6 as to whether the twisted cubic is
the only curve in CP? with a base-point-free complete g3 for Zz not to be injective.

For large degrees, exploring the “Weierstrass representation” mentioned earlier
and the existence of nonspecial very ample line bundles for appropriate degrees,
we prove in Theorem 4, Section 5, the existence of a nontotally geodesic branched
superminimal immersion from any Riemann surface into S* as long as d> 5g +4 for
g>2 (d=6 if g=1). (This lower bound is sharp for g=1.) Moreover, the dimension
of each irreducible component of .# (M) is bounded between 2d—4g+4 and
2d—g +4 (Theorem 5, Section 5). The upper bound is always achieved by the totally
geodesic component, whereas the lower bound is realized by each nontotally
geodesic component of the moduli space of branched superminimal tori of degree
6. Observe that when g=0, the two dimension bounds are both equal to 2d+4. It
is tempting to conjecture that the nontotally geodesic part of # (M) is of
pure dimension 2d—4g+4 for any Riemann surface (or at least for a generic) M
of genus g. This would be true if the intersection of Ker#, the kernel of
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R: P(\*H(L))) > P(H°(K®L?), and the projective variety £ =P({we A (H°(L)):
wAwAw=0}) were transversal.

A study of the interseciton of Ker# and % in the case d=6 and g=1 in
Section 6 shows that the nontotally geodesic part of the moduli space .#¢(T),
where T is a torus, may be reducible (e.g., when T is the torus where the conformal
structure is given by the Weierstrass constants g,=0, g;=1), so that the moduli
spaces of branched superminimal tori with these conformal structures consist of
more than three components (seven to be precise), although for a generic torus
it is irreducible. It is likely that for a generic Riemann surface M of genus g,
the nontotally geodesic part of .# (M) is irreducible. Again, this would follow if
the intersection Ker#Z and ¥ were transversal by a result in [7].

1. Twistor theory and superminimal immersions

Since Bryant’s initial work ([2]) there have been many general investigations
of minimal immersions in terms of the twistorial scheme, which we will briefly
present in this section; for a detailed discussion and related references see [5], [6],
[9]. Given an oriented Riemannian 4-manifold N, let O(N) be the orthonormal
frame bundle of N. Consider the bundle of pointwise orthogonal complex structures
O(N) X 04yO(4)/ U(2), which has two connected components Z, and Z_, called
twistor spaces of N, consisting of those pointwise complex structures that are
orientation-preserving and orientation-reversing, respectively. Z., is a 2-sphere
bundle over N associated with SO(4) since SO4)/U(2)=S2 The Levi-Civita
connection on N induces a connection on Z. which splits the tangent spaces of
Z, into vertical and horizontal spaces, TZ, =V, ®H,. TZ, inherits naturally
a Riemannian matric {,) that coincides with that of N on H, and that of S?
on V, such that V, is perpendicular to H,. One can define a Hermitian structure
J on Z by setting, at ue Z,,J to be the natural complex structure on V, (the
fiber of Z, is S? identified with CP'), and to be u acting on H, (u itself is a
pointwise complex structure). (Z_,J)(Z ., J), respectively) turns out to be a complex
manifold if and only if N is self-dual (anti-self-dual, respectively). Moreover,
(Z_,J,{,ONZ.,J,<,>), respectively) is Kaehler-Einstein if N if Einstein with positive
scalar curvature; in fact, Z_ (Z, respectively) is either CP3 or F(1,2), where N=S*
or CP? with the standard metric, respectively.

Let f:M — N be an immersion with the induced metric from a compact
Riemann surface M into N. For each point p in M, if one assigns to f, T ,M
the natural orientation yu, induced from M, then (f,T,M )* inherits a unique
orientation 7, such that u,@®1, is the orientation of N at f(p). Regarding u, and
T, (—1,, respectively) as complex structures on f,T,M and (f,T,M )t, one can define
a map f,:p—u,®t, (f-:ppu,®—1, respectively) from M into Z, (Z_,
respectively), called the twistor lifts.

Now let e, e,, e;, e, be an adapted orthonormal frame of M so that (ee,)
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is a positively oriented frame on M, and let 0°, w§, 1<a, b<4, be the coframe and

the connection forms of N with respect to the adapted frame. Then wf=Xh}0’,
J

1<i, j<2, 3<a<4, where Zh}0'®6 is the second fundamental form. Set
]

H*=(h{,+h%,)/2, and L*=(h%,—h%,)/2—/—1h%,. Consider the (1,0)-form
¢=0'+./—10% One observes that Q =(ZL*L%¢p* is a globally defined quartic

formon M. Write Q,=S,S_¢* where S, =L3—./—1L%and S_=L3+./—1L%;
|S+] and |S_| are globally defined smooth functions. We say that f is an isotropic
isometric immersion if Q =0, and f is isotropic with positive spin (negative spin,
respectovely) if |S,|=0 (|S_|=0, respectively).

The important fact is that the twistor lift £ (7_, respectively) is J-holomorphic
if and only if f is isotropic with positive spin (negative spin, respectively).
Furthermore, f, (f_, respectively) is horizontal with respect to the spliting
TZ,=V,®H, (TZ_=V_@®H_, respectively) if and only if f is minimal and f,
(f-, respectively) is J-holomorphic; f is said to be a superminimal immersion with
positive spin (negative spin, respectively) in this case. It shold be remarked that
f is superminimal with both positive and negative spin if and only if f is totally
geodesic; moreover, it is clear that reversing the orientation of N interchanges Z,
and Z_. Itis for this reason that we consider only f with negative spin from now on.

2. Branched superminimal immersions in S*

When we specialize N to S*, the above formulation can be made explicit. To
be more precise, one regards S* as HP!, the 1-dimensional quaternionic projective
space. Let t be the universal quaternionic line bundle over S* with quaternionic
multiplication on the right. Then one can identify TS* with Homp(t,r*) where
1@t =HP' x(H®H). Each v in 1, where p is the base point of v, can be
regarded as an element ¥ in Hom(7,$,(z,)z) given by #(f)=/(v) for fe Homp(t ,(7,)");
7 is a real vector space isomorphism between 7,S* and (r,)g if v#0. Since
()¢ =C@C (regarding elements in H as z, +jz, and multiplying complex numbers
on the right), it is clear that ¥ then induces a complex structure on 7,S* which is
orientation-reversing. Now since the complex structure is unaltered by changing 7
to ¥4 for any A€, if follows that Z_ is P(t¢), the complex projectivization of 7,
which is CP? with the Fubini-Study metric.

The horizontal distribution of CP3*=Z_ is easy to describe: TCP*=V®H,
where H is the kernel of a contact form whose pullback to C*\{0} is
(zodzy —z,dzo + 25dz5—23dz, ) | ||2]|?, Where z,--+,z5 are the homogeneous coordinates
of CP®. Hence a branched superminimal immersion of genus g and degree d in
S* is the projection of a holomorphic curve F: M — CP? of degree d and genus
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g satisfying the differential equation
(2.1) z2odz —2,dzy+2,dz4—2z3dz,=0.

We denote by # (M) the space of horizontal holomorphic curves of degree
d of a fixed Riemann surface M. Let F: M — CP3?, F(p)=[z,(p):---: z5(p)], be such
a horizontal curve. z,,---,z; can be interpreted as four holomorphic sections
without common zeros, to be denoted by s, ---,5; from now on, on the pullback
bundle Lp=F*(O(1), where (1) is the hyperplane bundle of CP3. Define two
functions f; and f, from M to CP' by setting f,(p)=[s0():s,(p)] and

L,0)=[s,(p):53(p)]. Consider now

2.2) [50,51]1=80ds, —8,d5¢,

which can be viewed as a holomorphic section of K®LZ. Set
(2.3) Ram(f,)= zero divisor of [sy,5,] in KQLZ.

Ram(f,)1s the ramification divisor of f; plus 2B, where B is the base locus of the linear
system {sq,5,». With these, (2.1) merely says [sq,5;]=—1[s,5,], and thus
Ram(f\)=Ram(f>).

Conversely, let L be a holomorphic line bundle of degree d over M, and let
Sos+++»53 be four holomorphic sections without common zeros. If Zan(f)
=R am(f,), then there is a constant ¢? such that [sq,s,]= —c?[s,,53] in view of (2.3);
we may assume c¢=1 by rescaling. It follows that [sq:5, +5,: £53] will define two
holomorphic maps F, of degree d from M to CP? which satisfy (2.1). Therefore, F
can be reconstructed from the pair (f}, f;) up to the contact involution

(2.4) 0:[z0:21:25: 23] [29:21: — 2,1 —25].

We choose to identify [1:0] and [0:1] in HP' with the south and north poles of s*,
respectively. Then o induces the geodesic symmetry about the south pole on
5% Of course, this reduces to the construction in Loo [12] when the genus
is zero.

As in [1], let G} be the space of all r-dimensional linear systems gj of degree
d on M, and let W} be the space of all holomorphic line bundles L of degree d

such that dim H°(L)>r+1. Let
n:Gl - W}

be the natural projection. Given a g} ={s,t) with s,te H%(L) and L=n(g}), it is
clear that g} determines the map p: > [s(p): #(p)] in CP! up to Aut(CP')=PGL(2, C).
The collection of all such maps determined by G/ is a principal PGL(2, C)-bundle
over G} ([14]), to be denoted by R}. Let

n,:R} - G}
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be the natural projection. In view of (2.3) Zan:R} — S297 2124\, where the
target space is the (2g—2+2d)-fold symmetric product of M. Moreover, set

N EM)={(f1, )€ R} x Ry :nmy(f))=nn,(f5), Ramlfy) = Ram(f>), n,(f1) and i (f2)
have disjoint base loci}.

Observe that A f(M) recovers all the horizontal holomorphic curves of degree d
in CP? except the ones where the pair (f}, f;) is a constant (iff f; is constant then
/> is constant by (2.1)), in which case the corresponding horizontal curves are of
the form [s:as:¢:bf], where a, b are complex numbers and s, ¢ are two sections
of Lg; the projection of these horizontal holomorphic curves into s* gives totally
geodesic 2-spheres passing through both the north and the south poles. To include
these horizontal curves, we must enlarge A X M).

Recall that R} is a principal PGL(2,C)-bundle over G). As in [13], if we
identify CP3 with the projectivization of the space of nonzero 2x2 complex
matrices, there is a natural PGL(2, C)-action on CP3?. Consider the associated
bundle R} X pgr2.0CP?> =R/} over G;. Let

ny: R} - G}

be the standard projection. Fix (sy,s,) in R). Any other (s},5,) with s;=Xas;
J
is identified with [(sy,s,),(a;)] in R!. As a consequence, a horizontal curve of the

form [s:as:t:bt] in CP? projects to

eals o] [[eli 3]

in R} xR}. Accordingly, we set

2.5 ¥AM)={(f1.f2)e R x R} :nny(f1) =1y f3), Rand f1)=Ram(f), n5(f1) and
n,(f,) have disjoint base loci}.

It is understood here that Zasm(f,), for instance, is the ramification divisor of
n,(f))eG). Then A4 (M) recovers .# (M) up to the involution in (2.4). In other
words, N (M)=M(M)/o.

Proposition 1. Let p: M (M) — N (M) be the covering map, and let V,V,,---,V,
be the irreducible components of N (M). Thenp~'(V,),---,p~ *(V,) are the irreducible
components of M M). Furthermore, M (M) is connected if and only if N (M) is
connected.

Proof. We claim first that ¢ in (2.4) is homotopic to the identity map. Indeed,
each orthogonal transformation on S* induces naturally an automorphism on
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CP3. Consider the geodesic symmetry about the south pole on S*, which is an
orientation-preserving isometry and hence is homotopic to the identity. This
homotopy induces a homotopy on CP3 from the identity map to ¢ on CP3, and
thus on # (M), which interchanges the two elements in each fiber of the map
p-  The first statement follows from the fact that o, being homotopic to the identity
map, must leave invariant each irreducible component of .#(M). The second
statement is a consequence of the first. Q.E.D.

3. Basics

From now on we consider A4 (M) in view of Proposition 1. To understand the
space A (M), we will slice by Le W}. Namely, fixing L we consider the space

N af(M)={(f1, ) e N o(M):nry(f1)=nry(f2)=L}.

C]ear]y, .A/d(M)= U md'L(M).
LeW}

Let L be a line bundle of degree d, and let ¢, ¢,, -+, ¢,, be a basis of H°(L). Notice
that m=d—g+1 by the Riemann-Roch Theorem when L is generic or when
d>2g—2. The map

(3.1 R:sNt—[s,1],

where [s, 1] is given in (2.2), extends to a linear map from A2(H°(L)) to H%(K®L?),
which can be projectivized as a rational map, still denoted by £, from
PN} (HO(L)=~CP™® ! to P(HYK®L?*)~CP**9-2_ Note that # is completely
determined by R(t;At)=[t;,t;]. Let G(2,H%L)) be the Grassmann manifold of
two-planes in H%L); G(2, H°(L)) c P(N}(H°(L))) via the Pliicker imbedding (s, ?)
> s/At, where s and ¢ span the plane (s,f). Observe that G(2, H°(L)) is characterized
by the equation x Ax=0, where x=sAt.

Lemma 1. The rational map R in (3.1) is regular on G(2, H°(L)).

Proof. If Z(s A\ t)=sdt—tds=0, then d(t/s)=0 so that ¢ is a constant multiple
of s. Hence sAt=0, which is impossible. Q.E.D.

In accordance with this lemma we see that

N af(M)={(x,y)€ & (M):75(x), 7;(y)€ GH L)), R(n(x))=R(M,()), ma(x)
and m,(y) have disjoint base loci}.

Lemma 2. 2 restricted to G2, H*(L)) is a finite map.

Proof. Z is induced by a linear map, and can therefore be regarded as a
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projection whose center does not intersect G(2,HH°(L)) by Lemma 1. Hence £ is
a finite map on G(Q,H°(L) [16]. Q.E.D.

Lemma 3. If (x,y)e N4 (M), x#y, is represented by my(x)=[e;Ne,] and
ny(Y)=[esNes] in GQ2,H°(L)), then e,, e,, e, e, are linearly independent in
HO(L). Here, [ ] denotes projectivization.

Proof. Since A(m,(x))=%A(n,(y)), we have R(e;Ne,—AesAe,)=0 for some
A€ Con the Euclidean level; we may assume A=1 by rescaling. So [v]=[e;Ne,—e;
Ne,J¢G(2,HO(L)) by Lemma 1. Hence vAv#0. This implies e;, e, es, e,
are independent. Q.E.D.

In light of Lemma 3, we now restrict our consideration from H%L) to a
4-dimensional linear subsystem V, < HY%L). Let G(2,V,) < G(2,H°(L)) be the
Grassmann manifold of 2-planes in V.

Lemma 4. Z restricted to G(2,V,) is either a one-to-one map or a branched
double covering onto its image.

Proof. Itis wellknown that G(2,V,) = P(A*V,)~ CP? is a smooth hyperquadric.
If # is not one-to-one on G(2,V,), # restricted to P(A\*V,) must have a center,
which cannot intersect G(2,V,) by Lemma 1, and therefore must be a single
point. This shows that Z(P(\*V,))~CP*. Since dim G(2,V,)=4 and £ is a finite
map, the image of G(2,V,) must have dimension 4 and is therefore the entire
CP*. The fact that G(2,V,) is a quadric implies that # is a branched double
covering. Q.E.D.

The connectedness of A (M) is now immediate from Lemma 4 since one can
always deform (x,y) in A 4(M) to some (2,¢) on the singular locus of G(2,V,) of the
map #£. In [8], the connectedness of .# (M) is proved for any S".

4. Moduli spaces of small degree

One consequence of Lemma 3 is that to construct branched superminimal
immersions which are not of the form (f, 4 f)e /"X M), where fis of degree d and
AePGL(2,C), i.e., which are not totally geodesic, it is necessary that one start with a
line bundle Le W/} such that dim H°(L)>4, ie., Le W}. However, there is no
W5 when M is generic and the Brill-Noether number (r+1)(d—r)—rg<0. So, we
have the following.

Proposition 2. Let M be a generic Riemann surface of genus g=>1. N (M) is
empty if d<(g+2)/2. N HM) consisits of (f;Af), where f is of degree d and
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AePGL22,C), if (g+2)/2<d<(3g+12)/4; so all the corresponding branched
superminimal immersions in S* are totally geodesic. Here, any Riemann surface of
g=1, 2 or 3 is considered generic.

Proof. Take r=1 in the Brill-Noether number, which is <0 if d<(g+2)/2,
in which case there are no W, for a generic Riemann surface. Similarly,
take r=3 in the Brill-Noether number, which is <0 when d<(3g+12)/4;
hence there are no W} for a generic Riemann surface. Finally, for any Riemann
surface of g=1,2 or 3 with a line bundle L of a given degree within the bounds,
one checks by the Riemann-Roch Theorem that dim H°(L)<3. Q.E.D.

On the other hand Clifford’s Theorem enables us to look into the case of a
small degree d for any Rimann surface. Recall first that Clifford’s Theorem ([10])
states that if Le W} — W};*! with d <2g —2, then d> 2r; furthmore if d=2r, then either
L is trivial, or L=K, the canonical bundle, or the Riemann surface M is
hyperelliptic with the branched double covering ¢: M — CP! and L=(¢*O(1)).

Proposition 3. If Min(g,6)>d, then /"X M)={(f,Af): [ is of degree d and
AePGL(2,C)}. Hence the branched superminimal immersions from M into S* are all
totally geodesic, except in the case when M is hyperelliptic and d=6, in which case
M (M) is isomorphic to M 4(CP'), the moduli space of horizontal rational curves
of degree 3.

Proof. If there is an (xoyo)€ N 4 (M), Xo#Yo then Le W with r>3 as
mentioned earlier. By Clifford’s Theorem 6>d>2r>6. However this is possible
only when d=6=2r. Now L#K, the canonical bundle, since 6=d=2g—2 implies
g=4 while we assume that g>6. Hence Clifford’s Theorem infers that the
Riemann surface is hyperelliptic, L=(¢*©(1))> and H(L) is generated by (z)'c @,
0<i<3, where ¢ : M — CP! is the branched double covering and z e C (one regards
CP' as Cu{0}). Therefore G(2,H°(L)) is comprised of f ¢, where f: M — CP* and
deg(f)<3. Now since d(fo ¢p)=df-d¢p, we see that

Ram(fo p)=Ram@)+ ¢~ (Ramf)).

It follows that Rawdfop)=Ram(god) if and only if Raw(f)=Ranlg).
Consequently, the proposition will be true if we can verify that all the maps from
M to CP' of degree 6 come from G(2,H°(L)). But this is the case since all the
complete g} with d<g (in our case d=6 and r<3) on a hyperelliptic curve is of
the form rgl+p,+p,+--+ps_,., where no two of the points p;, are invariant
under the involution of M induced by ¢ and g} is the linear system corresponding to
¢ [10]; hence the gfj, r<2, will be ruled out since they have base locus

Pt sPa—2r QED
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REMARK. In the same vein as in the proof of Proposition 3, let M be a
hyperelliptic curve and d<g. Then the moduli space of branched superminimal
immersions from M into S* is isomorphic to that of branched superminimal spheres
of degree d/2.

Before proceeding with further examples of small degree, we first consider a
general situation. Let ¢,,¢,,--,t,, span H%(L). Consider the curve : M — CP™~!
given by Y(p)=[t,p): - :t(p)]. The first associated curve , of ¥, ie.,
the set of the tangents of y, lies in G(2,m) indentified with G(2,H°(L)). Via the
Pliicker imbedding, y, € P(AX(H°(L)).

Lemma 5. Let k be the dimension of the smallest linear subspace containing
Wy in PANHO(L)). Then the dimension of the center of the projection # in (3.1)

is equal to (Z) —k—-2.

Proof. Observe first that in homogeneous coordinates (see (2.3) for notation)
V=AY ]=[:[tst;]:---], where we use y and ¥’ to also denote the Euclidean
lift and derivative of . Hence any linear relation Za;j[t;,¢;]=0 gives rise to the
element Za;;t; At; which lies in the center of the projection £ in view of (3.1), and
vice versa. Q.E.D.

Lemma 6. Let [1:z'** ;g2 mtoe, p3%armtas) Lo the canonical form of a
linearly full curve  in CP® around z=0. Here we only display the first term in

each Taylor series. Then ,, the first associated curve of VY, is linearly full in
CP° 5 G,4) if oy #j5.

Proof. Assume a;<a;. A straightforward computation shows that ,
assumes the form [1:2%:2%:2°:2%:2°], where a=1+a,, b=2+40a, + a3, c=2+o, +a,,
d=3+o0;+a,+a; and e=4+a;+2a,+a; It follows that a<b<c<d<e. So
the curve is linearly full in CP°. Q.E.D.

We now study the case when g=2 and d=5 so that d=2g+1. Let
L be a line bundle of degree 5 over M of genus 2; dimH °(L)=4 by the Riemann-Roch
Theorem. As mentioned before Lemma 5, any basis 7,,---,t, of H°L) generates
a curve Y : M — CP3 of degree 5 which is an imbedding in our case (any L of
degree d>2g+1 is very ample). Conversely, the plane cut of any imbedded space
curve of g=2 and d=5 in CP? gives a line bundle of degree 5. From now on
we identify M with C=y(M) in CP?. Pick a point p on C and consider the
projection =, in CP? whose center is p. n,(C)=C’ is a curve of degree 2 or 4

in CP? because n, has mapping degree 4. If deg(C’)=2, then C’ is a conic. =,
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may be regarded as a branched double covering from C onto the Riemann sphere;
hence the canonical bundle K=p, +p,, where {p,,p,} =n, '(x) for any xe C’. (For
simplicity in notation, we regard “=" in K=p, +p,, etc., as the divisor p, +p,
defining K) Now pick a line joining x and some y on C’ with n, !(x) as given
above and n, '(y)={ps.ps}. Then D=p+p,+p,+p;+p, is a plane cut of C
defining L. It follows that L=p+2K. Otherwise, deg(C’)=4 and C’' has a
unique ordinary double point x by the genus formula ([15]). Let {g,,q,} =n""(x);
D> 41, q, are collinear. The projection whose center is the line pg,q, is a
meromorphic function of order 2 whose poles are, say, p, and p,; so
K=p,+p,. Now D=p+q,+q,+p,+p, is a plane cut of C defining L. We
obtain L=p+gq, +q,+K, where ¢, +¢q,#K.

Proposition 4. Let M be a Riemann surface of genus 2. Then all the
branched superminimal immersions of degree 5 from M into S* are totally geodesic.

Proof. Consider dim H(L —i-q), 0<i<3, for an arbitrary point g; it is equal
to 4—i)+dimH°K—L+i-q) by the Riemann-Roch Theorem, which is 4—i if
i<2 since the degree of K—D+i-q is negative. Now let i=3.

Case 1. L=p+2K. H°K—L+3q) is equal to H°(3q—p—2#) with K=24%
for some fixed Weierstrass point # chosen once and for all (recall that M is
hyperelliptic).

If H%3q—p—2#)+#0, there will be a meromorphic function f assuming the only
pole of order at most 3 at ¢ and zeros of order at least 1 and 2 at p and #,
respectively. f cannot be of order 3; for otherwise, ¢ and 2% are all the zeros of
£, so that if we let w be a holomorphic form whose zero is 2#, then /'~ lw will-
be a meromorphic form with a single pole g of order 1, which is absurd. Thus
fcan only be of order 2. However, this implies that g will eliminate either p or #.

If g=p, then 2p=2% and so L=5p with p a Weierstrass point. Now
dim H%Gi-p)=1,1,2,2,3,4 for i=0,1,2,3,4,5 since p is a Weierstrass point. We have
dim H%L—i-p)=dim H°(5—i)p)=4,3,2,2,1,1,0 for i=0,1,2,3,4,5,6. It follows that
near p, Y assumes the parametric form [1:z:23:2%] so that (a;,0,,03) given in
Lemma 6 is (0,1,1); in particular o, #0o5 at p. Lemma 6 then implies that the first
associated curve of Y is nondegenerate in CP>. Lemma 5 in turn asserts that
Z has no center, i.e., Z# is injective. In other words, the branched superminimal
immersion constructed is totally geodesic, which is what we intend to conclude.

Hence we may now assume g #p and so g=4%. But then f will be a meromorphic
function of order 1 with pole # and zero p, which is impossible unless p=#=gq,
so that one more time we obtain L=>5p with p a Weierstrass point.

Therefore we may now assume that dim H°(3g—p—2#)=0, i.e., dim H°(L —3q)
=1 for all g. Insummary, we have dim H(L—i-q)=4—i,0<i<3, for all ¢. This
is equivalent to saying that near any ¢,  is of the form [1:z:z2:z™] with m>3; in
particular, a; =a,=0 for all points. However, there must be a point at which
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a3 #0 by the Pliicker formula ([10]), and thus at this point o, #a5. Hence again
AR is injective, and the branched superminimal immersion is totally geodesic.
Case2. L=p+q,+q,+Kwithq,+q,#K. Asexplained above, C' must be a
curve of degree 4 in CP? having only an ordinary double point. Since y is imbedded,
at a ramified point p the curve  is of the form [1:z:z2%%2;z3%®2%a]  where
o, =0. If a3#0, then o, #a, and we are done by Lemmas 5 and 6. Hence we
may assume o, =oa;=0 at all ramified points p. We claim that this case cannot
occur. To this end, observe that the projection 7, in CP* with center p maps C to C’
whose only singularity, being the image of p, is a cusp of the form (z! **2,22**2) in affine
coordinates, so that a,=1 since the singularity must be an ordinary simple
cusp. Thus (x;,0,,03)=(0,1,0) at all ramified points p. Now, for 1<k<3 the
Pliicker formula Z,(4—i)a, =32 ([10]) implies that there are 16 ramified points for
Y. On the other hand, since the tangent line to Y at a ramified point is of contact
order 3, we must have p=¢g,=¢q, in L=p+q,+q,+K Hence L=3p+K with
2p #K for all ramified points p; in particular p is not a Weierstrass point. Fixing
one ramified point p,, for any ramified point p#p, we have L—K=3p,=3p, so
that there is a meromorphic function assuming the single pole and zero of order
3 at p, and p, respectively. However, dim H%(3p,)=2, i.., 3p, defines a single gi,
we therefore see that all the ramified points belong to this g3, each of ramification
index 2. In particular, the total ramification index of the g} is >32, which is
absurd, since the total ramification is 8 by the Riemann-Hurwitz formula.
Q.E.D.

We are now ready to characterize all branched superminimal immersions of
degree <5.

Theorem 1. Let M be a Riemann surface of genus g>1. Then all the branched
superminimal immersions of degree d<5 from M into S* are totally geodesic.

Proof. Proposition 9 below in Section 6 solves the case g=1. Proposition
2 takes care of g=2 when d<4, while d=5 is handled by Proposition 4. The
case g=3 follows from Proposition 2. For g=4, Proposition 3 gives the result
as long as d<4. However, when g=4 and d=5, we have d<2g—2; hence
Clifford’s Theorem implies that d > 2r, i.e., dim H°(L)<3 for any bundle L of degree
5. Finally, Proposition 3 settles g>S5. Q.E.D.

We now move on to the case d=6. We first study the case g=3 and
d=6 so that d=2g. Let M be a nonhyperelliptic Riemann surface of genus
3 and let L be a line bundle over M of degree 6. As before let  be the curve in
CP? associated with L. Since deg(L—p—gq)=deg(K), we see that L=K+p+gq if
and only if dim H%(L —p—q)=3, if and only if y is not imbedded (recall that
is imbedded if and only if dim Ho(L—p—gq)=dim H%L)—2 for all p and ¢
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[10]). Notice that when p=¢q, L=K+2p means that the curve y is not an
immersion at p, whereas when p#¢, L=K+p+q signifies that { is an immersion
but is not one-to-one.

Assume now that ¥ is an imbedded curve so that L#K+x+y for any x and
y. Identify M with C=y(M). Pick a point peC. Let C'=n,(C) be the
projection of C where n, has center p. Since deg(C’)=S5, for a generic point p,
C’ has three ordinary double points x, y and z by the genus formula; in general
these singularities may collapse so that higher singularity may result. Let {x,,x,},
{y1,y,} and {z,,z,} be the preimages of x, y and z, respectively, via n,. The pair
in each set is collinear with p; denote these three lines by /,, /,, [;. The projections
m,, m, and m,;, whose centers are /,, /, and /5 respectively, are meromorphic
functions of order 3 whose poles are, say {p,p,,P3}, {41.92,93} and {r,,r,rs},
respectively, so that dim H°(p,+p,+p;)=2 by nonhyperellipcy, i.e., dim H%(K
—p1—P,—p3)=1. In other words, there is a point p, such that p,, p,, p,, p; are
collinear on the canonical curve ¢ imbedded in CP? so that K=p,+p, +p,+p;.
Similarly there are g, and r, collinear with ¢; and r, 1<i<3, respectively, on
¢k Since D=p+x;+x,+p,+p,+p; is a hyperplane cut defining L, we see that

(C15D)
4.1) L=p+x+x,+K—p,.

Similar identities hold when x; are replaced by y; and z; and p, by ¢q, and r,,
repectively, 1<i<2. In particular, x,+x,—po=y,+y,—¢qo by (4.1), ie, x,
+Xx,+qo=y1+y,+Do OF Xy, X, and ¢, are collinear on ¢g; similarly x,, x, and r,
are collinear on ¢. We see then that x,, x,, g, and r, are collinear on ¢ so
that K=x,+x,+qgo+r, Substituting this into (4.1) gives

(42) L=2K+p-—po—-q0-—r0.

Sublemma 1. Notation is as above. Let {y be immersed in CP3, and let p be a
point at which the first associated curve is singular (i.e., dim H°(L—3p)=3). Then
there is a meromorphic function of order 3 whose only pole is p. In particular,
p is a Weierstrass point. Moreover, L=s,+s5,+53+3p where s,, s, and s; are
collinear on ¢y.

Proof. Retaining the assumption that  is imbedded, we consider the
correspondence T(p)=po+qo+ro- T is of valence —1, i.e., T(p)—p is independent
of p, which is clear since T(p)—p=2K—L by (4.2). Moreover, T has no united
points, i.e., there are no points p for which p e T(p), which follows because p e T(p)
would force, say p=p,, and thus by (4.1) L=K+x,+x, so that y would be
singular. Therefore, the Cayley-Brill formula ([10]) asserts that deg(7 ~')=3, i.e., for
each point p,, there are three points p, p’ and p” such that p,e T(p), T(p') and
T(p"). By the definition of p,, this means that the points p,, p, and p; introduced
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above belong to three plane cuts through p, p’ and p”, respectively; in particular,
P1, p, and p,; are collinear. The projection whose center is the line p,p,p;
is a meromorphic function H of order 3, whose poles may be chosen to be p, x,
and x, since these six points are coplanar.

Now if i is imbedded, then dim H°L—3p)=3 means that the tangent line to
Y at p has contact order at least 3 and so p=x,=x,; hence the function H
defined above is a function with a single pole of order 3 at p. By (4.1), we have
L=K+3p—po=p,+p,+p3+3p.

If ¢ is immersed but not imbedded, then L=K+x+y with x#y.
dim H°(L—3p)=3 is equivalent to dim H°(3p—x—y)=2 by the Riemann-Roch
Theorem, which gives the existence of such a function H of order 3 whose only
pole is p. In particular, let s,, x and y be the zeros of H. Then 3p=x+y+s,
and so there is point s, such that 3p+s,=x+y+s,+s5,=K. Substituting this
into L=K+x+y yields L=x+y+s,+3p. Q.E.D.

Sublemma 2. Let p be an immersed point of a nondegenerate nonhyperelliptic
curve  of degree 6 in CP®. Suppose the first associated curve of \ is singular at
p- Then the tangent line to \ at p is of contact order 3. In particular, o, =0 and
a,=1 at p.

Proof. The contact order must be at least 3. If the contact order is 4, then
the projection in CP* whose center is the tangent line at p will be a meromorphic
function of order at most 2, which is impossible since the curve is
nonhyperelliptic. Q.E.D.

Proposition 5. Let M be a nonhyperelliptic Riemann surface of genus 3. Then
all the branched superminimal immersions from M into S* of degree 6 are totally
geodesic.

Proof. Suppose there is a nontotally geodesic branched superminimal
immersion generated by a line bundle of degree 6. As usual let Y be the curve in
CP? associated with L.

Case 1.  is immersed. By Lemma 6, a; =0;=0 for all points. Take a
ramified point g of Y. (oy,a,,%3)=(0,1,0) by Sublemma 2. Now the formula
X (4—k)u, =48, 1 <k<3, asserts that there are 24 ramified points on , while
Sublemma 1 says that these 24 points are all Weierstrass points. On the other
hand, the Pliicker formula applied to the canonical curve ¢y, which is imbedded
in CP?, gives (2B, + B,)=(g—1)g(g +1)=24 summed over all Weierstrass points,
which were just proved to be >24 in number, where ¢ assumes the parametric
form [1:z!*#1:z2%F2] Since B, =0 for all p, we see that there are exactly 24
Weierstrass points with f,=1 for all of them. In other words, all the Weierstrass
points are ordinary flexes.
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Now given two Weierstrass points p and p’, by Sublemma 1 we have
L=K+3p—s,=K+3p'—s, for some points s, and 5. Let5+3p=K=p"+3p’ (the
tangent line to ¢x at p intersects ¢y at p). Then we see that j+s,=p5"+s,.
Therefore either p'=p, or p'=s, since M is nonhyperelliptic. Thus fixing p, the
24 Weierstrass points p’ are divided into the set S, where p'=p, in which case
the tangent lines to ¢y at p’ are all through j, and the set S,, where §'=s,, in
which case the tangent lines to ¢ at p’ are all through 5, We may thus assume
that S, contains at least 12 Weierstrass points without loss of generality. Howerer,
the projection in CP? whose center is p on ¢ gives a meromorphic function =,
of order 3 for which p’ in S, have ramification 2 except when p'=p, where the
ramification index is 1. Now the Riemann-Hurwitz formula says that the total
ramification for n, is 10, while the sub-total ramification over these Weierstrass
points is at least 2-11+1=23, which is a contradiciton.

Case 2. Yy is not immersed. Then L=K+2p for some p. By the
Riemann-Roch Theorem dim Ho(L—i-p)=4—i+dim H%(i—2)p)=4,3,3,2,1 for i
=0, 1,2, 3,4, respectively, so that with the fact that «, =« for all points we have, near
p, that ¥ is of the parametric form [1:2z2:23:2%] with (a,,a,,05)=(1,0,1) at p. The
existence of z° implies 1=dim H°(L—5p) so that dim H°(3p)=2 by the
Riemann-Roch Theorem; in particular, p is a Weierstrass point.

Let g #p be a ramified point. dim Ho(L—i-q)=4—i+dim H°(i-q—2p)=4,3,2
for i=0,1,2, respectively. Hence ¢ is an immersed point. Sublemma 2 then infers
that (a;,a,,03)=(0,1,0) so that ¢ is of the form [1:z:z3:z*] near q. As a
consequence of the nonexistence of z2, we have H°(L—3g)=2, or equivalently
dim H°(3g—2p)=1; in particular q is also a Weierstrass point and there is a point
so such that 3¢=2p+s, Let s, and s, be such that s, +3¢g=K=s,+3p (p and
q are Weierstrass points which have contact of order at least 3 to ¢g). Then
p+s,=so+s,. Hence either 3¢=3p, in which case the tangent lines to ¢y at p
and g pass through s, =s,, or p=s,, in which case the tangent line to ¢y at g
passes through p; we divide such points g into two sets U, and U,, respectively. We
are now in a familiar situation that we saw in Case 1. The number of ramified
points of ¥ is 23 (total ramification at p is 4 and is 2 at g+#p), so that we may
assume U, contains at least 12 of them for instance. However the projection
with center p, in CP? is a meromorphic function of order 3 which has ge U, as
ramified points and whose total ramification is 10, which is absurd. Q.E.D.

The upper limit of the degree d of a special line bundle L (L is special if
HYK®L ')#0) is 2g—2 by the Riemann-Roch Theorem. Let g=4 and
d=2g—2=6. Let M be a nonhyperelliptic Riemann surface of genus 4. Recall
that M is the intersection of a quadric surface Q and a cubic surface C in CP?
([10]). If Q is nonsingular, Q has two one-parameter families of independent
rulings L, and L, ([10]), where the one-parameter ¢ for L, (s for L,, respectively)
runs along a fixed line in L, (a fixed line in L,, respectively), such that any two
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different lines in the same ruling are not coplanar whereas any two lines from the
two different rulings are coplanar. On the other hand, Q degenerates to a cone
if it is singular and the two rulings coincide. Each line /,e L, (/€ L,, respectively)
intersects the cubic surface C in three points p,, p,, p5s. The two projections from
CP? to CP! whose centers are the lines /, and I/ give rise to two meromorphic
functions of order 3 on M; hence there are at least two gi. To see that there
are exactly two g} for a nonsingular Q, let ¢,+¢,+q; be a divisor defining a
g3. Since dim H%q, +¢,+¢q5)=dim H%(K—q, —q, —q;)=the number of indepen-
dent planes containing ¢,, q,, ¢; in CP? by the Riemann-Roch Theorem, it follows
that dim H%(q, +¢,+9¢3)=2 and q,, q, and g, are collinear. The line through ¢,
¢, and g5 must belong to one of the rulings; therefore, there are exactly two g} for
a nonsingular Q. In particular, if Q degenerates to a cone, then /,=/; and so there
is a unique g}.

Proposition 6. Let M be a nonhyperelliptic Riemann surface of genus 4. Then
all the branched superminimal immersions of degree 6 from M into S* are totally
geodesic.

Proof. Since d=2g—2, L must be the canonical bundle so that the
corresponding curve  is nothing but the canonical curve in CP3, which is
imbedded. We identify M with C=y(M). We recall that on a canonical curve,
p is an unramified point for all of the associated curves of ¢ if and only if p is a
non-Weierstrass point. Accordingly, we assume that ¢ is a Weierstrass point in
what follows. By Lemma 6 and Sublemma 2, once more we have (x,, ,,%3)=(0, 1,0)
for all g. We claim that this case cannot occur. For, first note that the Pliicker
formula gives that the number of Weierstrass points is (g—1)g(g+1)/2=30.
However, since 3 is not a Weierstrass gap value at ¢ we see that all 3g belong
to the two g} (if the quadric surface Q mentioned above is nondegenerate) ; one
of these g! therefore contains at least 15 Weierstrass points g at which the
ramification index of this g} is 2. By the Riemann-Hurwitz formula, the total
ramification of the g}, which is 12, must be greater than or equal to the subtotal
ramification index evaluated at these Weierstrass points, which is at least
2-15=30. This is a contradiction. Q.E.D.

REMARK. Equivalently put, Propositions 4 through 6 say that all nonhyperel-
liptic space curves of degree 5 and genus 2, degree 6 and genus 3, and degree 6

and genus 4 have nondegenerate first associated curves in CP>,

We are ready to characterize the Riemann surfaces of genus > 1 for which there
exist nontotally geodesic branched superminimal immersions into S*.

Theorem 2. Let M be a Riemann surface of genus g>1. M admits a nontotally
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geodesic branched superminimal immersion of degree 6 into S* if and only if M is
hyperelliptic.

Proof. If M is hyperelliptic of any genus, then M admits a nontotally geodesic
branched superminimal immersion. More precisely, let ¢:M — CP' be the
branched double covering and let (f}, f;) be a pair of meromorphic functions on
CP! which gives rise to a nontotally geodesic branched superminimal sphere. Then
(fio¢, foo¢) is a pair which generates a nontotally geodesic branched super-
minimal immersion on M. Conversely, Proposition 3 takes care of g>6. For
g=4 and 5, we have 2g—2>6=d. Hence dim H°(L)=4 by Clifford’s Theorem
if one can construct a nontotally geodesic branched superminimal immersion on
L. L is not the canonical bundle for g=5 since 2g—2+#d; Clifford’s Theorem
then concludes that M is hyperelliptic. Finally, Propositions 5 and 6 finish the
cases g=3, 4. Q.E.D.

Theorem 2 brings forward the question of classifying .# ¢(M) for a hyperelliptic
surface M of genus g. We will do it for g> 3 in this section.

Consider a hyperelliptic Riemann surface M of genus 3. Let L be a line
bundle of degree 6 over M and let  be the curve of degree 6 associated with L
in CP3. Assume y is imbedded and identify M with C=y(M). For a point pe M
consider the projection 7, whose center is p. C’'=np(C) is a curve of degree 5 in
CP? which has a unique triple point as singularity by the genus formula and the
fact that a hyperelliptic Riemann surface of genus >3 has no meromorphic functions
of order 3 (so that the singularity cannot be a double point). Let this singular
point be x and let n~'(x)={p,p,,p3}. As before, p, p,, p, and p, are collinear,
and the projection whose center is this line is a meromorphic function of order
2; let the pole of this function be a Weierstrass point # chosen once and for all. We
have

Note that K=4#. Consider the correspondence T(p)=p,+p,+p;. T has valence
1 since T(p)+p=L—2%. Furthermore deg(T~')=3; for otherwise, if p, € T(g) for
q#p,p1 D3 then p, q, T(p) and T(g) would be coplanar so that deg(C)=>7. It
follows from the Cayley-Brill formula that 7 has 12 united points. Now since
the tangent line to ¢ at a ramified point p is of contact order >3, we see that
we may assume p,=p;=p in (4.3) so that on the one hand

4.4) L=2%+3p+p,,

and on the other hand p is a united point. Hence the number of ramified points <12.

Proposition 7. Let M be a hyperelliptic Riemann surface of genus 3. A
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nontotally geodesic branched superminimal immersion of degree 6 from M into S* is
the pullback of a branched superminimal sphere of degree 3 via the branched double
covering ¢: M — CP".

Proof. Let L be the line bundle of degree 6 generating the nontotally geodesic
branched supeminimal immersion. As before let § be the holomorphic curve in CP3
associated with L.

In what follows, we will assume that L 6#%; otherwise it is just the conclusion
of this proposition, because y=[1:¢:¢%:¢>] then.

Case 1. y is nonsingular. o, =a;=0 for all ge M by Lemma 6. Let p be
a ramified point of Y. By (4.4) dim HO(L —i-p)=(4—i)+dim H°Q#+(i—3)p—p,)
=473,2,2 if i=0,1,2,3 since  is an imbedding and its first associated curve is
singular at p. Now dim H%L —4p)=dim H°Q2%+p—p,), and moreover H°Q2#+ p)
= H°(2%) because M has no meromorphic functions of order 3. We see that
dim H%(L —4p)=dim H°Q2#+p—p,)=2 or 1 if p=p, or p#p,, respectively. (If
dim HoQ2#+p—p,)=2 when p#p,, then p,=# and #+p=2% since dim H°(%+p)
=2; hence p=p, =4 and L=6% by (4.4), which is excluded.) It follows that either
p=p, where (a;,a,,03)=(0,2,0) and L=4p+2%, or p#p, and (a,,a,,%;3)=(0,1,0).

We now estimate the number of ramified points p for which L=4p+2#. Pick
one such point p,. Any other such p satisfies 4p=4p,=L—2%. On the other
hand, dim H°dp,)=2 by the Riemann-Roch Theorem since K#4p, (or else
L=6%). We assert then that all these ramified points belong to the gi generated
by 4p,, each of ramification index 3. Since the Riemann-Hurwitz formula says
that the total ramification index of this g} is 12, it follows that there are at most
4 ramified points p such that L=4p+2%. The formula X,(4—k)x, =48, 1<k<3,
for i then implies that there are at least 16 ramified points such that L=3p+p, + 2#
with ps#p,. This is a contradiction since we mentioned preceding this proposition
that there are at most 12 ramified points.

Case 2. Y is singular. L=K+x+y for some x and y; since we assume that
K#6%, we have x+y#2%. Now dimHL—i - #)=4—i+dim H(i-$#—x—y)=4,3,2
for i=0,1,2 clearly. If dim H%L —3#)=1, then since dim H°(L —4#)=dim H%(x +)
=1 (recall x+y+#2%) we have that near #, }y assumes the parametric form
[1:z:2%:z™] with m>4 so that a, #a, at #, which is ruled out by Lemma 6. Thus
dim Ho(L—3%)=2, i.e., dim H°(3%—x—y)=1. Hence there is a point z such that
3#=x+y+z However, this forces x=4% or y=%#; for on the one hand one of x,
y and z must equal # since there are no meromorphic functions of order 3,
and on the other hand z+##, or else x+y=2%. Assume x=#, so that L=5%+y,
with y#% Now dim H(L—5%)=dim H%(y)=1, and dim H°(L—6%)=dim H(y
—#)=0. We conclude that near #, y is of the form [1:z:2%:2%], so that o, #a; at
¥, which is impossible by Lemma 6. Q.E.D.

Theorem 3. Let M be a hyperelliptic surface of genus g=>3. Then
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MM)=V 0V,, where V| is the totally geodesic part ~R. (see Section 2 for
notation), and V, is isomorphic to the nontotally geodesic part of M4CP"). V,
and V, are identified along the singular locus of M (CP"). In particular, nontotally
geodesic branched superminimal immersions of degree 6 from M into S* are the
pullback of nontotally geodesic branched superminimal spheres of degree 3 via
the branched double covering of M onto CP'. Furthermore, M M)~ .# (CP")
only when g=>6.

Proof. For the first statement, Proposition 3 takes care of g>6. For g=4
or 5, since 6<2g—2, Clifford’s Theorem suffices for the conclusion. g=3 is
finished by Proposition 7. We are left with showing that .#;(CP') is not
isomorphic to #¢M) for 3<g<5. It is enough to exihbit a g} which does not
come from G(2, H°(L)), where L=(¢*(((1)))*® with ¢ the branched double covering
onto CP'. To this end, observe first of all that a g}e G(2, H(L)) gives rise to a
meromorphic g of degree 6 on M of the form fo ¢, where f is meromorphic of degree
3 on CP!, so that the polar divisor (g),, of g is invariant under the involution t of
M. Now pick a non-Weierstrass point p such that p # t(p) and consider the divisor
6p. The Weierstrass gap values at p are (1,2,3), (1,2,3,4) and (1,2,3,4,5)
for g=3,4 and 5, respectively, since p is a non-Weierstrass point. It follows that
there are meromorphic functions of order 6 whose only pole is p; take such a
function g of order 6. Then (g),=6p, which is not invariant under t; hence
g#fo¢ for any f that is a rational function of degree 3 over CP'.

Q.E.D.

We will classify the case g=1 and d=6 in Section 6. Contrary to g>3,
lots of nontotally geodesic branched superminimal tori exist.

5. Moduli spaces of large degree

In contrast with small degrees, we will next show that when the degree d is
sufficiently large nontotally geodesic branched superminimal immersions of genus
g=>1 are abundant.

Recall that given a Riemann surface M of genus g>2 (g=>1, respectively), let
d>g+3 (=3, respectively). Then M is rationally equivalent to a curve of degree
d with at most ordinary nodes as singularities. This follows from the wellknown
fact that a line bundle L of degree d is very ample if d>2g+1. Furthermore,
for g > 2, there exists a nonspecial very ample line bundle of degree difd>g+ 3 ([11]).

Before proving the existence of a branched superminimal immersion of a
sufficiently large degree d into S*, we recall that a branched superminimal immersion
assumes the parametric form

(5.1 [1:y—2"'xdy/dx:x:2" 'dy/dx],
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where x and y are arbitrary meromorphic functions on the Riemann surface
([2]). Notice that one can interpret [1:x:y] as an algebraic curve in CP2,

Lemma 7. Let F=[1l:x:y] be a plane curve with dual curve F* Let a(p) and
B(p) be the pole order of x and y at p, respectively. Then the branched superminimal
immersion G given in (5.1) is of degree equal to deg(x)+deg(F*)— X (e(p) +n(p) +0(p)

peM

+ {(p)), where e(p) = Max (pole order of y — x dy | dx, 0), if e(p) = B(p). n(p)=P(p) —Max
((pole order of y—2~"xdy/dx)—a(p), 0), if p(p)=2a(p). O(p)=olp), if «(p)<p(p) and
B) #20(p).  L(p)=Bp), if alp)>B(p). (e(p),n(p), 0(p),{(p)=0 elsewhere.)

Proof. We know
F*=[1:xdy/dx—y:dy/dx].

If dy/dx is identically zero, the lemma is trivially true. Assume therefore that
dy /dx+#0. We will count the number of points of intersection of G (F* respectively)
and the plane P,={[s:tu:0]} (the plane P,={[s:t:0]}, respectively). Let o(p) be
the difference between the intersection multiplicities of GNP, and F*n P, at p.

Case 1. x=ap+a,z°+--- and y=by+b,z#+--- around z=0 identified with
peM. Then dy/dx is a zero of order B-o at p (if f>a of course). All the other
coordinate functions for F* and G are holomorphic around z=0. Hence o(p)=0.

Case 2. x=ay+a,z°+--and y=z"f+b,z7#*' 4 ... Then p is a pole of order
o+ p for dy/dx, and all other coordinate functions for F* and G have poles of
order <a+f. In other words P, "G and P, F* are empty at p, and so a(p)=0.

Case 3. x=z"+a;z"**'+... and y=by+b,z#+--- Then p is a zero of order
a+f for dy/dx. The second coordinate functions for both F* and G are
holomorphic around z=0, whereas x, having a pole of order a at p, contributes
o to the intersection multiplicity of G P;. Hence a(p)=a(p).

Case 4. x=z "4a;z7**'+... and y=z"P+b,z7#*'+... Then G is of the
form [(1:(1=p/2u)z"%:z7*:(B/)z* #] and F* of the form [1:(1—B/a)z"?:(B/
®)z*~#]. (We only exhibit the leading term of each Taylor series.) (a): If «=f, then
GNP, is of intersection multiplicity « while F*n P, is of intersection multiplicity
equal to the pole order of y—xdy/dx at p, which is <a. Hence a(p)=a(p)—&(p).
(b): If f=2a, then the intersection multiplicity of F*n P, is a while the intersection
multiplicity of GNP, is Max ((pole order of y—2~!'xdy/dx)—a, 0). Hence
a(p)=a(p)—n(p). (c): If ap)<pP(p) and P(p)#2up), then both GNP, and F*nP,
have intersection multiplicity equal to «. Hence o(p)=a(p)—0(p). (d): If a(p)> B(p),
then GNP, is of intersection multiplicity 2oa—f while F*n P, is of intersection
multiplicity «. Hence o(p)=a(p)—{(p). Adding o(p) in the four cases gives the
result. Q.E.D.
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REMARK. It is important to understand the geometric contents of this
lemma. In CP? pick any three independent points 4, B, C and set up the projective
coordinate system such that 4 =[1:0:0], B=[0:1:0], C=[0:0:1]. Given a Riemann
surface and a holomorphic map f:M — CP?, the projection with center
C (B, respectively) onto the line AB (line AC, respectively) gives the meromorphic
function x (y, respectively). The cases in Lemma 7 can be rephrased as follows:
Case 1 holds if f(p) e CP?\line BC, the affine part of CP2. Case 2 holds if f(p)=C
and f(M) is transversal to line BC. Case 3 holds if f(p)=B and f(M) is transversal
to line BC. Case 4.a. holds if f(p)eline BC and f(p) #B,C. Case 4.b. and 4.c.
hold if f(p)=C and f(M) is tangent to line BC. Case 4.d. holds if f(p)=B and
f(M) is tangent to line BC.

Corollary 1. Notation as in Lemma 7 and the above remark, let M be rationally
equivalent to f(M).
i) If f(M) does not pass through the points B and C, and if line BC intersects f(M)
transversally, then deg(G)=deg(F)+deg(F*).
(i) f(M) does not pass through the points B, C, and line BC intersects f(M)
transversally with the exception of one generic point to which line BC is tangent, then
deg(G)=deg(F)+deg(F*) —1.
(i) f(M) is through C but not through B, and if line BC intersects f(M) transversally
except for one generic point different from C to which line BC is tangent, then
deg(G)=deg(F)+deg(F*) —2.
(iv) If line BC is tangent to Cef(M) as a generic tangent line, and if line BC is
transversal to f(M) otherwise, then deg(G)=deg(F)+ deg(F*)—3.

Proof. (i) is true since it is Case 4.a. in Lemma 7 with («,f)=(1,1) for any
point of intersection of line BC and f(M). Hence &(p)=n(p)=0(p)={(p)=0, and
deg(x) = deg(F).

(i) holds since it is Case 4.a. with (a,f)=(1,1) for deg(F)—1 points of
intersection at which line BC intersects f(M) transversally, where &(p)=n(p)=_0(@p)
={(p)=0. Moreover, it is Case 4.a. for the point of tangency at which (a, ) =(2, 2),
where e(p)=1, n(p)=0(p)=_(p)=0. deg(x)=deg(F) in this case.

(iii) holds since it is (ii) above at all points of intersection of line BC and
f(M) other than C. At C, it is Case 2 in Lemma 7 with &(p)=n(p)=0(@p)={(p)=0.
Furthermore, deg(x)= deg(F)— 1 since C'is the projection center of x and Cef(M).

(iv) holds since it is (i) above for all points of intersection of line BC and
f(M) other than C. At C, it is Case 4.b. with (a,f)=(1,2), where n(p)=2,
ep)=0(p)={(p)=0. deg(x)=deg(F)—1 in this case for the same reason as in
(iii). Q.E.D.

Theorem 4. Let M be a Riemann surface of genus g>2 (g =1, respectively). If
d>5g+4, (=6, respectively), then there is a nontotally geodesic branched superminimal
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immersion of degree d from M to S*. The immersion is generically one-to-one.

Proof. Pick a plane curve F of degree d,>g+3 (=3 if g=1) with only §
nodes as singularities. By the Pliicker formula, g=(d, —1)(d; —2)/2—9d. Let d,
be the degree of the dual curve of F;d, =d(d-1)—26. We have d, +d,=2g+3d,—2
>5g+7 (=9 if g=1) and any two consecutive d, +d, differ by 3. Now Corollary
1 implies that any such d,+d, and the two numbers between two consecutive
dy +d, are achieved as the degree of a nontotally geodesic branched superminimal
immersion; consequently 5¢+7—3=5g+4 (=6 if g=1) is the first degree that
occurs as the degree of a nontotally geodesic branched superminimal immersion
in this procedure. That the immersion is generically one-to-one follows from
inspecting (5.1). Q.E.D.

REMARK. The lower bound for the degree d in Theorem 4 is sharp when g=1,
as we will show in Proposition 9 that all the branched superminimal immersions
of degree <5 are totally geodesic if g=1. However, it is not sharp for g>2. For
example, the above lower bound is 14 when g=2. Now take a plane quartic
curve F of genus 2 with a simple cusp of multiplicity 2 ([15]). The Pliicker
formula shows that deg(F*)=9 so that deg(G)=13. (Notation is as in Corollary
1.) Hence Corollary 1 infers that 10 is a better lower bound. On the other hand,
one can easily construct examples of degree 6 and 8 when g=2 (degree <5 is
excluded by Theorem 1); given the branched double cover ¢:M — CP!, xo¢,
where xe.#,(CP') or 4 ,CP"), will be examples. It is not clear if there are
nontotally geodesic branced superminimal immersions of degree 7 and 9 for g=2.

With the existence result in Theorem 4, we now estimate the dimension of
M (M)

Lemma 8. Notation is as in (2.7). For each xeG]}, there are only finitely
many ye G} for which Randx)=Ran(y).

Proof. Let L,=n(x) and L,=n(y). Rawn(x)=Ram(y) implies KR(L,)>
=K®(L,)?* and hence (L,)®>=(L,)®. So there are only finitely many such L,. Now
apply Lemma 2. Q.E.D.

In the following theorem we refer to a Riemann surface of genus g as being
“generic” if G} is an irreducile variety of dimension equal to the Brill-Noether
number 2d—g—2. For example, all Riemann surfaces are generic in this sense if
d>2g—1, or d>2g—2 since G} is the canonical blowup of W] ~J(M) at the
canonical bundle K regarded as a point in J(M) ([1]), or when M is sufficiently
general in the moduli space of Riemann surfaces of genus g so that the Brill-
Noether Theory applies.
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Theorem 5. Let M be a generic Riemann surface of genus g in the above
sense. Then the dimension of each irreducible component of M (M) is between
2d—A4g +4 and 2d—g+ 4, where the upper bound is achieved by the totally geodesic
component.

Proof. A glance at (2.7) shows that we need to impose the condition
Ram(x)=Ram(y) for (x,y)e G, x G} to find the dimension of A (M). Now since
Ram maps Gi to S 2*24)\ the (2g—2+2d)-fold symmetric product of M,
Ram(x)=Ram(y) imposes at most 2g —2 + 2d conditions to carve out a subvariety
of G} x G of dimension 4d—2g—4. Hence the set S={(x,y)e G} x G;}: Ram(x)=
Ram(y)} is of dimension >(4d—2g—4)—(2g—2+2d)=2d—4g—2. Notice that
both x and y give rise to 3-dimensional meromorphic functions, respectively. So
dim A (M) >(2d—4g —2)+ 6, which is the lower bound. Here, we do not need
to worry about the other two conditions, namely, n(x)=n(y) and x and y have
disjoint base loci as given in (2.7), since once we are given a (xq,yo)€ S satisfying
the two extra conditions, then any element (x,y) in the irreducible component of
S containing (xo,y,) will satisfy n(x)=m(y), by continuity, due to Lemma 8; moreover,
for (x y) near (x,,y,), x and y will have disjoint base loci, by continuity again. To
obtain the upper bound, observe that for each xen™!(L) with Le W/}, there are
only finitely many (x,y) in S by Lemma 8. Hence dimS<2d—g—2, and so
dim A& (M)<(2d—g—2)+6, which is the upper bound. Q.E.D.

When g =0, the upper and the lower bounds in Theorem 5 are identical. Hence
M (M) is of pure dimension 2d+4, which is obtained in [12], [17]. When g=1,
we will show in section 6 that the lower bound is achieved for d=6.

We now look at Theorem 5 from a different point of view, which will facilitate
the calculations to follow in the next section. Recall the map %:G(2,H°(L))
- P(H°(K®L?)) defined in (3.1). Let x and y, x=[e, Ae,], and y=[e;Ae,], in
G(2,H (L)) satisfy #(x)=2(y). Then [e, Ne,—e;Ae,] is the projection center of
R restricted to G(2,V,), where V, is spanned by e, :-,e,. Observe that
w=e,; Ne,—e;Ne, satisfies o AwAw=0. Conversely, a skew-symmetric form w
satisfying w Aw Aw=0 is either of rank 2 of the form e, Ae,, or of rank 4 of the
form e, Ne,—e;Ne,. It is now clear that each point w in the intersection J of
Ker # and the projective variety & = P({we NX2(H(L)): o Aw A w=0}) in P(\*(H°(L))
is the center of the restriction of # to G(2,V,) for some 4-dimensional linear
subsystem V, spanned by some eg,e,,e,,e5. (By Lemma 1, this intersection cannot
contain a form w of rank 2.) Then f,=[ey:e,] and f,=[e,:e;] give rise to a
superminimal immersion. Now since dim % =4k—11 if dim H%(L)=k, a simple
dimension count says that dim ¥ >2d—5g—6. In particular ¥ is nonempty for
every d>(5¢+6)/2. (See [19] for a better bound for a general Riemann
surface.) Varying LeJ(M), we must add g =dim J(M) to the lower bound, which
again gives the lower bound in Theorem 5.
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RemMARK. Note, however, that the above consruction does not supersede
Theorem 4, because elements f; and f, which come from J might have common base
loci so that the degree would be lower than 4. What Theorem 4 implies is that
for a sufficiently large d, there is always a line bundle L of degree d for which
KerZn ¥ contains an element e, Ae,—e3/A\e, where e,,---,e, have disjoint base
loci. In any event, the above construction does show the existence of nontotally
geodesic branched superminimal immersions of degree<(5g+7)/2.

6. The case g=1

Let M be a Riemann surface of genus 1, and let L be a line bundle of degree
d. Then L is the bundle associated with the divisor d-p for some point p. By
applying the translation p+—0 on the torus, we may assume without loss of
generality that p is 0, so that H°(L) is generated by the d sections 1, p,p’,p”,-,p“~ 2.

Proposition 8. Let M be a Riemann surface of genus 1 and let L be a line
bundle over M of degree d<5. Then R:N*(H°(L))—» H°(K®L?»)=HL? is
injective. Hence the moduli space .# (M) consists only of totally geodesic branched
superminimal immersions.

Proof. Recall the notations in (2.3) and (3.1). Observe that each of [1,p®] and
[p®, pY], 0<i, j<d—2, consists only of all even or all odd order terms in the polar
part of its Laurent expansion. If d<4, then an easy computation shows that the
orders of the leading terms in the Laurent expansions of [1,p®?] and [p®,p"],
0<i, j<d-2, are all different; thus these bracketed quantities are independent in
H%L?. So £ is injective. For the case d=5, one checks similarly that those
brackets with odd order terms are independent. The only possibility that #£ might
have a kernel would be resulted from nontrivial linear relations among [1,p'],
[1,p?], [p,p], [p,p"], and [p,p®¥]. Differentiating the wellknown differential
equation (p')>=4p3 —g,p—g, sufficiently many times, we obtain

P —2,/2, o0 6 0 0 1
p"" —12g,, —18g,, 0, 120, 0 )
pp’—(p')? = g 82/2 0, 2 0 v’
pp” —p'p” 0, 0, —6g,, 0, 72 ®)’
PP —(p")> —(g,)%/4, —12g5, —6g,, 0, 12 (0)*

It is clear that 1, p, (p)?, (p)3, (p)* are linearly independent, and a straightforward
calculation shows that the determinant of the above 5 x 5 matrix is —27 x 2!%(g,)?
—27(g3)*)#0 for a torus. Therefore # is injective. Q.E.D.

Corollary 2. For d>5, R is surjective.
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Proof. Since dim A>(H°(L))=dim H°(L?) =10 if L is of degree 5, Proposition 8
shows that #:AH®L)) > H%L?) is bijective. If L is of degree 6, then among
the brackets [1,p?] and [p®,pY], 0<i, j<4, [p®,p?], and [p®,p®] are
independent of each other and of all the other brackets since the leading terms
in their Laurent expansions are of order 11 and 12, respectively, while others have
order <10. Hence the dimension of the linear subspace generated by all these
brackets in H%(L?) is of dimension at least 12, i.e., dim Z(A2(H°(L))=>12. Therefore
dim Z(A*(H°(L)) =12 since dim Z(\2(H°(L))<dim H°(L?>)=12. In other words, #
is surjective. Exactly the same reasoning takes care of all d>6. Q.E.D.

RemaRrk. Corollary 2 had been proved in [18]. However, our proof is
elementary.

Now since the projective codimension of Ker # is precisely 2d+g—1=2d if
L is of degree d by Corollary 2, a glance at the construction of J suggests that
dim 7 =2d—5g—6=2d—11. We will show in the next proposition that this is
true if d=6.

Proposition 9. Let M be a torus and L be a line bundle of degree 6. Then
dimJ =1. Hence the nontotally geodesic irreducible components of M¢M) all
have dimension equal to 12; in particular the lower bound in Theorem 5 is achieved
by these components.

Proof. Let e,,e,,-,e¢ be a basis of H°(L). The Euclidean dimension of the
kernel of # is 3. Let E,, E,, E; be a basis of Ker%®; E,, E,, E; are linear
combinations of e;Ae; 1<i, j<6. Let w=xE,+yE,+zE;, x,y,zeC, be any
element in . Rewriting w AwAw as a multiple of e; Ae,NesANeyNesNeg and
incorporating the fact that w satisfies w AwAw=0, we see that w is defined by
a nonvoid homogeneous polynomial of degree 3 in x, y, z. In other words, I
is defined by a plane cubic curve. Hence dimJ =1. Q.E.D.

When g=0, the nontotally geodesic part of .#,(CP") is irreducible, and hence
M {CP") consists of two irreducible components ([13], [17]). This is not the case
in general when g>1 as the following proposition shows.

Proposition 10. Let M be a torus. The nontotally geodesic part of M (M)
can be reducible, although for a generic torus it is irreducible.

Proof. It suffiecs to find a torus for which J is reducible and one for which
J is irreducible. Consider the torus where g,=0 and g;=1. Set e;=1, and
e;=p"“~?, 2<i<6. Recall that a linear relation X, x;[e,e;1=0 gives T, x;ie;Ae;
in Ker Z, and vice versa. Comparing the coefficients in the Laurent expansions
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of all [e;e;] via the identity

p=1/22+ ) a,z*, where a,=g,/20, a,=g,/28, and
i=1

13

n—1
Uy 1y=30—1)7"12n+571 Y ayay,-,
i=1

with n>2, one ends up with three generators E,=108e, Ae;+e;Aeg—5Se,Nes,
E,=T72e;Ney—e, Neg+esNes, E;=—e,; Neg+60e, e, for Ker Z. (We leave out
the details of calculation.) Let w=xE, +yE,+zE;. Then o AwAw=0 results in
the equation yz?—3x2y =0, which is the union of three lines defining 7, so J is
reducible. On the other hand, setting g, =1 and g;=0 yields E,=5¢, Ae,—e, Neg
+5e;Nes, E,=—48e; Ne,—e; Neg+60e,Ney, Ez=—T2e,Ne;—e;zNeg+5Se,Nes.
Hence o Ao Aw=0 with w=xE,; +yE,+zE; asserts that —x>+12xy? +24yz% =0,
which is the torus with g,=1 and g;=0 defining J; thus J is irreducible.

Q.E.D.

7. Concluding remarks

Propositions 9 and 10 point to the challenging question whether the nontotally
geodesic part of # (M) is of pure dimension 2d—g+4 for any Riemann surface
of genus g, and whether it is irreducible, so that the moduli space of branched
superminimal surfaces of degree d consists of three irreducible components, for
a generic Riemann surface of genus g.

As for the compactification of A (M), and so for that of .# (M), a glance
at (2.5) suggests that the space

N M)= {(fi.SD)e R} x R} :nmy(fy)=nny(f3), Ram(fy)= Ramlf>)}

is the natural candidate, which Loo adopted in [13] when the genus g=0. Whether
this is true in the higher genus case depends on whether n,(f;) and n,(f,) having
disjoint base loci encountered in (2.5) is a generic condition; for if it is not a
generic condition, we will have an irreducible component of .# (M) which is
comprised entirely of branched superminimal immersions of degree lower than d,
N M) will then be too large to be the compactification.

We suspect that the answers to these questions are all affirmative for a generic
Riemann surface of genus g, which would follow if the intersection of Ker £ and
< were transversal for all L in J(M).

References

[1] E. Arbarello, M. Cornalba, P. Griffiths and H. Harris: Geometry of Algebraic Curves,



696

(2]
(31
(4]
(51

(6]
7

(8]

9]
(10]
(1]
[12]
[13]
[14]
[15]
[16]
{17

[18]
(191

Q-S. Cu1 anp X. Mo

Volume I, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.

R. Bryant: Conformal and minimal immersions of compact surfaces into the 4-sphere,
J. Differ. Geom. 17 (1981), 455-473.

E. Calabi: Minimal immersions of surfaces in Euclidean spheres, J. Differ. Geom. 1 (1967),
111-125.

S.S. Chern: On the minimal immersions of the two-sphere in a space of constant curvature,
Problems in Analysis, Princeton University Press, Princeton, 1970, 27-40.

J. Eells and S. Salamon:  Twistorial constructions of harmonic maps of surfaces into four-manifolds,
Ann. Scuola Norm. Sup. Pisa 12 (1985), 589-640.

Th. Friedrich:  On surfaces in four-spaces, Ann. Global Analysis and Geometry 2 (1984), 257-287.
W. Fulton and J. Hansen: A connectedness theorem for projective varieties, with applications
to intersections and singularities of mappings, Ann. Math. 110 (1979), 159-166.

M. Guest and Y. Ohnita: Group actions and deformations for harmonic maps, J. Math. Soc.
Japan 45 (1993), 671-704.

G. Jensen and M. Rigoli: Twistor and Gauss lifts of surfaces in four-manifolds, Contemporary
Mathematics 101 (1989), 197-232.

P. Griffiths and J. Harris: Principles of Algebraic Geometry, Weily-Interscience, New York,
Chishester, Brisbane, Toronto, 1978.

R. Hartshorne: Algebraic Geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
B.Loo: The space of harmonic maps of S* into S*, Trans. Amer. Math. Soc. 313 (1989), 81-102.

B. Loo: On the compactification of the moduli space of branched minimal immersions of S* into
S*, preprint.

M. Namba: Families of Meromorphic functions on Compact Riemann Surfaces, Lecture Notes
in Math. 767, Springer-Verlag, Berlin, Heidelberg, New York, 1979.

M. Namba: Geometry of Projective Algebraic Curves, Pure and Applied Math. 88, Marcel
Decker, New York, 1984.

I.R. Shafarevish: Basic Algebraic Geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
J.L. Verdier: Applications hormoniques de S* dans S*, Geometry of Today (E. Arbarello, C. Procesi,
E. Strickland, eds.), Gionate di Geometria, Roma 1984 (Progress in Mathematics 60), Birkhaiiser,
Boston, 1985, 267-282.

J. Wahl:  Gauss maps on algebraic curves, J. Differ. Geom 32 (1990), 77-98.

J. Wahl: Introduction to Gaussian maps on an algebraic curve, London Math. Soc. Lecture
Notes Ser. 179 (1992), 304-323, Cambridge Univ. Press, Cambridge.

Quo-Shin Chi

Department of Mathematics
Washington University

St. Louis, MO 63130

USA

e-mail: chi@math.wustl.edu

Xiaokang-Mo

Department of Mathematics
University of Kansas
Lawrence, KS 66045

USA

e-mail: mo@math.ukans.edu





