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Introduction

Let E4 be the exceptional compact simply-connected simple Lie group and
let PE¢ be the projective group associated with Es. In other words PE¢=E4/ Z(Eq)
with Z(E¢) ~ Z/3 where Z(E¢) denotes the center of Es. The complex K-group
K*PEg) of PE¢ has been calculated by Held and Suter in [5] and by Hodgkin
in [7] independently. In this paper we calculate the real K-group KOXPE) of
PEg;. To our aim, however, we begin with the computation of KXPEg) by a
different method from [5, 7] and we compute KO*(PE) by applying the techniques
parallel to K*(PE¢) and using some results obtained in course of calculation as
well as the result on K*(PEj).

We study these K-groups along the way of getting the K-groups of PE, in
[10]. In the case of E, we used the Z/2-equivariant K-theories because of
Z(E,)~ Z/2. In the present case we make use of the Z/3-equivariant K-theories
and we reduce the structures of the K-groups of PE¢ to those of K-groups of Ej
and L"(3), the usual lens spaces, for 1<n<6. We refer to [6, 12] for information
about the K-groups of Eg.

In Section 1 we review some basic materials and give the ring structures of
K-groups of the relevant lens spaces. In Section 2 and in Sections 3, 4 we
determine the structures of K¥(PE¢) and KOXPE) respectively. The main results
are Theorems 2.1 and 3.1.

The author wishes to express his gratitude to Professor Z. Yosimura who
offered helpful advices for the computaion of KO*(L"(3)).

1. Preliminaries
By I" we denote the center of Eg which is a cyclic group of order 3 and set

r={y|y’=1j}.

Consider the symmetric pair (Eg, Spin(10)-S') with the subgroup of maximal
rank. Then we see that I” coincides with the central subgroup of S* = Spin(10)- S*
or order 3.
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According to [13] we have the following irreducible representations
p:E¢— U8), p:Es— UQ27) and p¥:Eq— U227)

where p¥ denotes the complex conjugate of p, and p the adjoint representation
of E,. Moreover

Kerp=I" and Kerp,=Kerp¥={1}.

And the fundamental representations of E4 are p, p;, A2p,, A3p,(=13p*), A2p* and
p¥, in which in particular p and A%p, are the complexification of real
representations. The same symbols p and A3p, are used to denote also these real
representations hereafter.

By Lemma of [9] (see also [1], Chap. 10) we have
(1.1) The restrictions of the fundamental representations to Spin(10)-S*! are

p=22p1 0@ +A"R1P+A"®173 +1,
p1=1R* + A" ®t+p, @12,
A0, =A@+ 13p @12 +p1o®RE+Ap1o®@1t 1+ A2p @174,
and 22 =23p10@1+23p1 0@t +AT1%p, (R + A" A2p, @173
+01043p10®@1 4+ 1%p ,®1

where p,, and ¢ are the canonical non-trivial 10- and 1-dimensional representations
of Spin(10) and S! respectively, and A* are the half-spin representations of
Spin (10). The restrictions of p* and A2p* are immediate from (1.1) since (A*)*=A*.

Let V be the representation space of the canonical non-trivial complex
1-dimensional representation of I. We write nV for the direct sum of » copies
of V. Let BnV@®C*) and S(hV@®C* denote the unit ball and unit sphere in
nV@®C* centered at the origin o, and let =" *2* = BnV® C*/S(nV® C*) with the
collapsed S(n V@ C*) as base point. And then the lens space L"(3) is defined to be
the orbit space S(n+1)V)/I.

Let nV be embedded in (n+k)V=nV@®kV by the assignment v+ (v, 0). Then
there is an equivariant homeomorphism S((n+k)V)/S(nV)~Z" AS(kV), via which
these spaces are identified below. For our computation we use mainly the following
exact sequences, which are obtained from applying the equivariant K-functor to
the cofibrations

S(nV)x X - BnV)x X > IV AX,

and S(V)x X - S(n+k)V) x X 5 T A Sk VY x X),
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where i’s and j’s are the canonical inclusions and projections and Y, denotes
the disjoint union of a I'-space Y and a point.

(12) () - —>FEY AX) D RABOV)x X) S RSV yx X) >
RHEYAX,)—> -

and (i) - o FEEY ASEY) x X)1) S hES(+R)V) x X) > k¥ SeV) x X)

2 RHEY NSEKV) X X)) -

for h=K, KO, in which there holds d(xi*(y))=d(x)y.

If X is a compact free I'-space then we have a canonical isomorphism
h*¥(X/I') = h}(X) which we identify in the following.

Especially we consider (1.2) (ii) when k=1 and X=a point, E;. Then we have
a homeomorphism

0" AS(V) x X))/ TRE* A(S! x X),

arising from the map from BrV)xS(V)xX to B(C")xS'x X given by the
assignment ((z,,--+,2,),2,X) > (z " 'zy,-++,2 7 2,),2%,27 1x) where z 7 !x is x if X=a point
and denotes the product of z~! and x in Eg4 if X=Eg, under the identification
S(V)=S", the circle subgroup of Es which is a factor of Spin(10)-S' stated
above. Therefore we see that (1.2) (ii) yields the following exact sequence

(13) o h¥S' x X) > hES(+1)V) X X) > BES@V) x X) > hHST x X) = -

for X=a point, E, in which J=j*p* §=¢* 1§ (up to the suspension isomorphism)
and so there holds &(xi*(y))=d(x)y.

For later use we write 4-g for the module over a ring 4 generated by g. We

recall from [11] the Thom isomorphism theorem in complex K-theory. Let
peR(S?) be the Bott element. Then K(S?>")=Z-u" and we have by [11] the
following,
(1.4) There exists an element 7,, of K{Z") such that multiplication by t,y,
x> 1,y Ax, induces an isomorphism KX X) >~ KXZ" A X,) for any I'-space X, the
restriction of 1, to K{0)=R(I') is (1—V)" and forgetting action 7,, becomes u",
where R(I') is the complex representation ring of I

As is well known, given a map f: X — U(n) (resp. O(n)), the homotopy class
of the composite of this with an inclusion U(n) = U (resp. O(n) < O) can be viewed
as an element of K~ 1(X) (resp. KO~ *(X)) for which B(f) we write in any case where
U (resp. O) is the infinite unitary (resp. orthogonal) group. According to [6], then

(1.5 K*(Eg)=AB(p),B(p1) B(A*p1), B(A°p1). B(A*p}),B(pY)) as a ring.
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When we deal with the real K-theory, we consider the complex K-theory to
be Z/8-graded. The coefficient ring of each theory is given by KO*(+)=
ZTn1,04]/ 2nsnininani—4) where n,€ KO™H(+) and KX(+)=2Z[u]/(u*—1) (+ =
point). Let us denote by r and c¢ the realification and complexification
homomorphisms as usual. In [12], Theorem 5.6 KO*(E¢) is determined by using
(1.5) as follows.

(1.6) There exist elements A,,4,€ KO%Eg) such that c(i,)=u3B(p,)B(pT), c(4,)
=u3f(A%p,)B(A%p*) and as a KO*(+)-module

KOXEg)=For(T).
Here F is the subalgebra of KO*(E¢) generated by

B(p), ﬁ(lspl)’ ll, /12

and is a free KO*(+)-module, and T is the submodule of K*(E,) generated by the
monomials

nBlp), np(A’p,), nBlp1)B(Apy),
nBlp,)B(A2p¥), nBlp1)B(A%p1)B(A%pT), nPlp,)BPDB(A*py)

where n is a monomial in B(p), B(A3p,) with coefficients in K*(+). Further,
12=22=0, and B(p)*> and B(A3p,) are divisible by #,.

ReMARKS 1. In fact it follows from the square formula of [4], §6 that

B(p)* =n1(B(A%p)+78B(p)) and B(A°p,)* =n(B(A*(A%p,))+27B(A%p,). And we have
A2p=23p,+p by (1.1), so that B(p)>=n,(B(A3p,)+ B(p)). Using n,r(x)=0 stated in
the subsequent remark we see that n,B(1%(43p,)) is only a linear combination of
n:f(A%p,) and n,B(p), and further observation of the restriction of A%*(13p,) to
Spin(10)-S* leads to n,B(A%(A43p,))=0 which therefore implies B(A3p,)>=n,B(13p,).
As is noted in [12] all the other relations can be easily obtained from making
use of the equality

r(xX)y(y)=r(xcr(y))=r(xy)+r(xy* for x, yeT

where y* denotes the complex conjugate of y.

2. The elements A,, A, described above are unique. For example, if there
exists another element 1) such that c(1,)=c(4}) then, considering the Bott exact
sequence

c J
v+ = KOXEg) > KOHE¢) = KHEQ) — -

where y is multiplication by 5, and ¢ is given by d&(ux)=r(x) [2], we see that
Ay —2, can be written as A} — A, =#,a for some ac KO~ "(E;). But we may assume
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that ae F because of y6=0 and the odd dimensional generators of F are only

B(p), B(A3p;). Hence we see that a is divisible by #2, so that n.a must be zero. This
is quite similar to A,.

We next recall the Bott element of the equivariant KO-theory associated
with I.  Let W=r(V), the realification of V, and we write nW to denote the direct
sum of n copies of W as before. We show that W@ W is provided with a Spin
I'module structure. It suffices to prove that the composite homomorphism

i:I'- Ul)- S0Q2) 4 SO(2) x SO(2) » SO(4), where the unlabelled arrows are
canonical inclusions and d is the diagonal map, may be lifted to a homomorphism i
from I to Spin(4), satisfying ni=i where n denotes the canonical projection from
Spin(4) to SO(4). Now we see that the map yr (cosi+e,e,sinf)(cos] +ese,sink),
where e,,---,e, is an orthonormal basis of R* such that e=—1, ee;=—eje; if
i#j, defines a required lifting i. So we see further that 2nW in general can be
provided with a Spin I'-module structure. To state the Thom isomorphism theorem
in the equivariant KO-theory moreover we need the following fact [11].

(1.7) Let X be a compact trivial I'-space. Then for a real I'-vector bundle E
over X the assignment Er—»HompyXxR,EY®W® Hom(X x W,E) induces an
isomorphism

KOXX) = KONX)®Z- WRK*X)

where C is identified with Hom (W, W) normally. In fact the 2nd direct summand
of this equality is equal to #(Z- V® K*(X)).

From [3] we then have
(1.8) There is an element T4, 3w+ 1, € KO(Z@n+ 20V +42) for ¢=0,1 such that the
assignment X = T4, 4 25w + 4./ X induces an isomorphism KO} X) = KOHZ“" :2""*4‘
AX,) for any I-space X and the restriction of Tis2gw+4. t0 KOHE*)
=Z-ni@Z- Wy is 3"(r(V—1)y(r(e? — V2.

Finally we mention the structure of the K-groups of lens spaces L"(3) for
1<n<6. This can be obtained by easy calculations using (1.3) when X=a
point. As for the O-terms it can be found in [8] for any lens space L"(p) with p,
prime. But the technique used here is essential for our computation in the following
sections. In order to describe the results we introduce the ring generators. By
¢, we denote the complex line bundle S((n+1)V)x V' — L"(3). And we set

0,=,—1eR(L"3) and §&,,=r(ws,)e KO~ (L"3)).

Let p be the composite L"(3)— L"(3) /(L"(3)—N)~S*"*! of canonical projection
and homeomorphism where N is a coordinates neighborhood of some element of
L"(3).

Then we set
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v,=p*@,) R YL'(3) and  ¥,=p*1,)e KO (L"(3))

where p*: A2 1(S2"*1) 5 h2"+(L"(3)) and 1, denotes a generator of A2"*1(§2"+1)
xZ.
Observing the exact sequence (1.3) where X=a point we see that

(19) &v,-,)=3eK%(SY)=Z-1, Ji,)="v, (up to sign) and J1)=(—a,)"

Forgetting the action of I', the v,_, and 1, become 31,_, and p" respectively. So
we have d(v,_,)=3t,,Al (up to sign), so that the 1st formula follows. The 2nd
formula is immediate from the definition of v,_, and the 3rd also follows from (1.4)
immediately. We ignore the sign below because it may be exchanged if
necessary. Then from this it follows that

(1.10)  &(¥,-1)=3€KOXS)=Z"1, J1o)=¥, and Jr(u'*")=r(u'(—0,)").

Making use of (1.3) when X'=a point together with these two facts (1.9), (1.10)
we can get the following results inductively by taking » in turn to be 0,1,---,6.

(1.11) () RUL"B)=Z/3**"06,0Z/3° 62 and K~ Y(L"3)=2Z"v,
for 0<n<6 where s=[%], r=((—1)""'+1)/2 and the ring structure is given by

02 +4+3062+30,=0 and v2=0.

(11) KbO(L”(S)) = {Z/ 38 ) &n,o@z/ 2 N r]lfln (n =O, 4)

Z/[3G,, (otherwise),
AN (n=1,5)
~_ _ O n= 2, 6
KoT(L'®)= 1 25 &:3))

Z/zn%‘_)n (n=0, 4)5

KO'Z(L"(3))={2/3"5.,,1(92/2"117’,, (n=3)

Z/3-6,, (otherwise),
j 0 (n=1, 5)
~ Z (n=2, 6)
3(rn _ n
KOTWOY= 1 zj2mps,  (n=3)
Z 149, (n=0, 4),

Z/36,,®Z/2-n,, (n=2,6)

S —4(rn —
KO %L (3)) {Z/ 3 .'5."’2 (OthCl’WiSe),
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Z3, (n=1, 5)
~. Z 2 25 =
Ko-swey= | /2 =
0 (n=0, 4)
. ( Z/35,;@0Z/2'n5, (n=1,5)
KO~%L'3)= < Z/ 36,3 (n=0,2,4,06)
( Z/3:6,3 (n=3)
Z/Z'ﬁ‘-’n (n=1,5)
and KO~ (L'(3)= OZ et 2’,’:?, K
Z-, (n=0, 4)

for 0<n<6 where s=[%], t=["3'] and the ring structure is given by
FniOn == D)+ (=) (=1 =2)G, (= D+ (= 1 (1Y
~ ()

- s -2
N40ni=20,;,, and V;=0.

2. The complex K-group of PE,

In this section we give the structure of K*(PEj).
We denote a canonical complex line bundle E¢x V' — PEs by ¢ and set

o=¢—1eK(PEy).

Since p and A3p, are trivial on Z(Eg)=T, these can be regarded as representations
of PEg and so the elements

B(p), B(A*p()e K~ '(PE)

can be defined in the manner as mentioned in the preceding section. From (1.1)
we see that p,(y) is a 27 x 27 scalar matrix with all diagonal entries w=exp(2F)
where ye I Hence it follows that the assignments g — p¥(g)p,(g), g A2p,(2)13p,(g)
and g 12p*(g)13p*(g) induce three maps from PE to U where ge Eg.  We denote
also the homotopy classes of maps by

Blpy+p¥), B(13p,+2%py), B(13p¥ +A*p¥)e K~ '(PEg)

respectively. In order to describe the result we need one more element. Let N
be the representation space of the (regular) representation I — SO(3) of N given by
the assignment
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001
Y 100
010

and put F=Egx C*"®N which is viewed as a product bundle over E,. We define
a I-equivariant bundle isomorphism f:F — F by the assignment (g,(v,,v,,V3))
—(g,(01(y*8)v1,01(78)v2,p1(g)v3)). Then fdefines an element of K !(E) in the usual
way, which we denote by

B(ps, I € Ky '(Eg) =K~ (PE).

In fact, this coincides with #(8(p,)) where 1: K~ (E¢) = K '(E¢) is the transfer map.
Then we have

Theorem 2.1 ([5, 7]). With the notation as above

K*(PEg)=A(B(p),B(Ap1),Blp1 + p¥), B(13py + A%p,), B(13p¥ + A2p}), B(p 1, 1))
®P/(B(py,I)o)

as a ring. Here P is the subring of K*(PEg) generated by ¢ such that
P>Z 1®Z/21-0®Z/27 0%,
where the ring structure is given by

63+ 36%+30=0.

We prepare a lemma for a proof of the theorem. According to (1.4) the
restriction of 7,,€ K{(Z7") to R(I) is 27(V—1). From this fact we see that 7.,
yields an equivariant bundle isomorphim « from S(7V) x Eg x 2Q7V®S) to S(7TV) x E,
x (C*"@S) for some I'module S. On the other hand, p, induces an equivariant
bundle isomorphism f from S(7V)x E¢ x (C*’@®S) to S(7V)x E¢ x 2TV®S) given
by f(x,g,(u,v))=(x,g,(p,(2)u,v)). Then, in the usual way, the composite af defines
an element of K; Y(S(7V)x Eg)=K (S(7V)x rEs) which we denote by f(p,).
Similarly, by taking A%p, and A%a, p* and o* and A%p* and A%«* instead of p,
and « respectively we get the elements f(12p,), B(p*), fpt) e K7 {(S(TV) x E).  Also
we denote by the same symbols the restrictions of these elements to K 1(S(nV) x Ej)
for 1<n<eé.

Let =, (resp. m,) denote the projection from S(n¥V)x Eg to the 1st (resp. 2nd)
factor. Put B(p)=n3(B(p), B(A*p))=n3(BA’py), §=nf(0,-\)=nH0) and ¥,
=13V 1).

Then we have

Lemma 2.2. With the notation as above
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KXS((n+1)V) x Eg)=P,®A,/([G®7,)
as a ring for 0<n<6. Here P, is the subring generated by & such that
P,=Z-1®Z/3*"6®Z/3 5*
where s=[%], r=((—1)""'+1)/2 and the ring structure is given by
33+362+36=0,

and A=AB(0).Blp1). B2%01), B3 p 1), B0 1), Blo ), 5.

In other words,

KX(S((n+1)V) x E¢) = ABlo), Blp 1, B(3%p 1), B(2°p,), B2% 1), Blo ) ® K L"(3))

as a ring canonically.

Proof. For a proof we make use of (1.3) when X=E; and we show this
inductively on n. In this case the exact sequence (1.3) is as follows.

s KH(SY X EQ) > KH(S(n+1)V) x EQ) > KFSV) x EQ) > -

in which the maps satisfy §(xi*(y))=4(x)y. Furthermore we see by (1.9) that there
hold the equalities &(¥V,_,)=3, J(1o x 1)=9¥, and J(1)=(—5)". We now check the
Ist stage of our induction. Because S(V) may be viewed as a I'-invariant subspace
of E4 as noted in the preceding of (1.3), it follows that S(V)x rE¢~S' x Eg which
is induced by the assignment (z,g)+ (z3,z"'g) where ze S(V) and ge E, and so

KXS(V)x Eg) = KX(S! x E)
= AGo)@APB(0). B(p 1) B(A%p 1), B(A>p,), B(A% %), B(p}))

by (1.5).

We consider the elements of KXS(V)x E¢) corresponding to the generators
of K¥(S! x Eg) via this isomorphism. By definition we see that f(p,) of K}(S(V) x Eg)
can be decomposed into the form f(p,)+nu for some neZ via this isomorphism
where nyu is constructed with p,|S! and o described in the preceding of Lemma
2.2. Now as mentioned above « arises from 7., and p, | S'=¢*416¢+ 10t~ 2 which
follows from the 2nd formula of (1.1). So we get the case when n=0 by an
inspection of the construction of f(p,). For the same reasons the ff(a)’s correspond
to f(a)’s respectively. In particular, it is immediate as for a=p, 43p,. And also
it is straightforward that ¥, corresponds to 1, up to sign. Hence we conclude that

KHS(V)x E¢)=Ao (= Po®@Ao [ (G®To)).
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For the next stage of induction we observe the above exact sequence when
n=1. Then clearly i*(8(a))=f(a), i*(6)=0 and from the discussion above it follows
that

8(3o)=3, Jo x m)=",ii and J(n)= —G#

where n is a monomial in B(p), Blp,), B(A*py), B(A’p,), B(2*pY), B(p?Y) and ii the
monomial obtained by replacing by f(a)s by f(a)’s in n. Furthermore we have

S(¥on) =3

using the equality 5(xi*(»))=45(x)y. By applying these formulas and the result for
S(V)x Eg to the exact sequence above we can get KXSQ2V)x Eg)=P,®A,
/(G®7,). Similarly we see that the remaining stages of induction can be done in
turn as in the computation of K*(L"(3)).

From this result and (1.11) (i) we infer that the last isomorphism is given by
using the canonical action of KXS((rn+1)V)) on KXS((n+1)V)x E¢) induced by
the external tensor product, and the proof is completed.

Proof of Theorem 2.1. According to (1.2) (i) where X=E¢ and n=7 we have
an exact sequence

~ * i* o
coo > RHZ" NEg,) > KXPEg) » KXS(TV) X Eg) > ---

Here we have j*t,,A1)=276 by (1.3). But p, induces a bundle isomorphism
E¢x 27V = PE¢x C*" in a canonical way because p,(y) is the 27 x 27 scalar matrix
with entries w=exp(2¥) where y is the generator of I So 276 =0 which implies
j*=0. Therefore the above exact sequence becomes the short exact sequence

23) 0 — K*PEg) — KXS(TV) x Eg) - K*(PE¢) — 0.

where § also denotes the composition of the § as above with the inverse of the
Thom isomorphism.

Consider the images of the elements given in the beginning of this section by
i*. Then by an inspection of definition we have

(24) i*0)=5, iI*B(p)=Plp), I*P(A>p1)=B(X*py),
i*Blpy+p)=Plp)+ G+ DB, i*(B(13p,+4%p)))
=138(p)+G + VB(Xpy), iNP(13pF+22p1)=13B(p})+ (G + 1)*f(A%p})
and i*(B(p, 1)) =(62+36+3)B(p,)—Vs.

By these formulas and Lemma 2.2 when n=6 we see easily that the right-hand
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side R of the equality of Theorem 2.1 becomes a subalgebra of K*(PEq), since i*
is injective. Moreover by definition it follows that

(2.5) (Blp))=1 and 6&(g)=62+35+3.

Using (2.4), (2.5) together with the equality d(xi*(y))=J(x)y we can verify easily
that R fills K*PEg), because of the surjectivity of 6. This completes the proof
of Theorem 2.1.

3. The real K-group of PE,

In this section and the following we study the real K-group of PE,. To begin
with we recall the convention done in Section 1. The representations p and A3p,
of E¢ are indeed real and are trivial on the center of E;. So we view these as
real representations of PE, and for these the same notation is used. Furthermore
the complex K-theory is regarded as a Z/8-graded cohomology theory with the
coefficient ring K*(+)=2[u]/(u*—1). Now we set

o,=r(u'o) for 0<i<3.

Then we have

Theorem 3.1. There exist elements 1, I, € KO°(PEg) such that ()= u3p(13p,
+A2p))B(13p* + A2p¥), c(4)=pB(p,, D)B(p, + p¥), and as a KOX(+)-module
KOXPE¢)=PRF®T).
Here
P=2Z/27[6¢,6,,0,,65]/1
where I denotes the ideal of Z/27(64,6,,0,,05] generated by
56— (=) H (= D) (= 1Y =2)5, = (= )T H (= D (= 1Y = D)),

F denotes the subalgebra of KOXPE) generated by P(p), B(A3p,), 4, 4,, which is a
free KOX(+)-module, and T the submodule in K*(PEg) generated by the monomials

nB(p,T), nB(p, +p?), nB(13p1 +A%p}), nBlpy, 1P(13p, +2%py),
nB(py, D)Bpy +pDB(13p, +27p1), Blo1, 1IB(13p, +24%p)B(13pT +4%pY)
where n is a monomial in &, P(p), P(A3p,) with coefficients in K*(+). Further,

P =11=541=0, B(p)> =n,(B(A°p,)+(p) and B(A>p1)*=1,B(Xp,).

REMARK. All the other relations can be obtained from the relations in K*(PEy),
KXL%(3)) and KO*(L5(3)) by using the equalities r(x)r(y)=r(xy)+r(xy*), r(x*)=r(x)
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and (24). The following is a sample calculation. For xeT

r()r(Blp 1, 1) =(50+ 3)r(xBlp, + 1), rx*Bloy +p1)=r(0 +1)*xB(p, + p})),
r(xaf(py, 1) =0, Gor('Blp, 1) =0, (5o +3)r(u'plp, +p})=0, i=1, 3,
@0+ 3r(Blpy + p) =2r(B(p1, ), (Go+ 3 (W2Bloy +pP)=n4r(Blp1, ).

We are now going to prove the theorem. The proof is done parallel to that
of the complex case. However we have a difference between the complex and
real cases in the real version of (2.3) for reasons of the real Thom isomorphism
theorem.

Apply (1.2) (i) to X=E, n=17, then we have an exact sequence

~ * i* 3
coo > KOXE" NEg,) > KOXPEg) - KOXS(TV)x Eg) = -+ .

Combining this with the Thom isomorphism (1.8) such that KO%*4(=¥ AEq.,)
~ KOYZ"Y NEq,) gives the following.

Lemma 3.2. We have a short exact sequence

i* 5~
0 - KOX(PE¢) » KOXS(TV)x Eg) — KOr*(EV NEg,)—0

where § is the composite of & with the inverse of the Thom isomorphism, so that &
is of degree 5 and satisfies 5(xi*(y))=d(x)y.

Proof. The Thom isomorphism is given by multiplication by 74y 4. So any
clement of KOXZ'YAEs,) may be written as x=tgy,4,AX for some x'
e KOXZV**NEg,). Now by (1.8) the restriction of T 4 4 to KO{(Z*) is 9r(u2V — p?)
and by Theorem 2.1 276=0. Therefore we see that 3;%(x)=0.

Consider c(x)e KXZ'VAEg,). Then c¢(x) may be written in the form
ox)=1y Ay for some ye KHEg)=K*PEg). So the restriction of c¢(x) to K*(PEg)
is 270y which is, of course, zero. This shows that ¢(j*(x))=0, so that applying r
to this equality yields 2j*(x)=0. By comparing these two results we see that j*=0
whence the assertion follows.

We are in need of KOXS(7V)x Eg), which is given inductively as in the
complex case by changing 7 for 0,1,---,6 in turn.

In order to describe the result we give some elements of KOKS(nV)x E¢) for
1<n<7. Similarly to the complex case we write d for nf(a) (resp. n3(a)) where
ac KOXSnV)=KOXL" '(3)) (resp. ac KOXE;)=KO*PEg). Moreover, since
KOKS(TV)x Eg)=KOXS(7TV) x rEg), by [12], Proposition 4.7 we have elements
11,2, € KO{S(TV) x Eg) such that ¢(Z;) = i*Blp)B(e?), o(2,) = 1> B(2%p,)B(4%p), which
satisfy 12=12=0. For the restriction of these elements to KOXS(nV)x Eg) for
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1<n<6 we use the same notation. We denote by F the subalgebra of
KOHXS(nV)x Eg) generated by B(p), f(4*py), X1, 1, and by T the submodule of
KXS(nV)x E¢) generated by the monomials nf(p,), nf(2%p,), nf(p,)f(A%p,),
nBlo)B22o%), nBlo)BA2p)B(2%%), nBlp)B(pT)B(A%p,) where n is a monomial in
Blp), BA*p,).

Using the canonical action of KOXL"(3))=KOXS(n+1)V) on KOXS(n
+1)¥) x Eg) induced by the external product we obtain the following isomorphism.

Lemma 3.3. With the notation as above
KOXS((n+1)V) x E¢) = KONL"(3)® kor(+ FOHKHL'3)RT)

for 0<n<6 as a KOX(+)-module and F is a free KOX(+)-module.

Proof. The proof is quite similar to that of Lemma 2.2 and so proceeds
inductively on n. Consider the exact sequence (1.3) when X=E;

- > KOXS" x Eg) > KOKS((n+ )V) x E¢) > KOXS(V) x Eg) > ---

provided with the equality §(xi*(y))=0(x)y. Viewing S(V) as a I-invariant subspace
of Eg as in the proof of Lemma 2.2 yields S(V)x Eq~S!xEs so that
KOXS(V)x Eg) =~ KOXS")®ko++)KOXEe). So we may write KOXS(V)x Eg)
=KOX(Eg)®KO*(Eg) 1, where 1 is the generator of KO'(S') as in Section 1. Hence
by (1.6) and the argument as in the proof of Lemma 2.2 we get Lemma 3.3 when
n=0. This is, of course, the 1st stage of our induction.

Next consider the maps of the above sequence. Then clearly i*(x)=x for
xeF, xeT and i*@,)=0,_,, By (1.10) we have &@F,_,)=3, J(o)=9, and
J(r(@*t")=r(u(—6"). Moreover we note that the degree of v, is considered to be
—1, so that c(¥)=p3"", Using these formulas together with the equality
S(xi*(y))=46(x)y, (1.6) and (1.11) (ii) we can go on with our induction. Thus we
get the lemma.

We are now ready to prove the theorem.

4. Proof of Theorem 3.1

We continue to prove the theorem. We identify the isomorphism of Lemma
3.3 below and consider the images of the elements of KO*(PEs) described in
Theorem 3.1 by i* of Lemma 3.2. It is immediate by definition that i*0;)=ds,
*B)=Blp) i*B(A3p,))=F1%py). And by (24) i*(r(u'Blp, +pt)=r(1'Blp)) + (o
+ DuBlpt)), i*r(uB(13py +A2p)) =r(13u'Blp,) + (o + DU'B(2%py)), i(WBlpy, )=
H(62 + 30+ 3)u'B(p,)— p've). Furthermore we may assume that
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4.1) W) =1321, + 2, + 13r((06 + 121> Blo DB(A7p)).

Because, by using the Bott exact sequence we see that the difference between the
elements on the both sides can be written as the form #,a where ae KOy "(S(7V) x Eg)
which satisfies a>=0 by [4], Example (6.6) and hence if necessary it suffices to
replace either 1, or 1, by 1, +n,a or 1,+n,a. (In fact these a’s above must be
zero by the same reason as mentioned in Remark 2 for (1.6).) Similarly by
definition we can write as i*1,)=(G¢,043); —Ver(u*Blp,)+ma for some
acKO;r(S(7V)x Eg). But the odd dimensional generators of the first direct
summand of KOXS(7V)x Eg) in Lemma 3.3 is only B(p), f(A3p,), ¥¢ and so we
see that the component of a which belongs to this direct summand is
divisible by n3. Therefore n,a must be zero since 5,r(x)=0, so that we have

4.2) 1)) =(G6,0+3)A; —I6r(1* Blp1))-
Since i* is injective. by Lemma 3.2, it follows from this and the relation of (1.11) (ii)
that 6,4, =0.

Because of the injectivity of i* of (2.3), we get by (2.4)

Blp1, 1)+ Blpy, 1)* =(c%+3a+3)P(p, +p}), Plpy +pH*
=(c+1)*B(p; +p¥), B(A2py +A2p})=(c+ 1)*(B(13p, + A%p))
—13B(p, + p)+ B(13pT + A%p3).

(The last element can be defined analogously to f(p, + p¥).)

Denote by R the algebra over KO*(+) on the right-hand side of the equality of
Theorem 3.1. In virtue of the formulas above and (1.11), Lemmas 3.2, 3.3 and
Theorem 2.1 we can then verify that R is a subalgebra of KOX(PEg;). From now
on we prove that KO*(PEj) s filled with R.  This is sufficient to show Theorem 3.1.

Observe the following exact sequence of (1.2) (i)

~ it it EN
s > KOXEY NEg,) > KOMPEg) = KOXS(V) x Eg) = +--.

When we regard S(V) as the circle group which is a factor of Spin(10)-S! < Eg
as before we have S(V)x rEsxS!x Eg, so that KOXS(V)x Eg) = KOXS! x Ej),
and so this sequence can be written as
~ i i 8,
4.3) o= KOXZY NEg.,) 5 KOXPEg) - KOXS!' x Eg) > -+
Moreover we can write as
KO*X(S! x E¢)= KOX(Eq)®KOXEg) 1,

where 1, denotes the generator of KO~ (S') =~ Z.
To investigate Im i§f under the identification above we consider i3 : A}(S(7V) x Eg)
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= h#S(V)x Eg) for h=KO, K where i, denotes an inclusion of S(V)x Eg into
S(7V)x Eg. From the arguments as in the proofs of Lemmas 2.2 and 3.3 it follows
that i¥(B(a))=p(a) for the fundamental representations a’s of Eg so that iX(1)=1,
(k=1,2), and if(oe)=iF(vs)=0 so that i3(Ge;)=i3(V6)=0. Therefore we have
i¥(B(p,))=PB(p,). For the same reasons we get if(F(A2p,))=p(A%p,). As to the
other generators of KOXS(7V)x Eg) it follows immediately by definition that
i¥(06)=i5(ve)=0,i¥(G¢,;)=i5(V6)=0. These formulas, Lemma 3.3 and (1.6) show that

I(KOMS(TV) x Eq)) = KOX(Es)
and so because of if=i}i* where i* is as in Lemma 3.2 we have
iNKOXPEy) = KOXE)

in (4.3). More precisely we have
Lemma 4.4. I{KOXPEg))=if(R).

Proof. We use the same notation as in (4.3) below for the maps j}, i, 6,
of the same kind in the complex version of (4.3). Then by (2.4) we get

4.5 i}Blpy,1)=3P(py1), if(Blp1+pD)=Blp)+B(p}) and iXB(13p,+4%py))
= 13ﬁ(p1)+ﬁ(12m).

For any xe KONPE) we see by Theorem 2.1 that c(x) can be written as a
polynomial in

a, B(p), B(Xpy), Blps+pY), B13p+22py), B(13pF +2%pY), Bps,T)

with coefficients in Z[u]/(u*—1). Therefore using (4.5) it follows that if(c(x)) is
written as a polynomial in

Bp), B(A*py), Blo1)+B(p?), Blpy)+B(A2py), BlpT)+B(A%pY), 3B(py)

with coefficients in Z[u]/(u*—1).
On the other hand it follows from (1.5), (1.6) that c(i¥(x)) can be written as
a sum of a polynomial in

Blp), B(A*py), 1*Blo)BloY), 1>B(A%p)B(A%pY),
2u2B(p), 21*B(Apy), 2uBp1)B(oY), 2uP(A?p,)B(A%pY)

and the elements in the form

nil(B(p,) +(— 1)'foY), mi'(B(A%p1)+(—1YB(A%pY)), '
nil(Blp )P pt) +(— 1Y B(pT)B(A%p 1),
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i B(A2p )P pF)Blp1) +(= 1) Blp?), mp'Blo)B(oTNB(A%py)+(— 1) B(A%p1))

where n is a monomial in B(p), B(A*p,) with coefficients in Z. By combining these
two facts we see that if(c(x)) must be written as a sum of a polynomial in

Blo), B(A%p), 2u>B(p), 2u>P(A%py), 31>Blp1)B(pY), 31> B(A%p,)B(A%pY),
312 B(p1)BpF)B(A% p)B(A2p¥), 61Blp1)B(PY), 6uB(A2p,)B(A%pY),

6uBp)BDBAp)BA2pY), > (Blp)B(pT)+ B(A2p1)B(A%PY) + Blp,)B(A%pT)
—BHBA%py)),

2u(B(p)B(p?) + B(A*p )B(A*pT) + Blp )B(A pF) — Blp})B(A%p 1))

and the elements in the form

np*(B(py) + B(p?)), mu(B(%p 1)+ B(Ap¥)), 3nu?*(Blpy) — Bp}))
3np T B(A2py) — B(A7pY)), Inp* (Blp)B(A2pT) + BloDIB(A%p 1),
3n>(Blp1)B(A2pT) — Bp1)B(A%p 1)), 6mu(Blp1)B(A%pT) — BlpTIB(A% 1))
3np? 1B p )B(A2pENBlp1) + B(pT)): Imu* B(A%p1)B(A%pTNBlp 1) — BloT)),
3nu 1 Blp ) B INB(A py) + B(A7pT)), Imu® Bl )BloTNB(A2py) — B(A* )

where n is as above.
From (4.1), (4.2) and (4.5) we get

cif(B(p) = Blp), cit(nif(p)=21>P(p), cit(B(A’p1))=B(A%p,),
cif(naB(Rp1))=2p>B(2°py), cif(hy)=3u>B(p1)B(pY),
cif(naky) =6pB(p )B(p?), citr(u'lp,, 1) =3u'(Blp1)+(—1)'B(p})),
it r(@ (Blo1, 1) —Blo1 + 1)) = u*(Blp,) + B(p?)),
cif(r((3P(13p1 + A2p1) — 13B(p1, 1)) =3 (B(A%p1) + (= 1) B(2%pY)),
cif(r(?(B(13p, + A2p1)— 13B(p1, 1)+ 13B(p 1 + p1)) = 1> (B(A%p1) + B(2%pT))
and furthermore setting
a=r(l3P(p,, NP(13p, +p¥)—131,, b=341—2991, —13a, c=A—1211,—4a
d=r(u* (31 +p1)—13B(p1, DN3P(13p1 +42p1)—13B(p4, 1))
we get

cif(@)=3p*(Blp) B2 1) — Blo1)B(A2p ), cif(b)=31>B(A%p,)B(A%PY):



ON THE K-THEORY OF PE; 1129

cif(c)=p>(Blp )B(pT) + B(A2p )42 pT) + Blo )B(A%pT) — BlpT)B(A%p ),
cif(ar(u*(Blp 1, 1) — Blpy + p1))=3u** 2 B(A2p )B(A*p1)(B(p1) + Bp})),
cif(ac)=3u>B(p )B(p)B(A*p1)B(A%pT), cit(d) =91 (Blp )B(A*pT)+ Blp)B(Ap ).

By comparing these formulas with the above we obtain
(4.6) Forany xe KOX(PEj) there exists an element y € R such that cif(x) = ci}(y).

By (4.6) and (1.6) we have if(x—y)e F-n, using the symbols of (4.6) where F
is as in (1.6). But 5,4, =i¥n,4,), mA,=ifn,A+n.4;) by (4.1), (4.2) and clearly
i¥(B()=B(p), if(B(A%p,)=B(A3p,). So we see that for any x e KOX(PE) there exist
elements y, z€ R such that if(x)=i3(y +#,z). This completes the proof of Lemma 4.4.

Finally we consider the image of of j¥ of (4.3). Then we have
Lemma 4.7. JHKOXZV NEg,)) < R.

Proof. Consider the composition of j* with § of Lemma 3.2. Then
Imj}#§=Imj¥ because of the surjectivity of §. So it suffices to check that

J¥S(KOKS(TV) x Eg)) = R.

According to Lemma 3.3, KOXS(7V) x Eg)=KOXL(3))® kor(+ FOr(KHL(3)RT).
First we consider the image of the latter direct summand. Observe §(K*(L(3))®T)
where § is the coboundary homomorphism of the same kind in the complex
case. From (2.4) and the equalities c(tgw44) =Ty, T7y=Tey ATy it follows that
5Bp)= —tyu?, 8(ve)=(0%+36+3)tyu®. Together with this, using the formulas
in the preceding of (2.4) and the equality §(xi*(y))=4(x)y where i* is as in (2.3)
we can get §(K*(L5(3))® T) and so it can be easily verified that j*5(r(K*(L8(3))® 7))
< R by using c(tew+4) =Tevkt’.

We now observe the image of another direct summand. Clearly j¥6(x)=0 for
x=0¢: P(p) and B(A%p,). As to the image of ¥5e KO~ 3(L5(3))=KO;3(S(7V)) by
j¥§ we see by definition that j}¥5(ve)e KOrS(4+)=2Z- Wy and ¢j¥d(vs)=0 using
c(vg)=mvs. But c(Wu?)#0, which shows that

Jj1d(ve)=0.

By definiton we can write as c(d;)= —i*u(o +1)2B(p, +p)B(p,) where i* is
as in (23). Therefore ¢jf(1,)=—(o+20)upl(p; +p}), so that ¢jfd(Z;)=cr(up(p,
+p¥). Now i}r(uB(p, +p¥)=0. So we can construct an element a, e KOr 3(Z"
NEg,) such that ja,)=r(uf(p,+p}) and c(a,)=—1(0+1)°uB(p,+p?t). Then,
from the surjectivity of § and the uniqueness of 1, it follows that 5(%,)=a,, so that

jfg(zl) =r(up(p, +pY))



1130 H. MiNnamr

Similarly we obtain
JHA)=rulo + 1°(B(13p, + 22p,) — 13B(p; + p1) + uP(13p¥ +A%pY)).

Using these three formulas we can easily prove that j¥5(KO*LS(3))® kow(+,F)
< R. For exa~mple, SiIlCE Ar((o6+ l)u3ﬁ(p1)ﬁ(12p~’l")l=r(c(ll)(a'6+ D Blp)B(2207)
=0, we have 4,i%1)=4,4, by (4.1). Hence j}5(4,1,)=Ar(uP(p, + p¥). Thus the
proof is completed.

From Lemmas 4.4, 4.7 and the exactness of (4.3) it follows that
KOXPEg)=R immediately. This completes the proof of Theorem 3.1.
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