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Introduction. Let M be a smooth manifold of dimension m and s an
integer such that 1<s<m—1. Let G,(T, M) be the set of s-dimensional linear
subspaces in the tangent space T, M at p and denote by G(T'M) the corre-
sponding Grassmann bundle over M, i.e., G(TM)=U ,ey G,(T,M). Harvey-
Lawson [4] introduces the notion of Grassmann geometries, which is described as
follows. Give an arbitary subset €I/ of G(TM). An s-dimensional connected
submanifold S of M is called a C{/-submanifold if at each point p of S the tangent
space T,S belongs to €I/. The collection of ¢{/-submanifolds constitutes the
CY-geometry. Grassmann geometries are the collective name of such CJ/-
geometries.

We consider €I/-geometries of the following type. Assume that M is a
compact simply connected riemannian symmetric space and denote by G the
group of isometries on M. The Lie group G acts transitively on M and at the
same time acts on G,(TM) via the differentials of isometries. As €IV we take a
G-orbit by this action. The G-orbit €V is a homogeneous bundle over M with
homogeneous fibres, i.e., (V= U ey V,, V,=VNG(T,M), and G acts tran-
sitively on the family of fibres €1/,. Moreover the isotropy subgroup K, in G at
p acts transitively on the fibre ¢{/,. Roughly speaking, Grassmann geometries of
this type correspond to classes of submanifolds with congruent tangent space.
From this point of view the Grassmann geometries are important for us to study
the submanifold theory of riemannian symmetric space.

In this article we especially treat the following G-orbits. Denote by R the
curvature tensor on M. An s-dimensional linear subspace V in T, M is called
strongly curvature-invariant if it satisfies that

(0.1) R(V,V)VCV and R,V V*)V-CV+,
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where 7 denotes the orthogonal complement of V'in T, M. As €l we take the
G-orbit at a strongly curvature-invariant subspace ¥V, and consider the set
S (M) of such G-orbits over all s. By the first condition of (0.1) such a C/-
geometry has a unique complete totally geodesic C{/-submanifold, except the
difference by isometries. Therefore we have the following problem: Determine
all G-orbits €V in S(M) whose CY-geometries have non-totally geodesic V-
submanifolds. 'The motivation to study the G-orbits of this type is due to the
following facts (1), (2):

(1) The fibres €1/, are also symmetric spaces. In fact, taking a subspace
Vin <V,, by (0.1) we have a unique involutive isometry #, on M such that
t,(p)=p, (t,)x(x)=—=x if €V and x if x€V*. Then the involutive inner
automorphism 7 of G defined by ¢, preserves the isotropy subgroup K, and de-
fines the isotropy subgroup in K, at V;

(2) A sumbanifold S of M is called a symmetric submanifold if at each point
p in S there exists a unique isometry ¢, on M such that z,(p)=p, £,(S)=S,
(t))x(x)=—x if x&€ T, M and x if x& N, M, where N, M denotes the normal space.
A symmetric submanifold is a submanifold with congruent tangent space.
Therefore, to study the above problem is useful for the classification of sym-
metric submanifolds.

In the present paper we study this problem on the following situation: M
is an irreducible compact simply connected symmetric space of classical and in-
ner type, and €|/ is a G-orbit such that the restriction of 7 to K, is also of inner
type. Then the Lie algebra g of Killing vector fields on M is compact, simple,
and of classical type. To solve this problem we use a representation theoretic
method of Lie algebra. In sections 1,2 we explain how to use this. In sections
3, 4 we treat the cases that g are of types A4,, B, respectively, where such G-
orbits €I/ are classified and for each €I/ the above problem is solved.

In the forthcoming paper II we treat the cases that g are of types Cy, D,.

1. Main theorem and the outline of proof

Let (M, V) be a pair of compact simply connected riemannian symmetric
space M and strongly curvature-invariant subspace ¥ of T,M. Denote by s, the
geodesic symmetry at p, and by ¢, an involutive isometry of M defined in Intro-
duction. Let g be the Lie algebra of Killing vector fields on M. Then g is a
compact semisimple Lie algebra and the isometries s,, ¢, induce involutive
automorphisms o, 7 of g which commute each other and whose (4-1)-eigenspaces,
as Lie subalgebra of g, act faithfully on (—1)-eigenspaces. 'The (—1)-eigenspace
of ¢ is naturally identified with the tangent space T,M. Through this identi-
fication the Lie algebra g uniquely admits an inner product <, > which is pre-
served by o, 7 and for which the endomorphisms ad (X), X g , are skew sym-
metric. Such a quadruple (g, o, 7, <, ) is called orthogonal pairwise symmetric
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Lie algebra, abbreviated with OPSLA.

Conversely, given an OPSLA (g, o, 7, <, ), we can construct a pair (M, V)
of compact simply connected riemannian symmetric space M and strongly
curvature-invariant subspace ¥ as follows. Let G be the simply connected
compact Lie group with Lie algebra g and K the connected subgroup of G
generated by the Lie subalgebra of (4-1)-eigenspace of ¢. Then M is the homo-
genous space G/K and the riemannian metric on M is induced from the bi-
invariant metric on G defined by {,>. Put p=K in M and denote by ¢, an
involutive isometry of M induced from an involutive automorphism of G defined
by 7. Then ¢, fixes the point p and the subspace V is the (—1)-eigenspace of
()

Two pairs (M, V), (M’, V') are equivalent to each other if there exists an
isometry ¢ of M onto M’ such that ¢.(V)=V", and two OPSLA’s (g, 7, 7, {, D),
(g, o', 7', <, ") are equivalent to each other if there exists an automorphism p
of g onto g’ such that po=0'p, pr=7"p, and {p(X), p(Y))'=<X, Y for all
X, Yeg. Denote by S, O the sets of equivalence classes, respectively. Then
the above constructions give a one-to-one correspondence between & and O.
(See Naitoh [9]). The set & is regarded as the collection of all §(M), where M
moves over the isomorphism classes of compact simply connected riemannian
symmetric space by isometries. The set O coreesponds to the isomorphism
classes of semi-simple affine symmetric space by Berger [2], if we disregard the
difference on the inner product {, >. (See Naitoh [9]).

We now assume that a compact simply connected riemannian symmetric
space M is irreducible. Then the Lie algebra g is a compact simple Lie alge-
bra or two copies of compact simple Lie algebra. In the latter case M is a com-
pact simply connected simple Lie group. If M is irreducible, the riemannian
metric is uniquely determined except a scalar multiple. So we may consider
a triple (g, o, 7) instead of an OPSLA (g,0,7,<,>). Such a triple is called
pairwise symmetric Lie algebra, abbreviated with PSLA. In the followings we
always assume that M is irreducible.

A PSLA (g, o, 7) is called a PSLA of inner type if o is an inner involitive
automorphism of g and the restriction of 7 to the subalgebra of (4 1)-eigenspace
of o is an inner involutive automorphism of the subalgebra, and otherwise it is
called a PSLA of outer type. If a PSLA (g, o, 7) is of inner type the Lie algebra
g is simple since ¢ is inner.

We give examples of G-orbits C}/ in the cases that symmetric spaces M have
rank one, except the Cayley plane.

ExampLE 1. Let M be the m-dimensional riemannian sphere and 7 an
r-dimensional subspace of T,M, where =0,m. Then V is stongly curvature-
invariant and C{/-submanifolds mean r-dimensional connected submanifolds.
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So the ¢|/-geometry admits many non-totally goedesic C}’-submanifolds. Mo-
reover the PSLA corresponding to €/ is of inner type if m, r are even, and of
outer type if otherwise.

ExampLE 2. Let M be the n-dimensional complex projective space.

(1) Let V be an r-dimensional complex subspace of T, M, where r=:0, n.
Then V is strongly curvature-invariant and ¢{/-submanifolds mean 7-dimensional
complex submanifolds. So the €{/-geometry admits many non-totally geodesic
C}’-submanifolds. Moreover the PSLA coresponding to €/ is of inner type.

(2) Let V be an n-dimensional totally real subspace of T,M. Then V is
strongly curvature-invariant and C{’-submanifolds mean n-dimensional totally
real submanifolds. So the C]/-geometry admits many non-totally geodesic CJ/-
submanifolds. Moreover the PSLA coresponding to €[/ is of outer type.

ExaMpLE 3. Let M be the n-dimensional quaternion projective space.

(1) Let V be an r-dimensional quaternionic subspace of T,M, where
r#0,n. Then V is strongly curvature-invariant and ¢{/-submanifolds mean -
dimensional quaternionic submanifolds, i.e., the tangent spaces of submanifolds
are preserved by the quaternion structure on M. In this case €{/-submanifolds
are always totally geodesic (Alekseevskii [1]). Moreover the PSLA correspond-
ing to €Y/ is of inner type.

(2) Let V be an n-dimensional totally complex subspace of T,M. Then
V is strongly curvature-invariant and ¢{/-submanifolds mean #-dimensional
totally complex submanifolds. So the ¢{/-geometry admits non-totally geodesic
CY-submanifolds. Moreover the PSLA corresponding to ¢V is of inner type.

We refer Naitoh-Takeuchi [12] for the existence of non-totally geodesic
CY-submanifolds in Example 1, Example 2, and Example 3 (2). Except the
above examples, there are known examples of ¢V/-geometries which admit non-
totally geodesic C}/-submanifolds. (See Naitoh [9]). These examples are as-
sociated with PSLA’s of outer type.

Our main theorem is now described as follows.

Main Theorem. Let M be an irreducible compact simply connected rieman-
nian symmetric space and <V a G-orbit in S(M) associated with PSLA (g, o, 1)
of inner type. Then g is compact simple and the following hold for g of classical
type:

(1) Let g be the Lie algebra of type A;,1>1. In this case the CV-geometry
admits non-totally geodesic <V-submanifolds if and only if it is ome of the CV-
geometries in Example 2,(1);

(2) Let g be the Lie algebra of type By, 1>2. In this case the CV-geometry
admits non-totally geodesic CV-submanifolds if and only if it is one of the CV-
geometries in Example 1 (m : even and r: even);
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(3) Let g be the Lie algebra of type C,,1>3. In this case the CV-geometry
admits non-totally geodesic CV-submanifolds if and only if it is one of the CV-
geometries in Example 3,(2);

(4) Let g be the Lie algebra of type D,,1>4. In this case no CV-geometry
admits non-totally geodesic CV-submanifolds.

Corollary. Let M, €V be the same as above. Assume moreover that <V is
none of G-orbits in Example 1 (m: even and r: even), Example 2,(1), Example
3,(2). Then a symmetric submanifold which belongs to the CV-geometry is always
totally geodesic.

We here remark that the symmetric submanifolds are classified for the case
that M has rank one. (cf. See Naitoh-Takeuchi [12].)

In the rest of this section we explain the outline for the proof of this theorem.
Let M be an irreducible compact simply connected riemannian symmetric space
and ¢/ a G-orbit in S(M) with PSLA (g, o, 7). Let S be a ¢{/-submanifold.
Take a point p of S and put V'=T,S. We may assume that o, 7 are induced
from the involutive isometries s,, £, Denote by £, p the ({-1)-eigenspaces by o,
and by f.. (resp p.) the (4-1)-eigenspaces in ¥(resp. p) by . Then , is a sub-
algebra of g and vector spaces f_, p, are f,-modules. Moreover we have the
following identifications:

p= TpM’ p-= TpS; P = NpS
and
t=QM), L. =0i(M), t=0;(M)

where Q,(M) denotes the holonomy algebra of M at p and Q7 (M) are subspaces
of Q,(M) defined as follows:

Q3 (M) = {feQyM); f(T,8)cT,S, f(N,S)CN,S}
and
Q;(M) = {feqQ,(M); f(T,S)CN,S, f(N,S)cT,S} .

Denote by « the second fundamental form of S and by 4 the shape operator,
and for x&T,S define an endomorphism 7', of T, M as follows: T.(y)=a(x, y),
—A,(x) according as ye T, S or yEN, S, respectively. Then, since S is a V-
submanifold, the endomorphisms T, x€ TS, belong to Q7 (M) (Naitoh [11]).
So a linear map T of p_ to E_ is defined by T'(x)=T,. It here follows by the
symmetry of & that

(1.1) [T(x), 5] = T:(3) = a(xy) = [T(y), ]

for x, yep_=T,S. Define a linear map p of pX@F._ to A*(pX)®@P. by p(A) (%, ¥)
=[n(x), y]—[(p), ¥] for AEp*@E_ and x,yep.. Here for a vector space
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W, W* denotes the dual space of W. Then p is a f,-homomorphism and
satisfies that p(T)=0. Hence, by (1.1) we have the following

Lemma 1.1 (Key LemMA). If the ¥, -homomorphism p is injective, a V-
submanifold is always totally geodesic.

This homomorphism p is called the komomorphism associated with the G-orbit
€Y. We study on the injectivity of the complexificaiton of p, which is a f.-
homomorphism of (p)* R to A%(PC)* ¢ and is denoted by the same notation
p. Here (x)¢ denotes the complexification of ().

We first see a weight space decomposition of the ¥,-module (pS)*@IC. Let
(g, o, 7) be a PSLA of inner type. Let § be a maximal abelian subalgebra of g
and take a fundamental root system II={a,, -+, &;} in v/ —1}) with respect to
the Cartan subalgebra §¢. Let {H,, ---, H;} in \/—10 be the dual vectors of
1I, i.e., {a;, H;>=3$;; for all 7, j. Then, since ¢ is inner, we may assume that
o=exp ad(z\/—1H,) for some 7 (cf. Murakami [8]). We denote this H; by H,.
Let t, be the semisimple part of . Either of the following cases is possible;
Case (a): t=1¥, or Case (b): t=cPt,, where c=+/—1RH;. In Case (a) put
b,=0. Then §¢ is a Cartan subalgebra of ¥ and the subset II,={ay, ay, -+,
Qi1 Ay -+, @} In /19, gives a fundamental root system of £¢ with respect
to B¢, where «, is the minus multiple of the highest root of II. In Case (b)
the subalgebra ¥ is decomposed into the sum of center ¢ and maximal abelian
subalgebra ¥, in f,, where §¢ is a Cartan subalgebra of ¢. The subset II,=
{ay, =+, &imyy @iy, +++y i} in \/— 1Y, gives a fundamental root system of ¢ with
respect to this Cartan subalgebra.

We now decompose f, into the sum of simple ideals £;, 1<j<r and put
h;=H,Nt;, and then decompose II, into the sum of fundamental root systems
O,={aj, -, @j,;} of ¥f with respect to the Cartan subalgebras §f. Denote
by {Kj,, -+, Kj, ;,} the dual vectors of II; in \/—19;. Since the restriction 7
of 7 to ¥ is inner, we may assume that

(12) 7= exp ad(r v/ 13 K,

for some daul vectors K, ., where the summation 3} does not necessarily move
over allj. Put —a,=3), m, a,;, where m,, 1<k<I, are positive integers. Then,
the following holds.

Lemma 1.2 (cF. C. YEN [13]). (1) In Case (a) an involutive automorph-
ism of ¥ given in the form (1.2) can be extended to an involutive automorphism of
g if and only if the following condition

(1.3) 2 My, =0 (mod 2)

is satisfied. Then every extended automorphism is involutive.
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(2) In Case (b) an involutive automorphism of ¥ given in the form (1.2) can
be always extended to an involutive automorphism of g. Then an extended in-
volutive automorphism is given in the following form:

exp ad(z v/ — 1 K, 5, +2))
for some Ze+/"Te.

Denote by 7, the extended involutive automorphism of g given in the above
lemma: Ty=exp ad(z+/—1K,,), where K, =31 K; o, in Case (a) and K, =
31K, ;,+Z in Case (b). Then, since the f-module p is irreducible, it follows
by Schur’s lemma that 7=, or =740 According to each case we put H,=K,,
or H, =K, +H,.

Let A be the set of roots of g¢ with respect to §¢ and set

Ay, = {a€A;<a, H, and {a, H,)>: even} ,
Ay = {a€A;<a, H,): even and e, H,»: odd} ,
Ay, = {a€A;<a, H,): odd and {a, H,): even} ,
A,. = {a€A;<a, H,) and {a, H.>: odd} .

Then A,, is the set of roots of £ with respect to §¢, and A,_, Ap,» Ay are the
sets of weights of the P,-modules ¢, p¢, p¢ with respect to )€, respectively.
Taking root vectors X,, a €A, we have the following decompositions:

fg = E)CEBZ,,EAH CXu 1€ = EUEAE_ CXa;
pg = EueAp,,_ CXm pg = EueAp_ CXw .

Let w,, @ E A, be the dual forms of X,, aA. Then the set A of weights
of the £,-modlue (p9)*@1IC is given by the set {—a+B; a€A,_, BEA,_} and
a basis of weight vectors is given by 0, @Xg, a€EA,_, BEA,._.

We now take a total order << on \/—1) such that I] is the system of sim-
ple roots in A and denote by A* the set of positive roots in A. Then A, N AT,
denoted by Ay,, is the set of positive roots in A;,. Denote by @ the represen-
tation of ¥¢ on the vector space (P€)*@LC. A vector u in (p€)*QIC is called
maximal if it holds that (Xy)-u=0 for all v in Af,. A maximal weight vector
gives the highest weight vector of an irreducible submodule. By virtue of
Schur’s lemma, to see the injectivity of the ,-homomorphism p assocaited with
the PSLA (g, o, 7), we may see whether p(x) are zero or not for all maximal
weight vectors u.

Our procedure is done as follows. Let # be a maximal vector with weight
AMEA. If u is represented as a proper linear combination of r weight vectors
04, ®Xp, 1<i<r, such that A=—a;+8;, the integer r is called the length
of u and is denoted by I(x). Dividing into the cases that [(x)=1, [(u)=2, and
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I(u)>3, we will see whether p(u) vanishes or not. In the next section we
prepare some conditions to see this.

2. Some conditions for the non-vanishing of p ()

Let (g, o, 7) be a PSLA of inner type and p the ¥,-homomorphism associat-
ed with the PSLA. We retain the notations in the previous section. Let u
be a maximal vector with a weight A in A and represent u as follows:
U=3\4erp_dy 04 QX, 14, Where a,(¢ €T, _) are nonzero complex numbers and T,
isasubsetin A,_. PutT, =x+T,_CA,_. We define complex numbers N, for
a, BEA as follows: N, g is the complex number such that [X,, Xs]=N, s X,.s
if -+ is a root, and N, g is zero if @+ is not a root. Then it follows that

P(u) = 21 a, NJ\+¢.8 (("a A (Ds) ®Xx+a+8
=3 a, NA+¢,8 (wn/\ 0’8)®Xx+m+8
+ 23 (d, Nx-&-m.u’_aa’ N)\+u',a) (mm /\mw’)®X>.+u+a’ .

Here 33, means the summation for « €T',_, §E A, _ such that A+a+3 is a root
in A, and 33, means the summation for a€ly_,8€A, —T,_ such that A+a-+38
is a root, and 3); means the summation for «, a'ely_ such that A +a+a’isa
root and such that a<a’ for the fixed total order < on v/—1%. Noting that
the weight vectors (w0, A @s) @X,+p+8 (06 A 0y?) DX, 1u+er Which appear in the
summations 3%,, 31, are linearly independent, we have the following

Proposition 2.1. The vector p(u) vanishes if and only if the following con-
ditions (1), (2) are satisfied:

(1) &+ is not aroot for any SEA, —T,_ and any BET_;

(2) For distinct vectors a, a' €T, _ such that »+a-+a' is a root, it holds that

a, Nm’,)&u = 8y Ny \+a’ +

By using this proposition we show some conditions for the nonvanishing of
p(w).
Lemma 2.2. Assume that the weight \ is a root in A. Then p(u) does not

vanish if it holds that —Ty_*T,_. Particularly if =T, NTy,_=0, it does not
vanish.

Proof. By the above condition there exists a vector &, in T, such that
—a,&T,_. In Proposition 2.1, (1) put 8=—ay, B=A+a, Then 3+8 is
equal to A, which is a root. Hence p(u) does not vanish. []

Lemma 2.3. Assume that l(u)=1 and put T, ={a} and T, _={B}. Then
p(w) does not vanish if and only if there exists a vector 8 in A,_—{a} such that
8+ is a root.
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Proof. In this case the condition (2) in Proposition 2.1 is always satisfied.
Hence our claim is obvious. [

We now consider the following condition (%) on T,_. This consists of
the conditions (*1), (¥2):

(¥1) For B, 8" in T'y_ such that B<B’, there exists a positive root 7 in
A,“+ such that B3+y=0’;

(#2) For any v in Ay, there exists at most one root 8 in T',_ such that
B+veET,..

Lemma 2.4. Assume that l(u)>2 and that T,_ satisfies the condition ().
Then p(u) does not vanish if there exist two vectors ay, ay(@y<<ey) in T',_ such that
oy+B1=LB+ o is a root in A and ay+ 3, is not a root in A, where a;=B;—N\,
=0, 1.

Proof. Represent u as above, i.e., 4=3),erp. % 0,RX,, where B=nA+a.
By the condition (*1) take a positive root ¥ in Ay, such that 8,=8,+v. Then
the condition (*2) implies that a vector 8 in T',_ such that y+B8€&T,_ is only ;.
Denote by ¢ the representation of ¢ on the vector space (p€)*QEC. Since u is
a maximal vector, it follows that

0= p(Xy)-u
= _Ewel‘p_ a, N‘Y.d-? w¢—1®Xﬁ+2¢EI‘p_ a, N‘Y.ﬂ ww®Xﬂ+‘Y
= (_aul N7.¢o+awo N"-ﬂo) w¢0®X§1

and so
(2.1) @y Ny uy = a4 Nyg, .

We now show that a,, N, g Fa, N, . If so, the vector p(x) does not
vanish by Proposition 2.1, (2). Because A+a,+a; is equal to B+ a,, which is
a root.

We first note that N, s =Ny 1v,80 [Xay Xp =N, 5o Xo+s, and [X,,, Xy]
=N,y X,,- Then, since a;+ 43, is not a root, it follows that
Na‘q.ﬁo X¢1+ﬁo = (I/Nao.v) [[Xao) X'Y]: Xﬁo]

= —(1Nyy,3) ([[ X9 Xgol K]+ [[Xpo» Xao]s Xa])
= —_(I/Ndo-'f) N'Y-ﬁo Nﬂxvﬂo Xﬂﬁ'ﬁo

and SO Ndx:ﬁo Ndo.'fz —N7'50 N

s.ee This, together with (2.1), implies that
a,o Ndl.ﬂ(): —a,l N“O'Bl' [j

We now explain how to apply these lemmas for three cases.

Case (1): /(u)=1. In this case a maximal weight vecotr u is represented
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as follows: u=aw,®Xg, where « is the minus multiple of a dominant weight
of the £,-module p€ and B is a dominant weight of the ¥,-module €. Conversely
a weight vector # constructed by such e, 8 is maximal. The non-vanishing of
p(u) is completely determined by Lemma 2.3.

Case (2): /(u)=2. In this case a maximal weight vector # is represented
as follows: #=a w,®Xs+b w,@X,. The maximal condition of  is described
as follows: For yEA;,,

0= p(Xy)-u
(2.2) = —aNy 4y 0,-yQ@Xpg+aNy g 0, @Xpyy
_bN,,'m,_y w,’—y®Xﬂ’+bN‘Y,5’ wa'®Xﬂ'+'l

where terms which contain w;, X are regarded as zero if 8 is not a root. Suppose
that ¢’ >a and put p=a’'—a=8"—B>0.

We first assume that g is not a root in A. In this case, vectors w,—y®Xp,
0@ Xy 0y-yQX g, 0,s@Xpryy are linearly independent if they appear.
Hence the vectors a—1, B+, a’—v, B8’-+7 are not roots for yEA, . This
implies that @, &’ are the minus multiple of dominant weights in A,_ and that
B, B’ are dominant weights in A, _. Conversely a weight vector # constructed
by such a, a’, 8, B’ is maximal and g is not a root. Such a u is said to be
decomposable.

We next assume that 4 is a root in A, and thus in A;,. By the same way
as above, it follows that a—v, B4, a’—v, 8’47 are not roots for YEA;,
such that y==pu. Set y=pu. Then, by (2.2), it follows that

0= —aN, 44 wu—u®Xﬁ+bNﬂ.ﬂ’ wa’®Xﬁ'+ﬂa
+(@Nup—bN, ) 0,QX s

where vectors w,-.®Xg, 0,QXp/, w,r@Xgu are linearly independent if they
appear. Hence the vectors @— u, B’ u are not roots and it holds that a N, g=
bN, , These imply the following: « is the minus multiple of a dominant
weight in Ay_5 B is a dominant weight in A,_; o' —q, B+ are not weights for
YEA[,—{u}. Then u is given in the following form:

U= a(wu®Xﬂ+(Nu,ﬂ/N#.u) C"a’®Xa') .

Conversely a weight vector u consrtucted by such (@, &', 8, 8’; p) is maximal.
Such a u is said to be indecomposable.

We now consider the non-vanishing of p(u«) for a maximal weight vector
u with length 2.  Our procedure is done as follows: Suppose that % is indecom-
posable. Then T,  satisfies the condition (*). We find out all objects
(a,a’y B, B’; p) and then aplpy Lemma 2.2 or 2.4. Even there is a case that
we can apply neither of these lemmas, using case by case arguments, we can
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check that there is a maximal weight vector v in Case (1) such that p(v) is van-
ishing, or Proposition 2.1 (1) does not hold. Hence in the former case we can
see that p is not injective, and in the latter case we can see that p(x) is non-
vanishing. Suppose next that # is decomposable. We find out all objects
(a, @', B, B') and then apply Lemma 2.2. (In this case we can not apply Lemma
2.4 because of the condition (*1).) Even if we can not apply Lemma 2.2, we
can check the same facts as the indecomposable case. Hence our procedure is
completed.

Case (3): /(#)>3. It is not difficult to determine the weight spaces with
dim>3 explicitly by using case by case argument, and we can use the same
arguments as in Case (2).

We last explain about the notion ‘“‘family of PSLA’s”. Let (g,0,7) be a
PSLA. From this PSLA we can construct the following new PSLA’s: (g, o, 70),
(8, 7, @), (8, 7, 70), (8, o7, 7), and (g, o7, 7). The collection of these PSLA’s is
said to be a family. For PSLA’s in the same family, the subalgebras . coincide
and the collections of subspaces f_, p., b concide except order.

Let & be a family. By arguments in §1, if a PSLA in & is of inner type,
all PSLA’s in & are also of inner type. We then say that & is of inner type.
Otherwise, we say that & is of outer type.

Two families &F, F' are said to be equivalent to each other if there exist a
PSLA in & and a PSLA in &’ which are equivalent to each other. Then the
PSLA’s in F equivalently correspond to the PSLA’s in &,

In the following sections we will first see the equivalence of families and
the equivalence of PSLA’s in each family, and next see the injectivity of p for
each PSLA.

3. The PSLA’s with Lie algebra g of type 4,

Let g be the Lie algebra of type 4, that is, the Lie algebra 8u(/+4-1) of skew
hermitian matrices of degree /41 with trace 0. Then the Dynkin diagram of
the fundamental root system II is given as follows:

O—0—+—0 —ay = ayta,t-+a
o a;
Put
0; =expad(v/—1= H;), 1<i<ZL
0, = expad(v/—1w(H;+Hy), 1<j<k<I

and let A, 1<j<i<l, and JA;; j, 1<j<i<k<l, be the families which con-
tain the PSLA’s (g, 0;, 9,), (8, 0:, 0;), respectively.
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Lemma 3.1. 4 PSLA (g, o, 7) of inner type is equivalent to a PSLA which
belongs to one of the families A;; or A;; 4, by an inner automorphism of g.

Proof. We may assume that 0=6;. Then f=c+¥f,. We divide into the
following cases: (1) =1, (2) =l, and (3) 1<i</.
Case (1): 7=1. The Dynkin diagram of II, is given as follows:

0O—0—+—0

a, O a;

Hence we may assume that the restriction 7 of = is given in the following form:
r7=expad(\/—1xz K;), where 2<;<L Put K,=a H,+-++a;H, Since
<K, ayp=38 for 2<k<], it follows that K ;=a, H\+H; and thus 7=exp ad
(v —1=H,;). This implies that r=7,=exp ad(/—1# H;) or r=7y0. Hence
the PSLA (g, o, ) belongs to 4.

Case (2): =1 By the same way as Case (1), the PSLA (g, o, 7) belongs to
Ay, where 1< 7 <I—1.

Case (3): 1<i<l. The Dynkin diagram of II, is given as follows:

0—0—+—0 O0—0—+—=0

a, o iy Qi Qg a;

We may assume that the restriction 7 is one of the following cases (a), (b), (c).
(a) 7=expad(v/—17zK)),1<j<i—1: It follows that K;=a; H;+H;

for some @;€R and thus 7=expad(v/—1= H;). This implies that r=7,=

expad(v/—1= H,) or r=7y0. Hence the PSLA (g, o, ) belongs to ;.

(b) 7=expad(v/—1#K}), i+1<k<I: By the same way of (a), the
PSLA (g, o, 7) belongs to  4,;.

() T=expad(v/—1#(K;+K,)), 1<j<i<k<I: It follows that K;+K,
=a; H;+H;+H, and thus 7=exp ad(\/—1#(H,;+H,)). This implies that
r=T7,=exp ad(\/—1#(H;+H,)) or 7=7,0. Hence the PSLA (g, o, 7) belongs
to A u O

If /=1, there exists no PSLA of inner type. So we suppose that />2.
From the above proof, we can see that the subalgebra t, for A;; has the 2-
dimensional center and that the subalgebra . for 4;; ;, has the 3-dimensional
center. Hence the families A;; are never equivalent to the families J;; ;.
We first see the equivalence among the families A;; and then the equivalence
among the PSLA’s which belong to each A;;.

Let V be an (/4 1)-dimensional eucildean space which contains /—15 as a
subspace, and {e,, ::-, ¢;4;} an orthonormal basis which satisfies that a;—e;—e;,,
for allZ. 'Then it holds that

Hi= et orter iy Sitte
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for all 7. Let W(A) be the Weyl group of the root system A. Then W(A)
equals the group of permutations of e,, -+-, ¢;1, and each element in W(A) in-
duces an inner automorphism of g. For an integer k such that 1<k<I4|1, let
w§ be the element in W(A) defined by the permutation

1 2 «-k—1 k k41 - l—{—l)
(k E—1 - 2 1 Rkl - I41)°

For integers j, k such that j, k>1 and j+k<I+1, let w{* be the element in
W(A) defined by the permutation

( 1 - j  j4+1 o j+k j+k+1 - l—}—l)
k4+1 o j+k 1 o kR j4+RE1 o 141)7
Then it follows that
wi(H;) = Hy—H,; (1<i<k),
wi(H,) = H; (k<i<Il+1),
where we regard H,,; as 0, and it follows that
wit(H,) = Hyuu—H,,
wit(H,)=H; (j+k<i<I+1).

Let ¢k, @i* be inner automorphisms of g induced by wé, w{*, respectively.
Fora family J/;; put i=j+k and I4+1=i{r. Then j,k,7>1 and the
following holds.

Proposition 3.2. Two families A;;, Ay are equivalent to each other if and
only if the triples (j, k, 1), (j', k', r") coincide except order.

Proof. Consider the PSLA (g, 6;, 8;) in 4;; and the PSLA (g, 6/, 6,/) in
Ao Then it follows that dim ¥_=2jk, dim p,=2kr, dim p_=2jr and that
dim ¥.=2j'k’, dim p},=2k'r’, dim p.=2;"r’. (See (3.3) later.)

If A;; is equivalent to Ay, triples (jk, kr, 7j) and (j'&’, k'r’, 7'j") coincide
except order. This implies that triples (7, k, 7), (j', k', r’) coincide except order.

To prove the converse we may prove the following equivalences:

(1) J-’j = Ay and (2) Jli,' = Ay,

where A4, A,14,, have triples (%, j, 7), (r, k, j), respectively.

(1) Consider the inner automorphism @{*. Then it follows that @{* 6,=6,
oi*, @i* 0,=0, 0, pi*. This implies that (g, 6;, ;) is equivalent to (g, 6, 6; 6)
and thus A;; is equivalent to Ay.

(2) Consider the inner automorphism @*'. Then it follows that @¢** 6;

I+1

=0, pi*!, @i*! 0,=044, @o**. This implies that A;; is equivalent to Ays,,,. [J
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By virtue of this proposition we may consider only the families A;; with
triple (j, k,7) such that j<k<r. Such a family is said to be a proper family
of type AI and a family without the above condition is said to be simply a family
of type Al

Proposition 3.3. Let A;; be a proper family of type Al with triple (j,k, 1)
and set (g, o, 7)=(g, 0;,0;). Then the following hold:
(1) If j<k<r, all the PSLA’s in A;; are non-equivalent to each other;
(2) If j=k<r, only the following equivalences hold:

(3.1) (@ 0,7) =(8,0,07), (8 7, 0) = (g, 07, 0),

(@ 7 07) == (8,07, 7) ;

(3) If j<k=r, only the following equivalences hold:

(3.2) (@, 0,7) =(g,07,7), (8 7, 07) == (8,07, 7),

(@ 7,0) =(g7,07);
(4) If j=k=r, all the PSLA’s in A;; are equivalent to each other.

Proof. (1) Since dim f-<dim p_<dim p,, Our claim is obvious.

(2) The equivalences (3.1) follow since @{* ;=0 @{* and @{* §,=0, 0, p{*
=0,0, oi*. The non-equivalences for other pairs in 4;; are easily obtained by
the fact that dim f_<<dim p_=dim p,.

(3) Consider the inner automorphism (@{*)™! @{*! @{* instead of @f* in
(2). Then our claim follows by the same way as (2).

(4) The equivalences (3.1), (3.2) hold for k<r and j<&, respectively.
Hence our claim is obvious. []

In the followings the equivalences (3.1) are said to be of first type and the
equivalences (3.2) of second type.

We next see the equivalence among families <;; ;; and then the equivalence
among the PSLA’s which belong to each J;; ;. For JA;; ; put j=a,i=j+b,
k=i+c, I+ 1=k-+d. Then a,b,c,d>1 and the following holds.

Proposition 3.4. Two families A;; j, Ay ; ;v are equivalent to each other
if and only if the quadruples (a, b, ¢, d), (a’,b’, c¢’, d") coincide except order.

Proof. Consider the PSLA’s (g, 6;, 0,) snd (g, 07, 64+). Then it follows
that dim ¥_=2(ab+-cd), dim p,=2(bc+ad), dim p_=2(ac-+bd) and that dim .=
2(a’ '+’ d’), dim pL=2(b" ¢'+-a’ d’), dim p.=2(a’ ¢'+b' d’),. (See (3.8) later.)

If A;; 4 Air:ju are equivalent to each other, triples (ab+cd, be+ad,
ac+bd) and (a’ b'+c' d’,b" ¢'+a’ d’,a’ ¢'+b’ d’) coincide ecxept order. This
implies that quadruples (g, b, ¢, d), (a’, b', ¢’, d') coincide except order.
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To prove the converse we may see the following equivalences:

(1) Ji:;kgu‘zi:bk, (2) Ji:;kguqk-j:k—i,k,
3) A;; k== Jd+c;d,d+c+b

where A;; iy Ap-; ; 4-ikr Ade d,a+c+5 have the quadruples (b, 4, ¢, d), (¢, b, a, d),
(d, ¢, b, a), respectively.

(1) Consider the inner automorphism @{’. Then it gives the equivalence
of (g, 0;, 0,4) onto (g, ;, 6, 0;). Hence A;; ; is equivalent to A;; ;.

(2) Consider the inner automorphism @§. Then it gives the equivalence
of (g, 0;, 6;4) onto (@, O4-;,4, 04-,). Hence A;; 4 is equivalent to Ay ; y—i 4.

(3) In the same way as Proposition 3.2, (2), the equivalence (3) is obtained

by the automorphism @§*’. []

By virtue of this proposition we may consider only the families J%;;
with quadruple (a, b, ¢, d) such that a<b<c¢<d. Such a family is said to be a
proper family of type AII and a family without the above condition is said to be
simply a family of type AII.

Proposition 3.5. Let J;, ;; be a proper family of type AII with quadruple
(a,b,¢,d) and set (8, o, 7)=(g, 0;, 0,;;). Then the following hold:

(1) If a<b<c<d, all the PSLA’s in J; ; ;, are non-equivalent to each other,

(2) If a=b<c<d or a<b<c=d, only the equivalences of first type hold;

(3) If a<b=c<d, only the equivalences of second type hold;

4) If a=b=c<d, a<b=c=d, or a=b=c=d, all the PSLA’s in A; ;; are
equivalent to each other.

Proof. (1) It follows that dim f_>dim p_>dim p,. Hence our claim is
obvious.

(2) Assume first that a=b<c<d and consider the inner automorphism
@i". Then it follows that @f’6,=0, i’ and @i’ 0,,=0; 0, pi’=0; 6, p1".
Hence the equivalences of first type are obtained.

Assume next that a<b<c=d and consider the inner automorphism @=
(@6*") ! @1 @ot'.  The equivalences of first type are similarly obtained.

For both cases it holds that dim f_>dim p_=dim p,. This shows the
non-equivalences for other pairs in J;; ;.

(3) Consider the inner automorphism @=(@{’)™' @f @i’. Then it gives
the equivalences of second type. The non-equivalences for other pairs in J;;
follow by the fact that dim f_=dim p_>dim p,.

(4) The equivalences of (2) hold for 4<c¢ and those of (3) hold for
a<b=c<d. Hence our claim is obvious. [

We now see the injectivity of the ¥,-homomorphism p associated with each
PSLA.
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Fix a positive integer r and denote by Z” the set of ordered r-tuples of

integers. Set

b c
r— e,

R=R, = {£ (00 T1 0--0)€2Z"; a0,5>0, >0},
R = {(g);a) BER} .

The set R is considered as follows: Represent the roots of type 4, by linear
combinations of the fundamental root system and identify them with the /-tuples
of coefficients. Suppose that »<I. Then R (resp. R— {(0---0)}) is the set of
r-tuples of coefficients which are taken out from positions fixed consecutively,
provided that 7= (resp. r=I). Moreover denote by R*(§),] (resp. R’[(3);, (),])
the subset in R? of pairs (§) such that the -components of a, 3 are 4, b (resp. such
that the 7-components of a, B are a, b and the j-components are ¢, d), and for
ME Z' denote by Ri[*] the subset in R’[«] of pairs (§) satisfying that A=—a+ 8.
Then we can check the following lemma by a usual argument.

Lemma 3.6. Let \ be an r-tuples in Z'. Then the following hold :

(1) The following each set has at most 2 elements: RI[(7%),], Ri[(T")l,
RI(Dw )1+

(2) The set RY(3),] (resp. RI(3):]) has at most 1 element if A==(0-+-0), and
has just r elements with form

(0 e 01 .. 1) (1 e 10 o 0))
0«0 1..1/° (resp. 11 00
if),:(o...o);

(3) The set R (vY),] has at most 1 element if N==(1---1), and has just
r—1 elements with form

if A=(1++-1).

In the following we represent a root of type A, by a linear combination
of the fundamental root system IT and identify it with an /-tuple of coefficients.

Case Al: The families JJ;; with triple (j, k,7)

Put ¢=0; and v=0;. Then, for each PSLA in .4, the corresponding
symmetric space M and the totally geodesic C¥/-submanifold N are given as
follows: (V is locally described.)

(a) V= (g o 7): M= SUI+DSUj+BxU(r)).

In this case N = 8u(j+r)/8(u(j)Du(r));

(b) V= (g,0,07): M= SU(I+1)/S(UG+kE)XU(7)).
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In this case N = 8u(k-+r)/8(u(k)Du(r));
(¢) V=(g,7,0): M= SU{+1)/S(U>j)X U(k+7)).
In this case N = 8u(j+7)/8(n(j)Du(r));
(d) V=(g,7, 07): M= SUI+1)/S(U(j)x U(k+r)).
In this case N = 8u(j+k)/8(u(j) Du(k));
(©) V= (g, o7,0) M= SU(+1)SURERXU(j+7)).
In this case N = 8u(k+r)/8(u(k)Du(r));
() V=(g,or,7): M=SU(+1)/S(UE)x U(j+7)).
In this case N = 8u(j+k)/8(u(j)Du(k)).
For the PSLA (g, 7, 7), the subsets A}, Ay, Ag, Ay of A* are given as fol-
lows: (Here Afyy=A NA™T.)

(3.3) A} = {8€A*; 8, = 5,=0}
(0-++01++-10-+-0-+-0-+-0)
= 55A+;3=,(0...6...91...10...6...0) ,
(0-+-0-++0-+-01---10-+-0)
Al = BEA*;8,=0,8,=1}
= {5€A*; § = (0-++01-+:1.4410-:0--0)} ,
AL = {5EAT; 8, =1,8,=0}
— {5&A*; § = (0++-0++-01++-1+-10---0)} ,
AL = BEA*; 8, =8,=1
— {5€A*; 8 = (0-+-01--Tve14:10+--0)} .

If >3, the dominant weights in A,_, Ayp,s Ay are given by (3.4), (3.5), (3.6),
respecively:

(3.4) (1...{...16...0) : _(0...0.1"0...‘ "...0) )
(3.5) (,0...('?1....i...1) , — (0w ’....01'.0...0) )
(3.6) (1eedendend),  —(0--01.+-10.-0).

If ]=2, the subset A,, is empty and so the weights in A, A,, A,_ are all
dominant.

We now see the injectivity of p for Case (c): €V=(g, 7, o). Note that in this
case p is 2 homomorphism of (PE)*@pS to A*(PE)*R1C.

We first suppose that />3. Then the minus multiple of dominant wei-
ghts in A,_ are given by (1), (¢2) and the dominant weights in A, are given by
(A1), (82):

(@) —(lededed), (@2) (©-01-10--0).

(B1) (0--01-w1-1),  (82) —(0+-0-+-010---0).
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Case (1): J(u)=1. Represent u as follows: u=a w,QXz. Then the pair
(a, B) is one of pairs ((as), (B t)), where s,t=1,2. Applying Lemma 2.3 to
each pair, we obtain that p(#)=0 for pairs (1), (81)) (j=1), ((«2), (B2)) (j=1)
and p(#) %0 for the other pairs.

Case (2): [(v)=2. Note that in this case there exists no decomposable
maximal weight vector. Hence we suppose that # is indecomposable. As in
§2 consider the object (o, @', B, B'; w) associated with ». Since this object is
determined by «, B’, u, we consider the triple (e, B'; u) instead of it. Consider
the following elements in A, :

(1) (0-++0-+-0--01),  (u2) (0--0--010---0).
Then the triples (o, B’; w) are given in the following:

(1) (a1),(B1);(wl),i=*1; (2) («1),(B2);(n)),i=1-1;

B) (@2),(B1);(k2),i=1-1; 4) (@2),(B2);(r2),i=*1
Lemma 2.4 is available for cases (1), (4) and Lemma 2.2 is available for cases
(2), (3). So it follows that p(u)=0.

Case (3): [(#)>3 We see the weight spaces with dim>3. Let A be a
weight in A and let @, 8 be roots such that A=—a+@, where a€A,_ and
BEA,,. Denote by a,, b, \i(1<k<I) the k-th components of &, 8, \, respec-
tively. Since a;=4-1 and b,=0, it follows that A;==1. Suppose that »;=1.
(For the case that A;=—1 we can similarly do the argument mentioned below.)
Then it follows by (3.3) that »,=0, 2. .

J 3
—1 e —1

If A;=0, the pair <g) has the form (0 e 0 1 ) If the weight
space for A has the dimension more than 3, it follows by Lemma 3.6 that A=
(0---01---imlO---d---O), and the pair (g) has the form

Jj i
(3.7 <0 ciQ—Teer 1 e —1 e —10 0)

0 . 0 «0—1eee —1 +ov —10 ---0

Hence for a maximal vector « in this weight space, it follows by Lemma 2.2 that
p(u)=+0.

j i
If A,=2, the pair (g) has the form (0 _01 _11 ) By Lemma 3.6,

the weight space for this )\ has at most dimension 2.
We next suppose that /=2. Then it holds that

A ={(10)}, A5, =A{0OD}, Ay = {11}.

So a weight A in A is one of 4-(10), 4-(12) and each weight space has dimension
1. Hence we may consider Case (1): /(u)=1. By Lemma 2.3 it holds that
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p(#)=0 for A=--(12) and p(u) =0 fro the other A.

Summing up the above arguments, we have the following result for the
PSLA of Case (c); the homomorphism p is not injective if and only if j=1. For
the other cases we have similar results; p is not injective only for the following
cases: Cases (a), (b), i=I; Case (d), j=1; Cases (e), (f), j=i—1. These cases
imply the cases of Example 2, (1) in §1.

Theroem 3.7. Let €V be the G-orbit which corresponds to a PSLA in a
family of type AI. Then the CV-geometry admits nom-totally geodesic V-
submanifolds if and only if it is one of the CV-geometries in Example 2, (1).

Case All: The families J;, ; with quadruple (q, b, ¢, d)

Put c=6; and 7=0;. Then, for each PSLA in ;, ,, the corresponding
symmetric space M and the totally geodesic {/-submanifold N are given in the
following: (N is locally described.)

(a) <V =(g,0,7): M= SU(+1)/S(U(a+b) X U(c+4d)).

In this case N = 8u(a—+-c¢)/8(u(a)Pu(c)) @ 3u(b-+d)/3(u(d)Du(d));

(b) V= (g,0,071): M = SU(I4-1)/S(U(a+b)x U(c+4d)).

In this case N = 8u(b-+¢)/3(u(b)Du(c)) D du(a+d)/8(u(e)Du(d));

(c) <V =(g, 7, 0): M= SU(I+1)/S(U(b+c) x U(a+d)).

In this case N = 8u(a-+c¢)/8(u(a)Pu(c)) @ su(b+d)/8(u(d)Du(d));

(d) XV =(g, 7, 071): M = SU(I+1)/S(U(b+c) X U(a+d)).

In this case N = 8u(a—+b0)/8(u(a)Du(b)) P su(c+d)/3(u(c)Bu(d));

() V = (g, o, 0): M= SU(I+1)/S(U(a+c)X U(b-+d)).

In this case N = 8u(b-+c¢)/8(1(b)Du(c)) P 8u(a+d)/8(u(a)Pu(d));

() V=(g,or,7): M= SU(I+1)/S(U(a+c) X U(b+d)).

In this case N = 3u(a+b)/8(u(a)Pu (b)) @ 3u(c+d)/8(u(c)Pu(d)).

For the PSLA (g, o, 7), the subsets A;,, A;, of A™ are given as follows:

(3.8) Al = {8€A%; 8, =0, (3,,8) = (0,0), (1, 1)}
j i k
(0-+-01++-10-++0-+-0-+-0-+-0)
_lsenr 8:(0...6...Q1...1,0...0...(2...0)
’ (0...(’)...Q...0kl 10-+-0-+-0)
(0++0+++0+++0++-01++-10+-0)
A;_ = {8€A%; 8, =0, (8,') 8p) = (1» 0), (0’ 1)}
j i k
_lsens (O---Qlu;i---lO--;O---O---O) ’
’ (0++0-++0-+-01+++1++-10---0)

Ay, = {8€A%;8,=1,(5;8)=(0,0),(1, 1}
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j i
_ {86A+' 5 — (0...(')...01...1...&0...6...0)}
(0--01ew-TverToe1+0-10---0)
= 8€A™; 8, =1,(3,,8) = (1,0),(0, 1)}
$ k
{SEA*” 5— (0 01...i...1...}0...0...0)}
0:-0++-01+1+++1+-10-+-0)

If >4, the dominant weights in A,_, A,, A,_ are given by (3.9), (3.10), (3.11),
respectively:

(3.9) { (1...1...1_6...(2...0)’ __(0...0{0...6...6...0) ,
. j i i
(0--0+--01++-10-01), _(0...6...0...010 .0).
j i i
(3.10) {(0...61..:1..;16...0), _(0...6...010...0...0)’
. i i i
(1eeleelonlenl),  —(0- 01...1...1()...0)_
j i k
(3.11) {(1...1...1.‘..1(2...0), —(0-- 01 10...0...0),
. j i
(0-+-01+e-1eee1enel),  —(0-++0---01-- 10 0).

If I=3, the subset A,, is empty and so the weights in A, , A,,, A,_ are all
dominant.

We now see the injectivity of p for Case (a): <V=(g, o, 7). In this case p
is a homomorphism of (p€)* RIS to A*(PE)*RPS.

We first suppose that /[>>4. Then the minus multiple of dominant weights
in A,_ are given by (al)~(a4) and the dominant weights in A, are given by

(B1)~(B4):

(al) _(1...i:...1"....16...0), (@2) (0- 01 10...0...0),
(@3) —(0-01Tendnl),  (ah) (0.--0---01 10-- 0),
(81) (1...i....10...6...0), (82) —(0-- 010...0...0...0)
(83) (0...0...01...1...1), (84) _.(0...()...()...01() 0).

Case (1): [(u)=1. Represent u as follows: =a w,®X,. Then the pair
(e, B) is one of pairs ((a7), (B 5)), where 7,s=1,2,3,4. Applying Lemma 2.3
for each pair, we obtain that p(u) =0 for all the pairs.

Case (2): Il(u)=2. We first suppose that u is indecomposable. Consider
the following elements in A, :

j i k j i
(”1) (10...6...0...0...0) , (/.62) (0... J...O...OIO 0) R
j i k ] k
(”'3) (0...016...0...0...0) , (I’A') (O...d...OIO...O...O) ,
j i k j k
(,U,S) (0...610...0...0...0) , (“6) (0...6...0 .0...0]) ,
j i j i k

(u7) (0...6...016...6...0) . (u8) (0-0-- (j...010...0).
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Then such the triples (a, B'; ) as Case (2) of Case Al are given in the follow-
ing:

(1) ((al), (B1); (u1), j=2; @) (al), (82); (w1)), j = 2;
(3) (1), (B3); (n2)), k—i = 2; @ (al), (B4); (u2)), k—i>2;
() ((a2),(B1); (#3)),j = 2; 6) ((@2), (82); (u3)), j=2;

(7) ((@2), (B3); (u4), k—i=2; (8) ((a2), (B4); (u4), k—i =2
%) (@3), (B1); (w5))si—j=2;  (10) ((@3),(B2); (m5)), i—j=2;
(1) ((@3), (B3); (b)), k<I—1;  (12) ((a3),(B4); (kb)) k= 1—1;
(13)  ((a4), (B1); (w7)), i—j=2; (14)  ((@4), (B2); (w7)), i—j = 2;
(13) ((a4),(B3); (u8)), k=1—-1;  (16) ((a4), (B4); (uB)), k<I—1.
Lemma 2.4 is available for cases (1), (4), (6), (7), (10), (11), (13), (16) and Lemma
2.2 is available for the other cases. So it follows that p(u)==0.
We next suppose that # is decomposable. Put #=a w,, @ Xp,+b 0,,Q Xp,.
Then the following two cases are considerable:

1) a=(@1-- ﬁf -1), where ¢=j+1,k=i+1 and the pairs («;, B;) are

((al), (83)), (0!3), (81));

2) 7\.———(0 .010.- O) where j=1,k=/ and the pairs (a;, B;) are

((a2), (B1)), ((x4), (83)).

In these cases the weights A are roots and Lemma 2.2 is available. So it follows
that p(u)=0.

Case (3): [(u)>3. We see the weight spaces with dim>3. Let A be a
weight in A and let , @ be weights such that A=—a+@8, where €A, _ and
BEA.. Denote by a, b, N (1<k<I) the k-th components of e, 8, \, re-
spectively. Since @;=-41 and 4;=0, it follows that A,==1. Suppose that
A;=1. (For the case that A;=—1 we can similarly do the arguments mentioned
below.) Then it follows by (3.8) that »;=0, 41, 2.

Case (i): A;=0. Then it moreover follows by (3.8) that 3,=0, 2.

If A,=0, the pair (g) has either of the forms

j i k i i k
000 —T1eee—1 ) ( T 0...0)
000er 0 —1/ \ —1  0.0---0

If the weight space for A has the dimension more than 3, it follows by Lemma
3.6 that A= (0---0»-01~--1~--10--'0--00), and the pair <B> has either of the forms

j i k
(0 v 0 oD —1 revenens 1 ..._.10...()>

0ee O eeennenes 0 0—1ore —1 e0ez10--0/
(3.12) .
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Hence for a maximal vector % in this weight space, it follows by Lemma 2.2
that p(u)=0.

i k
If A,=2, the pair (g) has the form (gg—é_i ) By Lemma 3.6,

the weight space with this A has at most dimension 2.
Case (ii): A;=1. Then it moreover fololws by (3.8) that a,=1.

If a,=1, the pair (g) has either of the forms

j i k j i k
( 211 0...0) (0...0 o1 )
0cee 0ee 0 1 ’ 1 0w 0--0

If the weight space for A has the dimension more than 3, it follows by Lemma
j i k
3.6 that 7\,=(‘0---01---1]---1---1---10--~O), and the pair (a) has either of the forms

s
(0 OTere 1 vt T ee 1 0 eee ) ereerene 0)
0 cerereens 0 0er 0 1.e1-10--0
(3.13) j -0t
(() ......... 0 e 0 —1 oo —1 eer —1 eea100e 0)
0ere0lee L oeel  Doeee Qeee Q covevern 0

Hence for a maximal vector % in this weight space, it follows by Lemma 2.2
that p(u)=0.

i i k
If A,=—1, the pair (g) has the form (0_(1)—_(1) _(1)"'0). By Lemma

3.6 the weight space for this A has at most dimension 2.

Case (iii): A,=—1 (resp. »,=2). The pair (g) has the form

J i k L j i k
<0... 0 —1ee1 ) (resp. ( 1 0...0)).
-1 0.« 0--:0 1 0+++0-+-0
By Lemma 3.6, the weight spaces with these )\ have at most dimension 2.
We next suppose that /=3. It holds that

A;‘_ = {(100), (001)} , A;+ = {(010), (111)} ,
Ay = {(110), (O11)} .

So a weight A in A is one of 4-(010), 4 (11—1), 4 (—111), £(210), 4= (111),
4 (012), and the weight spaces for A=+ (010), 4 (111) have dimension 2 and
the weight spaces for the other A have dimension 1. Lemma 2.3 is available for
the cases with dimension 1 and Lemma 2.2 is available for the cases with dimen-
sion 2. Hence it follows that p(#)=0 for all maximal weight vectors u.
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Summing up the above arguments, we have the following result for the
PSLA of Case (a); the homomorphism p is always injective. Similarly for the
other cases p is injective.

Theorem 3.8. Let <V be the G-orbit which corresponds to a PSLA in a

family of type AII. Then the CV-geometry does not admit a non-totally geodesic
CY-submanifold.

4. The PSLA’s with Lie algebra g of type B,

Let g be the Lie algebra of type B;, />2, that is, the Lie algebra 80(2/4-1)
of real skew symmetric matrices of degree 2/41. Then the Dynkin diagram
of the fundamental root system II is given as follows:

O—0O—»—0=0 —ay = o204+ -2,

a a Q-1 Q

Put 6;,0, as in §3 and let B,;, 1<j<i</, and B;; 4, 1< j<i<k<], be the
families which contain the PSLA’s (g, 6;, 0,), (g, 0;, 0,+), respectively.

Lemma 4.1. A4 PSLA (g, o, 7) of inner type is equivalent to a PSLA whick:
belongs to one of the families B;; or B;, 4, by an inner automorphism of g.

Proof. We may assume that o=§;. We divide into the following cases:
(1) =1, (2) i=2, and (3) 2<i<L.

Case (1): #=1. In this case t=c+-¥, and the Dynkin diagram of II, is given
as follows:

0—0—+—0=0

a Qs -y O

Hence we may assume that the restriction 7 of 7 is given as follows: #=exp ad
(V=1z K;), where 2<j<l. Put K;=a, H+--+a,H,. Since <K;, a,>=38
for 2<k<I, it follows that K;=a, H)+H, and thus 7=expad(\/—1z H)).
This implies that r=r,=exp ad(\/— 1z H;) or 7=7y0. So the PSLA (g, 0, 7)
belongs to B,

Case (2): t=2. In this case I={, and the Dynkin diagram of II, is given
as follows:

O O 0—0O—=—0=0
ao a, a3 a, al—l a’

If we put 7=exp ad(y/— 1z K), the following cases are considerable: (i) K=K,;
(ii) K=K;; (iii) K=K, 3<j<I; (iv) K=K+ K;; (v) K=K+K;, 3< j <I; (vi)
K=K,+K;, 3<j<l; (vil) K=K, +K,+K;,3<j<I. By Lemma 1.2 (1), only
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the cases (iii), (iv), (vii) have involutive extensions of 7. Using the fact that
<K,, a,>=3,, for r,s=0, 1, 3, .-+, I, we represent the vectors K, by the vectors
H,, -, H,.

For Case (iii) it follows that K;=—H,+H and thus 7=exp ad(v/— 1= H,).
This implies that r=7,=exp ad(\/—1z H,), or r=7,0. So the PSLA (g, o, 7)
belongs to B,.

For Case (iv) it follows that Ky+ K;=H,— H, and thus 7=exp ad (/— 1= H,).
This implies that 7=7y=exp ad(/— 1z H,), or T=7,0. So the PSLA (g, o, 7)
belongs to B,,.

For Case (vii) it follows that K,+4-K,+K,=H,—2H,+H; and thus 7=
exp ad(\/—1= (H,+H;)). This implies that r=r,=exp ad(v/— 1z (H,+H,)),
or r=7y0. So the PSLA (g, o, 7) belongs to B, ;.

Case (3): 2<¢<!l. In this case =%, and the Dynkin diagram of II, is
given as follows:

O—0—+—0 O—0—+—0=0

ay | i Qg Qg ap-, o

(24

If we put 7=exp ad (\/— 1= K), the following cases are considerable: (i) K=K,
0<j<i—1; (i) K=K, i+1<k<]; (il)) K=K 4K, 0<j<i—1, i+1<k<L
Here the cases that j=0, 1 don’t occur by Lemma 1.2 (1). Similarly to Case (2),
the PSLA (g, o, ) belongs to B;;, B,;, B;, ; according to Cases (i), (ii), (ii)). [J

From the above proof, we can see that the subalgebras £, for $;; are differ-
ent from those for B;; ;. Hence the families B;; are never equivalent to the
familiies B;; ;.

We first see the equivalences among the families 3;; and the equivalences
among the PSLA’s wihch belong to each ;.

Put V'=+/—"19 and take an orthonomal basis {e,, -, ¢;} such that a;=—e;—
e;4, for 1<i<I—1, and a;=¢;. 'Then it holds that H;=e,+:+-+e; for all 7, and
the Weyl group W(A) is generated by the permutations of e, ---, ¢; and the
mappings w7, 1 <i<I: wi(e;)=—e; and wi(e;)=e; for j=+i. Define elements
wi(1<k<I) and wi*(j, k=1, j+k<I) in W(A) in the same way as in §3. Then
it follows that

wi(H;) = Hy—H,.; (1<i<k),
wi(H,) = H, (k<i<l),
w{*(H;) = H;yy—H,,

wi'H) = H; (j+k<i<l).

Let @}, @i* be inner automorphisms of g induced by w§, w{*, respectively.
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For a family B;; put i=j+k and [4+1=i+7r. Then j, k,7>1 and the fol-
lowing holds.

Proposition 4.2. Two families B;;, B+ are equivalent to each other if and
only if r=r" and the pairs (j, k), (j', k') concide except order.

Proof. Consider the PSLA (g, ;, 0;) in B;; and the PSLA (g, 6, 6+) in
Biryr. Then it follows that ¥.=30(2j)P30(2k)Q30(2r—1) and t.=80(2;")D
80(2k")®30(2r'—1).

Suppose that B;; is equivalent to B,+,». Since ¥, is isomorphic to £, it fol-
lows that r=r" and pairs (j, &), (j', ") coincide except order.

To prove the converse we may prove the following equivalence: B;,=3; ,,
where B; , has the triple (k, 7, 7). This is similarly given by @{* as Proposition
32. O

By virtue of this proposition we may consider only the families 3;; with
triple (J, &, ) such that j<k. Such a family is said to be a proper family of type
BI and a family without the above condition is said to be simply a family of
type BI.

Proposition 4.3. Let B;; be a proper family of type BI with triple (j, k,7)
and set (8, o, 7)=(g, 0;,0;). Then the following hold:

(1) Ifj<k, all the PSLA’s in B;, are non-equivalent to each other

(2) If j=k, only the equivalences of first type hold.

Proof. We note that dim f_=4jk, dim p,=2k(2r—1), dim p_=2j(2r—1).
(See (4.1) later.) Thus b, are not isomorphic to f_.

(1) In this case it moreover follows that dim p_<dim p,. Hence our claim
is obvious.

(2) Consider the inner automorphism @{*. By the same way as Proposi-
tion 3.3 (2), the equivalences of first type are obtained. The non-equivalences
for the other pairs are obtained by the above note. [

We next see the equivalences among families B;; ;, and the equivalences
among the PSLA’s which belong to each ;; ;.

For a family B;,; ,, put j=a, i=j+b, k=i+c, [+1=k+d. Thena,b,c,d>
1 and the following holds.

Proposition 4.4. Two families B; ; 4, B, ;1w are equivalent to each other if
and only if d=d' and the triples (a, b, c), (a’, b’, ¢’) coincide except order.

Proof. Consider the PSLA’s (g, 6;, 6,4), (8, 0i, 6;+/). Then it follows that
., =80(2a)P80(2b) P80 (2c)P8o(2d—1) and I =50(2a")D30(2b")D30(2¢")D
80(2d'—1).
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Suppose that B; ; ; are equivalent to B ; . Since t, is isomorphic to £,
it follows that d=d’ and triples ((a, b, ¢), (a’, b’, ¢’) coincide except order.
To prove the converse we may show the following equivalences:

(1) -@;;;k = B;; and (2) —@;;ﬂe = Qk—j:h—{,k .

Similarly to Proposition 3.4, these equivalences are obtained by the inner auto-
morphisms @i’, t, respectively. []

By virtue of this proposition we may consider only the families 3;; ;, with
quadruple (a, b, ¢, d) such that a<b6<c¢. Such a family is said to be a proper
family of type BII and a family without the above condition is said to be simply
a family of type BII.

Proposition 4.5. Let B;; ;; be a proper family of type BII with quadruple
(a,b,¢,d) and set (g, o, 7)=(g, 0;, 0,4). Then the following hold :

(1) Ifa<bd<c, all the PSLA’s in B, ; ;; are non-equivalent to each other ;

(2) If a=b<c, only the equivalences of first type hold ;

(3) If a<b=c, only the equivalences of second type hold ;

(4) If a=b=c=d, all the PSLA’s in B;; ,; are equivalent to each other.

Proof. We note that

t_ = (80(2a-+2b)/80(2a)D80(2b)) D (80(2¢+2d—1)/80(2c) B8o(2d—1)) ,
P, = (80(2b+2c)/80(2b) D80 (2¢)) B (80(2a+2d—1)/80(2a) Do (2d—1)) ,
p_ = (80(2a+2c)/80(2a) P30 (2c)) D (80 (2b+2d—1) /30 (2b) PBo(2d—1)) .

(1) In this case £, p,, p- are not isomorphic to each other. Hence our
claim is obvious.

(2) Similarly to Proposition 3.5 (2), the equivalences of first type are ob-
tained by the inner automorphism @$’. Also by the above note, b, are not iso-
morphic to £_. This implies the non-equivalences of the other pairs.

(3) Similarly to Proposition 3.5 (3), the equivalences of second type are
obtained by the inner automorphism (@1’)~! @ @$’. Also by the above note,
f_, b_ are not isomorphic to p,. This implies the non-equivalences of the other
pairs.

(4) Similarly to Proposition 3.4 (4), the equivalences of first and second
types hold. Hence our claim is obvious. []

We now see the injectivity of the £,-homomorphism p for each PSLA.
Similarly to §3, fix a positive integer 7 and set

a b c

R, = {+(0--01---10---0)€ Z"; a>0, >0, c>0} ,
a b ¢

R, = {£+(0---01:::12--:2)€ Z"; >0, 5>0, c>0} ,
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R=RUR,, R— {(Z‘,); «, BER} .

Moreover let R*[(3):], R*[(5):, (5),]1, Ri[*] be subsets of R? defined as in §3. Then
we can check the following lemma by a usual argument.

Lemma 4.6. Let \ be an r-tuples in Z'. Then the following hold :
(1)  The following each set has at most 2 elements :

RYGHA RIG 01 R () R (21, R (0)1 R ()41 5

(2) For the sets RY[(3),] and RI(),, (3'),] Lemma 3.6 (2) and (3) hold res-
pectively ;

(3) The set RY (1, (5),] (resp. Ri[(11, (3),]) has at most 1 element if A= (0-+-0),
and has just r—1 elements with form

1eeel Qoo 0) (1 el 2. 2)
(1 el 0...0/° (resp. 101 2...2 )
if)\.=(0~--0);

(4) The set RI(7")1, (70),] has at most 1 element if \==(2-+-2), and has just

r—1 elements with form
(_1 e =1 —2 e _2)
1 o1 0 - 0
a b

(5) The set Ri[(3),] has at most 1 element if A==(0-:-01---1) (¢ =0, 6>0),
and has just r elements with forms

if A=(2:+-2);

a——i—a /-“—i—-———\ /\L———\ ;—Jb‘—q
0...00...01...1) (0...01...11...1)
(()...01...12...2’ 0011202

a b
if A=(0-+-01---1);
(6) The set R:[(1),] has at most 2 elements if \=+(0---0), and has just 2r—1

elements with forms
1.1 00 (1 | 2...2)
(1 vl 0...0)’ 1ol 2.2
if A=(0-+0);

(7) The set RZ[(7*),] has at most 2 elements if \=+(2--2), and has just 2r—1
elements with forms

—1ee—1 00 —1 e —1 __2..._)
(1...1 2..2)° 1 .1 0 0
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if A=(2---2).

In the following we represent a root of type B; by a linear combination

of the fundamental root system I and identify it with an I-tuple of coefficients.

Case BI: The families B;; with triple (j, k,7)
Put 0=0; and v=0;. Then, for each PSLA in 3,

i the corresponding

j?

symmetric space M and the totally geodesic CV/-submanifold N are given as
follows: (V is locally described.)

(a) VYV =(g,0,7): M= SO(2141)/S(0(2j+2k)x O(2r—1)).
In this case N = 80(2j+2r—1)/8(0(2§)Po(2r—1));

(b) <V =(g,0,071): M = SU(214+1)/S(0O(2j+2k) x Q(2r—1)).
In this case N = 80(2k+2r—1)/8(0(2k)Po(2r—1));

() V=(g,7,0) M= SO2I4+1)/S(0(25) X O(2k+2r—1)).
In this case N = 80(2j+2r—1)/8(0(25)Po(2r—1)):

(d) V=(g,7,071): M= SO(214+1)[S(0(25) X O(2k+2r—1)).
In this case N = 80(2j-+2k)/3(0(27) Do (2k));

(e) V= (g,07,0): M= SOQ2l+1)/S(0O(2k)x O(2j+2r—1)).
In this case N = 80(2k-+2r—1)/8(a(2k)Po(2r—1));

(f) V=(g,or,7): M= S0OI+1)/S(0(2k)x Q(2j+2r—1)).
In this case N = 80(2j+2k)/8(0(27) Do (2k)).

For the PSLA (g, o, 7), the subsets A}, Af_, Ay, , Ay of A™ are given as follows:

4.1)

Ay, = {8€A*;8,=8;=0,2}
(0...,0_1...10...(’)...(5...0)
(0...6...Q1...10...0...0)

_lseptis— (0...6...0...01._..19...0) {
- U j i ’
(0-+-01+++120:2+0:2++:2)
(0...6_...01...12...2...2)
(0-++0+++0+++01 +++12:+2)
Af. = {8€A%;8,=0,2,8, =1}
_lsept:s— (0...01...1’...10...9...0)l
- »¥ ) i y
(0-+-01+e1+0-124+:2:-:2) |

Ap, = Bea™8=1,8,=0,2}

_ {SGAJ“ 5 — (0...6...01...1...10...0)}
(0-++0-+-01+++1+++124:2)

AL = 8€A*; 8, =8, =1}
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— '{SEA"'; 5 — (0-++01--- j...1i...10...0) } .

-

If 1>3, the dominant weights in A,_, A,,, A,_ are given by (4.2), (4.3), (4.4),
respectively:

42) (1..;12..22...2), (1,.i60) (=j+1),
—(0-6-0) (=1, —(t-2) G=1i=2).

(4.3) (,0...61...{2 ...... 2), _(0...6i0...0) (G =j+1).

(4.4) (Looe1ee12022), 100 (j=1).

If /=2, the subset A,, is empty and so the weights in A, , A, , A, are all
dominant.

We now see the injectivity of p for Case (a): <VV=(g, o, 7). In this case
p is a homomorphism of (P€)*R1IC to AXPC)*QpS.

We first suppose that />3. Then the minus multiple of dominant weights
in A,_ are given by (al), (@2) and the dominant weights in A, are given by

(BL)~(B4):

(@) —(t-il2e2), (@) ({-10-0) (j=1),
81 (1i2-22), (82 (1+10--0) (=j+D),
83) —({0-0-0) (j=1), (89 —(12+2) (j=Li=2).

Case (1): /(u)=1, Represent u as follows: u=a 0,QX,. Then the pair
(at, B) is one of the pairs ((as), (B t)), where s=1,2 and =1, 2, 3,4. Apply-
ing Lemma 2.3 for each pair, we obtain that p(z)=0 for pairs (1), (81)) (=),
((al), (B2)) (1=1, i=j+1), (a2), (B3)) (i=1, j=1) and p(u)=*0 for the other
cases.

Case (2): l(u)=2. We first suppose that » is indecomposable. Consider
the following elements in A,, :

i . i .
(1) (10-::0---0-:0) (j=2),  (p2) (12:+22) (j=2).
Then such the triples (a, 8'; w) as in §3 (Case (2) of type AI) are given in the

following;
(1) (a1), (B1); (#1)),j 22, 2) (@), (B1); (w2)),j =2,
@) (1), (B2); (wl)), i =j+1,522, () ((al),(B2);(n2)),t=j+1,j=2.

Lemma 2.4 is available for all cases and so it follows that p(u)=0.
We next suppose that u is decomposable. Put u=a w,,®Xp,+b 0, X,
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Then the following two cases are considerable:

1) 7\.=((j)1---'12---2), where j=1 and the pairs (a;, 8;) are ((al), (83)),

(@), (81);

(2) A=—(010---0), where j=1, /=2 and the pairs (a;, 8;) are ((al), (84)),

(@2), (82)).

In these cases the weights A are roots and Lemma 2.2 is available except the
above case (1) (r=[). So it follows that p(#)=0 except the excepitional case.
By virtue of Case (1) we do not need to consider the exceptional case.

Case (3): [(u)>3. We see the weight spaces with dim>3. Let A be a
weight in A and let a, @ be weights such that A=—a-+ 8, where a€A,_ and
BEA;,. Denote by a, b, (1 <k<]) the k-th components of &, B3, A, respecti-
vely. Since a;=+1 and &;=4-1, it follows that »;=0, £2.

If X;=0, it moreover follows by (4.1) that A;=-+1. We see only the case
that A;=1. Because we can similarly see the case that ), ———1 By (4.1), the

j J
pair (g) has either of the forms ( :% —01_“0),( 1 2_”2). If the weight

space for A has the dimension more than 3, it follows by Lemma 4.6 that

A=(0+++0++-01+++1+++10+:0) or (0-+:0++-01-+-1-++12++2), and for the former (resp.
the latter) the pair ( ) has either of the forms
(45) (0 CO—1 e 1 evereeene 1 eeee10eee 0),
0 ere Ol e —1 ceve1Qvee O weeerenes 0
<0 OL eor 1 ceverenes 1 .12 2)
0 eve 0L cvr 1 cer1200 2 crevenens 2
<,0 Dl e 1 eeeene 12 _2)
resp. )
Qe 0Tl eee —1 eee—10eer  Q eveveeevenee 0
(0 e 0L vee 1 eveeeennn 1 ...10...0)
0 oee 0L cer 1 eeel2eee 2 eeerenne 2

Suppose that # belongs to this weight space. If 7=, it follows by Lemma 2.2
that p()#=0. If i=I, we can not apply Lemma 2.2 and Lemma 2.4. But, by
virtue of Case (1), we do not need to consider this case.

Suppose that n;=2. (For the case that A;=—2 we can similarly do the ar-
gument mentioned below.) Then it moreover follows by (4.1) that A,=1, 3.

J
For gach case the pair (g) has the following form, respectively: < - i ——; 2>,

i

( —%'"—1 ) By Lemma 4.6, the weight spaces with these A have at most
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dimension 2.
We next suppose that /=2. In this case it holds that

Af = {(10),(12)y, A = {(11)} .

So a weight X in A is one of 4-(01), 4(21), 4-(23), and the weight spaces for
A=4(01) have dimension 2 and the weight spaces for the other A have dimen-
sion 1. Lemma 2.3 is available for the cases with dimension 1 and it conse-
quently follows that p(u)=0 for these cases. By virtue of the cases with
dimension 1, we do not need to consider other cases.

Summing up the above arguments, we have the following result for the
PSLA of Case (a); the homomorphism p is not injective if and only if 7=/, i.e.,
r=1. For the other cases we have similar results; p is not injective only for
Cases (b), i=I. These cases imply the cases of Example 1 (m: even and r:
even) in §1.

Theorem 4.7. Let CUV be the G-orbit which corresponds to a PSLA in a
family of type BI. Then the CV-geometry admits non-totally geodesic V-submani-
folds if and only if it is one of the CV-geometries in Example 1 (m: even and r: even).

Case BII: The families 3;, ;, with quadruple (q, b, ¢, d)

Put ¢=0;and r=0,. Then, for each PSLA in 3;, ,, the corresponding
symmetric space M and the totally geodesic I/-submanifold N are given in the
following: (N is locally described.)

(a) V= (g,0,7): M= SO2l+1)/S(0(2a+2b) x O(2¢+2d—1)).

In this case N = (80(2a-2c)/8(0(2a)Po(2c)))D(80(2b+2d—1)/8(0(20) D

0(2d—1)));

(b) &V =(g,0,07): M = SO(2141)/S(0(2a+2b) X O(2¢+-2d—1)).

In this case N = (80(2b+2¢)/8(0(2b)Do(2¢)))B(80((2a+2d—1)/8(0(2a) P

0(2d—1)));

(c) V= (g,7,0): M= 8SO(2l41)/S(0(2b+2c) X O(2a+2d—1)).

In this case N = (80(2a+2c)/8(0(2a)Do(2c))) DB (80(2b+2d—1)/3(0(20)D

0(2d—1)));

(d) V= (g,,o7): M = SO2I4-1)[S(O(2b+2c) X O(2a+2d—1)).

In this case N = (80(2a-2b)/8(0o(2a) Do (2b))) D(30(2c+2d—1)/3(0(2c)D

0(2d—1)));

(e) V= (g, o1, 0): M = SO2l+1)[S(O(2a-+2c) X O(2b+2d—1)).

In this case N = (80(2b-+2¢)/3(0(2b) Do (2c))) B(80(2a+2d—1)/3(0(2a)D

0(2d—1)));

(f) XV = (g, or,7): M = SO2I+1)/S(0(2a+2¢c) X O(2b+2d—1)).

In this case N = (30(2a+2b)/8(o(2a) D0 (2b)))D(80(2c+2d—1)/8(0(2c)D

0(2d—1))).

For the PSLA (g, o, 7), the subsets Ay, Ag, of A* are given as follows:
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46) Af, = {8€A*; 8, =0,2,(5, 8) = (0,0)(0,2),(2,0), (1, 1), (2, 2)}

(0+++01+++10++0-+0-++0-+-0)
0-++0--+0)
0)
0)

-+:01---10-+-
++0+e20-+:01.+1

—

@
NN

>

S

p—

)
-0 2)
+0-++0+0++-01+++12-2)
Ap. = {6€A*;8,=0,2,(3;, 8,) = (0, 1), (1, 0), (1, 2), (2, 1)}

l\)a-[\)a-[:\)w-.o Oa—Oa—'.Oa-

~
@

.. :ON. [==20 &
:o .
S
p—
p—
»

(0...0...0...01...1...10 .0)
(0-- 01...1...12...2...2...2)
(0...0...0...01...1...12 :2)

Ay, = {8€A%; 8; = 1,(3;, &) = (0, 0), (0, 2), (2, 0), (1, 1), (2,2)}

(0...0...01...i...lo...o...o)
(0-+-01ee-1eve1ev12-10---0)
(0...0...01...1...12...2...2)S
(0-++01ee-TureTeeTen 124002
A= {aeA+ 8 =1,(3,, 8) = (0, 1), (1,0), (1, 2), (2, 1)}

J

(0-- (3_1...1...1"_...1,,0...0...0)
(0-+<0-+-01-++T+-1-+-10---0)
(00T 1w 120:2:2:2)
(0e++0-+-01 4+ TureTonv1201-2)

If I>4, the dominant weights in A,_, A,,, A,_ are given by (4.7), (4.8),
4.9), respectlvely

=4{8EA"; 0=

=<{dEA";d=

=< 8EA"; 8=

(0...0...01 ’iz...z), (1-- iz...z'...z...z),

4.7) (1 iq---o---()) G = j+1), —(Q-'--é---ow 0) (B=it+1),
_(io... ’...ok...o) (G=1), _(1'2'...2...2) G=1,i=2).
(0...6l...f2...2k...2), (1...{...{...{2...2),

(48)  —(0:010-0-0) (i =j+1),  (0-01-100) (k=i-+1),
—(ded1000) (G=1),  —(O-0122) (=j+1,k=it1).
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(0...61...{...12...2), (1...1...12...2...2),
ji k i
“49  —(0--01. 10--0) (E=j+1), (1"'1"‘10 0) (k=it+1),
—(1+++10++-0+--0) (G =1), G 1O 2) (j=1,k=it+1).

If /=3, the subset A, is empty and so the weights in A,_, Ay, Ap_ are all
dominant.

We now see the injectivity of p for Case (a): <V=(g, o, 7). In this case p
is a homomorphism of (P€)*R¥C to A¥PC)*RPS.

We first suppose that />>4. Then the minus multiple of dominant weights
in A,_ are given by (al)~(a6) and the dominant weights in A,_ are given by

(B1)~(86):

(al) _(0...(5:1...f...1"2...2) (a2) _(1...1...12...2...2),

@) (00110-0) = j+1), (ah) —(1.--1---10 0) (k=it+1),

(a5) (1’---1f0--i6---0) G=1, (a6 ({12- 2) (j=LE=i+1),
B1)  (0--0--01-+120-:2), B2 (- 12---2.--2---2),

83)  (1+10--00) G=j+1), (84 —(0-.-0---610 0) (B=i+1),
(85) —(10-0-:0--0) i =1),  (86) —(12+2-2) (j=1,i=2).

Case (1): /(w)=1. Represent u as follows: u=a w,@®X,. Then the pair
(e, B) is one of the pairs ((@7),(B5)), where r,5=1,2,3,4,5,6. Applying
Lemma 2.3 for each pair, we obtain that p(x)=0 for all the pairs.

Case (2): /(u)=2. We first suppose that # is indecomposable. Consider

the following elements in Ay,
k

(u1) (0 010...0...0...0), (12) (0...0...0...010 -0),
(u3) (0 012---2---2) (=42, () (10+00--0.0),
(u5) (0...0...010 ...... 0), (16) (12 ...... 2.:2) (j=2),
(&7) (0--0---012.. 2) (k= i+2).

Then such the triples (a, B’; w) as in §3 (Case (2) of type AI) are given in the
following:
(1) ((a1),(B2); (pl)), =522,  (2) ((a1),(B5); (wl))j = 1,i—j=2,
() ((a1), (B1); (u2)), k=1, 4 ((al), (B4); (u2)), k=1, k= i+1,
(5) ((a1),(B2); (w3)).i—j=2, (6) ((al),(B5);(u3))j=1,i—j=2,
(7) ((@2), (82); (u4)), j 22, (®) ((@2),(B3); (u4),j=2,7i=j+1,
) (a2), (B1); (uS)), k—i=2, (10) ((a2),(B2);(u6)),j=2,
(11) ((«2), (B3); (w6)),j = 2,1 =j+1,
(13)  ((@3), (BY); (w2)), i = j+1, k=],
(14) ((@3), (B4); (u2)),i = j+1,k=i+1, k=],
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(15)  ((a4), (B2); (u4), k = i+1,7 22,

(16) ((a4), (83); (u4)),j 22,i=j+1,k=i+1,

(17)  ((e4), (B2); (w0)),j = 2,k = i+1,

(18) ((a4), (83); (w6)),j = 2,1 =j+1,k=1i+1,

(19) ((@5), (B1); (w3)), k—i=2,j =1,

(20) ((@5), (B1); (u7)), k—i=2,j = 1.

Lemma 2.4 is available for all cases and thus it follows that p(x)==0.

We next suppose that « is decomposable. Put u=a w,, QX5+ w,,QXp,.
Then the weight A is a root and Lemma 2.2 is available except the following
cases (1), (2): 3

(1) x=(1---ff---f), where 7=j-+1, k=I[ and the pairs (o;, B;) are

(1), (83)), (3), (B2));

(2) x=—(il---1), where j=1,7=2, k=I and the pairs («;, B;) are

(1), (86)), ((a3), (85)).

For the exceptional cases the condition (1) of Proposition 2.1 does not hold.
Hence it follows that p(x)==0.

Case (3): /[(u)=3. We see the weight spaces with dim>3. Let A be a
weight in A and let &, 8 be roots such that A=—a-@8, where a€ A,_ and
BEA,_. Denote by ay, by, M(1<k<I) the k-th components of «, 8, A, respec-
tively. Since @;=-+1 and 4,=0, 4-2, it follows by (4.1) that n,=41, £3.
Consider only the cases that A;=1, 3. (For the cases that A;=—1, —3, we can
similarly do the argument mentioned below.)

Suppose that A;=3. Then it moreover follows by (4.1) that A,=1,2. For

each case the pair <g> has the following form, respectively:

i k j ik
(0? _;_;‘2) ( _%—;;2> By Lemma 4.6, the weight space

with this A has at most dimension 2.
Suppose that A;=1. Then it moreover follows by (4.1) that »;=0, £-1,2. If

A j=—1(resp. A;=2), the pair (g> has the following form:

j i k j i k
<O...—(1) _%)_%)0> (resp. ( _%—(1)30>) By Lemma 4.6, the weight

space with this A has at most dimension 2.
Consider the case that a;=1. Then it moreover follows by (4.1) that

M—=-13. If \y=—1 (resp. ay—3), the pair (g) has the form

e l1 00 R .
(07070 —17°) resp (0. 700 "9 T3 TE): By Lemma 46, the
weight space with this A has at most dimension 2. If A,=1, the pair (g) has
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one of the following forms:

i i k J i k j i k
(0...() —1eee—1 ) (0...0 1eeel ( —~1eee—1 0---0
1 0w 0.--0) 1 2..2..2) 10 0eee 0 1 )
14 )
(0 (1) 0 —1 ) If the weight space for A has the dimension more

than 3, it follows by Lemma 4.6 that
j 1 k
A = (0+-01e-1e0-1001:410---0) ,
j i k
(001w TureTureTone1200-2) .

For the former A the pair <g) has one of the following forms:

j H k
(4.10) (,0 ......... 0o 0 —1 oee —1 evemTeee—10-e- 0)
0c0leee Toeel  Qere Qoee 0 wrveneeen o/’
(,0 ......... $e0lee 1 oo 100012 .2)
0 ceeDleee 112000 2 cer 2 vevnvenns 2]’
k
0 0

(0 O Toe =1 e 21 e —1 0 one )
0 .. Qe Qe 0 1eeele10--0/
(0 O mTeee L eee 1 eee 1 —2 e L2 __2)
0 . Oee Qeee 0 —1eee —1 ceee12eee —2
(For the latter A we can similarly see the form of (g)) Hence it follows by

Lemma 2.2 and Proposition 2.1 (1) that p()=0 for a maximal vector » in the
weight space with weight A. Proposition 2.1 (1) is applied to the case that

i k
7\—_-(0...01...1'...1...1...1)_
Consider the case that A,=0. Then it moreover follows by (4.1) that \,=
0,2. If A,=0, the pair (g) has one of the following forms:
0l 11 ool 00N (o] 202
(0:::0..._0'":1 >’< :1‘“_0...0:::0 ’< 1. 2...2...2)- If the weight space

for A has the dimension more than 3, it follows by Lemma 4.6 that

and the pair (g) has one of the following forms:

(4.11) 0 e ) o elmTove =1 ervrrere 21 —10 0)
0 crveenens 0ee0—Teer —T1 e —1 0+ee 0
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j ; *
(0...0...0_1... 21 v e =1 —2 e _2)

0.0e ) corennnee 0 e0—Teer —1 o0 —1 —240e —2)°
<0 0 —1.—1 —1 ..._10...(")...0)
00 —1 e —1 e 10eee O eeveereee 0200’

(0 [\ I A 112002 2)

0...0 1 eeel eee120002 corennene 2.2

Hence it follows by Lemma 2.2 that p(%)==0 for a maximal vector « in this weight
space. If A,=2, the pair (g) has one of the forms:

00 11y ¢ Z1eett L2y ded 00
(0...0... 0 1 )»( —1 Qe Qee 0>’< 1 2...2...2)~ If the weight
space for A has the dimension more than 3, it follows by Lemma 4.6 that

j i k
A= (0-0:0:+:01+e1-+1200:2.:2)

and the pair (g
(4.12) (0

has one of the following forms:

. SN—"

O
)

I
—

|
o

i k
e —] e —1 —2 e _2)

[ R 0e0lere 1ee 1 0w 0
(0 e B e Teee 1 ereereere 1 =1 0 e 0)

[ | T 0.0leee 1. 12...2)

<0 0 —T e 21 s 11— _2)
000 —1 eoe —T eeee10vee  Q werververens 0... 0/
(0...0 L] eerveene 1100w 0 oo 0)

Qe 1ovel eeel2eee2 veeerenne 2.2

Hence it follows by Lemma 2.2 that p(#)=0 for a maximal vector % in this
weight space.
We next suppose that /=3. Then it holds that

Ay = {(100), (001), (122)} , Ay = {(110), (011), (112)} .

So a weight A in A is one of the following: 4-(010), 4-(11—1), 4(—111),
+(210), 4-(111), 4-(012), 4-(212), 4-(113), 4-(133), 4-(232), £+(234). The weight
spaces for A=-4-(111) have dimension 4 and the weight spaces for A=--(010),
+4(012) have dimension 3 and the weight spaces for the other A\ have dimension
1. Lemma 2.3 is available for the cases with dimension 1 and Lemma 2.2 is
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available for the cases with dimension 3 and the cases with dimension 4 except
the following two; The exceptions are the cases that a maximal vector % has
length 2 and is associated with two pairs

0 —1—1 011
d
:*:(1 0 o) " i(l 2 2)
in R? according to A=+(111). For these cases Proposition 2.1 (1) does not
hold. Hence it follows that p(x)==0 for all cases.
Summing up the above arguments, we have the following result for the

PSLA of Case (a); the homomorphism p is always injective. Similarly for the
other cases p is always injective.

Theorme 4.8. Let €V be the G-orbit which corresponds to a PSLA in a

family of type BII. Then the CV-geometry does not admit non-totally geodesic V-
submanifolds.
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