ON QUASI-HOMOGENEOUS FOURFOLDS OF SL(3)

Tetsuo NAKANO

(Received September 27, 1991)

Introduction

We recall that a quasi-homogeneous variety of an algebraic group G is an algebraic variety with a regular G-action which has an open dense orbit. A general theory of quasi-homogeneous varieties has been presented in LunaVust [5], and in particular, quasi-homogeneous varieties of $\boldsymbol{S} \boldsymbol{L}(2)$ have been studied by Popov [9], Jauslin-Moser [2]. On the other hand, the geometry of smooth projective quasi-homogeneous threefolds of $\boldsymbol{S L}(2)$ has been thoroughly studied in Mukai-Umemura [7] and Nakano [8] by means of Mori theory.

In this note, we shall study and classify the smooth irreducible complete quasi-homogeneous fourfolds of $\boldsymbol{S L}(3)$. The motivation for this research comes from Mabuchi's work [6], in which the smooth complete n-folds with a non-trivial $\boldsymbol{S} \boldsymbol{L}(n)$-action have been completely classified. Since $\boldsymbol{S} \boldsymbol{L}(n)$-varieties of dimension less than n are obvious ones, we are interested in $\boldsymbol{S L}(n)$-varieties of dimension $n+1$. Let X be a smooth complete $\boldsymbol{S} \boldsymbol{L}(n)$-variety of dimension $n+1$, and let d be the maximum of the dimensions of all orbits of X. It turns out that, if $d \leq n-1$, then $\boldsymbol{S} \boldsymbol{L}(n)$-actions on X are easy, and essential problems occur when (1) $d=n+1$ (quasi-homogeneous case) and (2) $d=n$ (codimension 1 case). We hope that the investigation of the case (1) for $n=3$ in this note will be a good example toward the understanding of the structure of $\boldsymbol{S} \boldsymbol{L}(n)$ varieties of dimension $n+1$.

Our main result is the classification theorem 11 of smooth complete quasihomogeneous 4 -folds of $\boldsymbol{S L}(3)$, which turns out extermely simple compared to the $\boldsymbol{S L}(2)$-case. Indeed, all the varieties appearing in the classification are rational 4-folds of very simple type.

This note is organized as follows. First in $\S 1$, we classify the closed subgroups of $\boldsymbol{S} \boldsymbol{L}(3)$ of codimension 4. The author is indebted to Prof. Ariki for Proposition 1. In §2, examples of quasi-homogeneous 4-folds of $\boldsymbol{S} \boldsymbol{L}(3)$ are constructed by rather ad-hok methods. Finally, in $\S 3$, the classification will be done.

In this note, algebraic varieties, algebraic groups and Lie algebras are all defined over a fixed algebraically closed field k of characteristic 0 . An algebraic variety is always assumed to be reduced and irreducible, and an (algebraic)
n-fold is an algebraic variety of dimension n. The symbol $*$ in a matrix stands for any element in k, or some element in k which we do not need to specify.

Acknowledgement. I would like to thank the referee for some useful commetnts on this work.

1. Classification of closed algebraic subgroups of $S L(3)$ of codimension 4

This section is devoted to the proof of the following proposition due to Ariki. We denote by $\boldsymbol{S L}(3)$ the special linear group of degree 3 defined over k.

Proposition 1. Let $G \subset \mathbf{S L}(3)$ be a closed algebraic subgroup of codimension 4. Then G is one of the following subgroups up to conjugation.

$$
\begin{aligned}
& G_{0}=\left\{\left.\left[\begin{array}{ll}
A & 0 \\
0 & b
\end{array}\right] \right\rvert\, A \in \boldsymbol{G} \boldsymbol{L}(2), b \in k^{\times}, \operatorname{det}(A) \cdot b=1\right\} \\
& G_{1}=\left\{\left.\left[\begin{array}{lll}
x & * & * \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right] \right\rvert\, x y z=1\right\} \\
& N\left(G_{1}\right)=G_{1} \cdot\left\langle\left[\begin{array}{lll}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right\rangle \\
& G_{2}=\left\{\left.\left[\begin{array}{lll}
x & 0 & * \\
0 & y & * \\
0 & 0 & z
\end{array}\right] \right\rvert\, x y z=1\right\} \\
& N\left(G_{2}\right)=G_{2} \cdot\left\langle\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]\right\rangle \\
& G_{p, q}=\left\{\left.\left[\begin{array}{lll}
x & * & * \\
0 & y & * \\
0 & 0 & 1 /(x y)
\end{array}\right] \right\rvert\, x^{p} y^{q}=1\right\} \text { for } p, q \in Z, q \geq 0,
\end{aligned}
$$

$(p, q) \neq(0,0)$.
Proof. (1) Let $\mathfrak{B l}(3)$ be the Lie algebra of $\boldsymbol{S L}(3)$. We first determine the Lie subalgebras of $\mathfrak{E l}(3)$ of dimension 4 and the corresponding connected closed subgroup of $\boldsymbol{S} \boldsymbol{L}(3)$. Let $\mathfrak{g} \subset \mathfrak{B l}(3)$ be a Lie subalgebra of dimension 4. Then $\mathfrak{g}=\mathfrak{Z} \oplus \mathfrak{r}$ (semi-direct sum), where \mathfrak{Z} is a semi-simple Lie subalgebra and \mathfrak{r} is the maximal solvable ideal of \mathfrak{g}, by Levi-Malcev's theorem. Since the rank of $\mathfrak{B} \leq 2$, we have $\mathfrak{B} \simeq \mathfrak{B l}(2)$ or 0 . In fact, if the rank of $\mathfrak{B}=2$, then $\mathfrak{B} \simeq A_{1} \oplus A_{1}, A_{2}, B_{2}$ or G_{2} and hence $\operatorname{dim}_{k} \mathfrak{B} \geq 5$, which is impossible.
(a) First, we assume $\mathfrak{g}=\mathfrak{b l}(2)$. Consider the faithful representation of \mathfrak{B} on k^{3} which is the restriction of the natural representation of $\mathfrak{g l}(3)$ on k^{3}. We decompose this representation into irreducible ones and may asume that \bar{B} is one of the following two fomrs up to conjugation.

$$
\begin{aligned}
& \mathfrak{B}=k \cdot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \oplus k \cdot\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \oplus k \cdot\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \text { or }
\end{aligned}
$$

$$
\mathfrak{s}=k \cdot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \oplus k \cdot\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 2 & 0
\end{array}\right] \oplus k \cdot\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right] \quad \text { (type 2) }
$$

Consider the adjoint representation of \mathfrak{z} on $\mathfrak{r}:\left(\mathfrak{r},\left.a d\right|_{\mathfrak{z}}\right)$. Since $\operatorname{dim} \mathfrak{r}=1$, this is trivial and we find that $\mathfrak{r}=k \cdot R$, where R commutes with any element of \mathfrak{B}. Assume that \mathfrak{z} is of type 1 . Then a simple calculation shows that
$R=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right]$ up to scalar multiplication. The corresponding connected closed subgroup is

$$
\left.\left.\begin{array}{rl}
G_{0} & =\left\{\left[\begin{array}{cc}
g & 0 \\
0 & 0
\end{array} 1\right.\right.
\end{array}\right] \mid g \in \boldsymbol{S} \boldsymbol{L}(2)\right\} \cdot\left\{\left.\left[\begin{array}{lll}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x^{-2}
\end{array}\right] \right\rvert\, x \in k^{\times}\right\}
$$

Assume that \mathfrak{B} is of type 2. Then a simple calcualtion shows that there is no nonzero R which commutes with every element of $\mathfrak{3}$. Hence the type 2 never occurs.
(b) Second, we assume that $\mathfrak{F}=\{0\}$. Since \mathfrak{g} is solvable, $\mathfrak{g}=\mathbf{t} \oplus \mathfrak{n}$, where t is a maximal abelian subalgebra consisting of semi-simple elements and \mathfrak{n} is the ideal of all nilpotent elements in \mathbf{g}. We set

$$
\mathfrak{b}:=\left\{\left[\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\} \text { and } \mathfrak{b}:=\left\{\left[\begin{array}{lll}
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right]\right\}
$$

Then we may assume $\mathfrak{g} \subset \mathfrak{b}$ and $\mathfrak{n}=\mathfrak{g} \cap \mathfrak{g}$ by Lie's theorem.
If $\operatorname{dim} \mathfrak{n}=3$, then $\mathfrak{g} \supset \mathfrak{h}=\mathfrak{n}$. Then we have

$$
\mathfrak{g}=\mathfrak{h} \oplus k \cdot\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & -a-b
\end{array}\right] \text { for some } a, b \in k
$$

The corresponding algebraic subgroup G is of the form

$$
G=\left\{\left.\left[\begin{array}{ccc}
x^{a} & * & * \\
0 & x^{b} & * \\
0 & 0 & x^{-a-b}
\end{array}\right] \right\rvert\, x \in k^{\times}\right\} \text {for } a, b \in \boldsymbol{Z} .
$$

Since G is connected, we conclude that $G=G_{b, a}$ for coprime $a, b \in \boldsymbol{Z}$ in this case.

If $\operatorname{dim} \mathfrak{n}=2$, then $\operatorname{dim} \mathfrak{t}=2$ and \mathfrak{g} is full-rank in $\mathfrak{s l}(3)$. Hence we may assume that $\mathbf{t}=\left\{\left[\begin{array}{ccc}* & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & *\end{array}\right]\right\}$, and then,

$$
\mathfrak{n}=\left\{\left[\begin{array}{lll}
0 & * & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right\} \text { or }\left\{\left[\begin{array}{lll}
0 & 0 & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right]\right\}
$$

by root-decomposition of \mathfrak{n} with respect to t. The corresponding connected subgroup is

$$
G_{1}:=\left\{\left[\begin{array}{lll}
* & * & * \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right]\right\} \text { or } G_{2}:=\left\{\left[\begin{array}{lll}
* & 0 & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\}
$$

If $\operatorname{dim} \mathfrak{n} \leq 1$, then $\operatorname{dim} t \geq 3$ which is impossible.
(2) Let G be a connected closed subgroup of codimension 4 determined in (1). In order to determine not necessarily connected such subgroups, we calculate $N_{S L}(3)(G) / G$, where $N_{S L}(3)(G)$ is the normalizer of G in $\boldsymbol{S L}(3)$. In the following, we set $N:=N_{S L(3)}(G)$.
(a) Suppose $G=G_{0}$. We consider the linear N-action on k^{3} induced by the natural $\boldsymbol{S} \boldsymbol{L}(3)$-action on k^{3}. Let $[x, y, z]$ be the coordinates of k^{3}, and set $P=$ $[0,0,0], l=\{x=y=0\}$ and $S=\{z=0\}$. Then the orbit decomposition of k^{3} with respect to the G-action is given by

$$
k^{3}=\{P\} \cup\{l-P\} \cup\{S-P\} \cup\left\{k^{3}-(l \cup S)\right\}
$$

For any $g \in N, g \circ l$ and $g \circ S$ are G-stable. Since l (resp. S) is the unique G stable line (resp. plane), $g \circ l=l$ and $g \circ S=S$. It follows that $g \in G$ and hence $N=G$.
(b) Suppose $G=G_{1}$. We set $l=\{y=z=0\}, S_{1}=\{z=0\}$ and $S_{2}=\{y=0\}$. Then the orbit decomposition of k^{3} with respect to the G-action is given by

$$
k^{3}=\{P\} \cup\{l-P\} \cup\left\{S_{1}-l\right\} \cup\left\{S_{2}-l\right\} \cup\left\{k^{3}-\left(S_{1} \cup S_{2}\right)\right\}
$$

For any $g \in N, g \circ l$ and $g \circ S_{1}$ is G-stable, and hence we have $g \circ l=l, g \circ S_{1}=S_{1}$ or S_{2}. Therefore we may assume that g is of the following 2 types modulo G :

$$
g_{1}=\left[\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right] \text { or } g_{2}=\left[\begin{array}{rrr}
-1 & * & * \\
0 & 0 & 1 \\
0 & 1 & *
\end{array}\right]
$$

Since $g_{1} G g_{1}^{-1} \subset G$, a direct computation shows that $g_{1} \in G$ in this case. Similarly, $g_{2}=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ modulo G. Hence we conclude that $N / G=\left\langle\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\right\rangle \cong \boldsymbol{Z}_{2}$, and $N\left(G_{1}\right):=G_{1} \cdot\left\langle\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\right\rangle$ is the only non-connected closed subgroup whose connected component containing the identity is G_{1}.
(c) Suppose $G=G_{2}$. Similar calculations as in (b) show that $N\left(G_{2}\right):=$ $G_{2} \cdot\left\langle\left[\begin{array}{rrr}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]\right\rangle$ is the only non-connected closed subgroup which has G_{2} as the identity component.
(d) Suppose $G=G_{p, q}(p, q$ are coprime). Then $N=B:=$ the Borel subgroup of all the upper triangular matrices. In fact, $N \supset B$ is obvious. Conversely, if $g \in N$, then $g \in N_{S L}(3)(U)=B$, where U is the unipotent radical of B. Hence we find $N / G \simeq B / G_{p, q}$. Now, let $\varphi: B \rightarrow k^{\times}$be the character of B defined by $\varphi\left(\left[\begin{array}{lll}x & * & * \\ 0 & y & * \\ 0 & 0 & z\end{array}\right]\right)=x^{p} y^{q}$. Then $\operatorname{Ker}(\varphi)=G_{p, q}$, and we have $B / G_{p, q} \simeq k^{\times}$. Since any finite subgroup of k^{\times}is a group of roots of unity, we conclude that

$$
G_{n p, n q}=\left\{\left.\left[\begin{array}{lll}
x & * & * \\
0 & y & * \\
0 & 0 & z
\end{array}\right] \right\rvert\,\left(x^{p} y^{q}\right)^{n}=1, x y z=1\right\} \quad(n \in \boldsymbol{N})
$$

are the subgroups whose identity component is $G_{p, q}$.

2. Examples of quasi-homogeneous 4-folds of $S L(3)$

In this section, we construct various types of smooth complete quasihomogeneous 4 -folds of $\boldsymbol{S} \boldsymbol{L}(3)$ by rather ad-hok methods. We use the following notations for some standard closed subgroups of $\boldsymbol{S L}(3)$:

$$
\begin{aligned}
& B:=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & e & f \\
0 & 0 & i
\end{array}\right] \right\rvert\, a e i=1\right\}, \quad B^{\prime}:=\left\{\left.\left[\begin{array}{lll}
a & 0 & 0 \\
d & e & 0 \\
g & h & i
\end{array}\right] \right\rvert\, a e i=1\right\}, \\
& H:=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & e & f \\
0 & h & i
\end{array}\right] \right\rvert\, a(e i-f h)=1\right\}, \quad H^{\prime}:=\left\{\left.\left[\begin{array}{lll}
a & 0 & 0 \\
d & e & f \\
g & h & i
\end{array}\right] \right\rvert\, a(e i-f h)=1\right\} .
\end{aligned}
$$

We note that B and B^{\prime} are conjugate in $\boldsymbol{S L}(3)$, whereas H and H^{\prime} are not. Now, for the construction of examples, we need to know the explicit description of $\boldsymbol{S} \boldsymbol{L}(3) / B$.

Let $\boldsymbol{S} \boldsymbol{L}(3)$ act on \boldsymbol{P}^{2} in the standard way. Namely, for $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \in \boldsymbol{S} \boldsymbol{L}(3)$ and $P=[x: y: z] \in P^{2}, A \circ P:=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}a x+b y+c z \\ d x+e y+f z \\ g x+h y+i z\end{array}\right]$. We also consider the dual projective plane $\left(\boldsymbol{P}^{2}\right)^{*}$ with the induced $\boldsymbol{S} \boldsymbol{L}(3)$-action. Namely, for $\boldsymbol{Q}=[u: v: w] \in\left(\boldsymbol{P}^{2}\right)^{*}, A \circ Q=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]^{-1}\left[\begin{array}{l}u \\ v \\ w\end{array}\right]$. We define an $\boldsymbol{S} \boldsymbol{L}(3)$-action on \boldsymbol{P}^{2} $\times\left(\boldsymbol{P}^{2}\right)^{*}$ by $A \circ(P, Q)=(A \circ P, A \circ Q)$ for $(P, Q) \in \boldsymbol{P}^{2} \times\left(\boldsymbol{P}^{2}\right)^{*}$, and we set $W:=$ $\{x u+y v+z w=0\} \subset \boldsymbol{P}^{2} \times\left(\boldsymbol{P}^{2}\right)^{*} . \quad W$ is a flag manifold $\left\{(x, l) \in \boldsymbol{P}^{2} \times\left(\boldsymbol{P}^{2}\right)^{*} \mid x \in L\right\}$, where $L \subset \boldsymbol{P}^{2}$ is a line corresponding to l. The following lemma is standard and well-known. However, we give a proof since the calculation in it is frequently referred to later in this note.

Lemma 2. (1) W is $\boldsymbol{S L}(3)$-stable and isomorphic to $\boldsymbol{S L}(3) / B$.
(2) Let $p_{1}: W \rightarrow \boldsymbol{P}^{2}\left(\right.$ resp. $\left.p_{2}: W \rightarrow\left(\boldsymbol{P}^{2}\right)^{*}\right)$ be the projection to the first (resp. second) factor. Then $p_{1}: W \rightarrow \boldsymbol{P}^{2}\left(\right.$ resp. $\left.p_{2}: W \rightarrow\left(\boldsymbol{P}^{2}\right)^{*}\right)$ is isomorphic to the projectivized tangent bundle $\boldsymbol{P}\left(T_{\boldsymbol{P}^{2}}\right) \rightarrow \boldsymbol{P}^{2}\left(\right.$ resp. $\boldsymbol{P}\left(T_{\left.\left(\boldsymbol{P}^{2}\right)_{*}\right)} \rightarrow\left(\boldsymbol{P}^{2}\right)^{*}\right)$.
(3) Let $\mathcal{O}_{\boldsymbol{P}}(1)\left(\right.$ resp. $\left.\mathcal{O}_{p * *}(1)\right)$ be the tautological line bundle of $\boldsymbol{P}\left(T_{P^{2}}\right)$ (resp. $\boldsymbol{P}\left(T_{\left(P^{2}\right) *}\right)$). Then $\mathcal{O}_{\boldsymbol{P}}(1) \simeq \mathcal{O}_{W}(-2,1)$ and $\mathcal{O}_{\boldsymbol{P}^{*}}(1) \simeq \mathcal{O}_{W}(1,-2)$, where $\mathcal{O}_{W}(a, b)$ $=p_{1}^{*}\left(\mathcal{O}_{\boldsymbol{P}^{2}}(a)\right) \otimes p_{2}^{*}\left(\mathcal{O}_{\left(\boldsymbol{P}^{2}\right) *}(b)\right)$.

Proof. (1) It is clear that W is $\boldsymbol{S} \boldsymbol{L}(3)$-stable. Take a point $R:=([1: 0: 0]$, $[0: 0: 1]) \in W$. Then the isotropy group $\boldsymbol{S} \boldsymbol{L}(3)_{R}$ at R is B. In fact, it is clear that $\boldsymbol{S} \boldsymbol{L}(3)_{R} \subset H$. Take $A=\left[\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & h & i\end{array}\right] \in H$. Since ${ }^{\boldsymbol{t}}(A)^{-1}=\left[\begin{array}{ccc}1 / a & 0 & 0 \\ * & a i & -a h \\ * & -a f & a e\end{array}\right], A$ fixes R if and only if $h=0$, namely $A \in B$. Hence W contains a 3-dimensional orbit $O(R)$ isomorphic to $\mathbf{S L}(3) / B$ which is complete. It follows that $W=O(R) \simeq$ $\boldsymbol{S L}(3) / B$.
(2) We show that $p_{1}: W \rightarrow \boldsymbol{P}^{2}$ is isomorphic to $\boldsymbol{P}\left(T_{\boldsymbol{P}^{2}}\right) \rightarrow \boldsymbol{P}^{2}$. Let $\left(k^{3}\right)^{*}$ be an affine 3-space endowed with the dual $\boldsymbol{S} \boldsymbol{L}(3)$-action. We set $W^{\prime}:=\left\{x u^{\prime}+y v^{\prime}\right.$ $\left.+z w^{\prime}=0\right\} \subset \boldsymbol{P}^{2} \times\left(k^{3}\right)^{*},\left([x: y: z],\left[u^{\prime}, v^{\prime}, w^{\prime}\right]\right) \in \boldsymbol{P}^{2} \times\left(k^{3}\right)^{*}$. Then $p_{1}^{\prime}: W^{\prime} \rightarrow \boldsymbol{P}^{2}\left(p_{1}^{\prime}\right.$ is the projection to the first factor) is an $\boldsymbol{S L}(3)$-vector bundle of rank 2 whose projectivization is $p_{1}: W \rightarrow \boldsymbol{P}^{2}$. We note that $\boldsymbol{S} \boldsymbol{L}(3)$-vector bundles over the homogeneous space $\boldsymbol{P}^{2} \simeq \boldsymbol{S} \boldsymbol{L}(3) / \boldsymbol{H}$ are determined by the slice representations of H on the fiber over $P=[1: 0: 0] \in \boldsymbol{P}^{2}(\operatorname{Kraft}[3 ; 6.3]$.$) . Now, take A=$
$\left[\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & h & i\end{array}\right] \in H$. Then A acts on the fiber W_{P}^{\prime} over P by $\left[\begin{array}{l}v^{\prime} \\ w^{\prime}\end{array}\right] \mapsto\left[\begin{array}{lr}a i & -a h \\ -a f & a e\end{array}\right]\left[\begin{array}{l}v^{\prime} \\ w^{\prime}\end{array}\right]$.
On the other hand, let $\eta=y / x, \zeta=z / x$ be the inhomogeneous coordinates around P. Since $A^{*}{ }_{\eta}=\left(e_{\eta}+f \zeta\right)\left(a+b_{\eta}+c \zeta\right)^{-1}, A^{* \zeta}=\left(h_{\eta}+i \zeta\right)\left(a+b_{\eta}+c \zeta\right)^{-1}$, we get $A^{*} d_{\eta}=(e / a) d_{\eta}+(f / a) d \zeta, A^{*} d \zeta=(h / a) d_{\eta}+(i / a) d \zeta$. It follows that $A_{*}: T_{P^{2}, P^{\prime}} \rightarrow$ $T_{P^{2}, P}$ is represented by $\left[\begin{array}{cc}e / a & f / a \\ h / a & i / a\end{array}\right]$ with respect to the basis $\{\partial / \partial \eta, \partial / \partial \zeta\}$. Let $\mathcal{O}_{\boldsymbol{P}^{2}}(-1) \subset \boldsymbol{P}^{2} \times k^{3}$ be the universal subbundle. Since H acts on the line $\mathcal{O}_{P^{2}}(-1)_{P}$ by multiplication by a, we find that $W^{\prime} \simeq T_{P^{2}} \otimes \mathcal{O}_{P^{2}}(-2)$. Hence $p_{1}: W=\boldsymbol{P}\left(W^{\prime}\right) \rightarrow \boldsymbol{P}^{2}$ is isomorphic to $\boldsymbol{P}\left(T_{P^{2}}\right) \rightarrow \boldsymbol{P}^{2}$. We can verify that $p_{2}: W \rightarrow$ $\left(\boldsymbol{P}^{2}\right)^{*}$ is isomorphic to $\boldsymbol{P}\left(T_{\left.\left(\boldsymbol{P}^{2}\right) *\right)} \rightarrow\left(\boldsymbol{P}^{2}\right)^{*}\right.$ similarly.
(3) We take a point $S=[1: 0] \in \boldsymbol{P}\left(T_{P^{2}}\right)_{P}$ whose isotropy group is $B: \boldsymbol{S L}(3)_{s}$ $=B$. Let $\mathcal{O}_{\boldsymbol{P}}(-1) \subset \pi_{1}^{*}\left(T_{P^{2}}\right)$ be the universal subbundle over $\boldsymbol{P}\left(T_{P^{2}}\right) \simeq W$, where $\pi_{1}: \boldsymbol{P}\left(T_{\boldsymbol{P}^{2}}\right) \rightarrow \boldsymbol{P}^{2}$ is the projection. Then $\mathcal{O}_{\boldsymbol{P}}(-1)_{s}=k \cdot[1,0] \subset T_{\boldsymbol{P}^{2}, P} \simeq k^{2}$. Since for $A=\left[\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & 0 & i\end{array}\right] \in B, A_{*}: T_{P^{2}, P} \rightarrow T_{P^{2}, P}$ is represented by $\left[\begin{array}{cc}e / a & f / a \\ 0 & i / a\end{array}\right], A$ acts on the line $\mathcal{O}_{\boldsymbol{P}}(-1)_{s}$ by multiplication by e / a. On the other hand, take a point $R=$ $(P, Q)=([1: 0: 0],[0: 0: 1]) \in W$ at which the isotropy group is B. Since A acts on the line $\mathcal{O}_{P^{2}}(-1)_{P}\left(\right.$ resp. $\left.\mathcal{O}_{\left(P^{2}\right) *}(-1)_{Q}\right)$ by multiplication by a (resp. $a e$), A acts on the line $\mathcal{O}_{W}(p, q)_{R} \simeq \mathcal{O}_{P^{2}}(-1)_{P}^{\otimes(-p)} \otimes \mathcal{O}_{\left(p^{2}\right) *}(-1)_{Q}^{\otimes(-q)}$ by multiplication by $a^{-(p+q)} e^{-q}$. Therefore we get $\mathcal{O}_{P}(1) \cong \mathcal{O}_{W}(-2,1)$. Similar calculations show that $\mathcal{O}_{P^{*}}(1) \simeq \mathcal{O}_{W}(1,-2)$.

Now, we construct 9 types of examples of smooth complete (actually projective) quasi-homogeneous 4 -folds of $\boldsymbol{S L}(3)$. The examples (a), (b), (c), (d) deal with quasi-homogeneous 4-folds whose open orbits are of the form $\boldsymbol{S L}(3) / G_{p, q}$.
(a) Let $W=\boldsymbol{S L}(3) / B$ be as in Lemma 2. The $\boldsymbol{S} \boldsymbol{L}(3)$-line bundles on W are in one-to-one correspondence with the characters of B. Let $\varphi_{p, q}: B \rightarrow k^{\times}$be the character of B defined by $\left[\begin{array}{lll}a & * & * \\ 0 & e & * \\ 0 & 0 & i\end{array}\right] \mapsto a^{\eta} e^{q}$, and $L_{p, q}$ be the $\boldsymbol{S} \boldsymbol{L}(3)$-line bundle corresponding to $\varphi_{p, q}$. We note $L_{p, q} \simeq \mathcal{O}_{W}(-p+q,-q)$ in view of the proof of Lemma 2. Consider the $\boldsymbol{S L}(3)$-action on the total space of $L_{p, q}$. If we take a non-zero vector v of the fiber of $L_{p, q}$ over $I_{3} B \in W=\boldsymbol{S} \boldsymbol{L}(3) / B\left(I_{3}\right.$ is the identity matrix of degree 3), then the isotropy group at v is equal to $G_{p, q}$. Hence $L_{p, q}$ contains a 4-dimensional orbit isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / G_{p, q}$. We projectivize $L_{p, q}$ equivariantly to a \boldsymbol{P}^{1}-bundle by adding the infinite section. More precisely, let \mathcal{O}_{W} be the trivial bundle of rank 1 over W, where $\boldsymbol{S} \boldsymbol{L}(3)$ acts on the fiber trivially,
and we set $X_{p, q}:=\boldsymbol{P}\left(L_{p, q} \oplus \mathcal{O}_{W}\right)$ endowed with the induced $\boldsymbol{S} \boldsymbol{L}(3)$-action. The orbit decomposition of $X_{p, q}$ is given by $X_{p, q}=X_{p, q}^{4} \cup U_{0} \cup U_{\infty}$, where $X_{p, q}^{4}$ is the open dense orbit isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / G_{p, q}, U_{0}$ is the 0 -section of $L_{p, q}$ isomorphic to $\boldsymbol{S L}(3) / B$, and U_{∞} is the infinite section of $X_{p, q}$ isomorphic to $\boldsymbol{S L}(3) / B$.

Lemma 3. Let $X_{p, q}$ be as above, and let the notation be the same as in Lemma 2.
(1) $X_{p, q}$ can be blown-down to a smooth algebraic space along $U_{0} \simeq W$ in the p_{1}-direction (resp. p_{2}-direction) if and only if $q=1$ (resp. $p-q=1$).
(2) $X_{p, q}$ can be blown-down to a smooth algebraic space along $U_{\infty} \simeq W$ in the p_{1}-direction (resp. p_{2}-direction) if and only if $q=-1$ (resp. $q-p=1$).

Proof. (1) Let $l_{1}\left(\right.$ resp. $\left.l_{2}\right) \subset W$ be a fiber of $p_{1}\left(\right.$ resp. $\left.p_{2}\right)$, and $N\left(U_{0} / X_{p, q}\right)$ be the normal bundle of U_{0} in $X_{p, q}$. Then we have

$$
\left(N\left(U_{0} / X_{p, q}\right), l_{1}\right)=\left(L_{p, q}, l_{1}\right)=\left(\mathcal{O}_{W}(-p+q,-q), l_{1}\right)=-q,
$$

and similarly, $\left(N\left(U_{0} / X_{p, q}\right), l_{2}\right)=-p+q$. Hence (1) holds from the criterion for smooth blow-downs.
(2) Since $N\left(U_{\infty} / X_{p, q}\right) \simeq L_{p, q}^{-1}$, (2) follows from (1).
(b) Let $\boldsymbol{S} \boldsymbol{L}(3)$ act on \boldsymbol{P}^{2} in the standard way. Take a point $P=[1: 0: 0] \in$ \boldsymbol{P}^{2} at which the isotropy group is H. Let $\rho_{\alpha}: H \rightarrow \boldsymbol{G} \boldsymbol{L}(2)$ be a 2-dimensional representation of H defined by $\left[\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & h & i\end{array}\right] \mapsto a^{\alpha}\left[\begin{array}{ll}e & f \\ h & i\end{array}\right]$, and E_{α} be the $\boldsymbol{S} \boldsymbol{L}(3)$-vector bundle of rank 2 corresponding to $\rho_{\alpha}\left(E_{\alpha} \simeq T_{P^{2}} \otimes \mathcal{O}_{P^{2}}(-\alpha-1)\right)$. If we take a point $Q=[1,0] \in E_{\alpha, P}=k^{2}$, then $\boldsymbol{S} \boldsymbol{L}(3)_{Q}=\left\{A \in H \mid a^{\alpha} e=1, a^{\alpha} h=0\right\}=G_{\alpha, 1}$. We projectivize E_{α} to a \boldsymbol{P}^{2}-bundle by adding infinite lines. More precisely, let $\mathcal{O}_{\boldsymbol{P}^{2}}$ be the trivial bundle of rank 1, where $\boldsymbol{S L} \boldsymbol{L}(\mathbf{3})$ acts on the fiber trivially, and we set $Y_{\alpha}:=$ $\boldsymbol{P}\left(E_{\alpha} \oplus \mathcal{O}_{\boldsymbol{P}^{2}}\right)$. Since H acts on the infinite line by $\left[\begin{array}{c}v \\ w\end{array}\right] \mapsto\left[\begin{array}{c}e f \\ h i\end{array}\right]\left[\begin{array}{c}v \\ w\end{array}\right]$, the isotropy group at [1:0] on the infinite line is B. Hence we have a following orbit decomposition of $Y_{\alpha}: Y_{\alpha}=Y_{\alpha}^{4} \cup Y_{\alpha}^{3} \cup Y_{\alpha}^{2}$, where Y_{α}^{4} is a 4-dimensional orbit isomorphic to $\boldsymbol{S L}(3) / G_{\alpha, 1}, Y_{\alpha}^{3}$ is a 3-dimensional orbit consisting of infinite lines isomorphic to $W=\boldsymbol{S} \boldsymbol{L}(3) / B$, and Y_{α}^{2} is the 0 -section of E_{α} isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / H$.

Lemma 4. Y_{a} cannot be blown-down to a smooth algebraic space along $Y_{a}^{3} \simeq W$ in the p_{1}-direction, and can be blown-down in the p_{2}-direction if and only if $\alpha=0$.

Proof. An easy calculation shows that $A=\left[\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & 0 & i\end{array}\right] \in B$ acts on $N\left(Y_{\alpha}^{3} / Y_{\alpha}\right)_{P}$
($P:=I_{3} B \in \boldsymbol{S} \boldsymbol{L}(3) / B \simeq Y_{\alpha}^{3}$) by multiplication by $i a^{1-\alpha}$. Hence we have $N\left(Y_{\alpha}^{3} / Y_{\alpha}\right)$ $\simeq \mathcal{O}_{W}(\alpha-1,1)$ (see the proof of Lemma 2). Now, $\left(N\left(Y_{a}^{3} / Y_{\alpha}\right), l_{1}\right)=\left(\mathcal{O}_{W}(\alpha-\right.$ $\left.1,1), l_{1}\right)=1$, and $\left(N\left(Y_{\alpha}^{3} / Y_{\alpha}\right), l_{2}\right)=\alpha-1$. Therefore our assertion is verified by the criterion for smooth blow-downs.
(c) We consider the standard $\boldsymbol{S L}(3)$-action on the dual projective plane $\left(\boldsymbol{P}^{2}\right)^{*}$. The isotropy group at $P=[1: 0: 0] \in\left(\boldsymbol{P}^{2}\right)^{*}$ is H^{\prime}. Take the 2 -dimensional representation $\lambda_{\alpha}: \boldsymbol{H}^{\prime} \rightarrow \boldsymbol{G} \boldsymbol{L}(2)$ given by $\left[\begin{array}{lll}a & 0 & 0 \\ d & e & f \\ g & h & i\end{array}\right] \mapsto a^{\alpha}\left[\begin{array}{ll}e & f \\ h & i\end{array}\right]$, and let $F_{\alpha} \rightarrow\left(\boldsymbol{P}^{2}\right)^{*}$ be the $\boldsymbol{S} \boldsymbol{L}(3)$-bundle of rank 2 corresponding to λ_{α}. If we take a point $R=$ $[0,1] \in E_{\alpha, P}=k^{2}$, then $\boldsymbol{S} \boldsymbol{L}(3)_{R}=\left\{A \in H^{\prime} \mid a^{\alpha} i=1, f=0\right\}=\left\{\left.\left[\begin{array}{lll}a & 0 & 0 \\ d & e & 0 \\ g & h & i\end{array}\right] \right\rvert\, a^{\alpha} i=1\right\}=$ $C^{-1} G_{-\alpha+1,-\alpha} C$, where $C=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$. Hence the isotropy group $\boldsymbol{S L}(3)_{C \circ R}$ at $C \circ R$ is equal to $G_{-\alpha+1,-\alpha}$. We projectivize F_{α} to a \boldsymbol{P}^{2}-bundle $Z_{\alpha}:=\boldsymbol{P}\left(F_{\alpha} \oplus \mathcal{O}_{\left(\boldsymbol{P}^{2}\right)}\right)$. The orbit decomposition of Z_{α} is given by $Z_{\alpha}=Z_{\alpha}^{4} \cup Z_{\alpha}^{3} \cup Z_{\alpha}^{2}$, where Z_{α}^{4} is an open dense orbit isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / G_{-\alpha+1,-\alpha}, Z_{\alpha}^{3}$ is a 3 -dimensionl orbit consisting of the infinite lines isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / B$, and Z_{α}^{2} is the 0 -section of F_{α} isomorphic to $\boldsymbol{S L}(3) / H^{\prime}$.

Lemma 5. Z_{α} cannot be blown-down to a smooth algebraic space alony $Z_{\alpha}^{3} \simeq W$ in the p_{2}-airection, and can be blown-down in the p_{1}-direction if and only if $\alpha=1$.

Proof. We have $N\left(Z_{\alpha}^{3} / Z_{\alpha}\right) \simeq \mathcal{O}_{W}(1, \alpha-2)$. The rest of the proof is similar to Lemma 4.
(d). Let $\left[x_{0}: x_{1}: x_{2}: y_{0}: y_{1}: y_{2}\right]$ be the homogeneous coordinates of \boldsymbol{P}^{5}, and define an $\boldsymbol{S L}(3)$-action on \boldsymbol{P}^{5} by $A \circ\left[x_{0}: x_{1}: x_{2}: y_{0}: y_{1}: y_{2}\right]=\left[x_{0}^{\prime}: x_{1}^{\prime}: x_{2}^{\prime}: y_{0}^{\prime}: y_{1}^{\prime}: y_{2}^{\prime}\right]$ for $A \in \boldsymbol{S} \boldsymbol{L}(3)$, where ${ }^{t}\left[x_{0}^{\prime}: x_{1}^{\prime}: x_{2}^{\prime}\right]=A \cdot t\left[x_{0}: x_{1}: x_{2}\right]$ and ${ }^{t}\left[y_{0}^{\prime}: y_{1}^{\prime}: y_{2}^{\prime}\right]=\left({ }^{t} A\right)^{-1}$. ${ }^{t}\left[y_{0}: y_{1}: y_{2}\right]$. We set $Q:=\left\{x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}=0\right\} \subset \boldsymbol{P}^{5} . ~ Q$ is an $\boldsymbol{S} \boldsymbol{L}(\mathbf{3})$-stable nonsingular quadric 4 -fold. If we take a point $P:=[1: 0: 0: 0: 0: 1] \in Q$, then $\boldsymbol{S} \boldsymbol{L}(3)_{P}=G_{0,1}$. In fact, it is clear that $H \supset \boldsymbol{S} \boldsymbol{L}(3)_{P}$. Take $A=\left[\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & h & i\end{array}\right] \in H$. Since $\left({ }^{t} A\right)^{-1}=\left[\begin{array}{cc}* * & 0 \\ * * & -a h \\ * * & a e\end{array}\right], A \circ P=[a: 0: 0: 0:-a h: a e]$. Hence $\boldsymbol{S} \boldsymbol{L}(3)_{P}=\{A \in$ $H \mid h=0, e=1\}=G_{0,1}$. Set $Q^{2}:=\left\{y_{0}=y_{1}=y_{2}=0\right\} \simeq \boldsymbol{P}^{2}$ and $Q^{2 \prime}:=\left\{x_{0}=x_{1}=x_{2}=0\right\}$ $\simeq\left(\boldsymbol{P}^{2}\right)^{*}$. Then $Q^{2}\left(\right.$ resp. $\left.Q^{2 \prime}\right)$ is a closed orbit isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / H$ (resp.
$\left.\boldsymbol{S} \boldsymbol{L}(3) / H^{\prime}\right)$. The orbit decomposition of Q is given by $Q=Q^{4} \cup Q^{2} \cup Q^{2 \prime}$, where $Q^{4}=Q-\left(Q^{2} \cup Q^{2 \prime}\right)$ is a 4-dimensional orbit isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / G_{0,1}$. In fact, take any point $R=[p: q: r: s: t: u] \in Q^{4}$. If, for instance, $p \neq 0$, then $A \circ P=R$ for $A:=\left[\begin{array}{ccc}p & 0 & * \\ q & u / p & * \\ r & -t / p & *\end{array}\right] \in \boldsymbol{S L}(3) . \quad$ Thus we find that Q^{4} is an orbit.

Lemma 6. $N\left(Q^{2} / Q\right) \simeq T_{P^{2}} \otimes \mathcal{O}_{P^{2}}(-1), N\left(Q^{2^{\prime}} \mid Q\right) \simeq T_{\left(P^{2}\right) *} \otimes \mathcal{O}_{\left(P^{2}\right) *}(-1)$.
Proof. We consider the following exact sequence of normal bundles:
$\left.(*) \quad 0 \rightarrow N\left(Q^{2} / Q\right) \rightarrow N\left(Q^{2} / \boldsymbol{P}^{5}\right) \rightarrow N\left(Q / \boldsymbol{P}^{5}\right)\right|_{Q^{2} \rightarrow 0 .}$
Since $N\left(Q^{2} / \boldsymbol{P}^{5}\right) \simeq \mathcal{O}_{\boldsymbol{P}^{2}(1)^{\oplus 3}}$ and $\left.N\left(Q / \boldsymbol{P}^{5}\right)\right|_{Q^{2}} \simeq \mathcal{O}_{\boldsymbol{P}^{2}}(2)$, we have $N\left(Q^{2} / Q\right) \simeq \Omega_{P^{2}} \otimes$ $\mathcal{O}_{P^{2}}(2) \simeq T_{P^{2}} \otimes \mathcal{O}_{P^{2}}(-1)$ by comparing $(*)$ with the dual of the standard Euler sequence.

The relation of quasi-homogeneous 4-folds in examples (a) $\sim(\mathrm{d})$ is given in the following proposition. We denote by $B_{Z}(X)$ the blowing-up of a variety X along a subvariety Z.

Proposition 7. $\quad B_{Y_{p}^{2}}\left(Y_{p}\right) \simeq X_{p, 1}, B_{Z_{q}^{2}}\left(Z_{q}\right) \simeq X_{q-1, q}(q \geq 1), B_{Z_{-q}^{2}}^{2}\left(Z_{-q}\right) \simeq X_{q+1, q}$ ($q \geq 0$), and $B_{Q^{2}}(Q) \simeq Y_{0}, B_{Q^{2}}(Q) \simeq Z_{1}$.

Proof. We show $B_{Y_{p}^{2}}\left(Y_{p}\right) \simeq X_{p, 1}$. In fact, the exceptional divisor $C \subset$ $B_{Y_{p}^{2}}(Y)$ is isomorphic to $W \simeq \boldsymbol{P}\left(T_{P^{2}}\right)$ since $N\left(Y_{p}^{2} / Y_{p}\right) \simeq E_{p} \simeq T_{P^{2}} \otimes \mathcal{O}_{\boldsymbol{P}^{2}}(-p-1)$. Let $F: B_{Y_{p}^{2}}\left(Y_{p}\right) \cdots \rightarrow X_{p, 1}$ be a birational map induced by identifying the open dense orbits $\simeq \boldsymbol{S L}(3) / G_{p, 1} . \quad$ Let I (resp. J) be the indeterminacy locus of F (resp. F^{-1}). Then, since I and J are $\boldsymbol{S L}(3)$-stable closed subsets of codimension equal to or larger than 2, we find that I and J are empty, and F is an isomorphism. The other isomorphisms are proved similarly.
(e) G_{1}-case. We consider the standard $\boldsymbol{S L}(3)$-action on the dual projective plane $\left(\boldsymbol{P}^{2}\right)^{*}$ and set $M_{1}:=\left(\boldsymbol{P}^{2}\right)^{*} \times\left(\boldsymbol{P}^{2}\right)^{*}$ endowed with the diagonal $\boldsymbol{S} \boldsymbol{L}(3)$ action. If we take a point $P:=([1: 0: 0],[0: 1: 0]) \in M_{1}$, then clearly $H^{\prime} \supset$ $\boldsymbol{S} \boldsymbol{L}(3)_{p}$. Take $A:=\left[\begin{array}{lll}1 & 0 & 0 \\ d & e & f \\ g & h & i\end{array}\right] \in H^{\prime} . \quad$ Then, since ${ }^{t}(A)^{-1}=\left[\begin{array}{ccc}* & f g-d i & * \\ * & a i & * \\ * & -a f & *\end{array}\right], A \in$ $\boldsymbol{S L}(3)_{P}$ if and only if $f=d=0$. Hence $\boldsymbol{S} \boldsymbol{L}(3)_{P}$ consists of the matrices of the form $\left[\begin{array}{lll}* & 0 & 0 \\ 0 & * & 0 \\ * & * & *\end{array}\right]$. It follows that $D^{-1} G_{1} D=\boldsymbol{S} \boldsymbol{L}(3)_{P}$, where $D=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$, and we get $\boldsymbol{S L}(3)_{D_{\circ} P}=G_{1}$. The orbit decomposition of M_{1} is given by $M_{1}=\Delta \cup\left(M_{1}-\Delta\right)$, where Δ is the diagonal isomorphic to $\boldsymbol{S L}(3) / H^{\prime}$ and $M_{1}-\Delta$ is a 4-dimensional orbit isomorphic to $\boldsymbol{S L}(3) / G_{1}$.

Let $\pi: \bar{M}_{1} \rightarrow M_{1}$ be the blowing-up of M_{1} along Δ. Since Δ is a closed orbit, we can define a regular $\boldsymbol{S} \boldsymbol{L}(3)$-action on \bar{M}_{1} such that π is $\boldsymbol{S} \boldsymbol{L}(3)$-equivariant. Since $N\left(\Delta / M_{1}\right) \simeq T_{\Delta} \simeq T_{\left(P^{2}\right) *}$, the exceptional divisor $E \subset \bar{M}_{1}$ is isomorphic to $\boldsymbol{P}\left(T_{\left(P^{2}\right)^{*}}\right) \simeq W$, and the orbit decomposition of \bar{M}_{1} is given by $\bar{M}_{1}=\bar{M}_{1}^{4} \cup E$, where $\bar{M}_{1}^{4}=\bar{M}_{1}-E$ is a 4-dimensional orbit isomorphic to $\boldsymbol{S L}(3) / G_{1}$. We note that \bar{M}_{1} cannot be blown-down to a smooth algebraic space along $E \simeq W$ in the p_{1}-direction since $\left(N\left(E / \bar{M}_{1}\right), l_{1}\right)=\left(\mathcal{O}_{W}(-1,2), l_{1}\right)=2$ (notations are the same as in Lemma 2).
(f) $N\left(G_{1}\right)$-case. We consider the standard $\boldsymbol{S} \boldsymbol{L}(3)$-action on \boldsymbol{P}^{2}. Let $S^{2}\left(T_{P^{2}}\right)$ be the symmetric tensor bundle of degree 2 of $T_{P^{2}}$, and we set $N_{1}:=$ $\boldsymbol{P}\left(S^{2}\left(T_{\boldsymbol{P}^{2}}\right)\right)$ endowed with the induced $\boldsymbol{S} \boldsymbol{L}(3)$-action. Take a point $P:=\left[\begin{array}{lll}1: & 0: & 0\end{array}\right]$ $\in \boldsymbol{P}^{2}$ at which the isotropy group is H. Take $A=\left[\begin{array}{lll}a & b & c \\ 0 & e & f \\ 0 & h & i\end{array}\right] \in H$ and let $[y, z]$ be the inhomogeneous affine coordinates around the origin P. We recall that the $H-$ action on $T_{P^{2}, P}$ is represented by $a^{-1}\left[\begin{array}{ll}e & f \\ h & i\end{array}\right]$ with respect to the basis $\{\partial / \partial y, \partial / \partial z\}$ (cf. Lemma 2). Hence the H-action on $S^{2}\left(T_{P^{2}}\right)_{P}$ is represented by $a^{-2}\left[\begin{array}{ccc}e^{2} & \text { ef } & f^{2} \\ 2 e h & i e+f h & 2 f i \\ h^{2} & \text { ih } & i^{2}\end{array}\right]$ with respect to the basis $\left\{(\partial / \partial y)^{\otimes 2},(\partial / \partial y) \otimes(\partial / \partial z),(\partial / \partial z)^{\otimes 2}\right\}$. Thus the isotropy group at $[0: 1: 0] \in \boldsymbol{P}_{P}:=\boldsymbol{P}\left(S^{2}\left(T_{P^{2}}\right)\right)_{P}$ is given by $\{A \in H \mid e f=i h=0\}=\{A \in$ $H \mid e=i=0$ or $f=h=0\}=N\left(G_{1}\right)$. The orbit decomposition of \boldsymbol{P}_{P} with respect to the H-action is given by $\boldsymbol{P}_{P}=C \cup\left(\boldsymbol{P}_{P}-C\right)$, where C is a conic defined by $\left\{\eta^{2}-4 \xi \zeta=0\right\}$ and $[\xi: \eta: \zeta]$ are the homogeneous coordinates of $\boldsymbol{P}_{P} . \quad C$ is the orbit through $[1: 0: 0] \in \boldsymbol{P}_{P}$ and hence isomorphic to H / B. Therefore the orbit decomposition of N_{1} with respect to the $\boldsymbol{S} \boldsymbol{L}(3)$-action is given by $N_{1}=N_{1}^{4} \cup F$, where N_{1}^{4} is a 4-dimensional orbit isomorphic to $\boldsymbol{S L}(3) / N\left(G_{1}\right)$ and F is a 3dimensional orbit isomorphic to $\boldsymbol{S L}(3) / B \simeq W$.

Proposition 8. Let \bar{M}_{1} and N_{1} be as in (e), (f).
(1) There exists an $\boldsymbol{S L}(3)$-equivariant finite morphism $\varphi: \bar{M}_{1} \rightarrow N_{1}$ of degree 2. The ramification locus of φ is $E \subset \bar{M}_{1}$ and the branch locus is $F \subset N_{1}$.
(2) Let $l_{1}\left(\right.$ resp. $\left.l_{2}\right)$ be a fiber of $p_{1}: F=W \rightarrow \boldsymbol{P}^{2}\left(\right.$ resp. $\left.p_{2}: F \rightarrow\left(\boldsymbol{P}^{2}\right)^{*}\right)$. Then $\left(F, l_{1}\right)=4$ and $\left(F, l_{2}\right)=-2$. In particular, N_{1} cannot be blown-down to a smooth algebraic space along F in neither directions.

Proof. (1) From the inclusion $G_{1} \subset N\left(G_{1}\right)$, an $\boldsymbol{S} \boldsymbol{L}(3)$-equivariant étale morphism $\nu: \bar{M}_{1}^{4} \simeq \boldsymbol{S} \boldsymbol{L}(3) / G_{1} \rightarrow N_{1}^{4} \simeq \boldsymbol{S} \boldsymbol{L}(3) / N\left(G_{1}\right)$ of degree 2 is induced. We note that ν is the unique $\boldsymbol{S} \boldsymbol{L}(3)$-equivariant morphism from \bar{M}_{1}^{4} to N_{1}^{4} since $\{a \in$ $\left.\boldsymbol{S L}(3) \mid a G_{1} a^{-1} \subset N\left(G_{1}\right)\right\}=N\left(G_{1}\right)$. Let $\boldsymbol{\varphi}: \bar{M}_{1} \cdots \rightarrow N_{1}$ be a rational map induced
by ν with the indeterminacy locus I. Since I is an $\boldsymbol{S} \boldsymbol{L}(3)$-stable closed subset of codimension $\geq 2, I$ is empty and φ is a morphism. Since φ is $\boldsymbol{S} \boldsymbol{L}(3)$-equivariant, $\varphi(E)=F$. We note that $\left.\varphi\right|_{E}: E \rightarrow F$ is an isomorphsm. In fact, since $N_{S L(3)}(B)=B$, identity is the unique $\boldsymbol{S L}(3)$-equivariant morphism from $W=$ $\boldsymbol{S} \boldsymbol{L}(3) / B$ to W. The assertion (1) is thus proved.
(2) We note $N\left(E / \bar{M}_{1}\right) \simeq \mathcal{O}_{\left.P^{(T}\left(P^{2}\right)^{*}\right)}(-1) \simeq \mathcal{O}_{W}(-1,2)$. Hence $\left(E, l_{1}\right)=$ $\left(\left(N\left(E / \bar{M}_{1}\right), l_{1}\right)=\left(\mathcal{O}_{W}(-1,2), l_{1}\right)=2\right.$, and $\left(E, l_{2}\right)=-1$ similarly. Now, we have $\left(F, l_{1}\right)=\left(\varphi^{*}(F), l_{1}\right)=\left(2 E, l_{1}\right)=4$, and $\left(F, l_{2}\right)=-2$ similarly. The assertion (2) is proved.

Remark. We have $[F] \simeq \mathcal{O}_{\boldsymbol{P}}(2) \otimes \pi^{*}\left(\mathcal{O}_{P^{2}}(6)\right)$, where [F] is the line bundle associated to the divisor $F, \mathcal{O}_{\boldsymbol{P}}(1)$ is the tautological line bundle of $\boldsymbol{P}\left(S^{2}\left(T_{P^{2}}\right)\right)$, and $\pi: \boldsymbol{P}\left(S^{2}\left(T_{\boldsymbol{P}^{2}}\right)\right) \rightarrow \boldsymbol{P}^{2}$ is the projection. Indeed, if we take a point $R=[1: 0: 0]$ $\in \boldsymbol{P}_{P}$, then $B=\boldsymbol{S} \boldsymbol{L}(3)_{R}$ acts on the line $\mathcal{O}_{\boldsymbol{P}}(-1)_{R} \subset \pi^{*}\left(S^{2}\left(T_{\left.\boldsymbol{P}^{2}\right)}\right)\right)_{R}$ by multiplication by e^{2} / a^{2}. Hence we find that $\left.\mathcal{O}_{P}(1)\right)\left.\right|_{F} \simeq \mathcal{O}_{W}(-4,2)$. Now, if we set $[F] \simeq$ $\mathcal{O}_{\boldsymbol{P}}(2) \otimes \pi^{*}\left(\mathcal{O}_{\boldsymbol{P}^{2}}(\alpha)\right)(\alpha \in \boldsymbol{Z})$, then $-2=\left(F, l_{2}\right)=2\left(\mathcal{O}_{\boldsymbol{P}}(1), l_{2}\right)+\left(\pi^{*}\left(\mathcal{O}_{\boldsymbol{P}^{2}}(\alpha)\right), l_{2}\right)=$ $2\left(\mathcal{O}_{W}(-4,2), l_{2}\right)+\left(\mathcal{O}_{P^{2}}(\alpha)\right.$, line $)=-8+\alpha . \quad$ Hence $\alpha=6$.
(g) G_{2}-case. Consider the standard $\boldsymbol{S L}(3)$-action on \boldsymbol{P}^{2} and let $\boldsymbol{S L}(3)$ act on $M_{2}:=\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ diagonally. If we take a point $S:=([1: 0: 0],[0: 1: 0]) \in M_{2}$, then it is clear that $\boldsymbol{S} \boldsymbol{L}(3)_{s}=\left\{\left[\begin{array}{lll}* & 0 & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right]\right\}=G_{2}$. The orbit decomposition of M_{2} is given by $M_{2}=\left(M_{2}-\Delta\right) \cup \Delta$, where $M_{2}-\Delta$ is a 4-dimensional orbit isomorphic to $\boldsymbol{S L}(3) / G_{2}$ and Δ is the diagonal isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / H$.

Next, we denote by \bar{M}_{2} the blowing-up of M_{2} along the diagonal Δ. The orbit decomposition of \bar{M}_{2} is given by $\bar{M}_{2}=\bar{M}_{2}^{4} \cup E^{\prime}$, where E^{\prime} is the exceptional divisor isomorphic to $\boldsymbol{S L}(3) / B$, and $\bar{M}_{2}^{4}=\bar{M}_{2}-E^{\prime}$ is a 4-dimensional orbit isomorphic to $\boldsymbol{S L}(3) / G_{2}$. We note that \bar{M}_{2} cannot be blown-down to a smooth algebraic space along $E^{\prime} \simeq W$ in the p_{2}-direction. Details are similar to (e).
(h) $N\left(G_{2}\right)$-case. We consider the dual projective plane $\left(\boldsymbol{P}^{2}\right)^{*}$. Let $S^{2}\left(T_{\left(\boldsymbol{P}^{2}\right) *}\right)$ be the symmetric tensor bundle of degree 2 of $T_{\left(\boldsymbol{p}^{2}\right) *}$, and we set N_{2} := $\boldsymbol{P}\left(S^{2}\left(T_{\left(\boldsymbol{P}^{2}\right) *}\right)\right.$. Take a point $P:=[1: 0: 0] \in\left(\boldsymbol{P}^{2}\right)^{*}$ at which the isotropy group is H^{\prime}, and take $A=\left[\begin{array}{lll}a & 0 & 0 \\ d & e & f \\ g & h & i\end{array}\right] \in H^{\prime}$. Let $[y, z]$ be the inhomogeneous affine coordinates around the origin P. Since $\left({ }^{t} A\right)^{-1}=\left[\begin{array}{ccc}1 / a & f g-d i & e g-d h \\ 0 & a i & -a h \\ 0 & -a f & a e\end{array}\right]$, an easy calculation shows that the H^{\prime}-action on $T_{\left(P^{2}\right) *, P}$ is represented by $a^{2}\left[\begin{array}{ll}i & -h \\ -f & e\end{array}\right]$ with
respect to the basis $\{\partial / \partial y, \partial / \partial z\}$. Hence the H^{\prime}-action on $S^{2}\left(T_{\left(\boldsymbol{P}^{2}\right) *}\right)_{P}$ is represented by $a^{4}\left[\begin{array}{ccc}i^{2} & -i h & h^{2} \\ -2 i f & i e+f h & -2 h e \\ f^{2} & -f e & e^{2}\end{array}\right]$ with respect to the basis $\left\{(\partial / \partial y)^{\otimes^{2}},(\partial / \partial y) \otimes\right.$ $\left.(\partial / \partial z),(\partial / \partial z)^{\otimes 2}\right\}$. Thus the isotropy group at $[0: 1: 0] \in \boldsymbol{P}\left(S^{2}\left(T_{\left.\left(P^{2}\right) *\right)_{P}}\right)\right.$ is given by $\left\{A \in H^{\prime} \mid\right.$ ih $\left.=f e=0\right\}=\left\{A \in H^{\prime} \mid i=e=0\right.$ or $\left.f=h=0\right\}=N\left(G_{2}\right)$. The orbit decomposition of N_{2} is given by $N_{2}=N_{2}^{4} \cup F^{\prime}$, where N_{2}^{4} is a 4-dimensional orbit isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / N\left(G_{2}\right)$ and F^{\prime} is a 3-dimensional closed orbit isomorphic to $\boldsymbol{S L}(3) / B$ such that $\left[F^{\prime}\right] \simeq \mathcal{O}_{\boldsymbol{P}^{*}}(2) \otimes \pi^{*}\left(\mathcal{O}_{\left(\boldsymbol{P}^{2}\right) *}(6)\right)$, where $\mathcal{O}_{\boldsymbol{P}^{*}}(1)$ is the tautological line bundle of $\boldsymbol{P}\left(S^{2}\left(T_{\left(\boldsymbol{P}^{2}\right) *}\right)\right.$ and $\pi: \boldsymbol{P}\left(S^{2}\left(T_{\left(\boldsymbol{P}^{2}\right) *}\right) \rightarrow\left(\boldsymbol{P}^{2}\right)^{*}\right.$ is the projection. Details are similar to (f).

Proposition 9. Let \bar{M}_{2} and N_{2} be as in (g), (h).
(1) There exists an $\boldsymbol{S L}(3)$-equivariant finite morphism $\psi: \bar{M}_{2} \rightarrow N_{2}$ of degree 2. The ramification locus of ψ is $E^{\prime} \subset \bar{M}_{2}$ and the branch locus is $F^{\prime} \subset N_{2}$.
(2) Let $l_{1}\left(\right.$ resp. $\left.l_{2}\right)$ be a fiber of $p_{1}: F^{\prime}=W \rightarrow \boldsymbol{P}^{2}\left(\right.$ resp. $\left.p_{2}: F^{\prime} \rightarrow\left(\boldsymbol{P}^{2}\right)^{*}\right)$. Then $\left(F^{\prime}, l_{1}\right)=-2$ and $\left(F^{\prime}, l_{2}\right)=4$. In particular, N_{2} cannot be blown-down to a smooth algebraic space along F^{\prime} in neither directions.

The proof of this proposition is similar to that of Proposition 8.
(i) G_{0}-case. Consider the standard $\boldsymbol{S L}(3)$-actions on \boldsymbol{P}^{2} and $\left(\boldsymbol{P}^{2}\right)^{*}$ and set $X_{0}:=\boldsymbol{P}^{2} \times\left(\boldsymbol{P}^{2}\right)^{*}$. Define an $\boldsymbol{S L}(3)$-action on X_{0} by $A \circ(P, Q)=(A \circ P, A \circ Q)$ for $(P, Q) \in X_{0}, A \in \boldsymbol{S} \boldsymbol{L}(3)$. Take a point $P:=([0: 0: 1],[0: 0: 1]) \in X_{0}$. Then an easy calculation shows that $\boldsymbol{S L}(3)_{P}=G_{0}$. The orbit decomposition of X_{0} is given by $X_{0}=X_{0}^{4} \cup X_{0}^{3}$, where X_{0}^{4} is a 4-dimensional orbit isomorphic to $\boldsymbol{S L}(3) / G_{0}$, and X_{0}^{3} is a closed orbit isomorphic to $\boldsymbol{S L}(3) / B$, which is defined by $x_{0} y_{0}+x_{1} y_{1}+$ $x_{2} y_{2}=0,\left(\left[x_{0}: x_{1}: x_{2}\right],\left[y_{0}: y_{1}: y_{2}\right]\right) \in \boldsymbol{P}^{2} \times\left(\boldsymbol{P}^{2}\right)^{*}$.

3. Classification of quasi-homogeneous 4-folds of $\mathbf{S L}(\mathbf{3})$

In this section, we classify smooth complete quasi-homogeneous 4-folds of $\boldsymbol{S L}(3)$ up to isomorphisms. First, we need a lemma:

Lemma 10. Let V be a smooth complete quasi-homogeneous 4-fold of $\boldsymbol{S L}(3)$. Then V has no fixed points, no 1-dimensional orbits. The possible 2-dimensional orbits are isomorphic to \boldsymbol{P}^{2} or $\left(\boldsymbol{P}^{2}\right)^{*}$ with the standard actions.

Proof. Assume that $x \in V$ is a fixed point. We consider the induced linear action ρ of $\boldsymbol{S} \boldsymbol{L}(3)$ on $T_{V, x}$. Since V is smooth, $\operatorname{dim} T_{V, x}=4$ and ρ is represented as one of the following three types:

$$
A \mapsto\left[\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
\left({ }^{t} A\right)^{-1} & 0 \\
0 & 1
\end{array}\right] \text { or } I_{4} \text { (identity matrix) for } A \in \boldsymbol{S} \boldsymbol{L}(3) .
$$

Now, by Luna's étale slice theorem [4], there exists an $\boldsymbol{S L}(3)$-stable affine subvariety S containing x such that there is an étale $\boldsymbol{S} \boldsymbol{L}(3)$-equivariant morphism $\nu: S \rightarrow T_{V, x}$. But then, S has a 4-dimensional orbit, whereas $T_{V, x}$ has no 4-dimensional orbits in any case. Thus, we got a contradiction and V has no fixed points. Since $\boldsymbol{S} \boldsymbol{L}(3)$ has no closed subgroups of codimension 1, and any closed subgroup of codimension 2 is conjugate to H or H^{\prime} (Mabuchi [6; Theorem 2. 2.1]), V has no orbits of dimension 1 and any 2 -dimensional orbit is isomorphic to \boldsymbol{P}^{2} or $\left(\boldsymbol{P}^{2}\right)^{*}$.

Now, we state the main theorem of this note. For a closed subgroup $G \subset$ $\boldsymbol{S} \boldsymbol{L}(3)$ of codimension 4, we denote by $\mathcal{C}(G)$ the set of all isomorphism classes of smooth complete quasi-homogeneous 4-folds of $\boldsymbol{S L}(3)$ whose open dense orbit is of the form $\boldsymbol{S L}(3) / G$.

Theorem 11. Let X be a smooth complete quasi-homogeneous 4-fold of $\boldsymbol{S L}(3)$. Then X is classified completely as follows:
(1) Assume $X \in \mathcal{C}\left(G_{p, q}\right)$. Then $X \simeq X_{p, q}$ if $|p-q| \neq 1, q \neq 1 ; X \simeq X_{p, 1}, Y_{p}$ if $q=1 ; X \simeq X_{q-1, q}, Z_{q}$ if $q-p=1(q \geq 1) ; X \simeq X_{q+1, q}, Z_{-q}$ if $p-q=1(q \geq 0) ; X \simeq$ $X_{0,1}, Y_{0}, Z_{1}, Q$ if $p=0, q=1$.
(2) If $X \in \mathcal{C}\left(G_{1}\right)$, then $X \simeq\left(\boldsymbol{P}^{2}\right)^{*} \times\left(\boldsymbol{P}^{2}\right)^{*}, B_{\Delta}\left(\left(\boldsymbol{P}^{2}\right)^{*} \times\left(\boldsymbol{P}^{2}\right)^{*}\right)$.
(3) If $X \in \mathcal{C}\left(N\left(G_{1}\right)\right)$, then $X \simeq \boldsymbol{P}\left(S^{2}\left(T_{P^{2}}\right)\right)$.
(4) If $X \in \mathcal{C}\left(G_{2}\right)$, then $X \simeq \boldsymbol{P}^{2} \times \boldsymbol{P}^{2}, B_{\Delta}\left(\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}\right)$.
(5) If $X \in \mathcal{C}\left(N\left(G_{2}\right)\right)$, then $X \simeq \boldsymbol{P}\left(S^{2}\left(T_{\left(\boldsymbol{P}^{2}\right) *}\right)\right)$.
(6) If $X \in \mathcal{C}\left(G_{0}\right)$, then $\mathrm{X} \simeq \boldsymbol{P}^{2} \times\left(\boldsymbol{P}^{2}\right)^{*}$.

Proof. We verify the assertion (1). Let X be a smooth complete quasihomogeneous 4-fold of $\boldsymbol{S} \boldsymbol{L}(3)$ which belongs to $\mathcal{C}\left(G_{p, q}\right)$. Let $\nu: X \cdots X_{p, q}$ be a birational map induced by identifying the open dense orbits isomorphic to $\boldsymbol{S} \boldsymbol{L}(3) / G_{p, \boldsymbol{q}}$. By Hironaka [1], we resolve the indeterminacy locus I of ν by successive blowing-ups along smooth centers. Since I is an $\boldsymbol{S L}(3)$-stable closed subset of codimension ≥ 2, each center is isomorphic to \boldsymbol{P}^{2} or $\left(\boldsymbol{P}^{2}\right)^{*}$ by Lemma 10. Let $\sigma: X \rightarrow X$ be the composition of these blowing-ups and $\mu=\nu \circ \sigma: X \rightarrow$ $X_{p, q}$ be the resolution of ν. Since the indeterminacy locus J of μ^{-1} is $\boldsymbol{S L}(3)$ stable and has codimension greater than or equal to $2, J$ is empty and μ is an isomorphism. Therefore, X is isomorphic to $X_{p, q}$ or its smooth blow-downs. (1) is thus proved by Lemmas $3,4,5$ and Proposition 7. Assertions (2)~(6) can be proved similarly.

Remark. We note that in the $\boldsymbol{S} \boldsymbol{L}(2)$-case, some interesting minimal rational 3-folds are constructed as smooth projective quasi-homogeneous 3-folds of $\boldsymbol{S} \boldsymbol{L}(2)$ (Mukai-Umemura [7]). Here, a rational n-fold X is called minimal if the identity component $\operatorname{Aut}^{\circ}(X)$ of the automorphism group of X is maximal in the Cremona group $\operatorname{Bir}\left(\boldsymbol{P}^{n}\right)$ of n variables. Therefore, to determine whether
our quasi-homogeneous 4-folds of $\boldsymbol{S} \boldsymbol{L}(3)$ are minimal rational 4-folds or not will be an interesting problem, which we plan to discuss elsewhere.

As an easy corollary to our theorem, the Picard groups of 4-dimensional homogeneous spaces of $\boldsymbol{S} \boldsymbol{L}(3)$ are determined from the orbit decomposition of these quasi-homogeneous 4 -folds.

Corollary. $\operatorname{Pic}\left(\boldsymbol{S L}(3) / G_{p, q}\right) \simeq \boldsymbol{Z} \oplus \boldsymbol{Z} /($ g.c.d. $(p, q)), \operatorname{Pic}\left(\boldsymbol{S} \boldsymbol{L}(3) / G_{i}\right) \simeq \boldsymbol{Z}^{2}(i=$ $1,2), \operatorname{Pic}\left(\boldsymbol{S L}(3) / N\left(G_{\boldsymbol{i}}\right)\right) \simeq \boldsymbol{Z} \oplus \boldsymbol{Z} /(2)(i=1,2)$ and $\operatorname{Pic}\left(\boldsymbol{S L}(3) / G_{0}\right) \simeq \boldsymbol{Z}$.

References

[1] H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic 0, Ann. of Math. 79 (1964), I: 109-203, II: 205-326.
[2] L. Jauslin-Moser: Normal embeddings of $\boldsymbol{S} \boldsymbol{L}(2) / \Gamma$, Doctoral Thesis, Université de Genève, Genève, 1987.
[3] H. Kraft: Algebraic automorphisms of affine space, in Topological Methods in Algebraic Transformation Groups, Proceedings of a Conference at Rutgers University, Progress in Math. 80, Birkhäuser, Boston-Basel-Berlin, 1989, 81-105.
[4] D. Luna: Slices étales, Bull. Soc. Math. France, Memoire 33 (1973), 81-105.
[5] D. Luna and Th. Vust: Plongements d'espaces homogènes, Comment. Math. Helv. 58 (1983), 186-245.
[6] T. Mabuchi: On the classification of essentially effective $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})$-actions on algebraic n-folds, Osaka J. of Math. 16 (1979), 745-758.
[7] S. Mukai and H. Umemura: Minimal rational threefolds, in Lec. Notes in Math. 1016, Springer-Verlag, Berlin-Heidelberg-New York, 1983, 490-518.
[8] T. Nakano: On equivariant completions of 3-dimensional homogeneous spaces of $\boldsymbol{S L}(2, \boldsymbol{C})$, Japanese J. of Math. 15 (1989), 221-273.
[9] V.L. Popov: Quasihomogeneous affine algebraic varieties of the group $\boldsymbol{S L}(2), \mathrm{Izv}$. Akad. Nauk SSSR Ser. Mat. 37 (1973), 792-832; English Transl. by Amer. Math. Soc., Math. USSR Izvestija 7 (1973), 793-832.
[10] H. Umemura: Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables, Nagoya Math. J. 79 (1980), 47-67.

Department of Mathematical Sciences College of Science and Engineering Tokyo Denki University Hatoyama, Hiki-gun, Saitama-ken 350-03 Japan

