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0. Introduction

In this paper, we study compact oriented hyperbolic 3-manifolds each of
which has a totally geodesic boundary. By a hyperbolic manifold, we mean a
Riemannian manifold with constant sectional curvature — 1. A totally geodesic
boundary of such a 3-manifold becomes a hyperbolic surface.

Let g be an integer greater than or equal to 2 and let Mg be the Riemann
moduli space consisting of all isometry classes of closed hyperbolic surfaces of
genus g. Let S be the subset of Mg consisting of those hyperbolic surfaces
which are boundaries of compact hyperbolic 3-manifolds with totally geodesic
boundaries. It is well known that S should be a countably infinite subset of
Mg. But there are very few information about the characterization of S. The
only one which the author knows is the following claim which W.P. Thurston
gave in a lecture at the University of Warwick in July in 1984 (the author learn-
ed it from Professor Sadayoshi Kojima).

The countably infinite subset S should be dense in Mg.

Under the above circumstances, it would be desirable to give explicit construc-
tions of compact hyperbolic 3-manifolds with totally geodesic boundaries as
many as possible.

By the way, we can apply Thurston's uniformization theorem to determine
whether a given compact 3-manifold admits a complete hyperbolic structure
with totally geodesic boundary or not. Unfortunately however the verification
of the relevant conditions is not easy in most cases. Moreover even if the ans-
wer is positive, this theorem only ensures the existence of a hyperbolic structure.
So if we would like to construct such 3-manifolds explicitly we have to take
another device. In this paper we use a hyperbolic truncated tetrahedron as such
a device.

As a consequence of the above considerations, we prove the following
result in §3. Namely for each genus g>2 we explicitly construct infinitely
many mutually non-isometric compact oriented hyperbolic 3-manifolds each of
which has a totally geodesic boundary of genus g. We shall construct such
hyperbolic 3-manifolds, by considering a complete hyperbolic 3-manifold with
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one cusp and one totally geodesic boundary of genus g (which is a £-fold branch-
ed covering of the Whitehead link complement in S3) and taking the double of
such a 3-manifold and then performing the hyperbolic Dehn surgeries at both
cusps of this double with the same coefficients (see Theorem 3.3). Now it
seems to be plausible that these 3-manifolds can be obtained by gluing the
faces of hyperbolic truncated tetrahedra according to the same combinatorial
pattern (see Conjecture 3.4). If this argument would be successfully com-
pleted, we would have a good chance to prove the following. Namely the mod-
uli of the boundary closed surfaces of genus g of the above mentioned hyper-
bolic 3-manifolds move in Mg (see Remark below Conjecture 3.4). We may
have obtained a concrete infinite subset of S.

The author would like to express his sincere gratitude to Professor Shige-
yuki Morita and Professor Sadayoshi Kojima for their constant encouragement
and many useful suggestions.

1. Preliminaries

We start with describing a main constituent element of hyperbolic 3-
manifolds with boundaries, called a hyperbolic truncated tetrahedron with one ideal
vertex which is a polyhedron in the hyperbolic 3-space H3 bounded by three
right-angled pentagons with one ideal vertex, one right-angled hexagon and
three triangles (see Fig. 1.3).

Before giving the precise definition in Proposition 1.3, we prepare some
formulae in hyperbolic geometry (cf. Beardon [1]).

Proposition 1.1. For polygons in the hyperbolic plane H2, as indicated in
Fig. 1.1, the following equations hold:

cosh C =

cos γ =

sin a sin β

cosh A cosh B — cosh C

sinh A sinh B
h n — cosh a cosh /3-f" cosh <γ

sinh a sinh β
h C — c o s n c g cosh/3+1

sinh a sinh β

(a)

(b)

(c)

00 (b) (c)

Fig. 1.1. Various values indicated above give the lengths of the corresponding
geodesies or the angles.
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In the rest of this paper, for any geodesic arc in JSΓ3, let us always take the

hyperboliccosine value of the actual value of its length.

DEFINITION 1.2. We define the following three functions ply p2, ρ3for later

use:

ax, «,, a3, «,, a» a.) :=

K , a2, a3, a,, a5, a,) : =
h^, a2, a3, a,, a5, a,)a-a

{aι, a2y a3, a4y a5, a6)
2—Wal~l

where a^R, > 1 ( / = 1 , * ,6). The above functions are defined so that in the

pictures of polyhedra in H2 in Fig. 1.2, various values indicated there give the

lengths of the corresponding geodesic arcs or the angle.

h, a2)

P2(aiy a2, a31 <74, a5, a

cos φ =

Fig. 1.2.

Proposition 1.3. Let ai(i=l, •••, 6)

Suppose they satisfy the following equation:

numbers each greater than 1.

p3(a3, a4y alf a2, a5, a6) = ^3(tf6, α5, Λ2, ΛX, α3, a4). (*)

^ can construct a hyperbolic truncated tetrahedron in H3 with one ideal ver-

tex as shown in Fig. 1.3.



542 M. Fujπ

Fig. 1.3. The boundary consists of three right-angled pentagons with
one ideal vertex, one right-angled hexagon and three triangles.
These boundary faces are all totally geodesic. So the six di-
hedral angles between pentagon and triangle are πβt and the
three dihedral angles between hexagon and triangle are πβ.
Parameters alf ...,#6 indicated above give the lengths of the
corresponding geodesic arcs and ψ and φ give the correspond-
ing angles. They satisfy the following:

cos <p=ρ3(a3, aA) alt a2, a5, a6)

cos Φ=p3(a6y a5, a2, aly a3) a4)

Thus the equation (*) means <p=φ.

Proof. First of all, construct a right-angled hexagon in H2(ZH3 whose
alternating edge lengths are

as illustrated in Fig. 1.4.

P2(a3t>a4,a5,a6, alf a2)

P2{au a2, a3y a4, a5} a6)

Fig. 1.4.

Then put two triangles whose edge lengths are

aZ
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and

respectively on the edges of the hexagon as shown in Fig. 1.5.

,P2(a5, tf6, a}, a2, a3, <z4)

P2(alt a2, a3y a4, a5t a6)

Fig. 1.5

Next we make both dihedral angles equal to πβ. If the equation (*) is
satisfied, then between these two triangles there is a totally geodesic right-angled
pentagon with one ideal vertex (see Fig. 1.6 (a)).

Then take another totally geodesic right-angled pentagon with one ideal

(c)

Fig. 1.6
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vertex, and put it on the two edges as shown in Fig. 1.6 (b), where we make the
dihedral angle between the pentagon and the triangle equal to πβ. In this
case, our two pentagons have a common edge coming from oo.

In the same way, we take one more pentagon as shown in Fig. 1.6 (c).
(Since the hexagon has special edge lengths, we can take these three penta-
gons. See Definition 1.2 carefully.)

Now the two edges a4 and a5 are on the same geodesic ball (i.e. a hyper-
surface), so their endpoints x, y coincides each other. (Think the unique per-
pendicular geodesic from oo to this geodesic ball.)

In this way, we have constructed the required truncated tetrahedron.
Q.E.D. •

2. A £-fold branched covering of the Whitehead link complement
inS 3

In this section, for each number g^2y we construct combinatorially a
manifold which is a £-fold branched covering of the Whitehead link complement
in S* branched along some codimension 2 submanifold by gluing all faces of
Ag tetrahedra with vertices deleted.

First consider the following labelled four tetrahedra with vertices deleted
and glue the faces according to the combinatorial gluing diagram in Fig. 2.1.
Then we obtained a manifold which is homeomorphic to the Whitehead link
complement in S3 (see Thυrston [3]).

Now for each number g>2, we construct a 3-manifold which is a g-fold

JV

Fig. 2.1. Glue B to M, G to N, E to L and A to / so that
arrows are matched.
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covering of the Whitehead link complement in S3 branched along the edge ev

In order to give the cell decomposition of this 3-manifold, we prepare 4^ te-
trahedra with vertices deleted.

Let i be an integer with \<ί<g. If i is odd, then consider the following
labelled four tetrahedra with vertices deleted and glue the faces according to the
combinatorial gluing diagram in Fig. 2.2.

Fig. 2.2. Glue B* to M', G' to N* and E' to L* so that arrows
are matched (ι'=l, 3, 5, •••).

Fig. 2.3. Glue B> to M>, G' to JV' and E' to V so that arrows
are matched (i=2,4, 6, •••)•
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If i is even, then consider another combinatorial gluing diagram which is the

mirror image of the above one (see Fig. 2.3).

Now we construct the desired manifold by gluing the faces of the above

tetrahedra. If g is even, then glue A1 to A2, P to /3, A3 to A\ I4 to / 5, •••, A8'1

to A8 and I8 to P respectively. If g is odd, then glue A1 to A2, I2 to 73, A3 to

A\ P to P, •••, ^4*~2 to Ag~\ Ig~ι to /* and Ag to 7 1 respectively.

Let Nl be the resulting 3-manifold. This manifold N3

g is a g-fold branched

covering of the Whitehead link complement in S3 branched along edges e\, •••, ef

(for any g, all e}( i=l , •••,,?) are identified). The manifold ΛΓ| has two ends.

Let 6ι be the end which contains the boundary 3, of the neighborhood of the

removed vertex vi(t=li2). Let Ml be the 3-manifold which is obtained by

truncating the 3-manifold N3

g along 9X. This 3-manifold M\ has one boundary

d1 and one end <S2> The edges of tetrahedra are classified into two kinds: one

is the edge which starts from Gx and returns back to <51 and the other is

the edge which connects β1 and β2- There are g-\-\ edges of the first kind

branch

set

M\ =

Fig. 2.4. Caseg=2.
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and 2g edges of the second kind. Now let us consider the triangulations of

3X and 32 induced by these tetrahedra. On d19 there are 12g 2-simplices, I2g X

3/2 1-simρlices and 2(g-{- l)-\-2g 0-simρlices. On 32, there are \g 2-simρlices,

4^x3/2 1-simρlices and 2g 0-simρlices. Thus, the genus of dx is g, and the

genus of 92 is 1 (see Fig. 2.4 and Fig. 2.5).

Fig. 2.5. Case g=3.
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3. Infinitely many mutually non-isometric hyperbolic 3-manifolds
with totally geodesic boundary of genus g

In this section we construct infinitely many mutually non-isometric hyper-

bolic 3-manifolds with totally geodesic boundary of genus g by using the mani-

fold Ml described above.

First we give a complete hyperbolic structure to the manifold Ml by realiz-

ing the tetrahedra in §2 as the hyperbolic truncated tetrahedra which we give

just below.

Let g be any integer greater than or equal to 2 and we fix it in the following

arguments. By Proposition 1.3, there is a truncated tetrahedron with one

ideal vertex as shown in Fig. 3.1. Each value indicated in the tpic ure represents

the length of the corresponding geodesic or the angle (the values of angles are

calculated by Proposition 1.1).

Fig. 3.1.

Let i be an integer with 1 <i<g.

If i is odd, then take four copies of this truncated tetrahedron and glue the

faces as in Fig. 3.2.

If / is even, then take four copies of this truncated tetrahedron and glue

the faces as in Fig. 3.3.
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Fig. 3.2. Glue # to M' G' to N' and «< to I λ Triangles c', * ' , / ' and ; ' are Euclidean ones
each of which is realized as the intersection of the link of the corresponding ideal
vertex of the truncated tetrahedron with a horosphere centered at this ideal vertex.

Fig. 3.3. Glue B t o M ' G ' to N' and B to U. Triangles c', p't P andj ' are Euclidean ones
each of which is realized as the intersection of the link of the corresponding ideal
vertex of the truncated tetrahedron with a horosphere centered at this ideal vertex
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The realization of the tetrahedra in §2 as these hyperbolic truncated tetra-

hedra determines a hyperbolic structure on (M|\ {edges}), because the correspond-

ing two faces are always isometric to each other (see Remark below).

REMARK. Let θ be a real number satisfying the following:

O<0<τr/4.

Let a and b be the lengths of edges of the triangles in Fig. 3.4. Then a=b by Pro-

position 1.1, because

__ cos θ cos (πβ)+ cos θ
sin θ sin (τr/2)

cosfl
~~ sin θ

__ cos θ cos (ττ/4)+cos (πβ)

sin θ sin (τr/4)

Fig. 3.4.

Proposition 3.1. The above construction gives a complete hyperbolic struc-

ture to the resulting Z-manifold M\,

To prove this proposition we need the following:

Proposition 3.2 (Thurston [3]). Let M3 be a non-singular hyperbolic 3-

manifold, possibly with boundary dM2, obtained by gluing together the faces of

polyhedra in H3 with some vertices at infinity. Then M3 is complete if and only

if the similarity structure on each link of an ideal vertex is actually a Euclidean

structure.

Proof of Proposition 3.1. Around each identified edge in M\y the dihedral

angles add up to 2π. Hence M3

g has a non-singular hyperbolic structure.

Now we look at the boundary of the toral end of M\. If g is even, it is

triangulated as in Fig. 3.5.
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P

P2

f

/«-.

m
Fig. 3.5.

If ^ is odd, its triangulation is illustrated as in Fig. 3.6.

f

Fig. 3.6.
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From the above pictures it is easy to observe that each of them is a torus with

a Euclidean structure. Therefore by Proposition 3.2, M£ has a complete hy-

perbolic structure. •

Observe the pictures in the proof of Proposition 3.1 again. Choose genera-

tors m, I for τr1(L(^)) as indicated in these pictures, where L(v) is the link of the

ideal vertex v of Λf | .

Now we can show the following:

Theorem 3.3. Let g be an integer greater than or equal to 2. Let Ml be

the g-fold branched covering of the Whitehead link complement in S3 which has a

complete hyperbolic structure r° with one cusp and one totally geodesic boundary

closed surface of genus g as was constructed in Proposition 3.1, and let Ml^tK) be

the topological Z-manifold obtained by performing the Dehn surgery of type (μ, λ)

on the framed toral end of Ml. If(μ, λ) is a coprimepair of integers and | μ | + | λ |

is sufficiently large, then M|CμΛ) has a hyperbolic structure with totally geodesic bound-

ary. Thus we have explicitly constructed infinitely many mutually non-isometric

compact oriented hyperbolic 3-manifolds each of which has a totally geodesic bound-

ary closed surface of genus g.

Proof. Take the double D(M3

g) of M3

g. D(M3

g) has a complete hyperbolic

structure with 2 toral ends (see Proposition 3.1). Let D(Mg)(μ.ltλl)fψ2tλ2) be the

topological 3-manifold obtained by performing the Dehn surgeries of types

(μi> ^ Ί ) , (/̂ 2> λ,2)
 o n t h e t w o framed toral ends of D(Mg) respectively.

By Theorem 5.8.2 in chapter 5.8 of Thurston [3], if (μit λ t ) is a coprime

pair of integers and | μf | + | λ, | is sufficiently large ( ί= 1, 2), then D(Mg)(μltλl)t(μ2tλ2)

has a complete hyperbolic structure with finite volume. Now consider only the

case (μ19 'λ1) — (μ2y λ2). Then there is an involution T of D(Mg)(fιltλl)t(lιltλl)

which interchanges two copies of Ml as well as two ends each other and leaves a

closed surface of genus g invariant. By the Mostow's rigidity theorem, T is

homotopic to an isometry T which is still an involution;

T: O(M|) ( μ i Λ l ) f ( μ l Λ l ) -> β ( M ! ) ( μ 1 > λ l ) > l Λ l ) isometric involution

s.t., Γ ^ τ ; homotopic.

Consider now a surface which is invariant by T. It is homotopic to the above

closed surface of genus g and must be totally geodesic. Consider the half of

Z)(M|)(μlΛl)f(μ1>λl) cutted along this surface (it is topologically M3

g&lM)). It is a

complete hyperbolic 3-manifold with totally geodesic boundary closed surface

of genus g.

If (μv λ2) is near 00 in R2\J {00}, the shortest closed geodesic in M|(μ l t λ l )

is one of the two closed geodesies that we add to make D(Mg) complete and
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there are infinitely many adjoning geodesies which have different lengths (cf.

Neumann-Zagier [2]). Thus we have obtained infinitely many mutually non-

isometric hyperbolic 3-manifolds each of which satisfies the condition in our

theorem. Q.E.D. •

Still stronger, we make the following:

Conjecture 3.4. With the same hypotheses as in Theorem 3.3, M|(μΛ)\

{the adjoining closed geodesic} have the same combinatorial decomposition by

means of truncated tetrahedra as that of M\ which was constructed in Proposition

3.1.

REMARK. The last part of the above theorem was proved by considering the

lengths of the adjoining closed geodesies. However, we conjecture that the following

stronger statement must hold. Namely there should exist infinitely many boundary

closed surfaces of genus g which have different moduli. To show this, it is enough to

prove Conjecture 3.4 and then that the natural map from the parameter space of

geometric triangulation of the boundary surface of genus g, which has real dimension

2, to its Teichmilller space is C°° and has a full rank at the point where Mz

g is com-

plete. If we can prove these, then there are infinitely many boundary surfaces of

genus g which represent different points in an arbitrarily small neighborhood of one

particular point in the Teichmilller space. Hence we can conclude that there are

infinitely many boundary surfaces of genus g which have different moduli, because

the modular group acts on the Teichmilller space properly discontinuously.
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