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Let 7 be an odd prime power. Let F, denote the field with 7 elements.
According to [11] and others, there exists a (—1)-connected Q-spectrum KF,
whose 0-th space is Z X BGLF'}, where BGLF'} is the plus construction of the
classifying space of GLF,. KF, is a ring spectrum with a unit.

Let p be an odd prime. The object of this paper is the localization of
KF, at p, KF,,, for the case that  gives a generator of the group of units
(Z[pY)*. Then the associated generalized cohomology theory KF}( ; Z(y)
appears as a secondary cohomology theory determined by a certain stable opera-
tion in connected complex K-theory localized at p. From this interpretation we
deduce some results about the multiplicative structure on KF,(,, which are basic
to the study of the ring structure of KF(CP~; Z,) etc. In particular we
can characterize the product on KF,, by a certain property.

For simplicity we write A for KF,, (see [8]). We shall work in the homo-
topy category of CW-spectra (see [3, III]).

The paper is organized as follows. In §0 we collect several results on A.
In §1 we compute H*(A4; Z[p). In §2 we compute Hy(A; Z[p). In §3
we consider the left coaction of Ay on Hy(A; Z/p) and discuss the B-module
structure of H*(A; Z/p), where B=A(Q,, O;)CA. In §4 we prove our main
results, which are Theorems 4.3 and 4.5.

0. The spectrum A
Let p be a fixed odd prime. Let bu, be the Q-spectrum representing

connected complex K-theory localized at p. This is a ring spectrum with a unit
and 7y (buy)=2Z»[u] where |u|=2. It is known that
bu,y =/ 30006
=1

J
for a spectrum G [6]. This is a ring spectrum with a unit and 7z4(G)=2Z,[v]
where |v|=2(p—1). According to [4], if #: G—>bu, is the injection, then
the diagram
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K/
NG —— G
2D,

=Dy, K
ut~?

(0.1)

u v
Ezbu(,) —_— bu(,,)

commutes, where (by abuse of notation) %, v denote the composites S?A bu,)

uA1 oAl .
— bu,) Abugy)—buy, and S§?¢~Y A G—> G G—G respectively. Further-

more, for each 7 prime to p, there exists a map of ring spectra ¥»": G—G which
makes the diagram

RNy
(0.2) "l v l"

bu(,,) _—> bU(I,)

commute, where the lower 4" is derived from the Adams operation in complex
K-theory.
Consider the fibre sequence

u
2 bU(p) — bu(,,)-i» HZ(p)

(where HZ, denotes the Eilenberg-MacLane spectrum for Z(,). This leads
to an exact sequence

2 Uy Px
0 — [bu,, Z2bu,] — [bu,, buy] — [buyy), HZ )]

where we have used the fact that H*(bu,; Z())=0. Consider the element
Y —1€[bug,, bu,). Since py(y—1)=0, there is a unique § E[bu,), = bu,]
such that uy(d)=+"—1. Denote by A the fibre spectrum of ¢; that is,

0
(0.3) A5 bugy —— S2buy,

is a fibre sequence.

From now on we deal with a case such that 7 is a generator of (Z/p?)*. Then
A does not depend on the choice of 7. In fact, since (Y —1)4(u")=(r"—1)«’ in
7y (buy), [1, Lemma (2.12)] yields

10 if i=0
(0.4) z(A) = { Zp***s® if i=2(p—1)—1 (t>0)
0 otherwise

where v,(#) is the power of p in .
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Consider the fibre sequence

520065 G—> HZ,,.

By a similar argumént we have a unique lift ¢’€[G, Z** @] of ' —1€[G, G].
Let A’ denote the fibre of 8. Then from (0.1) and (0.2) it follows that there is
a commutative diagram of fibre sequences

4 14
YN AN VT
: S20-1
4 K 32e-1 bU(p)
ut~?

+ v 4
A — 5 bugy—> S7bug,

It is easily verified that the induced map «': A’—A is an equivalence. So we
may identify them.

Choose 7 to be an odd prime power so that it satisfies our hypothesis. In
view of [12, VIII] it seems that there exists a map of ring spectra Br: KF,,—
bu, and its lift KF,,—>A in (0.3) becomes an equivalence. We identify
them and then 7 can be regarded as a map of ring spectra (cf. [15, p. 252]).
Since « is a (split injective) map of ring spectra, so is 3'. In §4 we give a
different approach to this fact.

It is not an accident that z,(A) is isomorphic to Im J, which is a direct
summand of 74(8%». In fact, Tornehave [19] showed that

(0.5) The unit t: S°— A realizes the projection of m4(S°), onto Im [, .

Hereafter for brevity we write

A 9
(0.6) SHIG——> A —1> G—> SHDG.

We will use only this fibre sequence in later sections.

1. The mod p cohomology of A
Let A be the mod p Steenrod algebra. As an A-module,
(1.1 H*(G; Z[p) = A A(Qw Q1)

where Qy=38, 0,;=2'6—38%" and A( ) denotes the left ideal in / generated by
the set in parentheses. Apply the functor H*( ; Z/p) to (0.6). Then we have

Lemma 1.1. If f is the generator of H(G; Z[p), then 0*(c*®~Vf)=c-P'f
for some non-zero cE Z[p (where o* denotes the increase of degrees by 1).



450 T. WATANABE

Proof. By (1.1), H**Y(@; Z[p)=Z/[p{Pf}. Hence we may set
0*(a**~Vf)=c+ P for some ceZ/[p. It is sufficient to show that ¢ is non-zero.
Suppose ¢=0. Then it follows that H*(A; Z|p)=Z|p{n*(Pf)} in degrees less
than 2p(p—1)—1. On the other hand, by (0.5) or [17], i4: 7;(S%» — 7:(A)
is an isomorphism for i<|B,|=2p(p—1)—2 (where B,Ex4(S’, is the first
element which does not belong to Im J,). By the Whitehead theorem,
H,(A; Z[p)=0 in degrees less than 2p(p—1)—2. This is a contradiction.

REMARK. As in [5] one can prove this lemma by calculating the Adams
spectral sequence for z4(A) and using (0.4). See also [10, p. 421].

For a€ A let L(a): 3V A—> A and R(a): ' A—> A be defined by
L(a)(c''b)=ab and R(a)(c'*'b)=ba respectively.

Corollary 1.2. The following square commutes :

S2-D _j _CE(‘CLM_)

| ”

SV AYA(Qo Q1) —> A Qo Q1) -

From this corollary we see that

Coker (0%: Z**™0 A A(Qo, Q1) = AIA(Qor Q1)) = A|A(Qor F7).

> A

We also have an isomorphism
(1.2)  Ker (6*: Z DA A(Qo Q1) = Al A(Qo Q) = Z#E™DAA(Qor L)

the inverse of which is induced by R(2L?"!). (Although it is easy for a specialist
to prove this fact directly, we do it by a different method in §2.) Combining
these, we get a short exact sequence of 4-modules

* A*
0 Qo P> ¥4 Z[p) 2> S A(Qy B) =0
where ¢=2p(p—1)—1. Put g=9*(1)€H"(A; Z/p) and let e’ heH(A; Z[p)
be the element such that A*(o’qh)za'ql. Since A/ A(Qy, P =Z[p{P?} and
A A(Qy, P H~D=0, we may set

H*(A; Z[p) = A{gr DA} | A(QogPO0, P'gBO, d+ P?gPa'Qoht, 0D Ph)

for some d€Z/p. Here d=0. For if d=0, then by looking at the cell struc-
ture of A, we find that there is a CW-spectrum (S°Ue*?®™9),, in which P? is
non-zero. ‘This contradicts the triviality of the mod p Hopf invariant [16].

Theorem 1.3. As a left A-module H*(A; Z[p) is generated by g and o°h
subject to the relations
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0u(8) =0, PHg) =0, Pg) = Quc’h) and PYs'h)=0.

Proof. Change o' for d ok if necessary.

2. The mod p homology of A

Most of this section is an odd prime version of [14].
Let Ay be the dual of 4. It is the tensor product of an exterior algebra
and a polynomial algebra:

u4* = A("'o» Y "')®Z/P[ED ‘52’ "']

where |7,|=2p"—1and |£,|=2p"—2. A, is a left and right {-module; re-
spective actions are given by

La(a), b) =<a, bay) and <{(a)a, b) =<, ab>
for all @, b A and asA,. By abuse of notation, for ac A let L(a): Ay—
Sl Ay and R(a): Ay —> 21, be defined by L(a)(a)=0c'"a(c) and R(a)(at)=
a'*l(a)a respectively; note that R(a): 2 A— A and L(a): Ax—>Z1" A, are
dual. Define P( ), ( )P: Ax— Ay by 9’(0{):%}) P (a) and (a)ﬂ”=§ ()P*
respectively. They are ring homomorphisms, since Cartan formulas P*(aB)=
.Enﬂ’i(a)g’i(ﬁ) and (aR)P"= .JrZ‘:"(a)Q"(,B)Q" hold.
Proposition 2.1. The following formulas hold :
() P(ra)=a
PE,) = E+-E1 (i.e., PUE,) = Ei-)
3(ry) =&,
3(,)=0.
(i) (TP =TytTp (i€, ()P =17,.,)
(E”)ﬂ) = E,,+§,.-1 (i'e'a (E”)g)p"“l = En—l)
()8 = { 0 i n>0

1 if n=0
)8 =0.
Proof. Recall the definitions of 7, and &,.

By abuse of notation, let X denote the conjugation in 1 or A; note
that X: A—> A and X: Ay —> Ay are dual.

Proposition 2.2. For each a € J with Xa= —a, the following squares
commute :
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0 A 29, ulq* (i) uf* Ra), uf*
X X X X
Ay —R@) A . Ay —Le) A .

The proof is immediate.

ReMARK. This proposition can be applied to the cases a=Q,, P*! and P?*
(see [13, §7]).

By Theorem 1.3 there is an exact sequence of J-modules

R(Q,DO)DR(P'S0)D

SABSDABSHADSH0-D ]

REPOAWORODS D) s g5 14 Zjp) >0

Dualizing this gives

L(Q) P L(P)D

S Ax@SH0D ] DI, P _,
(—L(P")+L(a"Q0)) D L(c*P")

&
Ay DI My« Hy(A; Z[p) < 0.
Using Proposition 2.2 (i) we get an exact sequence

EJ*@EZ(p—I)J*@24+1J*@2q+2(p-1)d* %R(QO)®R<Q)I)@

(—R(P)+R(*Qu)) DR(c" ")

AxBZ Ay «— Ax(HZ[p) < 0

(where Ay( ) denotes the generalized homology theory associated with 4). In
order to describe Hy(A; Z/p), we calculate the kernel of R(Q,)®R(P")P
(—R(P?)+R(a°Qy)) DR(c*F") and apply XPX to it.

Using Proposition 2.1, we easily see that

Ker (R(QO): L74*_)2U4*) = A(’rl) T2y '”)®Z/P[§1J Ez’ "']
and

Ker (R(PY): Ay =S¥V ) =

Z[p{1, 7o, TeE1—T1,7oTi} QA(T2, T, "')@Z/P[‘Ef, £, &y -]

Therefore

Ker (R(Q0) BR(PY): Ay = S AxPZ2C"D ) =

A(7y, T3 )®Z/P[Ef, &, & -]

We write B for this kernel.
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Lemma 2.3. For any non-zero a EB there exists a unique o’ Ker R(P")
such that (a')Qy=(a)P? (where if a=Ker R(P?), we take a’=0).

Proof. Direct calculations using Proposition 2.1.

Henceforth for each non-zero ¢ €B we use a’ [to denote such an element.
Define two subsets of A D= Ay as

B = {a®c'ad’'|acsB} and o°B= {0@s'a|achB}.
Then it is evident that A4(HZ/p)=~B-+5'B. Thus we obtain
Theorem 2.4. As a Z|p-module,
Hy(A; Z[p) = (XDX)(B)+(XDX)(c"B) -

Proof of (1.2). Starting from (1.1), we go a similar way to the above and
get

H*(G; Z/P) = A(aZ’ a3, "')®Z/P[Bh 182) "']

where a,=X7, and B8,=XE&,. By the dual of Corollary 1.2, 0, can be identified

with ¢+ L($"). Using Propositions 2.1 and 2.2 (ii), we see that
—Cr e XD %agytse e BT171 872350 i

0, (ctloctls - Ixﬁézﬁ’;a...):{ ot hakai fRTRRGE 120
0 if r=0

where §;=0, 1 and r;>0. This shows that
Coker (6x: Hu(G; Z|p) ~ Hy(S01G; Z]p)) ==
SN (A(oty, atg, -+ )R Z[P[BY, B Bs 1B}
Since the dual of A/ A(Q,, &) is just
XB = A ay, a3, - )RZ[p[BY, B2 B ],

the result follows by dualization.

3. The JAy-coaction on Hy(A; Z|/p)

Let ¢: Hy(A; Z|p)—> AxQHy(A; Z[p) be the dual of the usual A-action
map AQH*(A; Z[p)—H*(A; Z|p). It gives Hy(A; Z/|p) the structure of an
Ax-comodule. We study this coaction.

Since &yt Hy(A; Z[p)— AP Ay is an injective homomorphism of <A -
comodules, it suffices to determine the (A4-comodule structure of AP A,.
Let ¢yt Agx— AxQ@Ay be the coproduct on Ay. It also gives an A,-como-
dule structure on A,. Recall the following properties of ¢y: for @, BE Ay,
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dx(aB) = dx(a)P«(B);
dsX = (XQX)T'$pyx where T(a®B) = (—1)"""BQRa;

bu(E) = 2 ELQE and  py(r,) = T,®1+§ B @, .

The composite

3! ="
2 Ay _ﬁkzq(u&*‘g‘-}l*) — A @3 Ay,
which we denote by oy, gives an A -comodule structure on ' A,. Moreover
the composite

e 5 PxDZoy ‘ == ‘

which may be written as ¢y+o'px, gives an Ag-comodule structure on
AxDZ'Ayg. Combining these and Theorem 2.4, one can evaluate ¢(x) for
every xEHy(A; Z[p).

It is convenient to introduce the following (artificial) multiplication on
Hy(A; Z|p). For non-zero a, BEB define

(1) (Xa®o'xa')o(XBDPaXR’) = X(aB)DBa'X(a’/B+aB’)
(2) (Xa®oXa')o(0Pa'XB) = 0PaX(aB)
3) (0Po"Xa)o(XBDa*XB’) = 0B 'X(aB)
4) (0ho*xa)o(0Pa’XB) = 0.
This is well defined. To check this assertion we first observe that if a =B then

(@)Qy=0 and (a)P*=0 for 0<i<p. Therefore, if ¢, BEB we have aBEB,
(a'B+aB")P'=0 and

(@'B+aB’)Qo = (a)Qo* B+ (8")Q0
= ()P B+a-(B)P?
= (aB)P* .

This implies that (1) is well defined. The other cases are obvious.
We now show that the formula

P(x0y) = P(x)°d(y)
holds for all x, yEHy(A; Zp). For example, if x=XaPo"Xa’ and y=XBPD
a'X3’, then we have
Bo) = $(UaB)D"X(@ B+ )
= ¢x(Xa-XB)+o 'Ppx(Xa' - XB+Xa-XB’)
= Px(XQ)* px(XB)+ 0 (Px(X)px(XB)+ ps(XX) px(XB"))
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= (px(XQ)+a'P4(X))o($x(XB)+-a"dx(XB"))
= p(x)od(¥) -

The other cases are obvious.

RemARK. As seen in [9], KF, has a natural product. So it induces a
multiplication on Hy(A; Z[p). We cannot confirm whether o coincides with
this one; however, we believe so (cf. Theorem 4.3).

By virtue of Lemma 2.3 we may put
Xat = XaDo'Xa' and oXa = 0DsXa
for each non-zero ¢ €B. With this notation the multiplication o is given by

(1) %J=25 () Zoo'y =o'y (3) o'wod =o'ay
(4) o-"xoa"y =0

for all x, y=XB. Notice that as an algebra Hy(A; Z/p) is generated by the ele-
ments ¢’1, B2, B,, &, with n>2.

Theorem 3.1. The Ay-coaction on Hy(A; Z|p) is given by
#(c’l) = 1Qa‘1
#(BY) = XE!RT+X7,®c'1+1Q B2
(B) = XEQ1+X (e, — 1) Qo' 1+XE,Q BL+1Q B,
H(@;) = X1, @14+X(7y7) Q& 1+-X1,Q B+ X7,R B+ 1Q4&,

(B = 33X, @B
$(@) = 2 X7, @B 1@,  for n>3.

for n=>3

Let B be the exterior subalgebra of (4 generated by Q, and Q,. In the
next section we need to know the $-module structure of H*(A4; Z/p). But it
can be read off from Theorem 3.1. We give its details.

Define a left action of A4 on Hy(A; Z[p) by

< a(x)> = (=1)“=K(Xa)(f), x>
for all ac A, x€Hy(A; Z[p) and f e H*(A; Z|p) (cf. [2, p. 76]).

Corollary 3.2. For i=0 or 1, Q; acts on Hy(A; Z[p) as a derivation (with

respect to o). So the B-action on Hy(A; Z|p) is given by
QB =01,  Q4a.,) = B, for n>2,
0i(B) = —o'l, Oy@)=PBir for n>2.
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We define a weight function w: Hy(A; Z/p)—Z by
wl)=0, w(@)=uw"1)=p,
w(@,) =w(B,)=p*" for n>2
together with the rules

w(x+y) = max{w(x), w(y)} and
w(xey) = w(x)+w(y)

for all x, yeHy(A; Z[p). By Corollary 3.2 the PB-action preserves weight.
For j >0 let IV; denote the submodule of Hy(A; Z[p) spanned by elements of
weight jp. Then Hy(A; Z /p)g@oN ; as B-modules. It suffices to examine the

B-module structure of N;. For this purpose the Q;-homology
Hy( 5 Qi) = Ker Qy/Im Q;
is useful.

Lemma 3.3. For j >0 we have

(@) Z/p{i} if j=0
Hy(Nj; Qo) = 1 Z[p{a"(B)"~, (BY)"*} if j=mnp(nx1)

0 otherwise

(i) Z[p{c" B -+ BITIBIS Biki - BThs
Hy(Nj; Q) = BitsBikiteBilsy  if j=mnp (n=0)

0 otherwise

where k=v ,(n) and n=nyp*+ny, p*' - +-n;p' is the p-adic expansion of n.
Proof. From §1 we have a short exact sequence of B-modules
0—=XB— Hy(A; Z[p) > XB—0.
This yields a long exact sequence
o> Ho(HA(A5 Z1p); Q) ~ Ha(XB; Q) > Horo(S7XB; Q) =
Since the $B-action on XB is given by
Ooa,) =B, and Qy(a,) = @i for n>2,
it follows that

Hy(XB; Q) = ZIplBf] and
Hy(XB; 0) = QZplA.1/(62)
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An inspection of weight shows that to calculate Hy(N;; Q,) it suffices to de-
termine the behavior of

Hzi(p—l)(xB; Qo) = Z/P{(B{)I}
0
Hyj5-0-1(Z"XB; Qo) = Z[p{a*(BY) ™"}
and

sz,((;pz)l)(p 1)(XB Ql) = Z/P{ﬁz"ﬁé‘ :8 42}
o
sz,((jpz)!)(p—l)—(2p—1)(2qXB; Ql) = Z/P{Uqﬁérlﬁgl”'ﬁﬁz}
where j=j,+j,p+---+Jj.p° is the p-adic expansion of j. By the definition of 3
and Corollary 3.2, we find that
a((Bty) =j-o'(Bf)" and
oo —Jor ' Bl Bi1.-- Bis, if 7,>0
0(BioQi1-+- .
(Bl ias) = { if j=0.
This gives the result.

It is easy to carry these results to those for the usual $B-action (cf. [7, II]).
Hereafter we talk about the usual action.

According to [3,I1I], there is a classification of finite dimensional B-modules,
which we use implicitly. We fix some notation. Let I be defined by the exact
sequence of B-modules

0>1I->38—->Zp—0.
Put I"=1 ® ®I (n-factors). Note that Hy(I"; Q)=Z p{® Oy and
Hy(I"; Q)= Z/P{ ®Ql}' where | ®Qo| =n and I®Qll =n+2n(p— 1)
The above dlscuss1on can be summarlzed as follows
Theorem 3.4. As a B-module, ignoring free summands,
H*(A; Z|p)=Z[pD '6291(2“("’1 b PZrm i)
where
a(n)-+b(n) = 2np(p—1)—1,
b(n) = v,((np®) ) —np*—v,(n)—2,
c(n)+d(n) = 2np*(p—1),
d(n) = v,(np*)!)—np* .
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4. The multiplicative structure on A

The first half of this section is heavily influenced by [18].
Let 4: GA G— G be the product on G. Consider the external product

X : GHG)RGHE) —Los (G AG)H(GA G) %5 GHGAG) .

Lemma 4.1. The element 0 € G**~V( @) satisfies
Op = (ZEVu)ONA1g+1A0+vONE) .
Proof. Put 1=1,G%G). By the definition of 6, we have
Ye(1X1) = 1X140405(1 X 1) =1X 14040 p) .
On the other hand, since 4" is multiplicative and X is bilinear, we have

Y x(1X1) = P aps(1AL) = pa(P AP )x(1A1)
= P (1) X ¥"x(1)
= (1+2405(1)) X (1+2405(1))
— 1 X 1+04(Bx(1) X 1+1 X O(1)-+004(1) X (1))
=1X 14+04(S2 ) (O A1+1AO+00 A D)) .

Since v4: G**V(GA G)— GG G) is injective, the result follows.

Lemma 4.2. We have

(i) [4, =*7G@]=0.

(i) [AAA, Z#73G@]=0.

Proof. Consider the Adams spectral sequence {E;*, d,} converging to
G*(X), where X=A or AAA. It has the form

Est gExth"(Z/p, H¥(X; Z|p)) = G(X) .

(For this details see [3, III].) In view of Theorem 3.4 (where a similar result
for AN A follows from this and the Kiinneth theorem), all we need to do is
the calculation of Ext§*(Z/p, M) for M=32"B, 3"Z|p, S"I" and their direct
sums. As is well known, for all B-modules M and N,

Ext};'(Z[p, M ®N) = Ext}'(Z|p, M)@Ext3'(Z[p, N)
Ext'(Z[p, Z"N) = Ext3"*'(Z|p, N)

and
Exty*(Zlp, B)=Z|plz} where |z|=(0, —2p)
Exty™(Z[p, Z[p) = Z[plg, q:] where |g;|=(1, 2p'—1)
Ext}!(Z/p, I") == Ext;™!(Z|p, Z|p) .
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Using these data, one can describe the figure of E¥’*; in particular, we have
=0 if #—s=2p—3. This implies the result.

Theorem 4.3. A is a ring spectrum and 7»: A— G is a map of ring
spectra. The product on A satisfying such property is unique.

Proof. Consider the exact sequence

0—>[ANA, A] [A/\A G] [A/\A prlatel
where we have used Lemma 4.2 (ii). By Lemma 4.1 we have

Ox(u(nAn)) = Op(n/A\n)
= (B V) ON1g+1AO0+00 AO)(nAn)
which is clearly equal to zero, since 0»p=0. Hence there exists a unique
LAE[ANA, A] such that nap=pu(nAn).

Let ¢: S°—G be the unit on G. Then there is a unique :E[S°, A] such
that =1 (see (0.5)). Consider the exact sequence

0—[S°AA4, A] —%>[S°A 4, G]
where we have used Lemma 4.2 (i). Then we have

(Bt A1y)) = n2(E A1) = p(nAn)(EIA1y)
= p(eAn) = p(eA1g) (1 An)
=7 =n%(l4) .

This proves that a(¢A1l,)=1,. Another equation g(1,A%)=1, is obtained
similarly.

Lemma 4.4. Under the above notation we have
(1) A(LAL)=AE? u)(Z# A1),
(i) A(AA1Y)=AE?3u)(E216An).

Proof. Because an argument is quite parallel, we show (ii) only. By
smashing (0.6) to the right with A, we have a diagram

AA1, AL, oA,

S#IAGANA ——3 ANA —5 GNA —5 S 2AGAA
31| [1eAn |z 107
S¥3IANGNG @ 2 @ GAG (® S*2AGAG
221)—3 l l 2p—2
7 A . )7 0 D)
S2p-3AG - 5 A > Szp-Z/\ G
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in which rows are fibre sequences. Part (@) commutes by Theorem 4.3. To
prove the commutativity of part D), it suffices to show that of part 3. But
by Lemma 4.1 we have

Op(lgAn) = (E*2u)(ON1g+1gAO+v0 AO)(1cAn)
= (Z#7*u)(O An)
= (Z#72u)(Z* g An)(O A1) .

Let us consider 44(CP). Since G-theory is complex oriented, G,(CP~)=0
if nis odd. From (0.6) we have an exact sequence

9 A
0 = 4, (CP™) —5 Gy CP=) —> Gyy-sy-iy(CP=) —> Ayy(CP=) = 0

for all >0 (where of course y=(yAlgp=)s etc.). Thus we may use the follow-
ing notation:

2o(X¥)=x  for x&Kerb;

A(x)==x for x=Gy(CP~).

The multiplication m: CP~ x CP~—> CP> induces a product + on G(CP~) and
a product * on Ax(CP>).

Theorem 4.5. The following formulas hold.
(i) By=x-y.
(i) Zxy==x-y.
(iil) ®xy=2x-y.
(iv) x#y=0.
Proof. Since % is multiplicative by Theorem 4.3, (i) follows.
Similarly, using A=0, we have

(2% F) = n(%)*n(F) = nA(*)*7A(y) = 0

which proves (iv).
For (ii), by definition and Lemma 4.4 (i), we have

B§ = my(EX ) = myps(EAF)
= myU(ENA(Zy))
= ma(LA A EA )
= my A2 p)(Z# P A1) (ZH RN y)
= MBS ) (P % A 5)
= mx A(Z? %% X y)
= AR mx(x X))
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= AE#7%x-y)
=Xy .

Similarly (iii) follows from Lemma 4.4 (ii).

ReMARK. The argument of this section assures us that the same formulas

as above hold with respect to the fibre sequences (0.3) and

AZ[p — buZ[p — S*buZ[p

where XZ/p represents the mod p X-theory (cf. [15, p. 254]).
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