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Recently in his study of QF-2 rings, M. Harada has introduced the extend-
ing property of simple modules and the lifting property of simple modules
which are mutually dual notions, and he has extensively studied modules with
these properties ([10]~[14]). It should be noted that the extending property
of simple modules is one of considerable extending properties on modules and
it has been somewhat widely studied than the lifting property of simple mod-
ules ([11], [13], [14]).

Let M be an R-module and (4 a subfamily of the family _£L(M) of all sub-
modules of M. M is said to have the extending property of modules for .4
provided that every member of J is embedded to a direct summand of M
as an essential submodule. In particular, M is said to have the extending
property of simple modules if it has the extending property of modules for
{A€ L(M)|A is simple}. Dually M is said to have the lifting property of
simple modules if every simple submodule of M/J(M) is induced from a direct
summand of M, where J(M) is the Jacobson radical of M.

Under this circumstance, the following natural question immediately
arises: Can we define the notion dual to ‘the extending property of modules
for A’? This question seems to be interested in module theory, because this
dualization leads us to the dualizations of continuous modules and quasi-conti-
nuous modules mentioned in Utumi [28]~[30] and Jeremy [16], [17] (cf. [23]).

Section 1 of this paper is concerned with this problem, and the lifting
property of modules for (4 is defined as follows: M is said to have the lifting
property of modules for ./, provided that, for any 4 in JJ, there exists a direct
summand A* of M such that A*C 4 and A/A* is small in M/A4*.

Using this lifting property, in section 2, we introduce <A-semiperfect
modules and A-quasi-semiperfect modules as duals to _{-continuous modules
and Jf-quasi-continuous modules, respectively, which have been studied in
[23]. Of course, these names follow from ‘semi-perfect module’ in the sense
of E. Mares [20] defined on projective modules. L(M)-semiperfect modules
and _L(M)-quasi-semiperfect modules are simply called semiperfect modules
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and quasi-semiperfect modules, respectively, and it is shown that a projective
module is semiperfect if and only if it is semiperfect in the sense of Mares.
All results in section 2 are quite duals to those in section 1 of [23].

In section 3, we devote fundamental properties of semiperfect modules
and quasi-semiperfect modules. A key property of a quasi-semiperfect module
M is the following (Proposition 3.2): Every internal direct sum of submodules
of M which is a locally direct summand of M is a direct summand of M. We
derive many theorems using this result. Theorem 3.5 is one of theorems in
which it is shown that every quasi-semiperfect module is expressed as a direct
sum of hollow modules.

In section 4 we introduce the lifting property of direct sum for (4. Let
M be an R-module and M/X :2 @(T./X) a decomposition of a homomorphic

image, where X & T, for all a€l. We: say that M|/ X=31P(To/X) is
I

co-essentially lifted to a decomposition of M if there exists a decomposition
M=X*® D) @T} satisfying X*CX, To=X+T¥ and T¥NX is small in
I

T*. The notion of ‘co-independent family’ is defined as follows: A subfamily
J={No}, of L(M) is said to be co-independent if M/NN,=2) B(M/|Ny),
I I

canonically. There is a canonical one to one onto map between the family
of all decompositions of all homomorphic images of M and the family of all
co-independent subfamily of _[(M). We say that M has the lifting property
of direct sums for _f, provided that if Jl={N,}, is a co-independent sub-
family of (A then its corresponding decomposition is co-essentially lifted to a
decomposition of M, or equivalently, there exists a co-independent family
{N*}, such that N} (@M, N¥C N, N,/N¥ is small in M/N¥ for all a1 and
r;]N ¥{@®M. In Theorem 4.9, we show that every quasi-semiperfect module

M has the lifting property of direct sums for _L{M).

In the final section 5, we determine all types of quasi-semiperfect modules
over Dedekind domains.

Throughout this paper, R is an associative ring with unit, and all modules
considered are unitary right R-modules.

Let M be an R-module. We denote its Jacobson radical by J(#/), and
the family of all submodules of M by L(M). M is said to be hollow if every
proper submodule of M is small in M. For a submodule N of M, we use the
symbol NC,M to mean that N is essential in M. M is said to be completely
indecomposable if Endg (M) is a local ring. Let {N,}, be an independent set
of submodules of M. EI @ N, is called a locally direct summand ([15]) if > @Nw

is a direct summand of M for any finite subset F of I. Finally, M is said to
satisfy (E-I) if every epimorphism of M to M is an isomorphism ([10]).
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1. Co-closed submodules

Let M be an R-module and N a submodule of M. We consider the
following condition:

(%) There exists a direct summand N* <M which is an essential exten-
sion of N.
For a subfamily A of the family _£{M) of all submodules of M, M is said to
have the extending property of modules for 1 if every member in A satisfies
the condition (%). Therefore, in order to dualize this extending property, we
must first study the problem; How do we define the condition dual to (x)?

Now, the condition () can be re-phrased as follows;

(¥%) There exists a closed submodule N* of M which is just a direct sum-
mand cf M and is an essential extension of N.
Therefore, for our purpose, we require to obtain the concepts ‘co-essential
extension’ and ‘co-closed submodule’ in M which correspond to ‘essential
extension’ and ‘closed submodule’ in M, respectively. We define these con-
cepts quite naturally as follows:

DeriniTION. Let N, and N, be submodules of an R-module M with
N,CN,. We say that N, is a co-essential submodule of N, in M if the kernel
of the canonical map

MJ|N, - M|N, 0

is small in M|/N,, or equivalently, if M=N,+X with X2DN,, then M= X.
We use the symbol N, &, N, in M to mean this situation.

Proposition 1.1. Let N, N, N,, N,, N; be submodules of an R-module
M witk NCN' and N\ CN,CN,. Ther

a) Nc ,Nin M.

b) 0<.Nin M iff N is small in M.

¢) N,&.N,in M and N,C N;in M iff NS N, in M.

d) N'issmallin M iff NC N’ in M and N is small in M.

Proof. The proofs of a) and b) are trivial, and d) follows from b) and
c). We show c¢). (=) Consider M=N,4+X with XDN,. Since M= N,+
(N,+X) and N,+-XDN, we get M=N,+X by N,&.N, in M. Hence
noting N,C X, we see that M=X. Hence NS ,N; in M. (<) Let X be
a submodule of M such that M=N,+X and X2N,. Then M= N,+X and
hence it follows from N,C,N, in M that #i=X. As a result, N, N, in M.
Next, if M= N,+X with X D N,, then surely M=X since X2 N, and N,C_ N,
in M. Therefore N,C N, in M.

DriNiTION. Let N be a submodule of an R-module M. We say that
N is a co-closed submodule of M provided that N has no proper co-essential
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submodule in M, i.e., N'C N in M implies N=N".

DerFINiTION. Let N and N’ be submodules of an R-module M. N’ is
said to be a relative supplement for N in M provided that M=N-+N’ but
M=£E=N+X for any X&N'.

We note that there are deep relations between co-closed submodules and
relative supplements, as the following result shows:

Proposition 1.2. Let N be a submodule of an R-module M. If N has a
relative supplement N' in M, then the following are equivalent:

a) N is a co-closed submodule in M.

b) N is a relative supplement for some submodule in M.

c) N is a relative supplement for N' in M.

Proof. a)=>c). Let X be a submodule of N such that M=X+N’. To
show that X<, N in M, consider M=N+Y with Y2X. Then Y=X+
(YNN’) and hence M=N-+Y=N+X+(YNN')=N-+(YNN’). Accordingly
the minimality of N’ shows N'=Y NN’;so N'C Y and hence M=Y. Therefore
Xc N in M and hence a) says that X=N as desired.

c)=>b) is clear.

b)=>a). Let N’ be asubmodule of M for which N is a relative supplement
in M. If T is a submodule of M with TC N in M, then M=N-+N'=
N-+T+N'; hence it follows from TC N in M that M=T+N'. Therefore we
have N=T by the minimality of V.

Now, about our co-essential submodules and co-closed submodules, we
should observe that, for a given submodule N of M, whether there exist a co-
essential submodule N* of N in M which is a co-closed submodule of M.
Although we do not know whether such N* always exist or nct in general, the
following theorem holds.

Theorem 1.3. Let M be an R-module and N a submodule of M. If M
and M|N have projective covers, then there exists a co-closed submodule N* of
M with N*< N in M.

Proof. Let (P, f) be a projective cover of M, i.e., P is projective and f:
P—M is an epimorphism with 0, ker (f) in P. Since M/N has a projective
cover, by virtue of Bass’s lemma ([2, Lemma 2.3]), we have P=P,@P, such
that f(P,) SN and

Pl-—’zj:»M/N—>0

is a projective cover, where » is the canonical map: M—M/N—0. We claim
that f(p,) is a co-closed submodule of M with f(P,)S.N in M. Consider a
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submodule X of M such that M=N+X and X 2Df(P,). Putting O=
ker (p(f | P))+f"4(X), we show P=0Q. f}(X)2P, is clear and so we may
show that P, Q. Let p,=P,. Then f(p,)=n+x for some neN and xX.
Express x as x=f(q,)+f(g,) where ¢, P, and ¢, P,. Since f(q)=x—f(g,)EX,
we see that ¢, € f7(X).  Since nf(p,—q:)=n(n)+n(x)=nf(g2)+nf(9:) —f(9)=0,
we have p,—q,Eker (7(f | P,)) and hence p,€Q as required.

Inasmuch as ker(n(f|P,)) is small in P, (and so is in P), we infer from
P=ker(n(f|Py))+f(X) that P= f"(X). As a result, M = X and hence
f(P)< . Nin M.

Next, we show that f(P,) is a co-closed submodule. Let T be a submod-
ule of f(P,) with T f(P,) in M. 'Taking a submodule P; of P, with f(P3)=T,
we have M= f(P))+f(P3) since M= N+ f(P,)+f(P3) and f(P)) . N in M.
This implies that P= P,+P}+ker(f) and hence P=P,pPj. Thus P,= P}
and this finishes the proof.

The following lemma plays an important role in this paper.

Lemma 1.4. Let N, N* and N** be submodules of an R-module M with
M=N*DN** and N*TN. Then the following are equivalent:

1) N*is a co-closed submodule of M with N*< N in M.

2) NNN**is small in M.

Proof. The proof easily follows from the fact that N/N*~=N**NN and
N|N*=N** canonically.

Now, let M be an R-module and A a subfamily cf the family _L(M) of
all submodules of M. M is said to have the extending property of modules
for A provided that if A=, then there exists A*{PM such that 4 <, A4*
([14], [23]). We define a dual notion of this extending property as follows:

DEerFINITION. We say that M has the lifting property of modules for A
provided that, for any A< 4, there exists a direct summand A* of M such
that A*c . 4 in M.

ReMARK. (1) We note that one type of the lifting property had appeared
in Nicholson [22]. He says that an R-module M is semi-regular if it satisfies
the following condition for A= {¥R|x=M}: For any A=, there exists a
decomposition M = A* @ A** such that 4* is projective with 4A*< 4 and
ANA** is small in A**. So, in view of Lemmal.4, a projective module P is
semi-regular if and only if it has the lifting property of modules for the family
of all cyclic submodules of P.

(2) The lifting property of simple modules mentioned by Harada [10]
is also one of our considerable bifting properties. Harada says that an R-module
has the lifting property of simple modules if it satisfies the following condition:
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(*) Every simple submodule of M/J(M) is induced from a direct sum-
mand of M.

As is easily seen, this condition is equivalent to the condition that, for
any submodule 4 of M such that A contains J(M) and A/J(M) is simple, then
there exists a direct summand A* of M with A*C_,A in M. It should be noted
that the condition (*) has been defined as a dual condition of the extending
property of simple modules defined as follows: M is said to have the extend-
ing property of simple modules provided that if A is simple submodule of M
then there exists A* (@M such that Ac,4*. The lifting property of simple
modules is surely a dual notion of the extending property of simple module.
However the lifting property of module for the family of all maximal submod-
ule of M is also seems to be a dual notion of the extending property of simple
modules (see [24]).

(3) The lifting property had also appeared in Bass’s article [2]. Indeed
we look at his well known lemma:

(Bass’s lemma) The following conditions are equivalent for a given projec-
tive R-module M:

1) M is semiperfect in the sense of Mares, i.e., every homomorphic image
fo M has a projective cover.

2) For any submodule N of M, there exists a decomposition M=N*@PN**
such that N*C N and N (\ N** is small in N**.

The condition 2) is nothing but 2) in Lemma 1.4, so we can re-phrase the
Bass’s lemma as follows; A projective module M is semiperfect if and only
if it has the lifting property of module for .£(M), the family of all submodules
of M. This fact suggests that there is a dual relation between the works of
Bass [2] and Mares [20] and those of Utumi [28]~[30] and Jeremy [16], [17].

2. A-semiperfect modules and _J-quasi-semiperfect modules

Let M te an R-module and we denote the family of all submodules of
M by L(M). In [23] we studied those subfamilies .A* satisfying the condi-
tions:

(«*) For A A* and Ne L(M), A~N implies N € A*.

(8*) For A A* and Ne L(M), Ac,N implies N € J*.

For such _A*, we introduced J*-continuous modules, (4*-quasi-continuous
modules and A*-quasi-injective modules and devoted some fundamental results
of such modules in [23].

In this section we intend to give dualizations of these concepts.

Let A be a subfamily of .L(M) and assume that  J satisfies the following
conditions (&) and (B):

(o) For Ae A and Ne_L(M), M/A~M|N implies N € .

(B) For Ae A and Ne (M), NC,A in M implies N .
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Of course, these () and (B) correspond to above (a*) and (8*), respectively.
For examples, (M) and {A.L(M)|M|A is hollow} are good examples of
such A (cf. [24]).

Now, for such A we shall introduce the concepts of (A-semiperfect mod-
ules, A-quasi-semiperfect modules and (/A-quasi-injective modules as notions
dual to those of A*-continuous modules, A*-quasi-continuous modules and
A*-quasi-injective modules, respectively.

DEeFINITION. M is A-semiperfect (resp. (A-quasi-semiperfect) if the condi-
tions (C,) and (C,) (resp. (C,) and (C,;)) below are satisfied:

(C)) M has the lifting property of modules for .

(C,) For any Ac A such that APM, any sequence

M—-M|A—0

splits.

(Cy) Let A=A and N & L(M) which are direct summands of M. If X=
ANN is small in M and A/ XPN|X<PM|X, then X=0.

In particular, we simply say that M is semiperfect (resp. quasi-semiperfect)
when it is L(M)-semiperfect (resp. -L(M)-quasi-semiperfect). We note that
there are no confusions between our name of semiperfect modules and that
of Mares’s semiperfect modules on projective modules. Because, if M is pro-
jective then clearly it satisfies the condition (C,) for .L(M), and hence it is
semiperfect if and only if it is semiperfect in the sense of Mares by Lemma
1.4. Needless to say, we must take a serious attitude when we name new con-
cepts. In view of the results in the later sections, the author believe that our
name of semiperfect modules will be justified in module thoery.

DEeFINITION. M is JA-quasi-projective if it satisfies the condition:
(C,) Forany Ac A, N _L(M) and any sequence

NZ ma-o
there exists a homomorphism h: M—N which makes the diagram
M _y /70
l kM4
Ny 0
commute, where 7 is the canonical map.

We note that _L(M)-quasi-projectivity is nothing but the usual quasi-
projectivity by virtue of Miyashita [21, Proposition 2.1].

Now, in this section we devote fundamental properties of ./4-quasi-projec-
tive modules, (A-semiperfect modules and (A-quasi-semiperfect modules. All
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results are obtained as results dual to those in section 1 of [23].

Theorem 2.1. Assume that M and M|A have projective covers for all A
in A. Then if M is A-quasi-projective, then it is A-semiperfect.

Proof. The condition (C,) is easily verified. Let 4 be in 4. Consider
a projective cover of M

rEm—o.

Since M/A has a projective cover, by the Bass’s lemma, we have a decomposi-
tion P=P PP, such that f(P,)S A4 and

P, AMA -0

is a projective cover of M/A, where g=5(f|P,) and 7 is the canonical map:
M—->M|A—0.

Let 7;: P=P,@®P,—P; be the projections, i=1,2. By the proof of
Theorem 1.3 we see that f(P,)C.4 in M. We claim that

M = f(P)D f(P) .
and show this by a slight modification of the proof of Wu-Jans [31, Theorem].
Putting

T = my(ker(f))+Py - (%),

we can see that f(P,)S f(T)CA. In fact, f(P,)Sf(T) is clear. Next, let t&T
and express it in (%) as t=mu,(q)+p, where g<ker(f) and p,=P, Then, it
follows from f(g)= 0 that f,(q)= —fr,(q)=f(P,)SA. Hence f(t)=fm(q)+
f)=fm(q)+-f(p:) EA; so f(t)€A. Since f(P,)Sf(T)S A and f(P,)<,.A in M,
we see that f(T) S, A in M by Proposition 1.1. Thus f(T)e.

Now, let y=n,;) be the canonical map: M—M|[f(T)—0, and let »* be
the restriction map 7| f(P,). Then, by the condition (C,), there exists a homo-
morphism @: M- f(P,) which makes the diagram

\ 0
| M)

fP) 7 T

commute. Since P is projective, there exists a homomorphism §: P—P, for
which the diagram
p ——»f M 0
\ _—

M)
’ ! le(lIf !
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is commutative. Putting X={p&P|xz,(p)—3(p)=P,Nker(f)} we show that
P = ker(f)+X -« (%%)

Let peP. Since g(f | P)my=nf=g(f|P,)s, we see that f((z;—3)(p))=f(t) for
some t&T. As a result, (m,—8)(p)—t<ker(f)CSm (ker(f))+P,<T and hence
(m—3)(p)eT. We express it in (x) as

m(p)—O(p) = m(R)+p.

where k€ker(f) and p,=P,. Then noting that all z(p), 8(p) and =,(k) are
in P, we see that p,=0. Therefore m,(z—k)—3(p—k)=38(k)EP,Nker(f);
whence p—k& X and hence pe X+ker(f). Thus (%) holds as claimed. Since
ker (f) is small in P, (#%) shows that P=X and it follows that

my(ker (f)) S P Nker(f) -+ (%%%)

Now, let x€ f(P)N f(P,). Then x=f(p,)=f(p,) for some p,EP;, i=1, 2.
Putting p=p,—p, pEker(f). Hence p,=mn\(p)Sker(f) by (**x) and hence
0=f(p,)=x. Therefore M=fP,)P f(P,), and consequently we get that f(P,)
is a direct summand of M with f(P,)<,4 in M.

Proposition 2.2. The condition (C;) is equivalent to the following (C3):
(C3) For any Ac A and N L(M) such that A<HM, N{DM and
M=A+N, if X=ANN is small in M, then X=0.

Proof. (C;)=(C%) is trivial. Assume that (Cj) holds, and let A€,
N, Y& (M) such that A<M, N{HM and

M|X = AJX®N/XD(Y+X)/X

where X=A4 NN. Assuming that X is samll in M, we show X=0.

Since N<@PM, N+Y=N@Y’ for some Y'CM. Then (A+N)NY'<
XCN and hence we see that (A+N)NY'=0. Furthermore, it follows from
NL{OM that A+ N=A'PBN for some A’. As aresult, NOY'<{PM. Putting
N'=N@Y’, we see that ANN'=X and M=A+N’'. Therefore (C}) says that
X=0.

Theorem 2.3. The condition (C,) implies (C;). Therefore if M is A-
semiperfect then it is A-quasi-semiperfect.

Proof. By Proposition 2.2, we may show that (C,) implies (Cj).

Let A=A and Ne L(M) such that A<PM, N{DM, M=A_:|—N and
X=ANN is small in M. We say M=APA*=NON* and put M=M|X.
Then
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By 7= we denote the projection: M= APA*—> A*. Then N==A* by the
restriction map z|N. Let a be the canonical isomorphism from A4* to M/A4
and g be the canonical map: M—>N. Then azg is an epimorphism from M
to M/A and its kernel coincides with N*@X. Since M satisfies the condition
(Cy), it follows that N*@PX<{PM and hence 0<,X in M says that X=0.

Here we further consider the following condition which is closely related
to the condition (C,):

(Cs) For any A= A and N{DM such that 0, X=ANN in M and
M|X®>A/XPN|X, every homomorphism from A|X to M|X is induced from
a homomorphism from A to N, i.e., for f: A|X—N|X there exists f': A—N which
makes the diagram

axLonx

¢A.I1 2 ]quw

commute, where ¢, and ¢y are canonical maps.

Proposition 2.4. The condition (Cs) is equivalent to the condition:

(Ct) For any A= A and N<B®M such that M=A~+N and 0, X=ANN
in M, every homomorphism from A|X to N|X is induced from a homomorphism from
A4 to N.

Proof. We may only show (C{)=(C;). Let A=A and N<{@M such that
X=ANNissmallin M and M/XP>A/XPN|X, and let f be a homomorphism
from A/X to N/X. Since N{@®M and A/ XPN|/X{DM|X, we see from the
proof of Proposition 2.2 that there exists Y <{@®M such that NOY {PM and
(N®dY)NA=X. Hence, applying the condition (C;s) here, we have a homo-
morphism f': A—=N@Y for which the diagram

4x-LoNxevx = Ne )X

Ioy Lo

is commutative, where ¢; is the canonical map, i=1,2. If we denote the pro-
jection: NY—N by =, then as is easily seen, f is induced from =f’.

Proposition 2.5. Under the condition (C,), (Cs) is equivalent to (Cs).
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Proof. By Propositions 2.2 and 2.4, we may show that (C%) is equivalent
to (CY).

(CH=>(C%): Let A=A and N<{PM such that M\=A+N and 0. (ANN)
in M, Put X=ANN, and let f be a homomorphism from 4/X to N/X. We
put M=M/X and

B = {x&M|x = a+f(a)} for some a in A} .

Then B is a submodule of M containing X, and we see that

M= B®N.
Since M|/B~N=M|A, B lies in A by the assumption for 4. Using the con-
dition (C)), there exists B¥* (@M such that B¥*C B in M. Then we also see
that B*€ J by the assumption for A. Since M=B+B*+N and B*C B in
M, we get M=B*-+N; whence

M= B*®N,

B=B*.

Inasmuch as 0. X in M and B*NN S X we see that 0, (B*NN) in M.
Therefore (C%) says that

M = B*®N.

Let 7 be the projection: M= B*®N—N and put f'=—=|A4. Then, as is
easily seen, the diagram

ax-Lonx

¢’Al 7 l‘i)N

A——> N

is commutative, where ¢, and ¢, are canonical maps.

(CH=>(C%): Let A and N be direct summands of M such that M=A+-N,
Ae and 0, X=ANN in M. Writt M=APA*=N@N* and put
M=M|X. Then

Let = and z* be the projections: M=N@N*->N and M=NPN*— N*,
respectively. Then we see that
A= {a(@)+n*(@)|ac A},
n*(4) = N*
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and the map f: N*—N given by 7*(a)—n(a) is well defined.

Now, we see that X=(N*+ X)NN, and it follows from M|(N*+ X)=
N=M]|A that N*+X & A. Here, by (C), we have a homomorphism f’:
N*+4 X—N which makes the diagram

N f AT
N*+X— N
wl e
N*+X—— N

commute, where ¢, and ¢, are canonical maps. We put P= {n+f'(n)|n€N*},
and claim that A=P-+X.

In fact, if n&N* then f'(n)=f(#) and hence i+4f'(n)=a for some aE4;
so n+f'(n)—a=x for some x in X. This implies that P+-XcA. Conversely
if ac A then a=z(a)+r*(a)=n(a)+f(z*(a)) and hence the above commutative
diagram shows that a=#a--f'(#) for some nN*. Hence acP+X and therefore
ACP+X. Thus we get A=P+X. Furthermore we can see that A=P@X.
Since A<PM and 0<,X in M, we see that 0=, X in A. Accordingly X=0
as required.

Proposition 2.6. (C,) implies the following condition:i
(Ce) For any A& A, there exists a direct summand N {BM such that
M=A+N and 0 ,(ANN) in M.

Proof. Use Lemma 1.4.
Proposition 2.7. (C;) and (C;) imply (C,).

Proof. Let A= A. (C;) says that there exists a direct summand N,
say M=N,@N,, such that M= A+N, and 0<,(ANN,)=X in M. Putting
M=M/X we see that

M= N,®N,
= ADN,.
Let 7; be the projection: M=N,pN,—»N,, i=1,2. Then = (A)=N, and the
map f: N,—N, given by z,(a)—>n,(a), ac A, is well defined. Since M/(N,+X)~
N,~M|A, N,+X lies in A and moreover (N;+X)NN,=X. Thus by (C;)
there exists f': N,+X —N, such that the diagram

f

NI ? 2

ol ol

is commutative, where ¢, and ¢, are canonical maps. We put 4= {x+f'(x)|
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xEN}. Then M=A*®N, and A*=A4. Nothing X C A4, we see from A*=A4
that A*C A4; whence A*C,4 in M by Lemma 1.4. This completes the proof.

By Theorem 2.3 and Propositions 2.5, 2.6 and 2.7 we have the following
two theorems.

Theorem 2.8. The following conditions are equivalent:
1) M is A-quasi-semiperfect.

2) M satisfies (C,) and (Cs).

3) M satisfies (Cs) and (Cy).

Theorem 2.9. M is J-semiperfect if and only if it satisfies (C,), (C5) and
(CG).

Proposition 2.10. M is J-quasi-projective if and only if it satisfies the
condition:

(C)) For any A A, Ne L(M) and epimorphisms f: M— M|A and g:
N —M]|A there exists a homomorphism h: M —N satisfying gh=f.

Proof. ‘If’ part is obvious. To show ‘Only if’ part, let A= A, N € L(M)

and consider epmorphisms: M —f—>M |A—0 and N ér>M |A—0. Since A satisfies
the condition (a), ker(f) lies in 4. Let ¢ be the canonical isomorphism:
M|A~M]ker(f) such that

M
1.4
M . L
7 Mlker(f)
is commutative, where % is the canonical map. Here using the condition (C,),

we have a homomorphism k: M —N satisfying ¢pgh=x. Since gh=¢ 'pgh—=
¢ 'n=0¢"(¢pf)=f; whence we have gh=f.

Proposition 2.11. Assume that M is A-quasi-projective. Let A A and
Ne (M) such that M=A-+N. Then for any homomorphism f from A|X to
N|X is induced from a homomorphism f' from A to N where X=ANN, that is,
the diagram

A/X—f—>N/X

« . |8

A ——>N
is commutative, where a and 8 are canonical maps.

Proof. Inasmuch as M=A+ N, there are canonical isomorphisms:
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A/X?;M/N and N/XgM/A.
Consider the diagram:
Afxi» fo
* ¢z -
MIN <> M4 (o= o¢1'f¢0)
N N4
M N

where 7y, 74 are canonical maps. Applying Proposition 2.10 we have a homo-
morphism k: M—N satisfying ¢y=e4h. Then the restriction map f'=h|A4
is a required map.

Theorem 2.12. If M satisfies the conditions (C,), (Cs) and (Cy) then it is
-semiperfect.

Proof. By Theorem 2.7 M satisfies the condition (C,). In order to show
that the condition (C,) is satisfied, let A= such that 4A{@PM; put M=
A@DA*, and let f be an epimorphism from M to M|/A. Put K=ker(f). Then

M/KiM/A shows K& 1. Hence, by (C)), there exists K* (DK with K*< K
in M. We wish to get K=K*,

Let z* be the projection: M= A @ A* — A*, and let %, 7, and T be the

canonical maps: M-EMIK, M/K*ZM/K and A*~MJA. Apphing (Ci) for
A we have a homomorphism 4: M — M which makes the diagram below com-
mute:

M

| =
A*
; |
,
M4
f—l
M5 MK* 25 MK — 0

(cf. Proposition 2.10). If we denote the injection: A¥—>M by i. Then nnhi=
f~'7. Putting h'=hi we obtain

M= h(A%)+K. ceeeeeieeenn (%)
Since K*{PM, K=K*®T for some T. Assume T=0, and pick a non-zero
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element ¢ in T and express it in (*) as ¢=Ah'(a*)+-k* where a*=4* and k*=K*.
Since t €K, n(t+K*)=0. Hence n,(k'(a*)+ K*)=ny(t—k*+ K*)=n,(t + K*)=0
and hence #'(a*)=K. This implies f~'7(a*)=0 and hence a*=0; so t=k*cK*,
a contradiction. Accordingly ker(f)=K=K*{DM.

3. Semiperfect modules and quasi-semiperfect modules

The following theorem due to Mares [20] is well known:

(Mares’s theorem): A projective R-module P is semiperfect if and only if
it satisfies the following conditions:

1) J(P) is small in P.

2) P|J(F) s completely reducible.

3) Every airect decomposition of P[J(P) ts wnduced from a decomposition
of P.

In this section we study the fundamental properties of quasi-semiperfect
modules and semiperfect modules, and investigate the Mares’s theorem from
our point of view.

Proposition 3.1. Let M be an R-module which satisfies the condition (C,)
for L(M) then the following statement hold.

1) There is a decomposition M=H@ K such that 0 < J(H) in M and
J(K)=K.

2) Every submodule of M|J(M) is induced by a direct summand of M; so
M|J(M) is completely reducible.

Proof. 1) By the condition (C,) for (M) and Lemma 1.4 we have a
decomposition M=H@ K with K € J(M) and 0 (J(M)NH) in H. Then
J(K)=K and J(H)=J(M) N H.

2) Let 4 be a submodule of M. Again using (C,) for L(M) and Lemma
1.4 we have a decomposition M=A*P A** such that A*C 4 and 0, (4 N 4**)
in M. Then clearly A*=A4 in M=M/|J(M).

Proposition 3.2. If M is a quasi-semiperfect R-module then every internal
direct sum of submodules of M which is a locally direct summand of M is a direct
summand of M.

Proof. Let {N,}, be an independent family of submodules of M such
that N=2)@N, is a locally direct summand of M. By the condition (C,)
I

for L(M) and Lemma 1.4 there exists a decomposition M=N*@N** such
that N*C N and 0 (NN N*¥)in M. We claim that M=N@ON**,
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Clearly M=N-+N**_ Let z* and z** be the projections: M=N*PN**—
N* and M=N*@N**—N** respectively. Since N¥*CN, we see NN N**=
#**(N); whence

0C, 7**(N) in M.  coeevvveennnnn (1)

Now consider a finite subset {Ng, -+, Ng,} of {Ng}, and put T=Ny B+ DN,
Then T is a direct summand of M by the assumption. Put S=z*(T). Again
by (C,) for £(M) and Lemma 1.4 we have a decomposition N*= S*PS**
such that S*C.§ and 0 (SN S**) in M. We denote the projection: M=
S*PS**PN**—S** by z. Then 7(T)=n(z*(T))==(S)=S N S** and hence
we see

0C,7z(T) in M. ceeoeeemecennennn (2)

Put X=TN(S**@PN**). Then X Cn(T)+»**(T)Sn(T)+=**(N) and there-
fore 0<,X in M by (1) and (2). As a result we have the situation M=T+
(S**@PN**), T<BM, (S*PN*){PM and 0 (T N(S**PN**)) in M.
Thus the condition (C;) for L(M) says that TN(S*™*@N**)=0. Hence
T NN**=0 and we have M=N@ N**,

Theorem 3.3 If M is a quasi-semiperfect R-module then every direct de-
composition of M|J(M) is induced from a decomposition of M.

Proof. By Proposition 3.1 we can assume that J(M) is small in M. Put
M=M]/J(M) and consider a decomposition M=3" @A, with each A4, a sub-
I

module of M. We may assume [ is a well ordered set. Let 7 be its ordinal
number, and consider <7 and assume for each w<o there exists a direct
summand A¥ of M such that 4*¥=A4, and > @ A¥ is a locally direct summand

w0

of M. Put N=3YPA% Then N{HM by Proposition 3.2. Put T=73)4,.

0o oLT

By the condition (C,) for L(M) there exists a decomposition M= T*@T**
with T7*C, T in M. Inasmuch as M= AP A,=NPT*, we see M=
Usl]

s

N+T* with 0, (NNT*) in M. Hence by (C;) for L(M) we get that
M=N@®T*. Since A, T*, we can take a direct summand A*<{@T such
that A¥=A4, by Proposition 3.1. Thus, by the transfinite induction, there
exists a direct summand A% of M for each ¢ <« such that A*= 4, and
DY PA¥ is a locally direct summand of M. Then we have M =§7®A,’f since

<y

0<.J(M) in M.

Lemma 3.4. If M is a non-zero quasi-semiperfect R-module, then there
exists a non-zero direct summand of M which is hollow.

Proof. On the contrary, we assume that every non-zero direct summand
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of M is not hollow. First, we show that M is written as a direct sum of countably
infinite non-zero submodules of M. Since M is not hollow, we can take a
proper submodule N of M which is not small in M. Then, by the condition
(C,)) for L{M), we have a decomposition M =N,PN{ such that N,C N in
M. Then both N, and N{ are non-zero. Using the same argument on N,
we have a decomposition N{=N,@PN} with N,%0 and N{=+0. Continuing
this procedure, we get an independent family {N;|i=1,2, ---} of non-zero sub-

modules of M such that i} @ N, is a locally direct summand of M. Then
i @ N; is just a direct summand of M by Proposition 3.2. Hence M =(§§ ®N)
=1 i=1

@V for some submodule V as desired.
Now, pick O=x in N,. By Zorn’s lemma, we can take a maximal in-
dependent family {M,}, such that x&e M'=31PBM, and M'=33PM, is a
I I

locally direct summand of M. By Proposition 3.2, we see M'{P M; write

M=M'@M"”. Then M"”=+0 since xM’'. Therefore M’ is written as a

direct sum of countably infinite non-zero submodules of M; M”"=3PT,.
J

Since xeM=M'@M"=M'D>) DT, there exists a finite subset J, of J with
J
xeMPI NPT, If xeM'® 3)PT; then we see x=M’, a contradiction.
J

I=7

Therefore xee M'P ) PT; and this contradicts the maximality of M. Thus
I=T,

the lemma follows.

Theorem 3.5. Every quasi-semiperfect R-modules is expressed as a direct
sum of hollow modules.

Proof. This is immediate from Proposition 3.2, Lemma 3.4 and Zorn’s
lemma.

Lemma 3.6. Let M be a quasi-semiperfect R-module, and let M=) PM,
1

be a decomposition with each M, a hollow module. Then for any M=H®T
with H a hollow module there exists a =1 satisfying M=M,PDT.

Proof. Let =y be the projection: M=H@T—-H. If we can choose
a €1 such that 7z, (M,)=H then M=M,+ T and 0, (M,NT) in M; so
M=M,PT by the condition (C,) for L(M). Now assume 7 (M,)SH for all
acsIWe take {aj, -, a,} S such that (Mo, B DM, )NH+0 and put
N=My DD M,,. Since 0 7y(M,,) in M for all i=1, -, n, we see
0C,7zy(N) in M. Hence it follows that 7z (N) is not small in M where 7z,
denotes the projection: M=H@T —T. Using (C,) for L(M) there exists a
decomposition T=T*@T** such that T*Cz (N) and 0 (T** Ny (N)) in
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M (cf. Lemma 1.4). By 7+ and 7 we denote the projections: M=H@T*
BDT**—>T* and M=HPT*PT**—T** respectively. Then clearly z(IN)=
T**Nzy(N) and z(N)=T%*, so that M=N-+(HPT**) and NN(HOT**)<
7y(N)Prp(N)=ny(N)+(T** N7 p(N)). Since both my(N) and T** Nz (N)
are small in M we see that NN(H@T**) is small in M. Thus by (C;) for
L(M) we get 0=NNHDT**); whence NNH=0, a contradiction. 'This
completes the proof.

Proposition 3.7. Let M be a quasi-semiperfect R-module, and let M=
SYDM, be a decomposition with each M, hollow. Then a submodule A of M is
I

small in M if and only if wo(A)= M, for all a1, where =, denotes the projection:
M=3PM,—~M,.
I

Proof. ‘If’ part: If A is not small in M then by the condition (C,) for
L(M) and Lemma 3.4 we can take a direct summand H (==0) of M which is
hollow and contained in 4. Then Theorem 3.5 and Lemma 3.6 show that
M=H® E)GBM,; for some a in I. We denote the prcjection: M=H®D >\ P

I- (@ I- (@)
Mg—H by my. Then the restriction map z,|M, is an isomorphism. On the
other hand, we see from H®P ) Png(4) D) Pro(A4) that zyme(A)=H and
1= @) T

hence 74(A)=M,, a contradiction. Thus A must be small in M.
‘Only if’ part: If there exists ¢ in [ lsuch that zy,(4)= M, then M=
A+ 3 DM Since 0,4 in M, it follows that M= >} @®M,, a con-
=)

= (@}

tradiction. Hence 7mo(A4)+M, for all a 1.

RemMARk. Let {M,}; be a set of completely indecomposable R-modules.
{M_}, is said to be locally semi-T-nilpotent ([3]) if it satisfies the following
condition: Let {M,}7; be a countable subset of {M,}; with a, e, if nn'.
Then, for any non-isomorphism {fo : M, —M, , |n>1} and any x in M,,
there exists a number m depending on x such that f, fa _ -*fe(x)=0. Yama-
gata pointed out in [33] that it follows from [3], [4], [5], [18] and [33] that {M,},
is locally semi-T-nilpotent if and only if M =E @M, satisfies the finite ex-

change property. On the other hand, it is known in [6] or [15] that {M,},
is locally semi-T-nilpotent if and only if M=3" @M, satisfies the following
1

conditions: For any independent family {75}, of submodules of M, if 31T,
J

is a locally direct summand of M then >} T, is a direct summand of M.
J

By this remark and Lemma 3.2 we have the following lemma.

Lemma 3.8. Let M be a quasi-semiperfect R-module, and let M=} @M,
I
be a decomposition of M with each My a hollow module. Put J={B&I|M; is
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completely indecomposable}. Then EJ] @M, has the finite exchange property.

Lemma 3.9. Let M be a quasi-semiperfect R-module, and let N,, N, direct
summands of M with N\®N,{@PM. Then every sequence N,—>N,—0 splits.
In particular, for a decomposition M=3] B M, with each M, hollow, every epi-

I

morphism from M, to My is an isomorphism for any pair a, 8 in 1.

Proof. Put M=N,@®N,PY, and let f an epimorphism from N, to N,.
We put X=ker(f) and A=N,PX. Then M/X=A/XPN,/XPH(Y+X)/X and
f induces a canonical isomorphism % from A to N,/X; whence by Proposition
2.5 there exists a homomorphism & from A to N, satisfying nyk=h, where 5y
denotes the canonical map: N,—N,/X. Then we can verify that f(k|N,) is

the identity map of N, and hence the sequence N,—N,—0 splits.

Theorem 3.10. Let M be a quasi-semiperfect R-module, and let M=> B M,
I

be a decomposition with each M, hollow. Then for another decomposition
M=3)®N; with each Ng indecomposable the following statements hold:

J

1) There exists a one to one onto map o: I—]J such that My=—=N 4, for all
acl

2) For any subset K of I there exists a one to one into map &: K— J for which

fost(p) for all ﬁEK and Mz; ®Mw®J§K@Nﬁ.
SF1¢9)

Proof. First we note that if @< and M,=M, then M, and M, are com-
pletely indecomposable since they satisfy (E—1I) by Lemma 3.8. Let =1, U1,
be the partition of I such that if a1, then M, is completely indecomposable,
while M, is non-completely indecomposable if ¢<I,, We also consider the
similar partition J=],U J,.

Now we may show the following:

1) 21 DM,~ g} DN, 21 DM~ ZJ DN,

2) For any K,C ], and K,C ], there exist a one to one map: Kllilll and a

one to one map: K2~f—£12 such that

M=30ND 3 OM.DI OM,

I,-5,CK,
=21 DMuD DN > DM,
I, Ky I,=8,0K )

For a convenience we put M(L)= >} @M, (resp. N(L)= >)PN,) for a
L L
subset L of I (resp. J).
Let K, be a subset of J;. 'Then N(K)) satisfies the finite exchange property
by Lemma 3.9. Hence
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M= N(Kl)$M(V1)®M(V2)

for some V,< I, and V,c1,. If V,=*I, then M(I,—V,) is isomorphic to a
non-zero direct summand of N(XK;)@M(V;). But by the remark above there
exists a1,—V, such that M, is completely indecomposable, a contradiction.
Therefore we get

M = N(K,))eM(V,)PM(L,) .
In particular if we take J, as K, then
M = N(J)SM(V)OM(L,) -

But in this case we can obtain V;=@ by a similar argument to the above.
Thus we get

M = N(J)OM(L) .

Accordingly M(Z;)=N(J;) and hence by the Krull-Remak-Schmidt-Azumaya’s
theorem ([1]) there exists a one to one onto map 8,: I;,— ], such that My~Nj (»)
for all e 1,.

Next if B is an element in ], then we see from Lemma 3.6 that there exists
B’ in I, such that M=M(I,)®NgPDBM(I,— {8}). Then such B’ is uniquely
determined by the fact noted above. As a result, I,~ ], and for any L,C J,
there exists a one to one into map §,: L,—I, such that

M = M(L)®N(L;) ODM(I—8,(Ly))
The proof is now complete.

Corollary 3.11. Let M be a quasi-semiperfect R-module, and let M= DM,
I

be a decomposition of M with each M, hollow. Then the following statements hold.
1) If N is a direct summand of M then there exists a subset | of I satisfying
2) If A is a submodule of M then there exists a subset | of I such that
M=A+ 2XPMg and AN 23PM, is small in M.
J J

Proof. For a subset K of I we put M(K)=>1®M,. 1) is immediate
from Theorem 3.5 and 3.10. *

2) Let A be a submodule of M. Then by the condition (C,) for L{M)
there exists a direct summand A* of M with A*<,4 in M. Here using 1)
we get M=A*PM(J) for some subset J of I. Then we can see that M=
A+M(J)and 0, (ANM(J])) in M.

Lemma 3.12. Let M be a quasi-semiperfect R-module and let N,, N,
direct summands of M with M=N,@N,. Then for any submodule A of N, and
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a homomorphism f from N, to N,=N,/A there exists a homomorphism f’ from
N, to N, satisfying ¢.f' =f where ¢4 is the canonical map: N,—N,

Proof. Let A be a submodule of N, and f a homomorphism from N,
to N,=N,/A. By the condition (C,) for L(M) there exists a direct summand
A* of Mwith A¥*C Ain M. Put N,=A*PNj. Then it follows from 4*c A
in M that 0c,(ANN3) in M. Now o denotes the canonical isomorphism
from N,/A onto Nj(ANN}). Since 0, (ANN3) in M, by Proposition 2.5
there exists a homomorphism g from N, to Nj satisfying y,g=0of where 5,
denotes the canonical map: N{—N3/(ANN3). Then g g=f where 7 denotes the
inclusion map: N§—N,. Thus 7g is a required homomorphism from N, to N,.

Corollary 3.13. Let M be an R-module. If M®M is quasi-semiperfect
R-module then M is quasi-projective.

Theorem 3.14. Let M be an R-module such that every homomorphic image
of M@M has a projective cover. Then the following conditions are equivalent:

1) M s quasi-projective.

2) M @M is semiperfect.

3) M DM is quasi-semiperfect.

Proof. 2)=3) follows from Thoerem 2.3, and 3)=1) is Corollary 3.13.

1)=2). Since M is quasi-projective and every homomorphic image has
a projective cover, M@M is also quasi-projective (see [21] or [31]). Thus
MM is semiperfect.

Theorem 3.15. Let M be a quasi-projective R-module with the property
that J(N)=N for any direct summand N of M. Then the following conditions
are equivalent:

1) M is semiperfect.

2) M is quasi-semiperfect.

3) 1) J(M)is small in M,

i) M/J(M) is completely reducible,
iii) Every decomposition of M|J(M) is induced from a decomposition of M.

Proof. Since M is quasi-projective, clearly it satisfies the condition (C,)
for L(M); whence 1)=2) is evident.

2)=3). i) and ii) follow from Proposition 3.1 and iii) follows from Theo-
rem 3.3.

3)=1). By i)~iii) it is easy to see that M satisfies the condition (C,)
for .L(M). Since M is quasi-projective it satisfies the condition (C,). Hence
M is semiperfect.

Remargs. 1) If M is a quasi-projective R-module whose homomor-
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phic images have projective covers then M is semiperfect by Theorem 2.1 and
moreover J(N)=#N for every direct summand N of M. So M satisfies the
conditions i)~iii) in Theorem 3.15.

2) If M is a projective R-module then J(N)#N for every direct sum-
mand N of M. Thus Theorem 3.15 is an extension of the Mares’s theorem.

Theorem 3.16. An R-module M is quasi-semiperfect if and only if M is
written as a direct sum of hollow modules {M,}, and satisfies the following condi-
tions:

1) For any submodule A of M there exists a subset ]| of I such that
M=A+ZJ} @M;g and A ﬂ;}EBMﬂ is small in M.

2) Let ], J, be subsets of I with J\N J,= 0 and let X a small submodule
of %}@Mﬁ. Then for every homomorphism f from ;‘EBM,, to (122 DMg)| X

there exists a homomorphism f' from > @M, to 2D M, satisfying yn,f'=f where
91 Iz
4 15 the canonical map: JEG}M,;.A(;‘ BM,)/X.

Proof. If part: 1) follows from Corollary 3.11, and 2) is clear.
Only if part: For a subset K of I we set M(K)=2>)PM,. We first show
K

the condition (C,) for _L{M) is satisfied. Let 4 be a submodule of M. Then
by 1) there exists a subset J of I satisfying M=A+-M(J) and 0<.(4 NM()))
in M. Put X=ANM(J)and M=M|X. Then

M= A®M(])
= M(I—))®M()).

By =, and =, we denote the projections: M—>M(I—J) and M—M(]), re-
spectively, with respect to M=M({I—J)®M(I). Then A=M(I—J) by =,
and moreover f: M(I—J)—M(]J) given by f(m,(a))=n,a), a4, is a homo-
morphism. Here by 2) f is induced from a homomorphism f’: M(/—J)—M(]).
Put A*= {x+f'(x)|[x&M(I—])}. Then M=A*PM(J) and A*= 4, moreover
it follows from X C A that A¥*c 4 and X=ANM(J). Thus 4*C 4 in M by
Lemma 1.4.

Next we wish to show that M satisfies (Cf) for (M) (cf. Propositions
2.4 and 2.5) in order to show that M satisfies the condition (C;) for _L(M).
But in view of the proof of Proposition 2.5 it is further enough to show that
every homomorphism from 4 to M(J) is induced from one from 4 to M(J).

Let & be a homomorphism from A to M(J). Then by 2) there exists a
homomorphism g from M(/—J) to M(J) for which the diagram
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—_ZY B
M(I—J)—A4A— M(]J)
it g 72
M(I—J) M(J)
is commutative, where 7; is the canonical map, i=1,2. Let a4 and express
it in M=A*dM(J) as a=(x,+f(»,))+y, where x,&M(I—]) and y,=M(]).
Then the mapping I: A—-M(I—]) given by l(a)=x, is a homomorphism. Put
h'=gl. Then hn,(a)=h(a)=hn7'(r(a))=hrT'(%,)=n.g(x,)= n.8l(a)=n.h'(a);
whence hn,=mnh' where 5, denotes the canonical map: A—-A4. The proof is
now complete.

Theorem 3.17. Let M be a quasi-semiperfect R-module, and let M=> DM,
I

a decomposition with each My, hollow. Then the following conditions are equivalent:
1) M is semiperfect.
2) Every M, satisfies the condition (E—I).

Proof. 1)=2) is clear by the condition (C,) for _L(M).

2)=>1). By 2) and Lemma 3.9 we see that for any two indecomposable
direct summands N,, N, of M every epimorphism from N, to N, is an iso-
morphism. We wish to show that M satisfies the condition (C,) for _L(M).
Further to verify this it is enough by Corollary 3.11 (1) to show the following:
Let J be a subset of I and f an epimorphism from M to D3PM,. Then the
sequence M —>ZJ} D M,—0 splits. ’

Put N=3>'PM,. For o] we show that there exists a direct summand
J

N, of M such that f(N,)=M,. Put A=f"'(M,). Since 4 is not small in M,
there exists a decomposition M=A*PA** with 0 4*C 4 and 0 (4 N A**)
in M (cf. Lemma 1.4). Clearly f(4*)=M,. First we consider the case:
(A*PMy)<{PM. Then put X=f"' (M) NA* and denote the induced isomor-
phism: A*/X=M, by g. Here applying Lemma 1.12, we have a homomor-
phism A from M, to A* satisfying nyh=g where 5y is the canonical map:
A*—-A*/X. 'Then we see that fh is the identity map of M,; whence we may
take A(M,) as N,

Next we consider the case: /((A*@®M,)<{PM). Then by Theorem 3.5
and Lemma 3.6 we can get a decomposition A¥*=B@C such that B=M, and
(CAM)<DM. If f(By=M, then (2) says B=M, by f. In the case of
f(B)YSM, we see f(C)=M,. Then by the same argument above there exists
a direct summand D of C with D=M, by f.

Thus at any rate for each @< J there exists a direct summand N, of M
such that the restriction map f|N, is an isomorphism from N, to M,. So
if we put p=ZJ}( f|Ng) then fp is the identity map of N =¥ @M, as required.
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Theorem 3.18. Let M be a quasi-projective R-module satisfying the condi-
tion (Cg) for L(M). Then M is semiperfect; so it is written as a direct sum of
hollow modules by Theorem 3.5.

Proof. Since M is quasi-projective, clearly it satisfies the condition (C,)
for L(M). To show the condition (C,) for L{M) let A be a submodule of
M. By the assumption there exists a decomposition M=A*PA** such that
M=A+A** and ANA** is small in M. Put X=ANA** and M=M|X.
Then

#* and #** denote the projections: M—>A* and M—>A**, respectively, with
respect to M=A*@ A**. Then z*(A)=A* and the map f: A*—A** given
by f(z*(a))==**(a) for ac A4 is a homomorphism. Consider the map g=f=n"*y,
where 7 is the canonical map: M—M;

-4
i T T i
M M
Now by the quasi-projectivity of M there exists h: M—M satisfying nh=gy.

Put f'=n»**(h|A*). Then the diagram
f

Ax_d, gk

"711 f' 1712

A*—— 4*

(m = 9] A%, 5, = y|4)

is commutative. We set A= {x+f'(x)|x=*}. Then M= A°@A** and it
follows from A°= A that A°C A. Thus by Lemma 1.4, A°C,A4 in M as
desired.

4. Lifting property of direct sum for 1

In this section we introduce the notion of the lifting property of direct
sum for A, from which it will be clarified why we say M to have the lifting
property of module for (7 if it satisfies the condition (C,) for 1.

Let M be an R-module and J1= {N,}, a subfamily of L(M). We put

M@I) = {xeM |xe IOI"NB for some finite subset F of I} .

Then clearly M(Jl) is a submodule of M, and the map from M(J1) to >} P(M[N,)
I
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given by x—»E(x—l—Na) is well defined. We denote this by 7g; and the induced

monomorphism: M(ﬂZ)/ker(ngz)»E @©(M[Ng) by 75. We note that M=M(JI)
if J1 is a finite family.

For our purpose we consider the following condition:

(%) For any finite subset F of I,

M= (0 Na)+( 0, No).

As is easily seen, () is satisfied if and only if »9 is an epimorphism.
Here, we introduce the notion of a co-independent family which is dual to
that of an independent family.

DrrFiNITION. Let J1= {N,}, be a subfamily of L(M). We say that Jl is
co-independent if Np=+=M for all acl, M=M(Jl) and 7g; is an epimorphism.

Proposition 4.1. Let J1={N,}, be a co-independent subfamily of L(M)
and put To= N Ng for all acI and X—ﬂN Then

I-(®)
1) 79(Te/X)=M|Ngy for all a<1; so M—ZT,, and M/Xz?@(T,,/X).
I
2) M=T, is irredundant.
I
3) Na: 2 Tﬂ.

I-{@)

Proof. 1) Since M=N,+ Ty and To,CNg for a+R, 79 (Te/X)=M|N,
for all ¢ 1.

2) Since 0% To/X=M|N, for all acl, M =Z T, is irredundant.

3) 79(Ts/X)=M|Ng shows that TSN, for B+a; whence Z Te<Na.
“®@

Since 79(To) S ) B(M[Ng) we see that No/X S S P(T/X) and therefore
I-(ﬂ) I——{M)
No© 23Ty Asaresult No= D) T

I- (@) I-(@)
Proposition 4.2. Let X be a submodule of M and M/Xzz B(To/X) a

decomposition with To=2X for all a€l. Put Np= Z Ty for all a€l. Then
1) M= —Z‘,T is trredundant.

2) Jl= {Nm}, is co-independent.
3) X—nN and To= N Ng for all acl.

I- (@}

Proof. 1) is clear since T2 X for all a1
2) Since M=31T, is irredundant, N, M for all e=]. Noting n9)(T,)=
I

M|N, we see M=M(Jl). Now if F is a finite subset of I then QN‘”QIZF Ts
and nFN g2 Z‘,F T,; whence M=(NNg)+( N Ng). Thus 7 is co-independent.
J- F I-P
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3) Since X< T, for all a1 it is clear that XN, for all acl. As a
result, XC NN,. Let ac NN, and express it in M=>T, as a=ay -+ +0aa,
14 I I
Then it follows from aa‘ENa‘. that ae,X for all /. Hence a€X and we get
X=NN,. :
I

REMARK. By Propositions 4.1 and 4.2 there exists a one to one map be-
tween the family of all co-independent subfamilies of L(M) and the family
of all decompositions of all homomorphic images of M.

Proposition 4.3 Let M=31T, be an irredundant sum and put No= >\ Ty

I I-{®}
Jor all el and X=NN,. Then
I

1)  Jl={N.}, is co-independent.
2) To+X= N Ngforall acl.
I- (@)

3) M/ X= m}2@]{69((T,,,—|—X)/X).

Proof. The proofs of 1) and 2) are done as that of Proposition 4.2. 3) is
evident.

Proposition 4.4. Let Jl={N,}, be a co-independent subfamily of _L(M)
and let {N}}, be a subfamily of L(M) with N¥*C Ny in M for all al. Then
for any finite subset F of I, {N}} U {Ng},_ is co-independent.

Proof. It is enough to show that {N}} U {Ng} ;- is co-independent for
any a€l. So, let al. Inasmuch as N¥C N, in M and M=N,+( N Np)
I~ (@)

we infer that M=N¥+( N Ng). As a result M/Y=M/N DdM|( N Ny),
I-(@) I- (@)
canonically, where Y=N}N( N Ng). On the other hand M/( N Ng)=
- () I- (@)

12 @(M|Ng) since Jl— {N,} is co-independent. Accordingly we see
—@)

M| Y:M/N;"Gatglea(M/Np)

canonically; whence {N*} U {Ng},_(a) is co-independent.

DerinNiTION. Let X be a submodule of M and M/X =3 D (To/X) a
I
decomposition of M/X with X & T, foralla=l. We say that M/X =2 DT.X

is co-essentially lifted to a decomposition of M if there exists a decomposition
M=X*®3'PT¥ such that X*CX, T,=X+T¥ and 0 (T¥NX) in TF
I

for all ¢ 1.

Proposition 4.5. Let J1={N,}, be a co-independent subfamily of _L(M),
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and let M|X=3 D(To/X) be its corresponding decomposition, i.e., X= NN,
I I
and T,,=I N Ng for all acl. Then M|X=2P(To/X) is co-essentially lifted
- (@) T

to a decomposition of M if and only if there exists a subfamily {N*}, such that
N¥C Nyin M for all acI and NN} {DM.
I

Proof. This is clear by Proposition 4.1.

DEerINITION. Let A be a subfamily of L(M). We say that M has the
lifting property of direct sums for 4, provided that, for any co-independent
subfamily J1 of ., the corresponding decomposition to JI is co-essentially
lifted to a decomposition of M. If this condition holds whenever J7 is a finite
family we say that M has the lifting property of finite direct sums for  A.

ReMARK. In [14], the notion of the extending property of direct sums
for A has been introduced. In view of Proposition 4.5, we see that its dual
is just the above notion of the lifting property of direct sums for .A.

Now, our main purpose of this section is to show that a quasi-semiperfect
R-module M has the lifting property of direct sums for .L(M). Before proving
this, we further observe some properties of quasi-semiperfect modules.

Theorem 4.6. Let M be a quasi-semiperfect R-module, X a small sub-
module of M and M|X=®(Te/X) a decomposition of M|X with X< T, for
I

all acl. If {T*}, is a subfamily of L(M) such that T¥<{@®M and To=T*+X
for all a1 then M=> P T*.
Proof. Since X is small in M, it follows from M= (21T*)+4 X that
1
M=31T¥*. Now, let F be a finite subset of I and assume that {T*}, is
I
independent and >IPTF<{PM. Put T=21PT*. Now, to show the lemma,
F F

it suffices to show that T+ TF=TPTF<PM for every BI—F by Proposi-

tion 3.3. By the condition (C,) for (M), we can take a direct summand Q

of M with Qc DT in M. Then M=T@Q since M=T+ >} TF. Hence,
I-F I-F

we see from TNQCX that M=T@Q. Here, let Bel—F. By Theorem 3.5
and Corollary 3.11 we get

M=T§PT' ®QO’
for some submodules 7C T and Q'€ Q. Since T PO'C EFT.,, we see that
I_
T+X=T'+X. Inasmuch as X is small in M, it follows that T=T"'. Thus
SIOTHOTEOM.

Corollary 4.7. Let M be a quasi-semiperfect R-module, and M =33 T,
I
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an trredundant sum with To,{PM for all acl. If N (2] Tg) is small in M
then M=SYBT,. ssr e
I

Proof. Put X= N(XT,) and T, =T,+X for all a€l. Then, by

acI 1-(@)
Proposition 4.3, we get

MIX = 31 @(T2/X)
with X & T for all e l. Hence, by Theorem 4.6, M=> DT,
I

Corollary 4.8. Let M be a quasi—sehiperfect R-module such that J(M) is
small in M. If {T.}, is a family of direct summands of M which is independent
modulo J(M) then {T,}, is independent and > P To{PM.

Proof. By Proposition 3.1 we can assume that M:ET . Since {T.},

is independent modulo J(M) and To%EJ(M) for all a€1, clearly, M_ZT
is irredundant. Thus M= —EEBT by Corollary 4.7.

Now, we are in a position to show our main theorem in this section.

Theorem 4.9. For a given R-module M, the following conditions are equiv-
alent:

1) M is quasi-semiperfect.

2) M has the lifting property of finite direct sums for L(M).

3) M has the lifting property of direct sums for L(M).

Proof. 3)=2)=1) is evident. So we show the implication 1)=3). Let
{N2}; be a co-independent subfamily of L(M), and let M/Xzz B(To/X) be

its corresponding decomposition (X= nN and T,= N Ng for all a€l). By

I~ (@)
the condition (C,) for -L(M) we have M:X*GBX** with X*C X and X N X**
is small in X. Then {N,NX**}, is a co-independent subfamily of _£(}) and
Q(NwﬂX =X NX**. As is easily seen, 2)P(T,/X) is co-essentially lifted

to a decomposition of M if and only if X**/(X NX**)=21D(X**/(X N Ny))
J

is co-essentially lifted to a decomposition of X**. Thus we can assume that X
is small in M.

Now, by the condition (C,) for L(M), there exists a direct summand N}¥
of M with N¥*C N, in M for all €1, and a direct summand T of M with

T S, T= r?a,N“" in M for all ¢1l. Then, it follow from M=N_,+ T, that
M=N¥+T¥ for all a=l. We claim that Tp=T*+ X for all acl. In

fact, it is clear that T+ X c T,. Conversely, let a € T, and express it in
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M=N*+T¥* as a=n-}+t, where neN¥ and tT*. Since neN*CN, and
n=a—teT,= N Ny we see that ne QN,,=X; so a€ T¥+ X and hence

1- (@)
ToCTF+X. Thus To=T%*+X for all acl.
Inasmuch as T,=T*+X, T¥{HPM for all ac] and X is small in M,
we infer from Theorem 4.6 that M=>1PT*. The proof is completed.
I

Combining Theorem 4.9 to Theorem 2.1 we have

Corollary 4.10. A quasi-projective R-module M over a right perfect ring
R has the lifting property of direct sums for _L(M).

Theorem 4.11. Let M be a quasi-semiperfect R-module, and let {4q},
a family of indecomposable direct summands of M with M=2I]Aa. If the

sum M=;Aw is irredundant then M :2 DA,

Proof. For a subset K of I, we put M(K)=2>34,. Consider the family
K
& consisting of all subsets J of I such that {4}, is independent and > P4,
J

is a locally direct summand of M. Then § becomes a partially ordered set
by inclusion and has a maximal member by Zorn’s lemma. Let J, be one of
maximal members in §. We wish to show that /=], So, assume I J,.

By Proposition 3.2, M(J,) is a direct summand of M; so M=M(J,)DT
for some submodule 7. Take a,&l—_J,. Then, by the maximality of J,
and Corollary 3.11, there must exist 3,& J, such that M=A4, ®M(J,— {8} )BT}
whence Ao =Ap,. Let 7, be the projection: M=M(J)DT —T. If 7y (As,)
is small then we have M=M(I— {a,}), a contradiction. Hence m(4q,) is not
small in T. So, by the condition (C,) for L(T), there exists a decomposition
T=T*®T** with wy(As).2T* in T. Let =« be the projection: M=
M(J)®T*PT**—T*. Then, nr(Aq)=T*; whence T* is indecomposable
and zp«|Ag, is an isomorphism by Lemma 3.9 and the fact: 4o =A4,. Con-
sequently, T* can be exchanged by A, i.e., M= M(J)PAe,BT**. This
contracts the maximality of J,, Thus we must have I=],.

5. Quasi-semiperfect modules over Dedekind domains

The purpose of this section is determine all types of quasi-semiperfect
modules over Dedekind domains. Therefore, from now on, we assume that
R is a Dedekind domain and Q denotes its quotient field.

For a prime ideal P of R, we denote by E(R/P) the injective hull of R/P
as an R-module. It is well known that the submodules of E(R/P) are totally
ordered by inclusion, more precisely, there exists a countable subset {x;, x,, -}
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of E(R/P) with the property that {x;R|i=1,2, ---} of the set is all submodules
of E(R/P), xRS x,/RS -+, E(R/P)——-.l(_j #;R and x,,,R/x,R~R|P* for any k>n.

We use later the fact that there exists an endomorphism of E(R/P) which is
an epimorphism but not an isomorphism. For a non-zero element r in P the endo
morphism ¢ of E(R/P) given by ¢(x)=axr is such an endomorphism (see [27,
Proposition 2.26 Corollary]). It is well known that for distinct prime ideals P,
and P, Homg(E(R/P,), E(R/P,/))=0. The following result is due to Kaplansky
([19]): 1) Every R-module which is not torsion-free contains a direct summand
which is either of type R|P" or E(R|P) for some prime ideal P. 2) Every torsion-
free R-module of finite rank is a direct sum cf modules of rank ome. 3) In the
case when R is a complete discrete valuation ring, every torsion-free R-module with
countable rank is a direct sum of modules of rank one.

We now attend to the following result which is due to Harada [7] and
Rangaswamy [26]: An R-module H is hollow if and only if it is one of the
following: i) R|P", ii) E(R/P) where P a prime ideal and iii) R or Q when
R is a discrete valuation ring. So, all hollow modules are completely indecom-
posable.

By this result and Theorem 3.5 we see that a quasi-semiperfect R-module
M is expressed as M:zI] @M, where each M, is isomorphic to one of i)~r1ii)

above. Thus our work is to observe all types of modules M expressed as
M=3PM, with each M, one of i)~iii) above, and is to check which types of
I

these are quasi-semiperfect.

Lemma 5.1. Let P be a prime ideal of R and k an integer>1. Then
the type M :265M,- with each M;—R|P* is not quasi-semiperfect.

Proof. There exists an epimorphism f from R/P* to P*!/P*. 'Then note
f?*=0. For each 7, f; denotes the corresponding map: M;—M;,, to f. We
put Mi= {x-+f(x)|x€M}, i=1,2, - Then M=(TOM)+(SLD(M).
Since f;f;+;=0 for each 7, we see that M:I:ZGBMS, so ZEBf,-(M;) is not small
in M. As a result, M is not quasi-semiperfe‘c_tl by Propos;t_ilon 3.7.

Lemma 5.2. Free R-modules with infinite rank are not quasi-semiperfect.

Proof. To show this statement we can assume that R is a discrete valua-
tion ring by Harada-Rangaswamy’s theorem and Theorem 3.5. Further we

may show that M:i;GBR,- with each R;—R is not quasi-semiperfect. We

can take a monomorphism f;: R;—R;., which is not an epimorphism, /=1, 2, ---.
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Put Ri={x+tf(x)|R} for each i. Then M=(2DRH)+(Df(R)) but
i=1 i=1
M=%3YPR:; so M is not quasi-semiperfect by a similar reason as in the proof
i=1

of Lemma 5.1.

Lemma 5.3. If R is not a complete discrete valuation ring then the type
OO is not quasi-semiperfect.

Proof. If QPO is quasi-semiperfect then Q is quasi-projective by Corol-
lary 3.13. Hence it follows from [25, Lemma 5.1] that R is a complete discrete
valuation ring, a contradiction. Thus O@Q is not quasi-semiperfect.

Lemma 5.4. If R is a complete discrete valuation ring, then M zi}@Q,-
with each Q;==Q is not quasi-semiperfect. =

Proof. If M is quasi-semiperfect, then it is quasi-projective by Corollary
3.13. So, we see from [25, Theorem 5.8] that R is not complete. Thus M
must be not quasi-semiperfect.

Lemma 5.5. The following types are nit quasi-semiperfect:
1) E(R/P)®E (R/P), 2) ROR/P*(K>1), 3) RIPP®R/P' (k>j>1) and 4)
R/P*®E(R/P) (k=1), where P is a prime ideal.

Proof. There exists an epimorphism from E(R/P) to E(R/P) which is
not an isomorphism; so E(R/P)PE(R/P) is not quasi-semiperfect by Lemma
3.9. Similarly we can show that types 2) and 3) are not quasi-semiperfect.
To check 4) we take a submodule 4 of E(R/P) whose composition length is
k-+1, and denote the canonical map: E(R/P)—E(R/P)/A by . Then f=0
for any homomorphism f from R/P* to E(R/P). But there exists a non-zero
homomorphism from R/P* to E(R/P). As a result, the type 4) is not quasi-
semiperfect by Theorem 3.16.

Lemma 5.6. For a prime ideal P of R and positive integer k, M=R|P*P
R/P*®O@Q is not quasi-semiperfect.

Proof. If M is a quasi-semiperfect then it is quasi-projective by Corollary
3.13. But this contracts the result ([25, Theorem 5.12]): Every quasi-projec-
tive module over a Dedekind domain is either torsion or torsion-free. Thus
M is not quasi-semiperfect.

NoraTioN. For a prime ideal P of R and positive integer 7, k, we denote
the type of the form R/P*@--- @ R/P*(n-copies) by M(P, &, n).

Lemma 5.7. M(P, k, n) is semiperfect.
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Proof. By [25, Theorem 5.10] M(P, k, n) is quasi-projective. Further
we can see that every homomorphic image of it has a projective cover. As a
result M(P, &, n) is semiperfect by Theorem 2.1.

Lemma 5.8. For distinct prime ideals {Pg},, the module M of the form
M=2PE(R/P,) is semiperfect.
I

Proof. This is easily seen by noting the fact that if 4 is a submodule of
M then A= D(E(R/P,)N A).
I

Lemma 5.9. Let M= PM, DI\ Mg be the type such that M, is of
I J

the form M(Pg, kq, na) for each a1, Mg of the form E\R|Py) for each B J and
{Po} U {Pg}; is a set of distinct prime ideals. Then M is quasi-semiperfect.

Proof. This is also shown by noting the fact that if 4 is a submodule
of M then A= EI} GB\M,,,OA)@‘J/_,"‘ BE(R/Pg) N A).

Lemma 5.10. Assume that R is a complete discrete valuation ring. Then
every torsion-free R-module of finite rank is semiperfect.

Proof. Note that R and Q are complete indecomposable since R is a
discrete valuation ring. Let M be a torsion-free R-module of finite rank.
Inasmuch as R is a complete discrete valuation ring, [25, Theorem 5.8] says
that M is quasi-projective; whence it follows from Kaplansky’s result that M
is expresses as M=R,®--PR,PQ,P---PQ,, with each R;=R and each Q;=0.
By Theorem 3.18 we may show that M satisfies the condition (Cy) for L(M).
Let A be a submodule of M. By again Kaplansky’s result 4 is written as
A=R{D-- DR D O! DD Q} with each R/=R and Q,=Q. Here we can
assume Q;=0,,1=1, 2, ---, [ by the Krull-Remak-Schmidt-Azumaya’s theorem
([1). By =; we denote the projection: M=R®P:--PR,PO,PD--DPO,—R,,
i=1, 2, .-, n. We may assume that R{, ---, R}_, are small in M and R/, ---, R}
are not small in M. Clearly z,(R})=R; for some ¢. We can say i=1. In
this case, we get M =R/PR,P---PR,PO,P--DPQ,. Since RIPR} ,{PM
we also see that z(R},)=R; for some i>2. We can say i{=2. Then
M=R;®R;,, PR,P-PR, PO, P--PQ,. Continuing this argument, we
obtain M=R)P---PRIPR,_;1, D PR,PO,D:-BO,. Put N=R,_;;,D--
DAR,B0+1P--PQ,,. Then M=A+N and ANNCR{P---PDR,_,. Hence
M surely satisfies the condition (Cg) for L(M).

Lemma 5.11. Assume that R is a discrete valuation ring. Then the type
M=R,®---DPR, DO with each R,=R is semiperfect.

Proof. =, denotes the projection: M=R, P--DPR,DQ—>R;, i=1, -, n
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and 7 the projection M=R,P--PR,PO—-0. Now let 4 be a submodule of
M. 1If there exists ¢ such that z;(4)=R; then, as is easily seen, there exists a
direct summand R’ of M such that A DR'=R. If »(4A)=0Q we see Q4
by Kaplansky’s result. Noting these facts, we see that A is written as ‘A=

1B DBRIPA" or A=R{P:--BRIPOPA’, where R{P-- DR {PM, each
R/=R and A’ is small in M. Consequently by the Krull-Remak-Schmidt-
Azumaya’s theorem ([1]) we can assume R;=R; for i=1,2,---,1; so if A2 QO
then A4’ is replaced by a submodule of R,,P---PR,BO, and if ADQ it is
replaced by one of R,,,@:--@R,. Thus it follows that M satisfies the condition
(C)) for L(M).

Next, let A, and A4, be direct summands of M with M= A,+ A, and
A,NA4, is small in M. Then one of A4; contains Q, say 4,20 and 4, and 4,
are expressed as 4,=R{’P---PRI'DQ (I<n) and 4,=R{PD--- DR}, where each
R!’=R and each R/=R (cf. Kaplansky’s result). We can assume that R}’=R;,
1=1,2, -, 1. If my(4,) + Ry, then 4,+ A4, is not equal to M. Therefore
711(A)=Ry41; 80 w4 (RI)=R,,, for some . We can assume 7=1. Then R,
can be exchanged by R{; M=R,®--OR,DRIDR,,D---DR,PQ. If k=1
then /+1=n and M=A4,PA, If k%1 then we see from R{PR;<PM and
0c.(4,n4,) in M that /4 1=n. So in this case R,,, exists and, by similar
argument to the above, R,,, is exchanged by some R/ {Rj, .-+, R{}. We can
say it=2. Then M=APRIDRIDR,;P---BR,. Continuing this procedure,
we obtain M= A,PR|D--PR,=A,PDA,. As a result, M satisfies the condition
(Cy) for L(M). Thus M is quasi-semiperfect. Since R and Q satisfy the
condition (E-I), M is indeed semiperfect by Theorem 3.17.

Lemma 5.12. Assume that R is a discrete valuation ring. Then the form
M=M(P, k, n) PO is quasi-semiperfect.

Proof. Note that Q is hollow since R is a discrete valuation ring. By
this note and Kaplansky’s result we can see that if 4 is a submodule of M then
it is expressed as either A=M{P:--PM/PX or A=0PM{P---PM;DX,
where X is small in M and each M/ is of the form R/Pk;, We put M=M,PH---
DM, PQ, where each M;~=R/P*. If k;=k then we can assume M;= M/
(that is M; can be exchanged by M?) and if A <{@M then each ;=k and X=0.
By these observations it is easily seen that J satisfies the condition (C,) and (C,)
for L(M). So M is quasi-semiperfect.

Lemma 5.13. Assume that R is a complete discrete valuation ring, and
P its prime ideal. Then the modules M expressed as M=R|P*® Q,PH---PQ,
with each Q;=Q are quasi-semiperfect.

Proof. Again by the Kaplansky’s result if A is a submodule of M then,
it is contained in R/P*PB where BC A and B is expressed as B=M,P---
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DM,POIPD---DQ, with each M;=R and each Q/=Q. Then we see that
M,B---DM, 1s small in M and we can assume Qi=Q;, i=1, ---,m. By these
facts and Lemma 5.10 it is not difficult to verify that M satisfies the conditions
(C)) and (C;) for .L(M). Hence M is quasi-semiperfect.

By Theorem 3.5, Harada-Rangaswamy’s theorem and Lemmas 5.1~5.13
we now obtain the following theorems.

Theorem 5.14. Let R be a Dedekind domain which is not a discrete valua-
tion ring. Then an R-module is quasi-semiperfect if and only if it is isomorphic
to a direct summand of the form: M= > PM(Py, ka, n,)P D) DE(R/P,) where

I J

{Pa} (U {Po} s is a set of distinct prime ideals.

Theorem 5.15. Let R be a discrete valuation ring but not complete. Then
an R-module is quasi-semiperfect if and only if it is one of the following types:

1) M(P, k,n), 2) E(R/P), 3) M(P, k,n)DE(R/P), 4) torsion-free R-

modules of finite rank, 5) F®Q where F a type of 4), 6) M(P, k, n)PO,
where P is the prime ideal of R.

Theorem 5.16. Let R be a complete discrete valuation ring with the maxi-
mal ideal P. Then an R-module is quasi-semiperfect if and only if it is one of
the following

1) M(P, k, n), 2) E(R|P), 3) M(P, k, n)®E(R|P), 4) Torsion-free R-

modules of finite rank, 5) F@® Q, where F a type 4), 6) M(P, k, n)D O,

7) R/P*PQO,P---DO, with each Q;=Q.

Added in Proof. In S. Mohamed and B.J. Miller [Decomposition of
dual-continuous modules; Module theory, Lecture Notes in Mathematics.
No. 700, Springer-Verlag, 1979], dual continuous modules are introduced.
This concept just coincides with that of our semi-perfect modules. In [ibid.
p. 227], S. Mohamed asked ‘what is the structure of a dual-continuous module
M with J(M)=M?. Our results in sections 3 and 4 give a complete solution
for this problem.
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