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ON MODULES WITH EXTENDING PROPERTIES

ManaBu HARADA

(Received May 15, 1980)

We have defined the extending property of uniform submodules and of
direct sums of independent submodules in [5]. We also have studied modules
with lifting property in [4].

In this note, we shall give results dual to those in [4] for the extending
properties. Finally, we shall give the completely forms of modules with ex-
tending property of uniform submodules over a Dededind domain.

1 Definitions

Throughout this paper we assume that a ring R has the identity element and
every module M is a unitary right R-module. We recall here defintions in [5].
If Endz(M) is alocal ring, we call M a completely indecomposable. We denote
the socle and an injective envelope of M by S(M) and E(M), respectively. Let
T=¥€BT¢. If a submodule L of T is contained in zI]GBT,, for some finite

subset J of K, we say L is finitely contained (briefly f.c.) (with respect to 23D T,).
K

It is clear that this defintion depends on the direct decomposition of 7. We
have studied a cyclic hollow module in [3]. We note that the concept dual to
a cyclic hollow module is a uniform module with non-zero socle.

If a submodule N of M is essential in M, we indicate it by M,2N. Let
{Cy}; be set of independent submodules with certain property (*). If there
exists a set of independent submodules {Ny}; such that Ny,2Cy for all y&I
and 213 PNy is a direct summand of M, we say the direct sum of {Cy},; with (*)

is essentially extended to a direct summand of M. If every direct sum of indepen-
dent submodules with (*) is essentially extended to a direct summand of M,
then we say M has the extending property of direct sums of independent submodules
with (*). Especially, if S(M)=IZ @Cy and Mzg @Ny in the above, we say

M has the extending property of direct decompositions of S(M). Next, we consider
a case of |I| (=the cardinal of I)=1. In this case we say M has the extending
property of submodules with (*).

In order to get good results, we always assume T, is completely indecomposable
in the above when |I|=1 and C, is uniform.
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If for any finite subset J of I, 21D C; is a direct summand of M, >1PC,
. J I

is called a locally direct summand of M [6]. Finally we quote here the definition
in [5].

(M-I) Every momomorphism of M into itself is an isomorphism.

We refer the reader for other definitions to [5].

2 Extending property on direct sums

Let {M,}, be a set of completely indecomposable modules and M=) P M,.
1

We shall study the extending property of M when M, is uniform. We note
that almost results in this section and the next one are dual to those in [4].
First we shall give the proposition dual to [3], Proposition 2.

Proposition 1. Let N be an R-module with extending property of uniform
module. Then every direct summand has the same property.

Proof. Let N=N,®DN, and A a uniform submodule in N;. Then N=
K ,®K, with K; ,204. Since K, has the exchange property by [8], Proposi-
tion 1, N=K,®N{®N, and N,=N;PN,N(K,DN,)). Let x+0 be in
N,N(K,DN,) and x=k,+n,; k,€K,, m; &N, Since k=0, there exists 7 in
R such that kr+o0= 4. Hence, xr —kr=nyre N,NN,=0. Therefore,
Ac, NN (K,DNy).

Remark. In the above proof, we know that A4 is esentially extended to a
direct summand of N, without assumption ‘“‘uniform on A4”, if K, has the ex-
change property.

Corollary 1. Let N be as above. If the Goldie dimension of N is finite,
N =2uEBN ; and the N; are uniform and completely indecomposable modules.
i=1

Corollary 2. Let N be an R-module with S(N)%=0. We assume S(N)=
26914,-; the A; are simple and that every simple submodule in S(N) is essentially
extended to a completely indecomposable and direct summand of N. Then N =
SYON,DK; the N; are uniform and 3} BS(N;)=S(N), S(K)=o0.

Next we study the dual to [4], Theorems 1 and 2. Let {M,}; be a set of

completely indecomposable and uniform modules with non-zero socles and
M:?EBM.,. Since we have obtained Proposition 1 which is dual to [3],

Proposition 2, we have

Theorem 1. Let {M,},; and M be as above. We assume {M,} is locally
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semi-T-nilpotent. Then the following conditions are equivalent:
1) M has the extending property of simple modules.
2) M has the extending property of submodules in S(M).
3) Ewvery direct summand of M has the above property.

Theorem 2. Let {M.}, be a set of uniform modules (not necessarily com-
pletely indecomposable) and M= P M,. Then the following conditions are equi-
valent: !

1) M has the extending property of direct sums of two independent submodules.

2) M has the extending property of direct sums of finite independent sub-
modules.

3) Let N, and N, be any two independent submodules of M. Then the
projection of N, BN, to N, is extended to an element in Endy (M).

4) Let N; be as in 3). Then any element in Homyg (N, N,) is extended to
an element in Endy (M).

In this case, for every direct summand K of M, there exists a subset J of I such
that M:K@g]@My. If the N; in 3) are direct summands of M, so is N,®N,.

Further, if f is a monomorphism of N, to N,, then im f is a direct summand of N,
(see Remark 2 in §4).
Proof. Let N be a submodule of M. Then we can find, by Zorn’s lemma,
a subset J of I such that {M,, N}, is independent and M ,DNP I PM,.
J

1)—3). Let N; be as in 3). Then by 1) we have a decomposition M=T,D
T,®T; with T; , 2N, (:=1,2). The projection of M onto T, is the desired
extension.

3)—2). First we assume that S; and S, are independent and M ,25,DS,.
Then there exists a subset J of I such that M eQSﬁB?EBM—, (=L). Let

I L—>g @My be the projection. Then there exists an element g in End(M)
with g|L=—f. Let =; be the projection of }/ onto ZJEBM., with respect to
Mzg DMD ,Z_,EBME' Put F=n;g and M,_;(F)= {x+F(x)|a EIZJ DM} (cf.
the proof of [4], Theotcm 2). Then M=M1_1(F)@ZJ @M,. LetseS,. Then

s=m;(s)+m;-;(s) and o=F(s)=Fr;(s)+Fr;_;(s)=—n;(s)+Fm;_;(s). Hence,
S, is essential in M,_;(F) for S\ ® 2D My M, ;(F)=B >} B My Since
J J

S, .M;_;(F)and S;N S,=0, S;NM,;_;(F)=0and S,M,_;(F)<,M. Further
M=M,_;(FY®> ®My and M, ;(F)~ 2} DM, Therefore, we can obtain
J I-J

similarly to the above that M=M,_;(F)®M,(F’) and M,(F')c,S. We note
that M,_;(F)~3 @M, and the condition 3) is valid for a direct summand.
I-J

Thus, we can prove 1)and 2) by the first part and induction on the number
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of independent submodules.

2)—1). TItis clear.

1)—>4). Let f be in Homg(N;, N;). Then N;@N,=N,(f)@®N,. There exists
a decomposition M=T,PT,PT; such that Ny(f)<, T, and N,=,T,. Then
—m,| Ny is the desired extension of f, where z,: M—T, is the projection.
4)—1). We shall quote the same argument as 3)—2). We use the same nota-
tions. Let M,2 SIEBEEBM.,. Since S, OE@M«,:O, 7;-7|S; is an isomor-

phism. Put S{=im(z,_;|S;). Then S,={a+fla)lacS{,f=nr,(m;-;IS))7': Si—>
2D M,}. Let g=Endg(M)be an extension of f. Put G=n,gr,_;and M,_;(G)=
J

{$+6@) b T OM}. Then M=M, (O)OZOMy and M;,(G).2 ..

Similarly, we obtain M=M,_;(G)DM,;(G')and M;(G'),2S,. For the remain-

ing parts, we assume S, is a direct summand of M. Then S,=M;_;(G) and so

M=S,®>PM,y. Letf=Homg(N,, N,)beamonomorphism. Then Ny(f)N
I

N,;=0 and so N;N(f) is a direct summand of N;PN,. Let = be the projec-
tion of NN, onto N,. Then im f==(N,(f)) is a direct summand of N,.

Theorem 3 (cf. [5], Theorem 22). Let {M,}; and M be as above. Then
the following conditions are equivalent:

1) M has the extending property of finite direct sums of f.c. uniform modules.

2) Homg(Aas, M) is extended to Homg(Ma, M) for any a0 in I and
AaS M,

Proof. 1)—2). (cf. the proof of [5], Lemma 34). Let f be in Homg (44, Mp)
and put A(f)={a+f(a)| €4.}. We consider the direct sum A(f)®Mg. Then
there exists a decomposition M=S,PSP S such that S,,2A4(f) and Sg,2M,.
Since My is a direct summand of M, Sg=Mj;. Let w: T—Sz=Mj be the pro-
jection for the decomposition T=S,PMPS. Then —n|M, is an extension
of f.
2)—>1). Let N= z:} @N; in M with N; f.c. uniform. Then we may assume

NC i DBM;{PM. Hence, we assume M= i‘ @DM;. We assume there exists
i=1 i=1
a set of uniform direct summands T'; of M for <<k such that T; ,2N;, T,~M,
and M= é BT:P i @M,), where p is a permutation of {1,2, -, m}.
i=1 j=k+1

Let 7, be the projection of M onto T, or M, for the above decomposition.
Since () ker (7,| Nyyy)=0, 7,| N4y, is an isomorphism for some ¢. If ge {k+1,
?

b, put L= (] Ker (z,| Nyus) 0. Then LS SYPBT; and TN, S, ST BT,
S>k+1 =1 i=1 im1

which is a contradiction. Hence, we may assume ¢g=k+1. Then if we put

Nk+1,=im(7rk+l l Nk+1) SMotry, Nyp= {f1(a)+f2(a)+ +fk(a)+a +fk+2(a)"' +
fm(@)|aEN,.}, where fi=n (74411 N}11) ™" (cf. the proof of [5], Theorem 10).
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Since, T;~M,), there exists a set of homorphisms {g;EHomg (M4, K;)
(K‘,:Tj or szMp(j))} such that glek+1,=fj‘ Put Mp(k+1)(g)={g1(b)+"°+

k
gi(b)+0b +gk+2(b) + o ga(0)| bEMy4ip}. Then M= =21 DT D M,;.+1(8)D
>3 DMy, It is clear that Nyy, ©, Mogan(g) = Mogiy. Therefore, we can

PSk+2
prove the theorem by induction.

Corollary 1 (cf. [5], Theorem 18). We assume each M, is uniform and com-
pletely indecomposable and further {M,}; is a locally semi-T-nilpotent. We put
M= PM,. Then the following conditions are equivalent:

I

1) M has the extending property of direct sums of f.g. uniform modules.
2) Homg (Aa, M) is extended to Homg (M4, M) for oo =83 in I and any f.g.
submodule A, of M,.

Proof. 1)—2). We can use the same argument as the proof of 1)—2) in the
theorem.
2)—1). Let {4,}; be a set of independent and f.g. uniform submodules of M
with M ,D ZI @DA,. We may assume I is a well ordered set and we shall use the

same argument in the proof of [4], Theorem 1. We assume, for each k<B<a,
that there exist direct summands T, such that T, ,24, and >} P T, is a locally
B
direct summand of M. Then M= P TsPT and T ,24,, since {Ma}; is
B<a
semi-T-nilpotent [6]. We may assume T=;‘ @Nj,, each N, is isomorphic to

amodule in {M,}, by [2] and [7]. Letz: M—T and zs: T— N be the projections
of M and T, respectively. Since (; @A) N A,=0 and 2<] BT 2> Ap, 7| As
B<a 8<a Ba

is an isomorphism. A, being f.g, uniform, 7z |A, is an isomorphism for some
8. Making use of the method in the proof of the theorem, we obtain M= P TpD

Bl
D PTyPTs(f) and To(f) .S As. Hence, we have proved 2)—1) by trans-
88
finite induction.

Corollary 2 (cf. [5], Corollary 8). Let {M.}, be a set of uniform modules
with non-zero socles and M= DM,. Then the following conditions are equi-
valent: !

1) M Fkas the extending property of finite direct sum of simple modules.

2) Homg (S(Ma), S(Mp)) is extended to Homg (M, Mg) for any a0 in

Proof. It is clear from the proof of Theorem 3.

RemMARK. Let R be a local self-injective ring with maximal ideal J(R) not
T-nilpotent. Put {R,=E},. Then E, satisfies 2) in Theorem 3. Hence,
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2I@BE, has the extending property of finite direct sum of f.c. uniform
modules, however >} @E, does not have the extending property of infinite direct

sums (cf. Theorem 4 below).
Let {f,=Homg (T, N,)}, be a set of homorphisms. If f,(¢f)=o0 for tT
and almost n, {f,} is called summable.

Theorem 4 (cf. [5], Theorem 22). Let {M,}, be a set of completely indecom-
posable and uniform modules and M= P M,. Then the following conditions are
equivalent: !

1) M has the extending property of direct sums of independent uniform sub-
modules.

2) {M,}, is locally semi-T-nilpotent and for any set of summable homomor-
phisms {fy=Homg (Aa, M)} o (at, BEI) there exists a set of summable homomor-
phisms {Fo=Homg (Ma, M)}, which are extensionss of {fs}, where A, is a sub-
module of M,

Proof. 1)—2). We know from the proof of [5], Theorem 22 that {Ma},
is locally semi-T-nilpotent. Let F={fs} be any set of summable homomor-
phisms in {Hompg (4a, Mg)}p+s and A,SM,. Since F is summable, A,(F)=
{a+2fs(a)las 4.} is an R-submodule of M and M ,2 A(F)EBE D M.

Then we have a direct decomposition M=M, ;@EEBM s by 1). Letmg: M—M,
be the projection. Then {Fg=—ng|M,} is the desired set.

2)—1). Let M= XI}GBN., be any decomposition as in the theorem and B a
uniform submodule of M. Let 74: M—N, be projections for each a € 1.
Then D ker #,=0. Let b4=0 be in B and b= g 7a(6). Then bEBQ’iker 7g.

Hence, there exists 7, such that z,,|B is an isomorphism. Now, from 2), the
proofs of Theorem 3 and Corollary 1 and the above remark, we can obtain 1) by
making use of transfinite induction.

3 Modules with extending properties

In the preceeding section, we have studied modules with direct decomposi-
tion. In this section we shall study some relationships between modules with
extending property and direct decomposition of the modules.

Theorem 5. Let M be an R-module. We assume
a) S(M) is essential in M, and
b) Endg(S(M)) i extended to End, (M).
Then the following conditions are equivalent:
1) M has the extending property of simple modules.
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2) M contains a submodule M’ as follows:
i) M'=21PM,: the M, are uniform and completely indecomposable and
I

S(M')=S(M). (Endg(S(M")) is extended to End(M")).

it) M’ s a locally direct summand of M and has the extending property of finite
direct sums of simple submodules. In this case, M has the extending property of
finite direct sums of simple modules.

Proof. 2)—1). Let S be a finite direct sum of simple submodule in M.
Then SC 2 @ S(M,,;) by i). Since Z” @M., is a direct summand of M by ii)
i=1 i=1

and has the extending property of finite direct sums of simple submodules by

Corollary 2 to Theorem 3, M has the same property

1)—2). We can use the argument dual to the proof 2)—1) of [4], Theorem 3.

Let N be the set of submodules in N’ of M such that N'=>1PN,; the Ny are
J/

uniform and completely indecomposable and N’ is a locally direct summand of
M. Let N be maximalin N. We shall show NS, M. There exists a submodule
A of S(M) such that M ,DN@®A by a). Let K be any finite subset of J and
put Nozg @ N,. Then M=N,PP and S(M)=S(N,)P JE_KEBS(N-,)EBA.

Let 7’ be the projection of S(M) onto S(N,) and z=="| S(P). Then we obtain

f€ Homg (P, N,) such that f|S(P)= —= by b). Hence, M=P(f)® N, and

S(P(f))= 2 PS(N;)DPA. If A0, there exists a direct summand T of P(f)
J-K

with S(T)=A4 by Proposition 1. Hence, >} Ny+ T is a locally direct summand
of M, which contradicts the maximality of N. Therefore, A=0. Let N; and
N, be in {Ny};. Then M=N,@N,PM, and we know from b) Homg (S(IV,),
S(IV;)) is extended to Homg (IV;, N;). Hence, N has the extending property of
finite direct sums of simple submodules by Corollary 2 to Theorem 3.

Theorem 6. Let M be an R-module. We assume that M ,2S(M) and
every uniform direct summand of M is artinian. Then M has the extending property
of simple modules if and only if M contains a submodule M’ satisfying the following.

1) M,2M' and so S(M)=S(M").

2) M'= 2 @M, with M, uniform.

3) 2XDBM, is a locally direct summand of M.
I
4) M’ has the extending property of simple module.

Proof. We note that every artinian module satisfies (}/-I) and the theorem
is dual to [4], Theorem 4. Therefore, we can prove the theorem by making
use of argument dual to the proof of [4], Theorem 4.

Corollary 1. Let R be a right artinian ring such that every indecomposable
R-injective module is artinian. Then M has the extending property of simple
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modules (vesp. of direct sum of simple modules) if and only if M contains a submodule
M’ satisfying 1)~4) (resp. 1)~3) and 4') M’ has the extending property of direct
decompositions of S(M')).

Proof. The first part is clear from the theorem. We know from the
assumption that every uniform module is completely indecomposable and
satisfies (M-I). Furthermore, every set of uniform modules is T-nilpotent by
[1], Lemma 11. We assume M has the extending property of direct sums of two
simple modules. Then M has the extending property of simple modules.
Hence, M has a submodule M’ with 1)~3). From the proof of Case 1) of [4],
Theorem 3, its duality and [5], Theorem 23, M’ satisfies 4’). The converse is
clear (see the proof [4], Theorem 3).

Corollary 2. Let R be a Dedekind domain and let M be a torsion R-module.
Then M has the extending property of simple modules if and only if M contains a
submodule M' satisfying 1)~4).

ReEMARkS 1. Let Z be the ring of integers and p a prime. Then f_,‘EBZ/p"

i=1
is a locally direct summand of I] Z/p’. Any submodule M of I] Z/p’ containing
essentially 2«, PZ[p' has the extending property of simple module. M is a
i=1 co
direct sum of indecomposable and uniform modules if and only if M= Z DZ[p
by [1] and [6].
2. Let R be any ring and {S,}; a set of simple R-modules. Then >}®S,
I
is a locally direct summand of [T S,. Hence, every R-submodule T(,2 ZI}EBS,,,)
of TI S, satisfies the conditions in Theorem 6. This example shows that 4')
I

in Corollary 1 does not imply the extending property of decomposition of S(M).

4 Modules over Dededind domains

Let R a Dedekind domain. We have determined the types of R-modules
which have the extending property of direct sums of uniform modules in [5],
Theorem 31. We shall determine the types of R-modules which have the
extending property of uniform modules.

We put Q=E(R) and E(p)=E(R/p), where p is prime. Let M be a torsion
free and uniform module. Then we may assume M2R. Q/RQM/R——-?GB

D "R, where n(p) is finite or infinite. Put P={p;|n,(p;)<co} for M and we
denote M by F(P). Then M is completely indecomposable if and only if P
is a singleton or empty (i.e. M=Q). We note F(P),#+Q for p€ P and
F(P),=Q for g P. An R-module N is called p~-divisible if p"N=N for all

1) Added in proof. We shall show M =M’ in the forth comming paper
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n and we denote the unique maximal p~-divisible submodule of N by N[p].
In the preceeding sections we have assumed that a direct summand of M
which is an extension of a uniform submodule is completely indecomposable.
In the following, we shall drop this assumption. We consider only the extending
property of uniform modules and so we call it simply the extending property.

Theorem 7 (cf. [5], Theorem 31). Let R be a Dedekind domain and M
an R-module. Then M has the extending property of uniform module if and only
if M is one of the following.

1) M is torsion and M(p)=MUP?@M{? and ||M,|—|M,|| <1, where
M,(CE(p)) is completely indecomposable (| M,| = oo means that M, is injective).

2) E®Ms,, where E is injective and My is torsion free and uniform or zero.
Here |M,| means the composition length of M,, M{” means the direct sum of
| J | -copies of M,, and M(p) 1s the p-primary component of M.

We shall prove the theorem by making use of several lemmas below.
First, we recall here useful lemma in [5], which we have used above.

Lemma 1 Let M be an R-module (R is any ring). We assume M=M,P
M,PM;, N is a submodule of M, and f eHomy (N, M,). If there exists a direct
summand T of M such that M=T®M,PM; and T DON(f)= {n-+f(n)|ns N},
then f is extended to an element in Homy (M,, M,). Conversely, we assume M=
TPHT'. Let A be a submodule of T and g=Homy (A4, T"). If g is extended to an
element in Homg (T, T'), we have a decomposition M=T" P T" such that
T2 A(f)={a-+f(a) | [a€ A}.

Proof. Let 7 and =), be the projections of M with respect to the de-
compositions M=TOM,PM; and M=M,PM,PM,, respectively. Then
(e | M) € Homg (M,, M,) is an extension of f. Put T"=T(g)= {t+
g(t)|t=T} for the second assertion.

Lemma 2. Let M be an R-module with tlhe extending property (resp. of
cyclic and uniform module) and M=T,DT,. Then 1) if M is torsion free, T, has
the extending property (resp. of cyclic and uniform module).

2) If T, is the torsion submodule M(t) of M, T, and T, have the above pro-
perty.

Proof. 1) Let N be a uniform submodule (resp. cyclic and uniform submo-
dule) of T,. Then there exists a decomposition M=L,@L, and L,,2N.
Let m;: M—T; be the projection. Then since ker 7,2 N, n,(L;)=0. Hence,
LT, and T\=L®T,NL,. 2) Let N be a uniform submodule (resp. cyclic
and uniform submodule) of M. Then M=L,PL, and L, ,DON. If NCT,,
L,cT, Hence, T, has the extending property. We assume NCT,. Then
L, is torsion free. Hence, T, S L, and L,=T,®(T N L,). Now, M=T\PT,=
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L®(T,NL,)PT,. Therefore, Ty=n(L,)D= (TN T,) and =,(L,),2N.

Since R is a hereditary ring, every R-module M contains the unique maximal
injective submodule E, say M=E@®K and K is reduced.

Lemma 3. Let M=E®K be as above. If M has the extending property,
then K does.

Proof. Let N be a uniform submodule of K. Then M=L,HL, and
L,,2N. Since L, is indecomposable, L, is either injective or reduced. If L,
is injective, L, has the exchange property by [9], and so there exists a direct
summand K, of K with K;,DN by Remark after Proposition 1. We assume
L, is reduced. Let E’ be the unique maximal injective submodule of L,.

Then EDE’ and M=L,®L;BE’, L L,. Accordingly, E=E'D(E N (L,DL3))
and the injective module E N (L,@L35) has the exchange property. However,
L, and L} are reduced. Hence, EN(L,BL,)=0 and so E=E’. Therefore,
M=LSL;DE=K®E. Since NcKNL,, K==(L,)®=(L5) and =(L,),2N,
where 7: M—K.

Lemma 4. Let M=M,B M, be torsion free. We assume that the M; are
completely indecomposable uniform modules. Then M has the extending property
of a cyclic uniform modules if and only if either M, or M is injective. In this
case M has the extending property.

Proof. “If” part is clear by [5], Theorem 31. We assume M;=F(P;)
where P,={p;}. Then considering the multiplication by x "(x<p,—p}) and
using the proof 1)—2) of [5], Theorem 10, we have x "M, S M, or x™"M,< M,.
Hence, either M, or M, is injective.

Lemma 5. Let M be torsion free and reduced. If M has the extending
property of cyclic uniform modules, then M is uniform.

Proof. Since every direct summand of M has the extending property of
cyclic uniform modules by Lemma 2, M has a direct summand M,P M, with M;
uniform if M is not uniform. Let M;=F(P;), i=1,2. Since M;®M, has
the extending property of cyclic uniform modules, we may assume M=M,P M,.
If PNP,+0Q (say peP,NP,), M,+Q and M,,#+=Q. However M, has the
extending property of cyclic uniform modules, which is a contradiction by
Lemma 4. Hence, there exists p€ P,—P,. Put N={x+x'|x€RCM,, x'=
xRS M,}. Then we obtain M=L®L, and I,,2N. Now, M[p]=M,
and so My~M|M[p]~L,/L\[p]DL,/L,[p]. Since M, is uniform, L,=L,[p] or
L,=L,[p]. We assume L,=L,[p]. Then L,/L,[p] is torson free. Since L,
is uniform, L,[p]=0. Hence, M,=M][p]=L,[p]DBL,[p].=L,. However, 0=
NNM,=N NL=N, a contradiction. If L,=L,[p], M,=L, as above. There-
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fore, the identity map R—R is extended to Homg (M;, M,) by Lemma 1. We
may assume from the first half that there exists g P,—P,. Then g(M,)=
2(0)SM,, <0, a contradiction. Hence, M is uniform.

Next, we shall study torsion modules. If M, is torsion and uniform,
M, E(p) for some p. We indicate it by My(p).

Lemma 6. Let M be torsion. We assume M=) D M, with M, uniform.
I

Then M has the extending property if and only if M :g@(Mwl(P)(B‘)EBMwZ(P)(Bz))
and | | Ma(p)| — | May(p)| | <1 for each p.

Proof. Since E(p) is serial and M, is completely indecomposable, we
have the lemma by [5], Theorem 10.

Lemma 7. Let M be torsion. If M has the extending property then M has
the form in Lemma 6, provided M is reduced.

Proof. Since M is torsion, every (indecomposable) uniform submodule
is completely indecomposable. M is a direct sum of p-primary components
M(p) and it is clear that M(p) has the extending property.. Therefore, we may
assume that M is p-primary and reduced. Let x be in M. Put o(x)=
{rER|xr=0}=p" and put n=n(x). We first show {n(x)},c, is bounded. Let
N=xR be a uniform submodule of M. Then M=L,®L, and L,,2oN. Since
M is reduced, Li=yR. If {n(x)},cy is not bounded, there exists = in L, such
thal n(2)3:n(y)+1. Since L, has the extending porperty by Remark after Pro-
position 1, L,=L{®L,; and L{,2zR. L,Lj has the extending property, too,
which is a contradiction by Lemma 6. Hence, M= ZI] B M, with M, uniform

as follows: We denote the bounded order of {n(x)}.cy by m. Put A={31D 4,
CM|A,=Ry and n(ys)=m}. We can find a maximal submodule in A with
respect to the member of direct components by Zorn’s lemma, say 4= 3P A4,.
Then we can find a submodule B of such that M ,2A®B and B=" ®Bg with
Bg uniform. Then E(M)=2 P E(4.)P2PE(Bg) . 2M ,2APB. Let xeM
and x= a1 21%p; % EE(A4,) and x5 E(Bg).  Since n(x)<m, n(x,)<m and
Aa={z| €E(A,), o(z)<m}. Hence, 2 x,EA. Therefore, M=ADPM N (D
E(Bg)) and o(y)<<m for any ye M N (2P E(Bg)) by the extending property and
the maximality of 4. Use induction. Hence, M is of the form in Lemma

6.

Lemma 8. Let M be an R-module. If M has the extending property of
cyclic uniform module, then M|M(t) does.

Proof. Put M=M/M(t). Let aR be a uniform submodule of M. Since
a€E M(t), aR is a torsion free and uniform submodule of M. Hence, we have
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a decomposition M=L,PL, and L,,2aR. Then L,2M({) and so M=L,P
L,/M(t) and L,=~L,,2aR.

Lemma 9. Let M=M(t)® M, have the extending property and let My be
torsion free and uniform. Then M(t) is injective.

Proof. Let N be a uniform submodule of M, and f=Homg (N, M(2)).
Then M=L,®L, and L, ,DN(f). Since L, is torsion free, L,=M(t). Then
f is extended to an element in Homy (Mg, M(t)) by Lemma 1. Hence, M(%) is
injective by Lemmas 2 and 7 and [5], Lemma 33.

Lemma 10. Let M=E®DT with E injective and torsion free and T=E' DT’
with E' torsion and injective and T' torsion free. If T has the extending property,
then M does.

Proof. Let N be a uniform submodule of M. If N is torsion, N T.
Hence, N is essentially extended to a direct summand of M. Let IV be torsion
free. If NCEDE’, N is essentially extended to a direct summand by [5],
Proposition 1. We assume NECEPE’'. Let n: M—T'. Then =|N is an iso-
morphism and N={x+f(x)|x=n(N)}, f€Homg (z(N), E®E’). Since T’ has
the extending property by Lemma 2, 7'=D,®D, and D, ,2#z(N). E®E’being
injective, f is extended to geHomg(D,, EQE’). Since N==(N)(g), M=
D\(g)DD,DEDE’ and D,(g)2 N by Lemma 1.

Proof of Theorem 7. We assume M has the extending property. Let
M=E®K with E injective and K reduced. Then K has the extending property
by Lemma 3. Assume K is torsion. Then X is of the form 1) by Lemma 6.
In this case every indecomposable module is completely indecomposable. Hence,
every direct summand of M has the extending property by Remark after Proposi-
tion 1. We assume E=#0. If E is not torsion, K is injective by Lemma 9. If
E is torsion, K=0 by Lemma 6. In either case, K=0if E30 and M is injective
and is of the form 2). Next, we assume K has a torsion free uniform submodule
N. Then K=L &®L, and L,,2DN. If L, is not torsion, L, contains a torsion
free and uniform submodule N’. Let K=L{®L, and L;,2N’. Then since
LiNL,DN’, L;C L, (see the proof of Lemma 2). Hence, K=L BL;PL; and
L,, L} are uniform and torsion free. Since K(f)<Lj’/, LB L} is isomorphic
to a direct summand of K/K(f). K/K(t) has the extending property of cyclic
uniform modules by Lemma 8 and so does LB L} by Lemma 2, which is a
contradiction by Lemma 5. Hence, L,=K(¢) and K(£) is injective by Lemma
9. Thus, M is of the form 2). Conversely, if M is of the form 1), M has the
extending property by Lemma 6 and [9]. Let M be of the form 2) and E=
E(t)®E’. Then E(t)®K has the extending property by [5], Theorem 31.
Therefore, M=E'PE(t)PK has the extending property by Lemma 10.
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RemARks. 1. Let Z and p be as in Remark in §3. Let M be an essential
extension of (Z/p?)” in I;[Z/pz. Then M has the extending property of sim-

ple modules, but not of uniform modules unless M=(Z/p?)".

2. Let R be a commutative and noetherian ring and let {P;}}., be a set of
distinct non maximal prime ideals in R. We put M =i}69R/P,~. Then every
i=1

uniform submodule of M is contained in some R/P;. Hence, M has the ex-
tending property of direct sums of independent submodules. We note that
each R/P; is neither completely indecomposable (if R/P; is not local) nor quasi-
injective and does not satifty (M-I) (see Theorem 2 and [5], Theorem 22). We
further assume R is integral. If the conclusions of [5], Theorem 31 are true, then
R is a Dedekind domain.
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