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1. Introduction

Let L be the generator of a d-dimensional symmetric Lévy process. It is
well known that L can be represented as

Lu(x) = 3} oy a;; 24
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for suitably smooth functions #, where (a,;):<; jss is a2 symmetric non-negative
definite matrix and n(dy), a symmetric measure on R?— {0} satisfying

(1.1)
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Let {g(x, »): x€R?, »=Q} be a stationary random field having continuous
sample functions over a probability space (Q, B, P). We will consider the
family {—L+¢(x, 0): ®=Q} of operators depending on the random parameter

€. In case of L=%A (A is the Laplacian), S. Nakao [6] has shown
the existence of the spectral distribution function p(M\) of {—%A—{—q(x, w):

€0} and investigated the asymptotic behaviour of p(A). The purpose of
this paper is to extend Nakao’s results to the case of the general family
{—L+4¢(x, ©): 0=Q} satisfying some mild conditions.

The contents of the paper are as follows.

In §82 and 3 we shall give some preliminary results. Let m denote the
Lebesgue measure on R? and Q(£), the exponent of a symmetric Lévy process
X=(X,, P,: t=0, x€ R%):

(1.2) Eexp{i<t, X)}] = exp{—1Q(£)} .
The exponent Q(&) is of the form
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(1.3) 0(E) = S fura 8+ | (1—cosce, yon(dy)

R% {0}

The process X is said to be a symmetric stable process of order a (0<a=2) if
O() has the property that Q(AE)=A"Q(E) for A>0. We shall assume the
existence of the “nice” transition density function p(t,x,y) of the process X
relative to m. Then we can construct the conditional process of X starting from
x€R* and terminating in yE R? at time >0 for every , £, and y, which will
play an essential role throughout this paper. This conditional process is denoted
by ((X.)ueto P5;7) and referred to as the (0, x: ¢, y)-pinned process of X.
The fundamental relation between the original process X and the pinned process
of X is the following:

(1.4) Poy(A) = p(t,%,y) E[p(t—u, X, ); A]

for each Aeo(X,: s€[0,4]) with 0<u<z. The principal part of construction
of pinned processes will be done in §2 in more general contexts and the case of
Lévy processes will be treated in §3. In §3 we shall also collect some known
facts on symmetric Lévy processes, which will be systematically used in §4;
we mainly follow M. Fukushima [4] for those terminologies and general results
on the semigroup, the generator, and the Dirichlet form associated with the
symmetric process X.

In 8§84 and 5 we shall be concerned with the existence of the spectral
distribution function of {—L-+¢(x,0): 0€Q}. Given a rectangle V, we
consider the eigenvalue problem (—L+-g(x,))u(x)=nu(x) with the Dirichlet
condition #=0 on V*; the precise formulation of such eigenvalue problem will
be given in §4. Let Ay ;<A\y,<-: be the eigenvalues of this problem and
define

(1.5) po(A) = m(V)'She <al, \ER!.

The spectral distribution function p(A) will be defined by the limit function
of E[py(\)] for V—R? if it exists, where E denotes the expectation with
respect to P.  We assume the following two conditions:

(A) exp{—tQ(&)/} € L(R%) for every t>0.
(B) There exists a constant >2 such that
exp{g'ﬂx,, w)ds} EL'(PXP,) for every >0,
0

where ¢"=max(—gq, 0). In Theorem 5.1, we shall prove the existence of the
spectral distribution function p(A) of {—L+¢(x, »): «=Q} and the relation

(1.6) Sle‘”‘dp(x) — p(t,0,0)ExE{,;g[exp{—s:q(X,,w)ds}], >0,
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where EXE§:) denotes the expectation with respect to the product measure
PxPg3. Further we show in Theorem 5.2 that if {g(x, )} is ergodic, then
pv(M) tends to p(\) almost surely when V—R®.

Nakao [6] has proved these theorems in the case of the Schrodinger operator
under the condition (B); condition (A) is valid for all the symmetric stable
processes.

In §6 we shall investigate the asymptotic behaviour of p(\) for a special
class of non-negative random potentials. Let us consider a potential {g(x, )} of
the form

(1.7) aw0) = |_ple—9)p"(@),

where @(x) denotes a non-negative continuous function defined on R? such
that @(x)£0 and {p”(dy): «=Q}, the Poisson random measure with charac-
teristic measure v-m (v a positive constant) over (Q, 9B, P). It is known
that {g(x, @)} in (1.7) defines an ergodic stationary random field having
continuous sample functions if @(x)=0(|x|~@*®) (|x|—oc0) for some constant
&>0. Therefore the spectral distribution function p(A) of {—L+¢(x,0): 0EQ}
exists and satisfies p(04+)=0. We shall obtain the three different estimates
on the exponential decay of p(A) for A | 0. Each estimate will be distinguished
according to the order of magnitude of Q(£) at the origin and that of ¢(x) at
infinity.

First let & be such as 0<a =2 and Q(§), the exponent of a symmetric
stable process X of order &. We assume that Q() is close to Q)(&) near
the origin (see the condition (C) of §6) and that g(x)=o0(|x|~“*") (|x]|—o0).
Then Theorem 6.2 asserts that

(1.8) lim x**log p(A) = —v(Xa)"",

where A, is a certain constant determined by Q®(£); the definition of A,
will be given in §6. This is the case when the contribution of @(x) to the
evaluation is negligible.

Next let 0<B<a=2. We assume that K=|1}m|x|“+‘3¢(x)>0 and Q(§)=
O(I&|*)(I&] | 0). Then we shall prove in Theorem 6.3 that
(1.9) lim 2#*log p(n) = —Cy(», 8,K);

the definition of Cy(v,3,K) will be given in Theorem 6.3. In this case the
effect of Q(£) to the evaluation is negligible.

Finally we assume that Q(£)=0(|£|”) and o(x);<| x| ~©@*®. Then Theorem
6.4 proves that

—oco<lim A¥*log p(A)<lim A"*log p()<0 .
%0 )
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Suppose further that Q() is close to Q(£) near the origin and K=
lim | x|4*®p(x)>0. Then the limit of A¥?log p(\), if exists, would depend on
[%]-»o

both Q(£) and @(x); we have never succeeded in finding any exact formula for
the asympototic behaviour of p(A).
In the case of Q(&)=0Q™(&) the above three results are obviously valid.

In the case of the Schrodinger operator (¢=2 and Q(E):Q‘”(E)=—;—IE|2) the

relations (1.8) and (1.9) were first obtained by Nakao [6] and L.A. Pastur [8]
respectively.

The proof of these results will be given in §§8 and 9. We now outline
the proof of (1.8) and (1.9). Appealing to the Minlos-Povzner Tauberian
theorem and noting the relation (1.6), we can reduce the relations (1.8) and
(1.9) to the following relations respectively:

(1.10) lim ¢-4/+® log I(t) = —k(» L),

(L.11) lim £-4/+9 log I(t) = — (v 8,K),

where

(1,12) 1) = p(2,0,0)Ex Es;g[exp{—j:q(xs,w)ds}], >0

and the definitions of k(v, L) and «(v, B, K) are given in Theorems 6.2’
and 6.3" respectively. The proof of (1.10) and (1.11) will be split into the
lower estimates and the upper estimates.

In Theorem 7.1 (a generalization of the lemma of Pastur [8]) we will give
the bounds for I(¢). It should be noted that the lower bound of I(t) involves
the Dirichlet form of X. By making use of these bounds we can prove, in §8,
the lower estimates for (1.10) and (1.11) and, in §9, the upper estimate for
(1.11). 'The upper bound of I(z) in Theorem 7.1, however, is not sufficient to
prove the upper estimate for (1.10). In the case of the Schrédinger operator
Nakao [6] has shown that, using the relation (1.4), the upper estimate for (1.10)
can be reduced to the asymptotic evaluation for the Wiener sausage by M.D.
Donsker and S.R.S. Varadhan [2]. Since Nakao’s method is quite general
and since Donsker and Varadhan [2] have also given the asymptotic evaluation
for the sausages of symmetric stable processes, we can immediately establish
the case of Q(§)=0®(£). To prove the upper estimate for (1.10) in the case
of Theorem 6.2 we have only to extend the results of Donsker and Varadhan [2]
to the case of processes which are close to the stable process X’ in the sense
that the condition (C) in §6 is satisfied. The proof of this extension will be
given elsewhere.

The author wishes to express his gratitude to Professors M. Fukushima,
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N. Ikeda, S. Nakao, and T. Watanabe for their kind encouragement and valuable
advice. :

2. Construction of pinned processes

Let S be a locally compact separable Hausdorff space and let B(S) be the
topological Borel field of S. Let X=(W, X,, P,) be a conservative Hunt pro-
cess with state space S. Assume that there exist a positive Radon measure m
on (S, B(S)) and a transition density function p(t,x,y), t>0, x€S, yES of X
relative to m satisfying the following three conditions:

(p.1) For each t>0, p(z,-,+) is a B(S)X B(S)-measurable function defined
throughout Sx S.
(p.2) 0<p(t,x,y)<oo for all t>0, xS, and yES.

(p.3) p(s—l—t,x,y)zs (s, %, 2)p(t,2,y)m(dz) for all >0, £>0, xS, and yES.
S

Under these assumptions we can define, for each £>>0 and each y& S, a time-
inhomogeneous Markov transition function P"’(s, x, u, E), 0<s<u<t, xES,
E€ 3(S) by

2.1 Pty(s,x,u,E) = p(t—s,x, y)"L plu—s,x,2)p(t—u,2,y)m(dz) .

Later we will further assume the following condition:
(p4) pt,x,9)=p(t,y,x) for all >0, xS, and y S.

Before stating the theorem we introduce some notations and prepare a
lemma.

For each 0<t=< oo, let W[0,?) be the set of all S-valued right continuous
functions on [0, #) having left hand limits on (0,#) and Y7, the coordinate function
w—w(s) on W[0,f). Let Fi=a(Y!i: s€I) for each interval 1C[0,#). Since
the process X is conservative, we can assume that the basic space W isidentical
with W[0,00) and X,=Y7 for all t€[0,0). We write &, for F7. Define,
for each s=0, the shift operator 6, on W by fw=w(--+s) and define, for
each ¢>0, the restriction mapping =, of W into W[0,t) by =w=w|r, .

Lemma 2.1. Let t>0, IC[0,t), and 0=s<<u. Then
() Fr=n7'91;
() Fr,,1=07"Fro,u-s1;
(1ii) z:fBEg[s.u], then GS(B)EET[O,“_,] and B=0:195(B);
(iv) the mapping Fr, 12 B—0(B)E Sy, preserves set operations.

Proof. The first two assertions are obvious. The third assertion (iii)
follows from (ii) and the fact that the mapping 6,: W—W is onto. To see
(iv) it suffices to show that 6,(B°)=60,B)° for BE<y,,;. But, by (iii), we get
B*=(07'0,(B))’=07'(0,(B)°). So we have 8,(B°)=0,(B)* since 8,: W—W is onto.
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Theorem 2.1. Let X=(W,X,,P,) be a Hunt process on S with a transition
density function {p(t,x,y)} relative to a positive Radon measure m satisfying
(p.1)~(p.3). Then, for each t>0 and each yE S, there exists a time-inhomogeneous
Markov process Y*'=(W[0,1), (Yi)uels,n, Qt:3: s€[0,2), xE S) with the transition
Sfunction {P"¥(s,x,u,E)} defined by (2.1).

DeFINITION 2.1. We call the Markov process Y*? of the above theorem
the (¢,y)-conditional process of X(corresponding to {p(¢,x,y)} and m).

Proof of Theorem 2.1. Let 0=<s<t, xS, and yS be fixed. We have
only to construct a probability measure Q=0Q!:} on (W[0,?), F;, 1) such that

(2.2) OY.€E,i=1, -k
- S S .o-S P"’(s,x’uhdzl)P"’(‘ul,Zl,uz,dzz)
E\VE; Ep

e PRIy, 21,4, d35)

holds for each s=uy<u;<-:-<w,<u,=t and E,€ B(S), i=1,---,k. But, by
(2.1), the right hand side of (2.2) is equal to

p(t—s,x,9)™ SS P P11, 20,3, )m(d2y) - m(dRy)

HyX--xHy

where 2,=x and 2,4,=y. Further, by the Markov property of X=(W, X,, P,),
this is equal to

P(t—-‘,x,y)—l x[P(t_uluXu,,—s’y); Xu,'—sEEi) i = 1, '"7k] )
where E, denotes the expectation with respect to P,. Since
{Xu,'—sEEt” 1= 17 °",k} = os(nt—l{Y;,-EEi’ i= 1’ "'7k}) )

it suffices to construct a probability measure Q on (W[0,t), F{;,,) such that if
s<u<t, then, for all Be F{, ,,,

(2.3) O(B) = p(t—s,%,9) B[ p(t—u,X,-.,9); 0(=7'B)] -

It follows from Lemma 2.1 that, for each uE(s,t), the mapping &{;,.,>B—
0(z7'B)EF g ,-51 Preserves set operations. Let M,=p(t—u,X,_,,y), uE[s,1).
Then {M,, Fy,,-q; uE[s,t)} is a martingale over (W, Sy, P,) such that
E M, )=p(t—s,x,y), u<[s,£). Thus the right hand side of (2.3) is a probability
measure in BEF[; ;. Let {t,} C(s,2) be a sequence such that ¢, 1 ¢ and let &,
=%fs1,3. Define probabulity measures Q,, n=1,2,- by

Qu(B) = p(t—s,%,9)'E[M,,; 0(=7'B)], BETZ,.

Then, from the martingale property of M,, uc]s,t), 01,0, - is a consistent
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sequence of probability measures on &, F,, .. To complete the proof it suffices
to show that 0;,0,, - is extendable to a probability measure on F=F{; ;.
To this end we note the following: (i) F,CF,C -+ and |J,F, generates
&F, and (ii) (W[0,t), &,) is a standard Borel space (see K.R. Parthasarathy[7])
for each n=1,2 ---; the first assertion is obvious and the second follows from
the following observation: Let W[s,#,] be the set of all S-valued right con-
tinuous functions on [s,2,] having left hand limits on (s,#,] and let &} be the
a-algebra of WTs,t,] generated by all cylinder sets of W[s,z,]. Then one can
see that the measurable space (WT[s,¢,], &) is a Lusin space (see C. Dellacherie
[1: §1]). Noting that any Lusin space is a standard Borel space and that
the o-algebras (W]0,%), F,) and (W[s,t,], F») are o-isomorphic, we have the
desired assertion (ii). Let A4,;,4,, - be any sequence of subsets of W[0,?)
such that A, is an atom of &, (i.e., 4,€F, and the relations Ac4,, A€,
imply that A=A, or A=¢) for each n and that 4,04,D--. If we check
that (],4,+¢, then it follows from Theorem 4.1 of [7; V] that every consistent
sequence of probability measures is extendable to a probability measure on
. But it is easy to see that, for each atom 4,, there exists an S-valued right
continuous function w, on [s,¢,] having left hand limits on (s,¢,] such that

A, = {weW[0,t): w(x) = w,(u) forall uc[s,s,]} .

Thus the condition 4;D04,;D--+ implies that an S-valued right continuous
function w, on [s,f) is well defined by wy(u)=w,(u), uE[s,t,], n=1,2,---, and
w, has left hand limits on (s,£). Therefore

N A4, = {weW][0,t): w(u) = wy(u) forall uc[s,t)}+¢.
This completes the proof.

Corollary. Let Y*? be as in Theorem 2.1. Then we have the following:
(i) If 0<s<<u<t, then, for all BE Fl, .,

24 05:4(B) = p(t—s,%,9) " E[p(t—u, X, _.,y); 0(=7'B)] -
(ii) For each s=u°<u1<...<u,,<u,,+1=t-and E,c B(S), i=1,+n
(25) OMYYLEE,i=1,-,n)

= p(t—s,x,y) SS B p(u— iy, %51, 2,)m(dz,)-m(dz,)

Byx X Hn

where 3,=%, 2,11=Y.
We next consider the family {¥Y*’: >0, y.S}.

Proposition 2.1. Under the assumption of Theorem 2.1, {Y*?: >0, ye S}
satisfies the following:
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(i) (x,5) = QLUB) is B(S) X B(S)-measurable for each BE F;. ;).
(ii) For each B G, and each E < B(S)

(2.6) P(0(=r'B)N{X,€E}) = SE i (B)p(t—s,%,y)m(dy) -
(iii) For each 0=s<t, xS and yE S

{( Yli)ue[s,t); Q::z} ~ {( Y'i—s)ue[s,t)v Q(t):‘s.y

RemMARK. Throughout this paper “¥=~Z” will always mean that two sto-
chastic processes ¥ and Z are identical in law.

Proof of Proposition 2.1. The first and the third assertions immediately
follow from (2.5). To see (ii) we may assume that BE{, ., for some
uE(s,t). Then by (2.4), we have

[ 0txBIpE—s,,)m(dy)
= BJ| plt—uX,-oy)m(dy); 0.=7'B)]
= E,[Py, (Xi-,€E); 0(=7'B)].

Making use of the Markov property of X=(X,, P,) we have (ii).
From now on we further assume the following:
(p4) p(@t,x%,y)=p(t,y,x) forall >0, xS and yeS.

Proposition 2.2. Let X=(W, X,, P,), {p(t,x,y)}, and m be as in Theorem
2.1 and Y*?, the (t,y)-conditional process of X for t>0 and yES. Suppose that
{p(t,x,y)} satisfies the condition (p.4). Then we have the following:

(1) For each 0=s<t, xS, and y S

{(Yiuetsn, Qs} = {(Yist-auets,0, Qai5} -
(ii) For each 0=s<t, xS, and y= S'
(2.7) Q:;i(ljgl Y. exists and is equalto y) =1.

Proof. The first assertion follows from (2.5) and (p.4). To see (ii) note
that QfJ(lim Yi=Y!=x)=1 for each 0<s<t,x€.S, and yS. Hence by (i),
l‘!‘

we have
Oiilim ¥y = y) = Oui(lim Yi=y) = 1,
which completes the proof.

Since the process {W[0,?), (Yi).els0, Q¢:3} satisfies (2.7), we can replace



SPECTRAL DISTRIBUTIONS OF CERTAIN INTEGRO-DIFFERENTIAL OPERATORS 641

the basic space (W[0,t), F{;.») by (W, Fy, ). Precisely, we will construct a
probability measure P;:} on (W, 7, ;1) such that {W, (X,),ets 0, Pi:2} =~ {W]0,2),
(Y2)uels,n> Q::3} and that P;3(X,=y)=1. First we note that, for any bounded
1, n-measurable function f(w) on W, there exists a countable dense subset
{t,t,,--} of [s,t) and a measurable function J*(%1,%5, 0+ 5 %) on S X .S such that
flw)=f*(w(t), w(t;),;w(t)) for allweW. Using this notation, we can define
a probability measure P{:} on (W, G, ;1) such that

[ fepizan = [ rrae), w(e), - »Q:xdw)

for every bounded i, s-measurable function f(w) on W since (2.7) implies
Q::i(r(W))=1. One can immediately see that the probability measure P{:} is
the desired one.

DEerFINITION 2.2. Let 0=<s<t,x<.S, and y= .S be fixed. We call the above
process {W,(X,),ers, 11, P4:3} the conditional process of X (corresponding to {p(t,x,y)}
and m) starting from x at time s and terminating in 'y at time t or simply the (s,x:2,y)-
pinned process of X.

We shall collect the properties of the pinned processes for the future ref-
erence.

Theorem 2.2. Let X=(W, X,, P,) be a Hunt process on S with a transi-
tion density function {p(t,x,y)} relative to a positive Radon measure m satisfying
(p-1)~(p.4). Then the pinned processes {W, (X, )uels, P2} of X,0=s<t,xE S,
and yE S, satisfy the following:

(i) (%,9)—=>P::2UB) is B(S) X B(S)-measurable for each BE Fy, ;3.

(i) X*'=(W, (X,)uets,m Piii: s€[0,t), xES) is a time-inhomogeneous Markov
process.
(iii) If 0<u<t, then, for each BEFy, 3,

P(’i:z(B) = P(t:x:y)_lEx[P(t—u:Xu’y); B] .
(iv) For each BE ¥y, nand each E € B(S)

P(BN{X,€E}) = | PLuBIp(3m(dy).
(v) For each 0=s<t, xS, and y€ S

{(Xu)uE[s,t]) P::z} N{(Xu—s)ue[s,t], Pé._xs‘y} .
(vi) For each t>0, xS, and yES

{(Xu)uE[O,l]) Pg:%} N{(Xl—u)uE[o,t]’ Pi}.
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3. Some preliminary facts on symmetric Lévy processes

Let {I1,},5, be a convolution semigroup of symmetric probability mea-
sures on R?. Then, by the Lévy-Khintchin formula, we have the following:

EX) [ <) = exp {—10)},
(52) ) = X dur a4+ |, (1—cosCEyn(d),

Rd
where (a;;):15;;<4 is a symmetric non-negative definite constant matrix and
n(dy), a symmetric measure on R‘— {0} satisfying

S,,d_(o,lylz(lJr | y12) " n(dy)< oo .

There is a one-to-one correspondence between the family of all such semi-
groups {I1,},5, and the family of all functions Q(£) defined by (3.2).

Let P(¢,x,E)=II(E—x), t>0, x€ R, E€ B(R"), where B(R*) denotes the
topological Borel field of R?. It is well known that there exists a Hunt process
X=(W, X,, P,) on R’ having {P(t,x,E)} as its transition function. We shall
call this process X a d-dimensional symmetric Lévy process, and the correspond-
ing Q(£), the exponent of the process X. In particular the process X is said to
be a symmetric stable process of order a(0<<a=2) if its exponent is of the form
(3.3) ¢ = So Ssd_l(l—cos<£,rs>)ﬁ(ds)r‘“‘1dr if 0<a<2,

= >V {1 0,58 if a=2,
where 7i(ds) is a symmetric finite measure on the unit sphere S?7%, and (a;;)1s/, ;54
is a symmetric non-negative definite matrix. The process X is said to be a
spherically symmetric stable process of order a(0<a=2) if

(3-4) Q) =clgl”,

where ¢ is a positive constant.

In the following we shall make use of those terminologies and general
results on Dirichlet forms and symmetric processes (see Fukushima [4]).

Let L*(R?) denote the real L?-space with the usual inner product ( , )
and m, the d-dimensional Lebesgue measure. Since the symmetric Lévy process
X is m-symmetric, the transition function {P(t,x,E)} determines uniquely a
strongly continuous Markovian semigroup (7),>, of symmetric operators on
L*R*). In the present case, the Dirichlet form (&, D[€]) of X, which is
generated by the semigroup (7),>0, is given as follows:

Ewo) = | 0@, uve e,
(3.5)
9] = WweLXR; [Q©) 4@ s <o},
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where ﬁ(e‘j):(27:)“’/2Se"<5"‘>u(x)dx for us L*(R*) (see [4; Example 1.4.1]). Since

the Dirichlet form (&, D[£]) is regular, there exists a quasi-continuous version
of u, denoted by #, for every uc D[E].

The infinitesimal generator (L, 9(L)) of the semugroup (7T);>, 1s given by
Lug) = —0@(E), we (L),
L) = weLARY; {1 Q@) 1dE< oo}

We also call (L, 9(L)) the generator of the process X.
From now on we assume that the following condition is satisfied:

Q) exp{—tQ(&)} €LY R?) for every t>0.

Obviously, if Q() is of the form (3.4), then the assumption (Q) 1s satisfied.

If Q(&) 1s of the form (3.3), then it is shown that the assumption (Q) is equiv-

alent to the following nondegeneracy assumption: for 0<<a<<2, the support

S, of 7i(ds) spans R? as a vector space; for a=2, (a;;) is positive definite.
Under the assumption (Q), II,(dx) has the continuous density

(3.6)

p(t,x) = (27;)‘JSRde—i<£,z>e-—tQ(§)d§

relative to m.  Let p(¢,x,y)=p(¢,y—x), t>0, x& R?, ye R*. Then {p(¢,x,y)} is
the transition density function of X relative to m.
We now show the existence of the pinned processes of X.

Proposition 3.1. Under the assumption (Q) the iransition density function
{p(t,x,y)} satisfies (p.1)~(p.4) of §2 and

(3.7) p(t,%,9)=< p(2,0,0)<co  for all >0, x& R?, and ye R* .

Proof. One can immediately check the conditions (p.1), (p.3), (p.4), and
(3.7). All we have to show is that p(¢,x)>0 for all £>0 and x&€ R*.

Note that (i) x—p(t,x) is continuous for each #>0, (ii) p(z,x)=0 for all
t>0 and x= R, (iii) p(s,0)>0 for all s>0, and (iv) £— p(Z,x) is analytic on (0, o)
for each x& R?. Let x€ R® be such that p(¢,x)=0 for some ¢t>0. Then we
have, for each s&€(0,1),

SRdP(t—s,x—y)P(s,y)dy = p(t,x) = 0.

Thus it follows from (ii) and (iii) that p(z—s,x)=0 for each s&(0,#), hence
p(s,x)=0 for each s>0 by (iv). Therefore

N = {x; p(t,x) = 0 for some >0}
= {x; p(t,x) =0 for all >0} .
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It follows from (i) and (iii) that N° (= {x; p(¢,x)>0 for some ¢>0}) is an
open subset of R? containing 0. To prove that N=¢ it suffices to show that
N is also an open subset of R? since R? is connected. To this end let x&N.
Since

[, 6L a—)p(1,5)dy = p(2.5) = 0

and p(1, y)>0 for all y& N, we have p(1,2)=0for allzex—N°= {x—y; yN°},
that is, x—N°CN. This proves that N is open since x—N* is a neighbourhood
of x. 'This compleces the proof.

Proposition 3.2. Let X=(W, X,, P,) be a d-dimensional symmetric Lévy
process satisfying the condition (Q) and let {W, (X,).ets.0, Pi:3} be the (s,x:1,)-
pinned process of X. Then we have the following:

(1) (X et P82} =~ {(x+X,)ueto, 1, Pi:37} for each >0, x€ R?, and yE R*.
(ii) In particular, if the process X is a symmetric stable process of order a(0<a=2),
then, for each A>0, t>0, and y= R?,

{(X}\u)uE[o,t]) Ps.téy}g{()'l/aXu)uE[O,t]’ Pé:s} )

where 3=\"""y.

The first assertion follows from the spatial homogeneity of the Lévy pro-
cess X and the second, from the scaling property of the symmetric stable pro-
cess X of order a:

(3.8) {Xn)zo P} = {(0Y*X,);20, P} for each A>0,
(3.9 P(A,0,x) = N"*p(¢,0,A"Y*x) for each A>0, >0, and xE R".

We omit the details of the proof.

4. The eigenvalue problem for —L-¢(x) on a bounded domain
with the Dirichlet condition

Let X=(W, X,, P,) be a d-dimensional symmetric Lévy process satisfying
(Q). Asin §3, L and (&, D[€]) denote the generator and the Dirichlet form of
X respectively and m, the d-dimensional Lebesgue measure.

Let G be an open domain of R* and let ¢(x) be a (non-random) real valued
Borel function on R* which is bounded on G. In this section we will consider
the eigenvalue problem (— L+ g)u=A\u with the Dirichlet condition =0 on G,
when m(G)<<co. But we do not assume that m(G)< oo for a while.

Let 7g=inf {t>0; X, G’} and define a Markov transition function p¢(t, x, dy)
on (G, 3*G)) by
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(4.1) pe(t,%,E) = P(X,EE, t<7g), >0, xG, E€ B%G).

Here $*(G) denotes the family of all universally measurable sets of G. Let
L*G) denote the real L?-space on G with the usual inner product ( , ). Itis
known that the transition function {p¢(2,x,E)} is m-symmetric (see Fuku-
shima [4; Lemma 4.2.3]) and the associated semigroup (T ,);>o on L¥G) is
strongly continuous. Let (&, D[€]) be the Dirichlet form on L¥G) de-
termined by the semigroup (7 ). Given a function u of L*G), we will
denote by %’ an element of L(R?) which is identical with # on G and vanishes on
G°. Itis known [4; Theorem 4.4.2] that the Dirichlet form (&, D[E;]) is the
part of (€, D[€]) on G, i.e.,

D[Ee] = {ue LX(G); u'€ D[E€], &' = 0 quasi-everywhere on G} ,

(+2) Ee(u,0) = EW', "), u,vEP[E],

where #’ denotes a quasi-continuous version of #'€9[£] in the restricted
sense.
Let (Lg, 9(Ls)) be the infinitesimal generator of the semigroup (T ).

Proposition 4.1. If uc D[E;] and v’ € D(L), then us D(L;) and Lou=
(L") 6.

Proof. Let u€9[E;] and u'€D(L). It then follows from (4.2) that,
for each ve D[E],

Ee(u,v) = E(u',v")
= —(Lu',v')
= —((Lu)| ¢ v)g -

This means that u€ 9(Lg) and Lou=(Lu")|.
In the following we will investigate the eigenvalue problem (—Lg+q)u=
A, us 9D(Lg) which we regard as a realization of the eigenvalue problem
(—L+q)u=nu with the Dirichlet condition =0 on G*.
Let (Té.:)>, be the semigroup generated by L;—g. We show that each
% . has an integral kernel which is represented by the pinned processes of X.
We start with the following proposition.

Proposition 4.2. Let {W, (X,),ct,.0, P::3} be the (s,x:1,y)-pinned process of
X. The expectation with respect to Pt} is denoted by E{:3[-]. Let K&(t,x,y) and
26(t,%,9), >0, x€G, yEG be defined by

“3)  Kiwy) = Bdlex{—{ aX)ds; t<rclpien),

(44) PG(t-vx:y) = P(‘):i(t<TG)P(t’x,y) N
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Then, for each s>0, t>0, x€ G, and yE G, we have the following relations:
(1) K&(t,x,y)<exp(tllg|l-)p(t,x,y) < exp(t|lg"||-)p(2,0,0), where g~ =max(—gq,0)
and ||+||.. denotes the supremum norm.
(i) E,[f(X)) exp{—S:q(X Jds}; t<To] = SG f(2)K&(t,x,2)dz for each bounded
Lebesgue measurable function f.
(i) Ke(s+4,8,9) = | Ko(s%,2)K(t,2,9)ds
(iv) Kié(t,x,y) = Ki(t,y,x).
(v) polt,x,y)—KE(t,x,y) = S:duscpc(u,x, 2)q(2)K&(t—u,z,y)d=z .
The proof will be deferred till the end of this section.
Remark. Note that if ¢(x)=0, then K&(t,x,7)=ps(t,%,y).

Proposition 4.3. Let (T%.:)>, be the semigroup generated by Ls—q. We
then have

4.5) TE,: f(x) = SGf(y)Ké(t,x,y)dy for feL¥G).

Proof. Define T'%,,f(x) for f€LXG) by the right hand side of (4.5). It
follows from Proposition 4.2 that (7% ), is a symmetric semigroup on L*G).
To prove T¢ = T?;,, it suffices to show that (T%_,),>o is strongly continuous
and has L;—q as its infinitesimal generator. The proof will be complete if
the following relations are established: For each feL*G),

(i) Te.f—T%.:f—0ast|0in IX(G),
(i) t Y Te,f—T%.f)—>q-fast|0in LAG).

To prove (i) and (ii) we first note that the following inequality holds for
every f € L¥(G):

(4.6) I T?;.tf”o§eXP(tHQHN)”f”G, t>0,

where ||+||; denotes the usual L*norm of L*G). We can obtain this ine-
quality by making use of Proposition 4.2 (i), Schwarz’s inequality, and the
symmetry of p(¢,+,-). Let B(G) denote the space of all real bounded Borel
functions on G. By Proposition 4.2 (v) and Fubini’s theorem, we have, for
every f € B(G) N L*¥G),

(#7) To f(x)— T, flz) = Scf () (26(2,2,9)—K&(2,%,9))dy

_ S:du Teulg T f) (),

from which we get
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16 f~ T8 flloS [ |1 Tanlar T8iulode

£
<llglo{ 11 76,0l
Thus, from (4.6), we have

4.8) “TG,tf_ T‘c’;.tf”cé {exp(tllgll-)—1}Iflle, >0,

for every f€B(G)NLXG). Since B(G)NLXG) is dense in L¥G), the ine-
quality (4.8) holds for every f&L*G). This proves the assertion (i).

Next let S, f(0)=t"(To f(8)— T4, f(x)) —q(@)f(x) for £>0, 3G, and
fEB(G)NLXG). Then, from (4.7), we get

Suf®) = ' [Toula: Thsuf)—g- 11 (@)

for each t>0 and fe B(G) N L¥G). Thus we have
t
1S, Alo= 7 1 0,(q- Tb.1-uF)—q- fllodu
¢ ~
< 73 1 Te.ulg- (T8.cee— D llodu

+ (T D) (g Pllodu,

where I denotes the identity operator of L*G). Hence the following ine-
quality holds for every f& B(G) N L*G):

(4.9) 1 (T, f— T‘(’;,tf)_q-fllaé ”q”mossl:}g”(Tg"'"‘—l)f”G
+8up [(Te—1) (g Nlles £>0.

Since B(G)NL*G) is dense in L*G), this inequality holds for every f & L¥G).
Since (7T%,:);>, is strongly continuous by (i), the assertion (ii) has been proved.

Remark. This proposition will be referred later in the case of G=R".
Note that L;=L in this case.

Assume that m(G)<<co. Then each T§, is a compact operator on L*G)
since, by Proposition 4.2 (i), the associated kernel K&(z,x,y) is of the Hilbert-
Schmidt type. Therefore the spectrum of —Ls+¢ consists only of eigenvalues
of finite multiplicity having no accumulation pointin R'. Thus they can be
ordered as

q
7\'6.1

IA

q .
XG,Z

A

Define the normalized distribution function p&(\) of {A%.:}:-1 by

(4‘-10) P%(N) = m(G)-lthq},iéll’ XE Rl D
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Theorem 4.1. We have, for each t>0,

(" enapson) = f’gnt’(—%)o)gcm;:[exp{— [Lax)ds}; <relds.

Proof. First we have, by (4.10),
S“ e dph(N) = m(G)Sy=1 exp(—Ng.:), 0.

On the other hand, since the totality of the eigenvalues of T%, is
{exp(—#\§,:)} -1, one can easily see that, for each >0,

SSG K4(t[2,3,y)dsdy = S}%: exp(—iAE.i)

But, by Proposition 4.2, the left hand side of this equality is represented as
(1., K20 )Ke(2,5,%)dudy
— SGK?;(t,x,x)dx

t
— p(2,0,0)| Bézfexp{—{ a(X)ds}; t<rilds.
This completes the proof.

Proof of Proposition 4.2. The proof depends on Theorem 2.2. However,
since G is open, {t<7} is not measurable relative to ¥, ;7. Therefore to prove
the proposition we have to show that Theorem 2.2 is valid for a family of o-
fields relative to which 7, is a stopping time. This problem is settled by a
standard completion argument. Before discussing the completion we show
how the properties of K&(¢,x,y) and pg(¢,x,y) are derived from Theorem 2.2
(or rather its generalization).

One can easily obtain the inequality (i). Assertions (ii) and (iv) follow
from Theorem 2.2 (iv) and (vi) respectively. Define 7;=inf{t>s; X, G} for
s=0. Then we have the relation {s+<<7¢}={s<<7¢} N {s+2<7&} for each s=0
and £>0. Using this relation and Theorem 2.2, we have

K&(s+t,x,y)
= Eglexp (= o(X,)dub; s+ <relplo-+1,5,9)
— EiyTexp{— | gXdub (B2 Texp (= a(Xo)du
SH<TE]); s<Telpls+4,%,3)
s t
— BIp(t, Xy)espl—{ a(X)dub Bsfexp {— | X}
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1<7¢]); s<7¢]
= Blexp{—{ q(X.)du} K8(t,X.,9); s<o].
This, combined with (ii), gives (iii). Similarly the following calculation gives
us (v):
pelt,%,5) —K(t,,9)
= B(1— exp{— | g(X)ds}); t<rclp(t, )
= ([au By g(X ) exp{—{ aX)ds}; t<mlp(tx,9)
— | du Eyaig(X) Bl fexp—{ (X )ad, <2
u<7c]p(t,x,y)
= | du EJgx) Bitexp a0 t—u<re)
X plt—1t,X,,9); <]
— | du B Jo(X) Kt(t—u,Xo9)s uscre]

We have used the relation

1—exp {— aX)as} = [[aXexp{—{ a(X )} du

and Fubini’s theorem for the second equality.
Finally we shall outline the completion problem. Define, for each 0<s

<u=t, Mfs..;= N P;:-completion of &y, 3, where P£;1=SSp(dx)v(dy)P§;£, and

1 and v run all finite Radon measures on S=R?. Itis known that if 0<s<u<t,
then {u<<7i} € M) and note that 7;=7. By a routine argument it is shown
that Theorem 2.2 is valid when we replace the o-fields &y, 1, B(S), and B(S)
X B(S) by Mfo.11, B*(S) and B(S)x B(S) respectively, where B(S)x B(S)
= N uXv-completion of B(S)x B(S) with p and v running all finite Radon
measures on S. Further the process X*?=(X,, P;:) has the Markov property
with respect to (M), that is, if 0=s<u<ov=<t and E&€$*(S), then
PyUX,€E| Ms.))=Pi% (X, EE), P;-as.. This completes the proof.

5. Existence of the spectral distribution function

Let (Q, B, P) be a probability space and ¢(x, »), a real valued function
defined on R?x Q such that ¢(¥,®) is measurable in » for each xe R?. We
say that {¢(x,0): x€R?, 0€Q} is a stationary random field defined on
(Q, B, P) if the law of {g(++x,0)} is identical with that of {g(+,»)} for each
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x€ R®. In the following we assume that almost all sample functions x—¢(x, »)
are continuous.

Let L be the generator of a d-dimensional symmetric Lévy process X=
(W, X,, P,) with the exponent Q(£) satisfying the condition (Q) of §3. Let
V be a rectangle of the form

V={x=(x ,a%); —a,<a’<h;,i=1,-,d},

where a;, b,>0, i=1,---,d. Since x—¢(x,w) is bounded on V for each wEQ,
= {wEQ; x¥—>¢(»,») is continuous}, the totality of eigenvalues of the self-
adjoint operator (—Ly+g(x, ), D(Ly)) can be ordered as

AVASAY S -o0,
and we define
Py(Z) =m(V) ' 20e <21, NER',

where m denotes the d-dimensional Lebesgue measure. Let (W, (X,),er0,1, P4:2)
denote the (0,x:¢,y)-pinned process of the process X. Then Theorem 4.1 gives
the following relation:

60 [ enanin = 2ERO Bitfep (—{ o, ) s t<mJas

for every t>0.
Note that the Stieltjes inversion formula assures the measurability of py(\)
in 0 EQ,.
Theorem 5.1. Suppose that the following two conditions are satisfied:
(A) exp{—10(&)?} € LY(R*) for every t>0 (this condition implies the condition
(Q))-

(B) There exists a constant r>2 such that
t
exp{[ 4" (X, 0)ds} €L'(Px Po)

for every t>0, where ¢~ =max(—gq, 0) and P X P, denotes the product measure of
P and P,.

Then there exists a right continuous nondecreasing function p(\) defined on R'
with p(— oo)=0 such that, for each continuity point N of p(\),

lim B[p5(\)] = p(0V),
where “‘V —o0” means that a;, b)—oco for i=1,.--,d. Moreover we have

62 [ emap) = p(t.0.0Bx Egifexp{~{ g(Xo 0)a}]
for every t>0,
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where EX EG§ denotes the expectation with respect to the product measure Px P¥:3.

If, in particular, q(x,w) is non-negative for all x=€ R? and w<Q, then con-
dition (B) is satisfied and we have p(0+)=0.

DerintTION 5.1. We call p(\) the spectral distribution function of {—L--
g(x,0): 0EQ}.

The proof of the above theorem goes along the same line as the proof in
Nakao [6]. We will show how Nakao’s proof is carried out for the present case.

Lemma 5.1. Let ® be the set of all non-negative right continuous non-
decreasing functions on R'. Then we have the following:
(1) If Fisin ® and F(—o0)=0, then

r e ™F(\) = tsw e *F(\)d\  for every t>0.

(it) Let f(t) be a non-negative measurable function defined on (0,1] and g(t), a
finite nondecreasing function defined on [1,00). Let ®(f,g) be the set of all FE®
satisfying tsw e *FO\)AM= f(2) for all t<(0,1], and tsw e *F(\)dN= g(t) for all
te[1,00). Further suppose that f(t) satisfies the following condition:

(5.3) Sje'”‘f(l/)n)d?\.<oo for every s>0.

Then there exists a non-negative measurable function G(\) on R* such that
G4 Sle‘"‘G(h)d?x< oo for every t>0

and F\) < G(\) for every FE®(f,g) and N R'.

Proof. Fubini’s theorem gives (i). One can choose a strictly increasing
continuous function g(#) defined on [1, c0) such that g(¢)=< g(¢) for all =1 and
g(0)=0c0. Let h(r), AE[Z(1), ) be the inverse function of g(¢), t=1. Since
D(f,8)C®(f, &), we have

g0zt]", POV ZF(—8@)expltd()
-8t
for each FE®(f,g) and t=1. This implies that F\)=F(—g(h(—\)))<
—nexp(h(—A)N) for A< —4(1). On the other hand we have, for each FE ®(f,g)
and 1€ (0,1],

f(t)gts;e‘”‘F(h)dng(l /t)S;te-de — F(1jne™?,

which implies that F(\)<ef(1/r) for A=1. Define a function G(A) on R!
as follows: G(A\)=ef(1/x) for A=1, G(\)=¢f(1) for —g(1)<a<1, and G(7)
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=—xexp(h(—A)\) for A< —Z(1). Then we have F(M)<G()) for all AnE R!
and FE®(f,g). It only remains to check (5.4). But (5.4) follows from (5.3) and
the fact that (co)=oco. This completes the proof.

Lemma 5.2. We have, for each t>0 and x< R?,

2(6,0,0E2[exp{—{ g(X, o)}

< p(t/2,0,0)B, [exp{—2{ 4(X,, )] .

Proof. Using Schwarz’s inequality, Theorem 2.2, and (3.7), we have

b2lexp i~ { g(X, 0)a]

¢

< Eizlexp{~2{ o(X, s} Eiilep{—2] o(X,,0)is}]
= Bizlesp{—2{, a(X.,0)ds}]

= p(t,,9) Eulp(t—112, X w)exp{—2] (X,, 0)ds}]

< $(8,0,0)9(612,0,0Efexp{—2{ 4(X.,a)ds}].

Lemma 5.3. Suppose that the condition (Q) is satisfied. Then we have the
following :
(i) »(t,0,0)—0 as t—oo.
(if) The condition (A) holds if and only if

(5.6) S"e—ﬂp(l/x,o, 0)dn<oo for every 0.
0
Proof. By the condition (Q), we get

oo > S RiP {—10@Oe= S @ P {—10(E)} ¢
ze "m({E; Q(E)=n})
for each n€ R'. Thus we can define a right continuous nondecreasing function

F(n)=(2n)“m({&; QE)<7}), 7€ R'. But since exp {—10(E)}=|cos <&, >
p(t,x)dx<<1 for =0, thatis, Q(£)>0 for £40, we have F9(0)=0. Hence we

obtain
G.7) £(1,0,0) = S“e-”dFQ(n), £>0.
0

The assertion (i) immediately follows from this relation and the dominated
convergence theorem. To see (ii), using (5.7), we have
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o) I

e"*p(1/7,0,0)dx

0

e[ e naFe(s)

0

I,
I,
s S exp(— A —n\)dN]dF(n)
S
1

‘JdFory+ (g aFee)
+12 ’

where | =Smexp(—t7u—77/7u)d7u. But since
0

J = V[t | esp{—vmn(u+1u}dp (n = VI2),
we get
L< g:[t‘IS:\/Eexp(—\/ﬁpl)dp.]dF"(ﬂ)
— IRt <o .
On the other hand, noting that

[ exp {—v/Em(n-+ 1)) (1—p~)dp

- S:exp {—VE(s+2}ds (s+2 = p+1/p)
= 1/Vtn exp(—2V'17)

and

{ expt—vamu+1/mpdn = | expi—vm(u+1mhu-an,

we have
(co 2)E, = | VT | exp{—V/n(u-+1/w)} (1-+57)du1dF ()
= S:t“‘exp(—Z\/ tn)dF°(n)

+ZST[\/WST exp {—Vtn(u+1/p)} p~?dp]dF(n)
= I+1,.

Since

I3 - t—IS(Q(E)N) exp{—ZtVZQ(E)w} at

and I,<1, “if” part of (ii) is established. To prove “only if”’ part, we assume
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(A). Then we have I,<<co and, noting that p-+1/u=2 for >0,
L=207 [V nexp(— 2/ ) | n-dp)dFo(n)
; :
<2t 2sup{v/ mexp(—V/17)} S exp{—#20(E)HdE< oo .
>¢ QB >4
Thus we have I=1I,41,+1,<<oo, which completes the proof.

Lemma 5.4. Under the assumftion of Theorem 5.1, there exists a measurable
function G(\) on R! such that E[py(\)]<G(\) for every rectangle V and N\ € R'
and that Sw e *G(\)dr<< oo for every t>0.

Proof. It follows from (5.1), Lemma 5.1 (i), and Lemma 5.2 that

oo t/2
1| e Blos OIS p(012,0,0Ex Eyfexp 2| g7(X,0)ds}]
—o0 0
Define
v
0

ft) = p(t12,0,0Ex Efexp{2( ¢"(X,0)s}] for 1€(0,1]
and
8(t) = p(112,0,0Ex Efexp 2 g (X, 0)d}] for te[l, ),

where EXE, denotes the expectation with respect to the product mezsure
PxP, Then E[py(-)]e®(f,g) for every rectangle V. Since f(t) satisfies

(5.3) by Lemma 5.3 (ii), the lemma is an immediate consequence of Lemma
5.1 (i1).

Proof of Theorem 5.1. As in Nakao [6; Theorem 4.1], using Holder’s ine-
quality, condition (B), and the fact that

lim m(V)“S Lit=T)dx =0 for >0,
>oo v
we have
Jim tr e RE[p2 (W] = p(2,0, 0)E><E{,;S[eXp{——Yq(Xs,m)ds}]
> - 0

for every t>0. Thus Lemma 5.4, Helly’s selection theorem, and the uniqueness
theorem of the Laplace transforms gives us the theorem except for the last
assertion. But this follows from the fact that, when ¢(x,®) is non-negative,
the right hand side of (5.2) tends to zero as t—>co by Lemma 5.3 (i). This
completes the proof.

We next mention the ergodic theorem for the spectral distribution function.
Let ) denote the space of all real functions on R? and B, the smallest o-algebra



SPECTRAL DISTRIBUTIONS OF CERTAIN INTEGRO-DIFFERENTIAL OPERATORS 655

with respect to which all the coordinate functions Q>&—a(x) (v R?) are
measurable. A stationary random fierd {g(x,w)} over (Q, B, P) induces a
probability measure P on (2, $) and the shift operator T', on ({2, ) defined by
T.6=3&(-+x) makes a measure preserving transformation for each x& R’
We say that {g(x,w)} is ergodic if the associated family {7T',: x€ R%} is ergodic,
i.e., P(A) is equal to 0 or 1 for every {T }-invariant set ASB.

Theorem 5.2. Suppose that the conditions (A) and (B) of Theorem 5.1
are satisfied. Further suppose that {g(x,0): xE R*, 0 Q} is ergodic. Then there
exists a subset Q; of Q with P(Q,)=1 such that, for each 0=,

117im pv(Z) = p(X) for every continuity point N of p(\),
where p(\) is the spectral distribution function of {—L+q(x,0): o€ Q}.

The proof is omitted since it is the same as in Nakao [6; Theorem 4.2].

6. Asymptotic behaviour of the spectral distribution functions
near the origin for the random fields induced by a Poisson random
measure

In this section we will be concerned with a special class of non-negative
random fields {g(», o)} (described below) and investigate the asymptotic
behaviour of p(A) when A | 0.

Let v be a positive constant and m, the d-dimensional Lebesgue measure.
A family of measures {p”(dy): «=Q} on R? is said to be a Poisson random
measure with characteristic measure v-m over a probability space (Q, B, P) if
(i) for each wEQ, p°(dy) is a Radon measure of the form 7., §,, where &,
is the Diract measure at point x;E R?, (ii) all mappings w—p*(4) (A€ B(R?))
are measurable, and (iii) for each finite disjoint family {4;;i=1,--,k} C B(R?)
and each sequence of non-negative integers {n;; i=1,--,k}

Plo: p°(4;)=m;, i=1,--,k)
= II:%iexp(—vm(4,)) (vm(4;))"[n;!

with the convention that exp(— o)X co=0.

Let (%) be a non-negative continuous function on R‘ satisfying @(x)=
O(|x]| =@+ (|x| —oo) for some positive constant &. We can define a random
field {g(»,0): x€ R?, o€ Q} by

(6.1) ow0) = |_ple—y)p"d).

It is well known that {g(», w)} is an ergodic stationary random field having

continuous sample functions.
Let X be a d-dimensional symmetric Lévy process with exponent Q(£)
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satisfying the condition (A) and let L be the generator of X. Let {(X)ser0
P§:2} denote the (0,x:¢,y)-pinned process of X and Eg:}, the expectation with
respect to P§J. Since the random field {g(x, )} under consideration is
non-negative, Theorem 5.1 assures the existence of the spectral distribution
function p(A) of {—L+q(x, 0): w0} with p(0+)=0 and the equality

6.2) [Fendn0n) = p(4,0,0)Ex Esgfexp -~ o(X,, 0)d}]

holds for each ¢>0.
We now summarize the above results.

Theorem 6.1. Let X be a d-dimensional symmetric Lévy process with ex-
ponent Q(&) satisfying the condition (A) and let L be the generator of X. Let
@(x) be a non-negative continuous function on R® such that o(x)=0(|x| ¢*")
(|%|—>o0) for some constant €>0 and {p°(dy): 0w =Q}, a Poisson random measure
with characteristic measure v-m over a probability space (Q, B, P). Let {q(, o):
xER’, 0= Q} be the random field defined by (6.1). Then there exists the spactral
distribution function p(\) of {—L+q(x,0): 0= Q} with p(0+)=0 :atusfying (6.2)
for each t>0.

From now on we shall evaluate the asymptotic behaviour of the spectral
distribution function p(\) when A | 0.

Let o be a constant such as 0<a=<2. Let Q(£) denote the exponent
of a d-dimensional symmetric stable process X® (see (3.3)). We will consider
the following condition on the exponent Q(£) of the Lévy process X:

(©) (1) QE)=0™(&)+o(€]%) (I&] | 0) and (ii) the function

0u(£) = inf £20(:7%)
satisfies the following summability condition for each §>0 and r>0:
2l exp(—304())< (E€(r2)),

where (rZ)* denotes the discrete subgroup of R’ consisting of vectors having for
each coordinate an integral multiple of 7.

ReMARk. Note that the condition (C) is satisfied if Q(§)=31,"%; Q®)(§)
and a=min «;, where {a;};%, is a sequence of different numbers such that
0<a;=2,i=1,--,n.

Let L™ denote the generator of the process X®. Given an open domain
G of R with m(G)<oo, let A(G) be the smallest eigenvalue of —L#¥’ (see §4).

Theorem 6.2. Let L, p(x), and {p“(dy): o= Q} be those in Theorem 6.1.
Let a be suck as 0<a=2. Suppose that the condition (C) is satisfied and that
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(6.3) @(x) = o(|x] ~¥*) (|| >00) and Sud¢(x)dx>0 .
Then the spectral distribution function p(\) of {—L+de<p(x—y)p"’(dy): wEN}
satisfies
(6.4) Iirg AY? log p(A\) = —v(N)¥*,
A .

where A, =inf; M(G) with G running all open domains of m(G)=1.

We will denote the left hand side of (6.2) by k(t) and the right hand side of
(6.2) by I(1);
(6.5) kt) = [ e,

0
t

(6.6) 1) = p(2,0,0Ex EiiS[exp{— | a(X.,w)as}].

Appealing to the Minlos-Povzner Tauberian theorem (Fukushima [3; Theorem
2.2]), Theorem 6.2 is reduced to showing that

lim £79/@+ log k(t) = _,,«/<d+a>(dia> (@_u
e a d

>d/(d+¢)
But since k(t)=1I(t), it suffices to show the following theorem:
Theorem 6.2'. Under the assumption of Theorem 6.2, we have

(6.7) lim +~9/@+* log I(f) = —k(v, L™),

where k(v, L™) = v“"“*“’(d—l_q) (%

We next consider another sort of estimate on the exponential decay of
p(\) for x| 0.

)d/ (d+®)

Theorem 6.3. Let Q(£), L, (x), and {p°(dy): o= Q} be as in Theorem 6.1.
Let 0<B<a=2. Suppose that

(6.8) 0<K, ==leli_nulalx|“+3¢(x)§llj_nl|x|“+5¢(x) = K,<o
and that
(D) 0&) = O(I&I") (&1 | 0).

Then the spectral distribution function p(\) of {—L—I-S PE—3)p"(dy): 0EQ}
R
satisfies
(6.9) — ()i, B, Ky Slim A log p()
AYO
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<lim A%# log p(\)< —Cy(v, B,K,),
Ad0 ‘

Y d \i® B BB e
where Cl(v,ﬁ,Kl)—-m(d—_l_ﬁ) <I‘(d—+ﬁ>vﬂd> KB, Here Q, denotes

the volume of the d-dimensional sphere of unit radius and x, (resp. x,), the least (resp.
largest) solution of the following equation:

a7l = {(d|BYID 4 (B]d)H @} (K, K ) +D
If, in particular, K,=K,, then x,=x, and we have
(6.10) lim A%? log p(A) = —Cy(v, B, K}) .
Ado
RemARks. It is known that (x,/x,)Ci(v,3,K,) increases to Ci(v,B,K3)
B -
=(I‘(m) de> K,*® as K, | 0 and decreases to Cy(»,3,K;) as K; 1 K,.

The third inequality in (6.9) holds even if K,=co and the first inequality holds
even if K,=0 with Cy(v, 8, K,) replacing (x,/x,)Cy(v, B, K,).

As before, Theorem 6.3 is reduced to the following theorem based on a
Tauberian theorem of exponential type due to Y. Kasahara [5; Theorem 3].

Theorem 6.3'. Under the assumption of Theorem 6.3, we have
6.11) — (v, B, K;)<1lim £ log I(t
<lim t~%@*" log I(t)< —«(», B, K,) ,
tpo0

where x(u,,e,K,.)zr(d fﬁ)deK,."’(‘”ﬂ), i=1,2.

Finally we will consider the case when
(6.12) 0< lim| ] ***p(+) < im| x| **p(s) <o
HESS z|po0
and Q(£)=0(1£1%) (1£1 | 0).

Theorem 6.4. Let L, p(x), and {p°(dy): o= Q} be as in Theorem 6.1.
Let o be such as 0<a=<2. Suppose that the conditions (6.12) and (D) are satisfied.

Then the spectral distribution function p(\) of {——L—}—SRd<p(x—y)p"’(dy): o= Q}
satisfies
(6.13) —oo<lim A%* log p(h)éﬁ} A% log p(A)<0.
Ad0 Ad
This theorem is reduced to the following theorem:

Theorem 6.4'. Under the assumption of Theorem 6.4, we have
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(6.14) —co<lim ¢74/4+* log I(t)<Tim ¢-9/¢+* log I(#)<0.

The proofs of Theorems 6.2'~6.4" will be given in the following sections:
Theorem 6.2’ follows from Lemmas 8.6 and 9.2; Theorems 6.3 and 6.4’ follow
from Lemmas 8.4 and 9.1.

7. An inequality due to L.A. Pastur

In this section we shall prove a theorem which is a generalization of the
lemma of Pastur [8]. This theorem will play a fundamental role in the proof
of the theorems of the preceding section.

Theorem 7.1. Let X be a d-dimensional symmetric Lévy process with
the exponent Q(E) satisfying (Q) and (€, D)), the Dirichlet form of X. The
expectation with respect to the (0,x:t,y)-pinned process of X is denoted by Ef:3.
Let {g(x,0): x€ R?, 0EQ} be a stationary random field defined on a probability
space (Q, B, P). Suppose that

(7.1) Elexp(—19(0, w))]<oo
for each t>0, where E denotes the expectation with respect to P. Then it holds
that, for each f € D[E] with || fll=1,
(7.2) I fllziexp{—tE(f, /) —P(f)} ‘
< 2(1,0,0EX Eifexp{— | (X, a)ds}]
= p(2,0,0)Eexp(—29(0, ))] ,
where
(73) ®,(f) = —log Elexp{—t{_g(x,0)f(x)ds}]
and ||+|| (resp. ||+||,) denotes the usual norm of LY R?) (resp. L*( R%)).

Proof. By (7.1), one can assume that g(x,w) is bounded uniformly for
¥*€ R’ and weQ. The second inequality of (7.2) immediately follows from
Jensen’s inequality and the stationarity of {g(x, »)}. To show the first
inequality we define, for each wEQ, t>0, x€ R?, and yE R",

K*(t,2,9) = plt,53)Esfexp{— | a(X0)d}]

Let (L, 9(L)) denote the generator of X. Then from Proposition 4.3 and its
remark it follows that, for each wEQ, the selfadjoint operator L*=L—q(x,)
with the domain 9)(L) generates a semigroup (T7),>, such that each operator
T? has K“(t,x,y) as its integral kernel. Let {Ey: AER'} be the resolution

of the identity associated with —L°® i.e., —L"’=Sm M dEY. Suppose that
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fED[E] satisfies || fl|=1. Then, using Jensen’s inequality, we get
E(T:f, )] = BI| e (B

= E[exp {—tS:h d(EXfNH
= Elexp {—1€(£,1)—1{_g0)f@ds}]
= exp{—tE(f,f)—D(f)} .

It only remains to prove that
E[(T?£, /]S 1| Il BIK"(2,0,0)]
But since
BT 1) ds] BIK"t09)]1 f0)1dy,

it suffices to show that E[K“(t,x,)]< E[K"(t,0,0)]. Using Proposition 4.2 and
Schwarz’s inequality, we have

K°(t,%,y) = SRdK"’(t/Z,x, )K°(t/2,2,y)dz
© 2 1/2 @ 2] >\1/2
= ([ K"w2mapasa | Ko/257d)
= K°(t,%,x)/2K"(t,y,y)".

Take the expectation with respect to P. Then it follows from Schwarz’s in-
equality, the homogeneity of the process X, and the stationarity of {g(x, )}
that

E[K"(t,%,)] = E[K"(t,x,%)]E[K"(t,y,)]"*
= E[K"(¢,0,0)],

which completes the proof.

8. The lower estimates

In this section, we shall prove the lower estimates in Theorems 6.2'~6.4".
Recall that {g(x,0): x€ R?, 0= Q} is the random field defined by (6.1) and let

@.1) 1) = (2,0, 0)E><Eg;g[exp{—S'q(Xs,w)ds}], £>0.
0
It follows from Theorem 7.1 that

(8.2) I0) 2 || flizt exp{—tE(f./)— @)}
holds for each f = Cy(R?) with || f||=1, where
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(83) () = » | {1—exp(—t{_ply—a)fGYdy)}ds.

Here C7(R?) denotes the space of all real C~-functions on R? with compact
support.
We start with the following lemma.

Lemma 8.1. Suppose that the condition (D) is satisfied. Then there ex-
ists a positive constant ¢ such that

(8.4) RUQRE) < o(|E|*+|E1?) for all ’g‘eR" and R=1.

Proof. By the condition (D), there exist constants ¢,>0 and %>0 such
that Q(&)<c,|&|”® whenever |£|<7%. On the other hand, one can easily check
that there exists a constant ¢,>0 such that Q(§)=<c,|£|? whenever |£| =7 by the
explicit form of (3.2). This completes the proof.

For each \»€ C7(R?) with [|lJr||=1 and R>0, we define

(8.5) Yrp(x) = R % (R %), x&R".
Note that ||yrg||=1.

Lemma 8.2. Let £ and £ denote the Dirichlet forms of the processes X
and X respectively. Then we have the following:
(i) Condition (D) implies that E(\rg,yrg)=O0(R™") (R— o) for each yr& C5(R?).
(ii) Condition (C) implies that E(\rg,Yrg)=R™"E® (Yr,4r)+0(R™*) (R—>0) for
each = C7(R?).

Proof. By definition one can easily see that
(8.6) EWrpyYrr) = SQ(R"E)I«D(&) |dg  for each &CF(RY).

Thus the lemma follows from the previous lemma, Fatou’s lemma, and the
dominated convergence theorem.

Lemma 8.3. Let R, be a positive constant and let
(8.7) R(t) = Rt@**, 1>0.

Let \p C3(R’) satisfy |[\rl|=1. Then we have the following:
(i) If p(x)=o(|x|~@*¥) (| %] —>c0), then

(8.8) D (Vrzn) = vR(E)'m(G)+o(t*) (t—>00)

where G denotes any open set containing the support of .
(i) If p(x)=0(| x| ~@*™) (|x| —>0c0), then

(8.9) D (Yrren) = O@*?) (t—>00).
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(iii) Let 0<B<a. If K2='£i'_m|x|‘+"<p(x)<°°, then
(8.10) D,(Yrn) =t {r(v, 8, K3)+-0(1)} (t—>0).

Proof. Let E denote the support of + and let §>0 be so small that
E*CG, where E°= {x& R?; |x—y| <& for some ye E}. By change of variables,
we get, for each >0,

®,(¥rxco) = RO | {1 —exp(—2{(R(t) (y— )10V dy)} s .
Since @(x)=0, we have
(8.11) @ (Vr) = PR (m(EY)+1), >0,

where Il=S(ES)F{I——exp(—tgcp(R(t) (y—%))¥(y)’dy)bdx. By an elementary

calculation one can check that I;=o(1) (z—o0) if @(x)=o(|x| “*™) and I,
—0(1) (t—>0) if p(x)=0(|x|~@*®), proving (i) and (ii).
To prove (iii) we observe that

D, (Yrren)
— weer {1 —exp(— e[ p(ROy— 1 D)y s )b

Let £>0 and K'>K, be arbitrarily fixed. Then an elementary calculation
gives us

t| ROyt Py (yydy < K'(1+o(1),
where o(1) tends to zero as t—oo uniformly for |x|>¢&. Thus we have
= EBD (i)
< v6Q,+v{ {1—exp(—K'(1+o(1)))}d

_ yend+r(d f/s) 2 {K'(1-+o(1))}@+9 (1—>c0) .

This completes the proof.

The following lemma, which follows from the above lemmas, proves the
lower estimates in Theorems 6.3’ and 6.4'.

Lemma 8.4. Suppose that the condition (D) is satisfied. Let B be a con-
stant such as 0<B=Z o and let

(8.12) K2=Illi—m |x|4*Pp(x) (0=K,<o0).

If B<a, then we have
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(8.13) —r(@, B, K>) g% 4@ Jog I(1) (Z0).
If B=a and K,< oo, then we have
(8.14) —oo <L ‘1%1 £74@* Jog I(t) (=0).

Proof. Let y=C7(R%) satisfy |[y||=1. Substitute +rpy, which is
defined by (8.5) and (8.7), for f in (8.2). Then the lemma is immediate
from Lemmas 8.2 and 8.3.

To prove the lower estimate in Theorem 6.2’ we prepare the following
lemma.

Lemma 8.5. Let A be a Borel subset of R* with m(A)>0, and let
fFEDE™] with || f||=1 satisfy f=0 a.e. on A°. Let €>0 be given. Then there
exist a compact subset E of R* and an element r of D[E™] with ||Wr|l=1 such
that p=0 a.e. on E°, m(E)<m(A)+¢&, and EO (Y, )< ED(S, f)+E.

For this lemma we refer to Lemmas 3.7 and 3.8 of Donsker and Varadhan
[2]. Although these lemmas are stated in the terms of their /-functions, the
relation between I-functions and Dirichlet forms is substantially given by
them [2; p.533] (see also Fukushima [4; Theorem 1.3.1]). Thus one can
easily see that the results of their lemmas are transferred to the present situa-
tion. So we omit the proof.

Now we prove the lower estimate in Theorem 6.2’.

Lemma 8.6. Suppose that the condition (C) is satisfied and that
(8.15) P(x) = o | ~¢*) (|| —>c0).
Then we have
(8.16) —k(y,L™) < 1‘%} t=4@+% Jog I(£)<0.

Proof. Let E be any compact set of R? and let + be any element in
DIE™] with ||[yll=1 such that =0 a.e. on E°. Let {p;}s>,CC7(R’) be a
family of mollifiers such that the support of each p; is contained in the open ball:
x| <8. Set YP=]||ps#r|| \ps*r, where * denotes the convolution. Then it
follows that 4= CF(R?), |l¥°[|=1, and the support of +* is contained in E?.
Define, for each R>0,

Vr(x) = R R %), xER?,

and substitute 4% for f in (8.2). Then, by Lemma 8.2 (ii), we have, for each
t>0,

(8.17) L) 2 |WhlIzE exp (—tR™*{EA W, ¥4)+o(1)}
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—®(v})) (R—>o0).

One can easily check that there exists a constant Ry>0 such that, for each >0,
R(t)=R#/@+® minimizes the function [tR™*C@(y?3, ¥*)+vR'm(E?)] of R>0
and the minimum value is equal to ##/¢@+*) .k, where
'k8 — (Vm(Es))d/(dH') (d__{—g) {28@)(11’8’ .\},.8) }d/(d+¢) .
a d

Substituting the above R(Z) for R in (8.17) and noting that ||} || ;1< R/*m(E®)¥?,
Lemma 8.3 (i) implies

1(2) = R(8)™"m(E®) ™" exp { =t/ (ky+o(1))}  (t—>c0).
Hence we have

lim £-4/@+ log I(£)=—k, .

T>o

Noting that m(E?) | m(E) and E®(Y?,4%)—>E(yYr,4r) as § | 0, we have
(8.18) lim £~%/¢+ Jog I(#)

=— {vm(E)} /@ (ci—Z_a) { % £, ) }d/<d+a> .

On the other hand, note that, for each open set G, there exists an element
u in PLY)C DEF] with ||u||;=1 such that A\(G)=EE (u,u)(see §3). Let >0
be given. By the definition of A, one can see that there exists an open subset
G of R’ with m(G)=1 and an element g in P[E®] with ||g|]|=1 such that g=0
a.e.on G° and £@(g, g)<\,+E. Further from Lemma 8.5 it follows that there
exist a compact subset E of R? and an element +» in PD[E®] with ||\||=1 such
that \»=0 a.e. on E°, m(E)<1+4¢, and &(yr,r)<N,+2E. Since the bound
(8.18) holds for these E and ), we have

lim £~4/@+* log I(t) = —k(v, L™)+o(1) (€ } 0)..
=

This completes the proof.

9. The upper estimates

First we will prove the upper estimates in Theorems 6.3" and 6.4'.

Lemma 9.1. Let X, p(x), {p“(dy): 0= Q}, and {q(x,0): xE R’, 0= Q}
be as in Theorem 6.1. Let B be a positive constant and let

©.1) K= lim|3]“? p(x) (0=K,S o).
Then the function I(t) defined by (6.6) satisfies
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9.2) —#(r,8,K) 2 lim t¢+? log I(t) (2 —eo).

Proof. It follows from (6.2), (6. 9) and the second inequality in (7.2)
that, for each >0,

k(t) = p(2,0,0)E[exp {—14(0, »)}]
= p(t,0,0) exp {—vSRd(l——e‘W("))dx} .

By an elementary calculation one can see that (9.1) implies
" SRd(l—e“‘”‘))dx > 191690 {ie(v, B, K1) +o(1)}  (t—>o0) .
Noting that p(¢,0,0) is a decreasing function of >0, we have the lemma.
It remains to prove the upper estimate for Theorem 6.2'.

Lemma 9.2. Suppose that the condition (C) is satisfied and that Sndqn(x)dx
>0. Then the function I(t) defined by (6.6) satisfies

9.3) lim ¢~4@+* log I(t) < —k(v,L™).
t-yoo
Proof. Calculating the expectation with respect to P in (6.6), we have
94) I(t) = p(¢,0,0)Eq:5[F(2)], >0,
where

14
F(t) = exp(— | (1—exp{~{ o, —y)dsh)ay) .
We can prove the following estimate:
(9.5) lim ¢+ log E[F(t)] < —k(v,L™).
tyo

This has already been substantially obtained by Donsker and Varadhan [2] in
the case when the process X itself is a d-dimensional symmetric stable process.
But modifying their proof, we can show that (9.5) holds in our general case
(we will give a complete proof of (9.5) in a forthcoming paper).

Here is Nakao’s trick which reduces (9.3) to (9.5). Note that if 0<a<1,
then F(¢)< F(at) and F(at) is &, ,1-measureable in the notation of §2. Then
it follows from (9.4), Theorem 2.2 (iii), and (3.7) that, for each 0<a<1,

I(t) < p(¢,0,0)Eq:o[F(at)]
= E[p(t—at, X, 0)F(at)]
< p(1—a)1,0,0)E [ F(a)] .

Hence, by (9.5), we have
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Tim ¢~4@+* log I(¢) < lim t~%@*+" log E [F(at)]
t-»o $-»00

< — @@ (v, L®)

for 0<a<1l. Letting a1 1, we have the lemma.
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