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1. In the present work we consider a Real analogue of J-homomorphisms
in the sense of [3]. We use here the notation in [4], §§1 and 9 and [9], §2 for
the equivariant homotopy groups which are discussed by Bredon [5] and Levine

[10]. Moreover we shall use notations and terminologies of [4], §1 without any
references.

Let us denote by GL(n,C) (resp. GL(0,C)) the general linear group of
degree n (resp. the infinite general linear group) over the complex numbers
with involutions induced by complex conjugation. Let X be a finite pointed
7-complex. Then, by following the construction of usual J-homomorphisms
(cf. [13], p. 314, [2]) we can define homomorphisms

(1.1) J i [Z2°X, GL(n,C)]" — [Sr+men X, 5™
and J et [3#9X, GL(o0, C)]" — 7%°(3#1X)

for p=0 and ¢=1 where let z3°(Z?9X)=lim,,.[Z?*"e* X, 3""]". We now
give definitions of J , and J, below. Let Q7"="" denote the subspace of Q™"
>"" consisting of maps of degree d in the usual sense. Let v be the 7-map of
™" induced by the correspondence of R™" such that (x;, -, &,,) > (%1, ***, X1,
—,,). Byadding v to the elements of Q7'"=™" with respect to the loop addition
along fixed coordinates of ™" we have a 7-map t: Q7"=""—-Q§"3"". Then
we obtain [, , by assigning to a base-point-preserving T-map f: 3?X—GL(n,C)
the adjoint of the composite

4 t
El’qui GL(”,C) C erz,nzn,n = Qg,nzn,n

where 7 is the canonical inclusion map.
As is easily seen the diagram

[EP-qX’ GL(n_I_l’C)]T ]R"H—l; [2p+n+l,q+n+1X, 2n+l,n+l]7

1 Jx Ten t =
[Eﬂ:IIX, GL(n, C)]"' S [2P+mq+nX’ En.n]’f

is commutative under the identification X""°ASP9=37#5t1 where j4 is the
J
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homomorphism induced by a canonical inclusion map j: GL(n,C)C GL(n+-1,C)
and 3! is the suspension homomorphism ([4], (7.2)). Therefore, by taking
the direct limits we get a homomorphism

J ot lim,, [S#2X, GL(n,C)]" — z(3#1X) .

Also, as X is compact we have a canonical isomorphism p: lim,,.[Z?X,
GL(n,C)]'—=[Z*%X, GL(>0,C)]". So we define J, to be the composite Jp p~"

Taking X=.5"in (1.1) J; becomes the homomorphism from 7, ,(GL(0,C))
to z; .. The aim of this paper is to prove the following theorem for the homo-
morphism

(1.2) J&: ”2p—2k,zp+2k—1(GL(°°aC)) = Ty ak,2ptar-1
for p=k=0 and p+k=1.
Theorem. Theimage ] o(75y—34 2p+2-1(GL(2, C))) of the homomorphism (1.2)
is a cyclic group of the following order:
m(2p) if either p, k are even or odd
%m(Zp) if p is even and k is odd
m(2p) or 2m(2p) if p is odd and k is even
where m(t) is the numerical function as in [1], I1, p. 139.

2. Let X be a compact pointed T-space throughout this section.
Let KR denote the Real K-functor [3]. Then a similar proof to the com-
plex case gives rise to a canonical isomorphism

@2.1) [X, GL(c0,C)]" =~ KR(=*'X)

(cf. [8], Chap. I, Theorem 7.6) and so we may consider J; of (1.1) the homo-
morphism from ﬁ"(E""’X) to z7°%(=*?X) through this isomorphism. In
particular, there exist isomorphisms

22)  myuspiu-i(GL(e0,C)) = KR(# 2+t = KO(S*) = Z

by (2.1) and the Real Thom isomorphism theorem [3]. Similarly we have
isomorphisms

(2.3) 74y-(GL(c0,C)) = R(S*) = R(S%) = Z

in the complex K-theory.

Let r: 7, (X) =7, (X) and p: 7} o(X)—75,,(X) denote the forgetful
homomorphisms [4,5]. Then, from the above discussion we have the follow-
ing commutative diagram:
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KO(5*) ¢ R(S")
|~ b b=

(2-4) Top—2k 2p+2k—l(GL(°°’C)) - 7741,—1(GL(°°,C))
VT " L Jo

s s
T2p—2k 2p+2k—1 Tap—

where ¢ is the natural complexification homomorphism and J; is the complex
stable /-homomorphism.

In the following we identify Z°*AZ”? with Z7*#*¢  Regarding = as
the one-point compactification of R"® with oo as base-point, the quotient ='°/
{0, ==} is homeomorphic to S*V S* as T-spaces where S'\/ .S? has the invloution
T interchanging factors. For a base-point-preserving map f: S?**— X, define a
7-map f: 31— X by the composition

1
Spd — THLOA SLOA S0 /,\1/_\)121;—1.0/\(21.0/ {0’ Oo})/\ 0.4

~ (NS ATV (A s Az T x
for p, g=1 where = is the natural projection, 7 is the involution of X and 7’
is the involution of (Z?"1°AS'AZ")V(Z27 1A S'AZ"9) induced by that of
SprLatl=3p"10A S'AS" and T. Then the correspondence fi—f determines a
homomorphism

(2.5) a: mye (X) = 7, (X)

for p, g=1 (cf. [5], p. 286, [4], (10.5)).

Let Jy i m4y-1o(GL(n,C))—>m4y_142,(S?") be the complex J-homomorphism.
Let a,: 7y, GL(1, C))—>7m5y gt 2p12e-1(GL(m, C)) and a2 74y 1124(S*) =725 241,25
+2e-14a(2"") denote the homomorphisms of (2.5) for X=GL(n,C) and X=3""
respectively. Then we have the commutative diagram:

71y A(GL(,€)) 2 134 3ps-(GL(, C))
L Jow | Jan

7f4p—1+2n(S2") — ”2p—2k+n,2p+zk—1+n(2”'") .
The commutativity is proved as follows. For a 7-map g: > -%20*2k"1,GL(n,C)
we denote by adg the adjoint of the composition: 22"‘2"'21’“"‘1§>GL(11,C)CQ’,""

Z”'”LQS’"E”'”. Then [, is given by the assignment gi—adg as in §1. In the
above, forgetting the Z,-action we get the homomorphism J;,. Hence we also
use the same notation for maps in the complex case. Let us define a map
A S”/\SZIJ—NZAS”/\S2p+2k—1__)S”/\S”/\S2p—2k/\ S2p+2k-—1 by 7»(“1/\7)1/\142/\ 7)2)=
M AU NNV, (U, u, € S, v, € S?7% 9, §S#+%°1) And we define a map
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f': St 15 G2 by f'—(adf)A for a map f: S '—>GL(n,C). Then f'=adf
since the degree of A is 1, and so f ':T;Ef Besides we see easily that f'=adf.

Therefore zﬁ]:Tadf which implies a, [y ([f])=J ct.([f]) where [f] denotes
the homotopy class of f.
Here, by taking the direct limits we get the commutative diagram

7ap-r(GL(9,€)) > 70p-3s sp12s A GL(,C))
(2.6) Vv VJr

s
T4p-1

s
T 2p—2k 2p+2k—1

where each o is defined as the direct limit of @,. As in proof of the commuta-
tivity of the above diagram, we can show that the lower homomorphism ¢ is
well-defined.

By the definition of ¢ it follows that the realification homomorphism 7: K~

(§*~1)—KR™(z?r2k20+2%-1)[121 coincides with a2 74, (GL(o0, C)) =y 2p126-1
(GL(~,C)) through the natural isomorphisms. Because, yra=1-+%*, Jr=c, cr=1
+* and ¢ is injective where * is the operation on K(X) defined in [12], §2.
Thus, by (2.2), (2.3) and (2.6) we get the commutative diagram

K(S‘“‘) Eé(SUe)
)= L =
(2.7) 74y 1(GL(0,C)) = 73534 2p120-1(GL( 2, C))
Vo Ve
7’2;-1_‘—_-—) ﬂgp-yz,zﬁz;e—l

where 7 is the realification homomorphism.

Let GL(=, R) denote the infinite general linear group over the real numbers
and J, denote the real stable J/-homomorphism in stable dimensions 4p-1. Let
us put

&n=Jx1), A=0,UorR,
identifying z,,_,(GL(o0, R)), my,1(GL(>°,C)) and 7y,_y 5p12-1(GL(0,C)) with
Z. 'Then, from (2.4), (2.7) and [12], (2.2) we see that

2g, if kis even

2.8 -
@8) () {gR if & is odd

gy if kiseven
and = {
V)= 0 ifkis odd
Furthermore it is known that
2g, if piseven

2.9 :{
(29) Br= 1y, ifpisodd
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and the order of g, is equal to the number m(2p) ([1], II, Theorem (2.7) and
[11]) which is divisible by 8 ([1], II, p.139).

Let o(p,k) denote the order of the image of (1.2). Then, by (2.8) and
(2.9), we obtain

Lemma. For p>k,
dm(2p) if either k, p are even or odd
o(p,k) = {2dm(2p)  if kis even and p is odd
Fdm(2p) if ks odd and p is even

where d=l or 1.
2

We shall give a proof of Theorem in §§3-5.

3. Proof for p>k, k odd and p even. By [5], Fig. we have an exact
sequence

Y

Top-ok-1,2p+2k —> Tdp-1—> Tap_2k 2p+2k—1
(cf. [4], (10.5)). Therefore, if we suppose that o(p,k)z%m(Zp) then a(% m(2p)
Zo) :%m(Zp)ngo by (2.8), (2.9) and so there exists an equivariant map
[ Zppmdkitmapttkin 5 s for n sufficiently large
such that the image of the homotopy class of f by ) is %m(Zp)go.
Since k is odd,

ER/(EZp~2k—l+n,2p+2k+ﬂ) o~ I’{‘O’(S4k+l) — O
and ﬁ(zZi)—Zk—l+n,Zp+2k+n+l) ~ IEb’(SUH—Z) — O i

Therefore we have the commutative diagram

0 (_ﬁ(zn,n) (_ﬁ(zn,n U szp—z;;—1+n.zp+2k+n) (__KAE(EZp—Zk—1+n,2p+2k+n+l) <0
o f =0
c | = c c
(P IZ(SZ”) ¢ K(Szn U CS4p-—l+2n) K(S4p+2n) 0
f/

where f’ is a representative of %m(Zp)go, CA4 is the cone of 4 and c¢ is the natural

complexification homomorphism ([12], §2). This diagram implies that e (f")
=0, which contradicts to the fact that e( f’):% ([1], IV, §7). Hence we see

by Lemma that o(p,k)z—;m(Zp).
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4. Proof for p>k and p, k even or odd. Using the notation of Landweber
for the stable homotopy groups [9], by [5], Fig. and (12) we have the following
commutative diagram in which the columns and the rows are exact sequences:

0 0
hép_z;,_l,t,ﬁu@ Tip-1 C—g* h%,_zk,tmk-l
R I
T2p-2k-1,2p+2 > Tap—1 7> T2p—2k,2p+2k-1
for k0. (A}, and =}, are Bredon’s z¥,,, and =, , respectively.) If we
assume that o(p,k)z%m(Zp), then a(%m(Zp)go)zém(Zp)gR=0 by (2.8), (2.9)
and therefore there is an equivariant map
fr Spsovenzpitkin [S0.2p42kkn > 07 for n sufficiently large

such that the image of the homotopy class of f by * is ;- m(2p)go.

Consider the diagram

Ezp—zk—1+n,2p+2k+n/20,2p+2k+n

f
t = f\x

221)—2k—1+n,2p+2k+n > 2”,”

where f=f= and 7 is the map collapsing 3"?*?%+# to a point.

Putting
A= k\éz (Ezﬁ‘Zk—1+n,2p+zk+n/20,2p+2k+n) ,
B = kséz (2217—212—1+n,2p+2k+n) ,
C= I’(\O/Z (22#~2k_1+"v29+2k+n+1)
and taking

n=0 mod8,
we have by [9], Lemma 4.1
A ~ KO—Zp—Zk—n—l(PZp—Zk—2+n)
where P" is the real projective m-space and we have by [6] and [9], Theorem 3.1

0 if p=2¢, k=2/ and ¢/ is odd

4= or p=2q+1, k=2I+1 and g+ is even
Z,PZ, if p=2q, k=2[and q+/is even

or p=2¢g+1, k=2/41 and g+!is odd,
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B=Z7Z C=2, ifp,kareeven

and
B=Z C=0 ifp,kareodd.

In any case 4, C are torsion groups and B is a free abelian group. Hence

f*=n*f*: KO, (S"")—>B is a zero map since z*: A—>B is so. And therefore
we have the commutative diagram

0 - k\ézz(zn,n) - .;{\622 (2”’” l;J szp—zk-l+n,2p+2k+n) - C
(4.1) P } _r I} p L.,
0 < KO(SZ") -— KO(SZn U CS'“"”Z”) -— KO(S“”""”) -0
il ~7
where f' is a representative of %m(Zp)go and p is the forgetful homomorphism.

From [9], Theorem 3.1 and Proposition 3.4 we sce that 1’50’22(28’”’8’”) is a
free RO(Z,)-module with a single generator u for which the Adams operation r*
satisfy

ks"‘u+%k3’”(f1— Wu if & is even

(4.2) V() = :
Komu-t (kom—kim) (H—1)u i k is odd

for m>0 where H is a canonical, non-trivial, 1-dimensional representation of
Z,. Since p(x) becomes a generator of KO(S'*"), (4.1) and (4.2) imply that
ex(f)=0. On the other hand e%( f’)=% ([11, IV, 87). This contradiction and

Lemma show that o(p,k)=m(2p).

5. Proof for p=k. Considering the following diagram

Zopr(GL(0,C)) 2 7, ((GL(o0, R))
Ve V Jo

s s
Toap-1— > Wiyl

where @ is the fixed-point homomorphism [4,5] we see that this diagram is
commutative and therefore o(p,p) is divisible by m(2p).

Let us denote by Q7S” the space of base-point-preserving maps of S”
into itself of degree d, by GL(n,R) the general linear group of degree n over
the real numbers and by GL(#n, R), its identity component. Then the real J-
homomorphism [, ,: 74,_1(GL(n, R))—>m,,_1.,(S") is induced by the composition

7 ,

t
GL(n, R),CQ!S" - Q18"
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where 7’ is the inclusion map and ¢’ is a similar one to ¢ in §1 ([2], §1). Par-
ticularly, if n=4p+-1 then we may consider J, , the stable real J-homomorphism
Jo: iy 1i(GL(o0, R))—mi, 1.

For a map f: $*7'—-01S", define a map f': S#'—-QpP"3"" by f'(x)=f(x)
A f(x) (xS*7"). Here we regard S" A S" as a space with involution switching
factors and then S"A S"~Z"" as T-spaces. The assignment fi— f’ determines
a homomorphism o’: 7, ,(Q1S")—>m, ,-,(Q7"=""). And so we define a homo-
morphism

: 72'41,_1(0?15'”) id 71'(8)’4’_1

by the composition
’

w
7[4»_1(0’1‘S") b 7[0'4!,_1(01”"2“'”)

t* n nn

- ”o,4p—1(ﬂo’"2 ) — 71’3,41;—1

where the unlabelled arrow is the obvious homomorphism. Then we can
easily check that the diagram with the natural isomorphism =, ;(GL(n, R))
=m,,_(GL(>°, R))

ToapA(GL(e,€)) Z w4y (GL(o, R)) = m4_(GL(n, R)
LT Vg

)
71'3,4;;-1 7f4p—1(Q'1'S")

is commutative for z=4p+41. From the commutativity of this diagram and
the fact that J, factors into the following three homomorphism:
i; nQn t’,k nQn
774p~l(GL(nJ R)) — 7[4p—1(‘QlS ) = 7’41;—1(QOS )
&= 7f4p—1+n(S”)
for n=4p+1 ([12], 81), it follows that m(2p) is divisible by o(p,p). This

completes the proof of Theorem.

6. Finally we observe examples for the case k& even and p odd.

By [5], (8) and [7], Table 1 we obtain
A3y = Zypand A§ 5 =< Zyy,

using the Landweber’s notation and so, making use of the exact sequence of
[9], p-129, we have

myq =< Ly and 7§ 5 =< Ly, .

Since m(2p)=24 and m(2p)=>504 if p=1 and p=23 respectively, we get by Lemma



and
fore

]
[2]
B3]
(4]
(5]

[6]
(71

(8]
[91

[10]

(11]
(12]

[13]
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the above isomorphisms o(p,k)=m(2p) for (p,k)=(1,0), (3,0). We there-
conjecture that o(p,k)=m(2p) for k even and p odd generally.
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