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1. Introduction

Recently many of the geometric aspects of the classical theory of Fuchsian
groups have been extended by Eberlein and O'Neill [5] and by Eberlein [1]-
[4] to a class of simply connected complete riemannian manifolds including those
with sectional curvature K^c<Q. In [2] and [5] it was shown how to com-
pactify any rc-manifold in this class to obtain a topological w-manifold M=
M\jM(oo) homeomorphic to Dn. Since the ideal boundary M(°o) consists

of classes of asymptotic geodesic rays, any group of isometries Γ acting on M
extends naturally to a group of homeomorphisms of M.

In this paper we consider discrete groups Γ of isometries possibly con-
taining elliptic elements acting on manifolds in this class. Given a non fixed
point pQ of Γ, let -F0 denote the open Dirichlet fundamental region for Γ based
at/>0 and let G0=£/(F0) where the closure is taken in M. Let d°°(F0) denote those
points of the cone closure of G0 in M lying in the ideal boundary M(°o). We
first prove (Theorem 3.2) that x^Q°°(F0) if and only if all the points of the
orbit Γ(/>0) lie on or outside the horosphere L(pQy x) passing through pQ deter-
mined by x. One consequence of this result is that axial fixed points of Γ
cannot lie in 9°°(F0). Thus the union of the cone closures of the translates of
the Dirichlet fundamental region need not pave M.

Motivated by recent results in the theory of Fuchsian groups, we then restrict
our attention to geometrically finite discrete isometry groups. Here we will say
that Γ is geometrically finite at p0 if the Dirichlet fundamental region F0 for Γ
based at p0 has only finitely many sides. If Γ is geometrically finite at pϋ and
^eL(r)n3°°(F0), then x in fact lies in d°°(bd F0).

It is a classical result of automorphic function theory ([8], p. 133) that if
the fundamental polygon for a Fuchsian group is finite sided, then the boun-
dary points of the fundamental polgyon in S1 are either ordinary points or para-
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bolic vertices. Since the closure in M(oo) of bd F0 in the cone topology is a
finite set when dim M— 2, using a result of Eberlein [1], Lemma 4.2b, we are
able to show (Theorem 5.4) that this classical result is valid for discrete oiientation
preserving geometrically finite groups of isometrics acting on uniform visibility
surfaces without conjugate points.

2. Visibility manifolds and the Dirichlet fundamental region

The purpose of this section is to fix some necessary notation and to recall
some concepts from [l]-[5] that will be needed in the sequel. First let M be a
complete simply connected riemannian manifold without conjugate points and
let d : MxM-^R denote the distance function induced on M by the riemannian
metric. The hypothesis M has no conjugate points holds here iff every pair of
distinct points of M may be joined by a unique geodesic segment (up to para-
metrization). Tesselations of such manifolds induced by discrete subsets
have been studied by Ehrlich-Im Hof [6], [7]. Let Γ be a discrete group of
isometries for M. Then Γ acts discontinuously and properly discontinuously
on M and is also countable. Thus we may fix the notation Γ= {φ{ ίe/}
for a suitable set of nonnegative indices / and will in addition set φ0 = Id and
φ_i=φi~

1 for each /Φθ. Let p~ <pi(pQ) for /Φθ. The (open) Dirichlet region
FQ for Γ based at pQ is then defined by

F0 = {pCΞM d(p,pQ)<d(p)pi)\fi^O} .

Let G0 denote the closure of F0 in M and let bdF0=G0—F0. The sides of the

Dirichlet region may then be defined as follows (cf. [7]). Set

St = {ptΞM d(p,p0) = d(p,Pi)<d(p}pk) V&ΦO, i] .

If Sj is nonempty, we call S{ a side of F0. It was shown in [6], Theorem 3.19
and [7], Corollaire 2, that bd F0= (J, cl S{.

We will adopt the usual convention in this paper that all geodesies will be
parametrized with unit speed. It is also shown in [6], Prop. 2.4, [7], section 2,
that if c : R-*M is any geodesic with c(0)=pQy then c intersects every bisector

M(ρ»pύ = {p(ΞM d(p,p0) = d(p}ip}}

transversely and at most once. This fact will be necessary for the proof of
Theorem 3.2.

For the purpose of extending results from automorphic function theory to
riemannian manifolds, it has been realized that the class of simply connected
complete riemannian manifolds without conjugate points is too large but also
that the class of simply connected complete riemannian manifolds with negative

sectional curvature is smaller than needed, cf. Eberlein-O'Neill [5]. A basic
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problem with the class of manifolds without conjugate points is that the tricho-

tomy between elliptic, axial and parabolic elements of a Fuchsian group does
not extend to all manifolds of this class. This trichotomy does however hold
for a class of manifolds including those with sectional curvature K^c<0 which

Eberlein has defined and studied in a series of papers following [5]; see for
instance [1] and [5] for a detailed discussion of this trichotomy and also an

investigation of axial and parabolic isometries extending the classical results

for Fuchsian groups to this class of manifolds.

We briefly recall some notation for and properties of manifolds in this
class needed in the sequel. In [1] and [3], a visibility Hadamard manifold is

defined to be a complete simply connected riemannian manifold with sectional
curvature K^O everywhere satisfying the Visibility Axiom of Eberlein-O'Neill

[5], Defn. 4.2, p. 61. A uniform visibility manifold without conjugate points is
defined to be a complete simply connected riemannian manifold without con-

jugate points satisfying the Uniform Visibility Axiom of Eberlein [2], Defn.
1.3, p. 153. Eberlein and O'Neill have shown how to compactify such mani-
folds by adding an ideal boundary M(oo) to M consisting of asymptotic classes

of geodesic rays. They have defined a topology called the cone topology ([2],

p. 155) for M=M\jM(co) which makes M compact. Another topology, in

which M is noncompact, called the horocycle topology has also been defined by
Eberlein and O'Neill [5], p. 55, and used by Eberlein in studying the geodesic
flow. We will let Jp x denote the unique unit speed geodesic ray with

Ύp χ(Q)=p and 7p> x(°°)=x<ΞM(°°) as in [3], p. 5. In [1], Prop. 2.8, Eberlein

has shown that the function a: MxMxM-^R defined by a(p, my q)= d(my q)
—d(m y p) has a continuous extension a: MχMχM->R using the cone topology

on M. The horosphere L(py x) through p determined by x EΞ M(°°) may then be

defined as

L(py x) = {m(=M a(p, x, m) = 0} ,

cf. Eberlein [3], Defn. 1.10, p. 6. The function fx=a(p, x, •) is called the

Busemann function determined by γ/,,* and may be calculated as fx(m) =
limt^00(d(fγp x(t)y m)—t). Thus horospheres are level sets of Busemann functions.

One advantage of the cone compactification of M as M=M (J M(oo) is

that a group of isometries Γ for M may be extended to act as a group of home-
omorphisms of M. Given #eM(oo) and φ^Ty if x is represented by the

geodesic ray γ, then φ(x) is represented by the geodesic ray 9507, Using

this extension, Eberlein and O'Neill [5] defined elliptic, axial and parabolic

isometries for visibility manifolds. Following Eberlein [3], Defn. 1.6, we may
classify a nontrivial element φ of a discrete group of isometries for a visibility
Hadamard manifold (or a uniform visibility manifold without conjugate points)
as elliptic if φ has a fixed point in M, axial if φ has no fixed points in M and two
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fixed points in M(o°), and parabolic if φ has no fixed points in M and one fixed
point in M(°o). For a Fuchsian group acting on the Poincaire unit disk, this
is equivalent to the usual definition of automorphic function theory.

Finally we need some notation for the boundary points of the Dirichlet
fundamental region in the ideal boundary M(oo). Given a subset K of My we

will denote by cl^K) the set of all x^M(°°) that are in the cone closure of K in
M. We will denote the boundary of the Dirichlet fundamental region in M(oo)

by d00(F0)=cL(GQ) and also set Q°°(bd FQ)=cL(bd F0).

3. The Busemann function and limit points of the Dirichlet region

In this section we assume that MM, /z>2, is either a Hadamard manifold or

a uniform visibility manifold without conjugate points. This insures that if
7 is any geodesic ray in M and p£ΞM is any point, then there is a unique geo-
desic ray σ asymptotic to γ with σ(Q)=p. This then allows us to utlize the
Eberlein-O'Neill ideal boundary M(oo) and compactification M of M and, more-

over, the function a : MχMχM-*R defined in section 2 is continuous ([1],
Prop. 2.8).

An immediate consequence of the transversality of intersection of geode-
sies through p with the bisector M(p, q) noted in Ehrlich-Im Hof [6], Prop. 2.4

or [7] is the following proposition. Let Γ be a discrete group of isometries
acting on M and let p0 and F0 be chosen as in section 2.

Proposition 3.1. Let c : [0, °o)-+M be a geodesic ray with c(Q)=p0 and
c(oo)=#eM(oo). Let fχ=a(p0jX, •) : M-+R denote the Busemann function

defined by the ray c. Either

(i) c[0, °°) ά contained; FQ, or
(ii) there exists a t0>0 such that c(s)<£F0for all s>t0. Moreover if c meets

the closure St of the side S{ of F0, then f x(pi)<®.

Proof. This follows easily from the fact that any geodesic through P0

intersects with M(pQypi) transversally and at most once, together with the stan-
dard fact that the function t\-^d(piyc(t)) — t is strictly monotone decreasing for
cΦΎPθt p. since M has no conjugate points.

With the aid of Proposition 3.1 we now prove

Theorem 3.2. The following are equivalent :

(1) *e3~(F0)

( 2 ) γPθί Λ[0, oo ) is contained in F0

3 *=<*> x , ^ 0 σ r all ίe/.

Proof. It is convenient to prove the theorem by showing (2)<=>(3) and

(1)«=>(3). Let 7 — 7p0tX during the course of the proof. First (3)==>(2) is
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immediate from Prop. 3.1. Conversely if γ[0, °°) is contained in F0, then

t=d(p0,<γ(t))<d(pi,7(t)) for all ί^O so that f x(p^=a(p» *>A)^0. Thus

(2)-K3).

If (3) holds, then γ[0, oo) is contained in FQ by (2) so x^d°°(F0) as the cone

limit point of the sequence {7(n) n^Z+}. Thus (3)=§>(1). Now suppose
tfe9°°(F0). Then there exists an infinite sequence {qn}c:F0 converging to x
in the cone topology. Since qn^F0, we have a(p0, qn,pi)^Q for all n and i.
Thus /,(£,) ̂ lim^oo a(p0, q^p^O for all *<Ξ/thus establising (1)=^(3).

Condition (3) of Theorem 3.2 means geometrically that all the lattice points
T(p0) lie on or outside the horosphere L(p0, x) when x^ d°°(FG). It is thus natural
to consider the consequences of pi lying on L(pQy x) when #e 8°°(F0). One conse-
quence needed for section 5 is

Corollary 3.3. Ifx^Q°°(F0) and pi <Ξ L(p0, x), then φ-i(x) e 8~(F0).

Proof. Since pi^L(pOJx), it is known that a(p0, x, )=a(pi9x, •)• On

the other hand, a(pi9 x, )=a(φi(p0), x, )=«(Po> ?>-.•(*)> 9>- ( )) The corollary
is then immediate from (1)<^(3) of Theorem 3.2.

4. Limit points of Γ and the boundary of the Dirichlet region

Let M be a visibility Hadamard manifold or a uniform visibility manifold
without conjugate points. Let Γ be a discrete group of isometrics (elliptic
isometrics allowed) for M. We may define the cone and horocycle limit sets
of Γ, denoted by L(T) and Lh(Γ) just as in [5] even though Γ is allowed to
contain elliptic elements. The discreteness of Γ implies that all the limit
points must be in M(oo) even in the presence of elliptic isometrics.

DEFINITION 4.1. Let x<=M(°°). Then #eZ,(Γ) (resp. x<=Lh(Γ)) iff there
is an infinite sequence {/>,-(„)} CΓ(/>0) with />,-(„)-># in the cone (resp. horocycle)
topology for M.

An immediate consequence of (1)<^>(3) of Theorem 3.2 is the following

Proposition 4.2. //jce9°°(F0), then

Proof. If #e9°°(-F0), then all the lattice points^-, ίe/, lie on or outside
the horosphere L(poy x) by Theorem 3.2. Thus no subsequence of lattice points
can converge to x in the horocycle topology.

Corollary 4.3. If x is an axial fixed point of Γ, then x&d°°(F0).

Proof. This follows from Prop. 4.2 and the easily established fact that if
x is an axial fixed point, then
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REMARK 4.4. Since #(/>„#, }~oί(pt><>φ-i(χ}ιφ-i( )}ι a stronger result is
easily established using Theorem 3.2— (3). Namely if x is an axial fixed point

of Γ, then x$Ξ U te/^OptC^o))- Thus the closures of the Dirichlet regions is M
do not necessarily pave M.

We now make a definition abstracted from Kleinian group theory. First

set Fix(Γ)= {m<=M φi(m)=m for some z'ΦO} . Then M— Fix(Γ) is known to

be dense in M (cf. [7], [6] Lemma 4.2). Consequently it makes sense to define

the following concept.

DEFINITION 4.5. The discrete group Γ is geometrically finite at p0 iff

/>0<$Fix(Γ) and the Dirichlet region for Γ based atp0 has only finitely many sides.

An important consequetice of geometric finiteness is that if infinitely many

of the geodesic segements rγPθt Pn intersect bd FQ, then infinitely many points

ΎP<>,P» ^bd F0 lie on a single side of FQ Eberlein [1] has utilized this most

effectiviely in his study of finitely connected surfaces, cf. [1], Theorem 4.2.

In the present context, we need the following result for use in section 5. A

proof may be found implicitly in chapter 4 of Eberlein [1] for finitely connected

surfaces.

Proposition 4.6. Let Γ be geometrically finite at p0. Suppose

8~(.F0).

Proof. Since JC^L(Γ), wτe may find />,•(„)—*# in the cone topology.

Since pi(n^FQ, we have φ (γίθf ίίCl0 Π bd F0)=l for all n. Then setting

{ri(n)} = Ύp0> pxri ftbd F0, since Γ is geometrically finite at p0y we may assume

all the r^'s lie on the closure Sy of a single side Sj of F0. If {r^} contained

a subsequence convergent in M, it would follow that 7/>0 >*Γ)S ; Φ0 whence

Λ0; )<° Sίnce x^d°°(F0)9 this violates (1)=^(3) of Theorem 3.2. Thus some
subsequence of {rί(lί)} converges to x in the cone topology. Therefore

5. Geometrically finite Dirichlet regions and parabolic fixed points
on Hadamard surfaces

It is classically known in automorphic function theory that if the fundamental

region for a Fuchsian group is finite sided, then the boundary points of the

fundamental region are either ordinary points or parabolic vertices (Lehner [8],

4J, p. 133). In this section we extend this result to discrete orientation pre-

serving groups of isometries acting on uniform visibility surfaces without con-

jugate points. Some preliminary results are in order.
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Lemma 5.1. Let M be a Hadamard surface or a uniform visibility surface

without conjugate points. Let Γ be a discrete group of ίsometries acting on M.

If Γ is geometrically finite at poy then d°°(bd F0) is a finite set.

Proof. It is known [4], Prop. 2.7, that each bisector M(p0,pi) has exactly

two cone limit points in M(oo). Since Γ is geometrically finite at p0ί only

finitely many bisectors determine the sides of F0.

The following proposition may be implicitly found in Eberlein [1], Lemma

4.2b, stated for finitely connected surfaces from the viewpoint of (2) of our

Theorem 3.2. Eberlein's proof however works for arbitrary discrete groups of

isometries.

Proposition 5.3 (Eberlein). Let M be a visibility Hadamard surface or a

uniform visibility surface without conjugate points. Let Γ be a discrete group of

isometries for M. Suppose that Γ is geometrically finite at pQ. If x^L(T)ί~]

d°°(bd FO), then infinitely many points of the orbit T(p0) lie on the horosphere

L(Po>x)

Proof. Just use (2)«(3) of Theorem 3.2 and Lemma 4.2b of [1].

We are now ready to prove along the lines of Theorem 4.2 of [1]

Theorem 5.4. Let M be a visibility Hadamard surface or a uniform visibility

surface without conjugate points. Let Γ be a discrete orientation preserving group

of ίsometries for M. If Γ is geometrically finite at pQy then every point of d<x>(FQ)

is either a cone ordinary points of Γ, i.e., lies in M(°°)—Z,(Γ), or is a parabolic

fixed point ofT.

Proof. Let A=L(Γ)Γ\d°°(F0). In view of Prop. 4.4, the set A=L(Γ)Γ\

Q°°(bd FQ). Since Γ is orientation preserving, no elliptic isometry in Γ can fix

any point of Λf(o°). Also no axial isometry can fix any point of A by Cor.

4.3. Thus it is enough to show that given any x^A, we have φ(x)=x for some

φ^T— {Id} to establish the theorem. By Prop. 5.3 and Cor. 3.3, the set

B={(p{<=r φ_i(x)<=d°°(F0)} has infinite cardinality. On the other hand,

B={φi<=Γ φ_i(x}<=d~(bdFQ}} so that the finitensess of Q°°(bdF^ implies that

φ-i(x)=φ-j(x) some nonzero i,j^I, I^FJ. Thus x is fixed by a nontrivial

element of Γ.

Finally we note that Proposition 4.3 of Eberlein [1] establishing the ex-

istence of a nonexpanding nonparabolic geodesic ray on infinitely connected

visibility Hadamard surface shows that the requirement "Γ is geometrically
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finite at/>0" cannot be ommited from the hypothesis of Theorem 5.4.
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