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1. Introduction

In this paper we study the initial value problem to Vlasov’s equation,
LA eV +a V.- Vef* = 0, G nE)E[0, )X R'XR’,

@y 1Ae=8] (Fess—rExneME @90, )xR",

flimo =fo*,8), (x,E)eR"XR",
V. is uniformly bounded and V,$—0 (|x|—>c0).

Here the unknowns are the functions f*=f*(t,x,&) and ¢=q(¢,x) where t=0,.
x=(%,%,, ", %,)ER", E=(£1, &, -, E,)ER", andV,=(0/0x,,3/0x,, -+-,0/0x,), Vi=
(8/0&,,0/0&,, ---,0/0E,), A,=0?[0x]-0%|0x3+ ---+-0%/0x}, while - denotes the inner
product in R" and a*, BER. Physically, (1.1) describes the evolution of a
rarefied plasma in self-consistent field approximation, where f* are respectively
the densities of ions (4) and electrons (—) of a plasma at time ¢ in the space of
position x and velocity &, and ¢ is the potential of electric field of the plasmaP.

If we assume that f*=0, (1.1) reduces to the initial value problem to the:
Liouville-Newton equation,

%+£-v,f+avx¢-vsf =0, (1,%,5)€[0, )X R"XR",

po=8{ fitxB)E (00, <)% R,

fl t=0 =f0(‘xy‘§)) (x,E)ER”XR" )
V. is uniformly bounded and V,$—0 (|x|—c0),

(1.2)

where f=f(t,x,£), p=¢(t,x), and o, BER. (1.2) is a special case of (1.1), but
has an independent physical interest in connection with the dynamics of steller

D a*=TFe/m*, f=—4rme where e is the unit of electric charge, and m* the masses of the

ion (+) and the electron (—), and @a=—1, f=4znrm where 7 is the gravitational constant
and m the mass of the particle.
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systems and with the birth of stars where f and ¢ mean the density of mass
particles and the potential of gravitational field respectively®.

The initial value problem (1.1) has been studied first by Iordanskii [7] for the
-one-dimensional case #=1. Assuming that f* is known, he proved that (1.1)
has a unique classical solution in the large in time. His method of the proof, how-
.ever, takes advantages of the peculiarity of n=1 and can not be applied to higher
-dimensional cases.

The three-dimensional case has been solved by Arsen’ev, on the existence of
‘weak solutions in the large in time ([1]), and also on the existence of classical
solutions which are, however, local in time ([2])?.

The main purpose of this paper is to show that the two-dimensional case
admits a unique classical solution in the large in time. We also discuss local
<lassical solutions for =3 under weaker conditions on the initial data than those
imposed in [2].

Our method of the existence proof is elementary; it is based on Schauder’s
fixed point theorem and has bearings upon the arguments in [8]. In the sequel,
‘we will study only (1.2) since (1.1) can be investigated essentially in the same way.

2. Scheme for the construction of a solution

Our plan for solving (1.2) is as follows. Given g=g(¢,x,£), we first seek a
solution ¢p=¢(¢,x) of Poisson’s equation

ag =8| stnpa,
V. is uniformly bounded and V,¢—0 (| x| —>o0).

(2.1)

Let K(x) be the fundamental solution of A, in R" given as
(2.2) K(x) =

where o, is the surface area of the unit sphere in R". It is expected that

23)  (t,x) = BSR”K(x—x’){ SR"g(t,x’, s)dg}dx'

is a solution of (2.1). With this ¢, we then solve the initial value problem of
the first order partial differential equation

2 (1.2) has been discussed also in [3] for n=3, whose proof, however, contains an elemen-
tary error which assures no longer the existence even of a local solution ([3], p. 47).
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O £V, rav.g-Vef=0,
flimo=fo"

Clearly it is equivalent to solving the ordinary differential equations (charac-
teristic equations to (2.4))
dX =)

@5) T =B == aV.4)(sX)

(2.4)

for (X,E)eR"XR". Denote by X(s;t,x,£), E(s;¢,%,£) the solutions of (2.5)
satisfying the initial conditions

(2°6) X|s=t=x’ Els=t:g-

Put X (2,x,£)=X(0;1,x,&), Ey(t,%,&)=E(0;¢,%,£). Then the solution to (2.4)
is given formally as

(2'7) f(t) x) E) =f0(X0(t)x1E)’ Eo(t! x: E)) *

In this way we shall have assigned a function f to a given function g which
we will denote as f=V[g]. Thus we shall specify a set .S of functions g in such
a way that the map V defined on this S can be shown to have a fixed point with
the aid of Schauder’s fixed point theorem, and that any fixed point of ¥ in Sis a
classical solution of (1.2). We will describe our choice of S in the following
section, but the precise definition of .S will be made in §7 after the study of
(2.1), (2.4) and (2.5) in §4 to §6.

3. Classes of functions

Let O,=[0,T]XR"X R" and Q,;=[0, T]X R" with some 7'>0. In general,
if Q is an unbounded closed domain in R", B"*°(Q), I=integer=0, 0<o<1,
will denote the set of all continuous and bounded functions defined on Q having
continuous and bounded /-th derivatives which are uniformly Hoélder-continuous
in Q with exponent o if ¢>0. It is a Banach space with the usual norm
denoted as || ||pi+o(@. Thus we will use B*°(Q;), B*+°(Q;), B(R*XR") etc.
Moreover we will need B°v'*%2(Q;), I=integer=0, 0<0,,05,=<1, which is the
class of continuous and bounded functions ¢(Z,x) on Q, having continuous and
bounded I-th derivatives in x which are uniformly Holder continuous in ¢ with
exponent o, if 0, >0, in x with exponent o, if 0,>0, or in both if ¢;,0,>0.

The set S on which the map V7 is to be defined is a subset of B(Q,) consisting
of all the functions g=g(t,x,£) which satisfy the following conditions.

(i) g€BYQr),
(i) llgllpen=M,,



248 S. Ukar anDp T. OKABE

G.1) (i) g% =M(14[x]) A+ EN)T, (8,%,8)E0r,
() [ lewxpldwde=ir, 0,11,

) | letwelaesm), pvea;.

Here 8, v, M,, M, and M, are positive constants with §&(0,1), and M(z)
is a positive nondecreasing function of ¢ on [0,T]. All of these constants as
wellas T and the function M(¢) will be specified in§7. In this and the following
three sections, however, they are assumed to be arbitrarily fixed with y>n
and 6=(0,1). Since it is necessary to make clear the dependence on them
of various nonnegative constants which we shall meet in the below, we use two
symbols C and M for the constants, where C stands for the constants depending
only on 7, and &, B in (1.2), and M for those depending on the above-mentioned
quantities defining the set .S in (3.1).
In the rest of this section, we state fundamental properties of S.

Proposition 3.1. S is a compact convex subset of B (Q;).

Proof. The convexity is easy to see and the compactness follows from
(3.1) (ii) (iii) and the Ascoli-Arzela theorem.
Define the operater A as

(32) (A9t = 8] gtxbpt.

By virtue of (3.1) (iii) and the assumption ¥>mn, the integral converges for
each g S, and

(33) (Mg Gx) =M1+ x[)7".
Lemma 3.1. Suppose g S and XE(O, 1—%), then Age B*(Q,) and

(B4) (Mg (x)—(Ag) (¢, %)
SM|(t,x)—(¥, ) [ M¥(14 |x]|)~A-DY
for any (t,x), (', &)EQ if |x—x'| <1. Here |(t,x)|=|t|+ |%].
Proof. Using the inequality
3.5 (A=) A+ &)=+ [a—a'], x,4'ER,
we get from (3.1) (iii),

lg(t,x,8)—g(t', &', E)|
SM((1+ (%)) Y14 [/ [)) (14 [E])7”
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=My(14-2") (1+ || )1+ | £])™
for [x—a’| <1. This and (3.1) (ii) then yield (3.4) with
M= M,"MZI‘A(I—]—ZV)HSR (14 |E])0-ME < o0, AeE (o, 1—£) .
i v

4. Poisson’s equation (2.1)

In this section we consider ¢ given by (2.3) or

1) b(tx) = SR”K(x—x’) (Ag) (2, x')dx’

assuming g€S. We note

0K(x)| C

O; |7 || "

PK(x)

Oux;0x;

< C

=Tl

(4.2) |

Porposition 4.1. Let g S. Then ¢ given by (4.1) is continuously differen-
tiable in x in Q; with 0¢[0x; = BM¥"1*2(Q,) for any xe(O, 1—77;—) (we may have

pE B N(QO,) if n=3) and is a solution of (2.1) which is unique except for an
additive function of t.

Proof. That 9¢/0x;= B'**¥(R") for each fixed ¢ is a classical result if Age
B™(R") and is of compact support in x for each ¢ (see e.g. [9], p. 126). In view
of (3.3) and (3.4), this can be extended to the case g&.S and we obtain

43)  1¢@x) | =M(1+mI(14|x]))  ifn=2,

<M1+ |x])¢>  ifax3,
(4.4) 'ai’ <M(1+]x])y D,
Ox;
(4.5) ”9‘1’(‘_) <M, 0<o<25.
0x; |pt+ocem

In fact, noting that (4.1) is differentiable under integral sign, and using (3.3)
and (4.2), we get

0| < cpf 1 1 /
dx;| SR"Ix’[”‘l P

= M{[ i)
12715172121 127121221 21

= M )

whence (4.4) follows since 0¢/0x; is at the same time uniformly bounded as
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will be seen in the following lemma. In a similar manner, we obtain (4.3),
and using the explicit formula for 8°$/0x,0x; (see e.g. [9], p. 127), we obtain
(4.5). Moreover the constant M of (4.5) is found to be majorized as

(4.6)  M=C(ll(Ag) @, )llsmzm-1I(AL) (2 )l tcam) -

This implies, together with (3.4), that 0¢/0x;€B”'*°(Q;) for any 0<o <AS
(cf. [8], Lemma 1.3). Thus we have proved first half of the proposition. It
is now clear that this ¢ is a classical solution of (2.1): V,¢—0 (|x]| —o0) in
virtue of (4.4). For the proof of the uniqueness, it suffices to prove that a
regular harmonic function #(x) in R" having bounded derivatives which vanish at
infinity is constant in the whole of R”. And this is easily seen upon applying
the mean value theorem on harmonic functions ([5], p. 275) to Ou[0x; since
Ou/[dx; is also regular harmonic in R” in virtue of Weyl’s Lemma ([11], p. 80).
Let ||-|,, p=1, o, be the norms of L’(R") and define

@7) Ml = llelli+- |l |

forue L'NL=. We shall need the estimates of V,¢ depending only on these
norms of Ag.

Lemma 4.1. Let g and ¢ be as in Proposition 4.1, and put w(t,x)=aV,¢.
We have

(4.8) (%) =CIlI(Ag) (4 )IF"II(Ag) (2, I~
for any (t,x)EQy, and, if X(p)=p(1—Inp) for 0=<p=1 and X(p)=p for p>1,
(4.9)  lw(t,%)—w(,x) | =ClI(Ag) (¢ *)lh,-X(1x—+"])
for any t[0,T] and x,x’ = R".
Proof. For brevity, fix ¢ and write p(x)=Ag. Using (4.2), we get

1
xTx’F | p(x") | dx’

|

- C{Slx—x’|§r+SIx-x/|>r}

< c{rllell-+ el

(e, %) | < CL

for any >0, whence we obtain (4.8) with r=({|p|l,/||p|l~)"*.
To prove (4.9) we proceed as in [4]. Put d=|x—x’| and X={yeR";
|y—x| =2d}. We have

(#10)  |wta)—w(t)| <[ |(V.K) (v—5)—(V.K) (—)]
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X p(y)ldy =$E+§
Noting that |&'—y| =3d if y€37, we get by (4.2),

d d
—— _dy _y_)
SE_ el (Slx—yl§2d lx—yl”"1+ Slzl—ylsulxl_y‘n_l

=Cd|lpll. .

RMZ ’

On the other hand, if y&R"\Y) and if #” is any point on the segment [x,x],
we see that |x/—y|=|x—y|—|x—&"| = |y—x] —-d;—;—ly—xl, and hence by
the mean value theorem and (4.2), that
|(V.K) (x—2)—(V.K) (+'—y)
< lx—o'| [(V.V.K) (x"—y)]
< Cd _< 2'Cd _
| =y |x—p|

Therefore the integral in R"\>" in (4.10) can be estimated as

S < CdS lP(y)I dy

RME T le-ylz2d |x—y|"

= Cd(szdgu—y|<'+ S,gl::—yl)

< r 1
< ca(lpll-tn =+ L lolh)
with any r>2d. Thus (4.9) was proved.

5. Characteristic equations (2.5)

In this section we solve the differential equations (2.5) associated with
the initial conditions (2.6). '

Proposition 5.1. Let g and ¢ be as in Proposition 4.1. Then there exist
unique solutions X=X(s;t,%,&), E=E(s;t,x,&) of (2.5) and (2.6) in the interval
0=s=T for any (t,x,£)€Q;. X and E are continuously differentiable in all vari-
ables. For any fixed s and t, (X, E) is one to one and measure preserving map of
R"X R" onto itself, with the Jacobian

8(x,5)| _
S owe) |

(X(t;t,%,8), E(t;t,2,E)) is the identity map, and (X(t;s,%,E), E(t;s,%,E)) is the
inverse map of (X(s;t,x,£), B(s;t,%,£)).
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Proof. Since V,p=B¥1*¥(Q,), vE (O,l——"—) by Proposition 4.1, these
v

are well known results in the theory of ordinary differential equations. (5.1) is a
consequence of V.E=V.V,p=0 (cf. [4], Chap. I. Th. 7.2.).

We now derive estimates for X and E. In what follows, L,(»), i=1,2,-*
will denote nondecreasing positive finctions of =0 depending possibly on T
but not on the other quantities defining the set .S in (3.1). Put

(52)  liAgll=sup Ag) (&)l - -
We begin with
Lemma 5.1. For any s€[0,T] and (¢,x,£)= O, we have

(5.3) [ X—x—E(s—1)|, IE—EI=L,(llAgl]),

(5.4) ]%’{-j

Y=
alg(maw,

(55  10X], [oE|=M,
where 0 stands for 0/0x;, and 0[0E;, 1 <i=<n.

Proof. Integration of (2.5) with respect to s gives rise to the integral
equations

X(s;t,x,8) = x—S'E.'(T;t,x, g,
(5.6) :
E(sit,5,8) = £— | w0, X(rst,x,8)dr

Now (5.3) can be easily deduced from (5.6) with the aid of (4.8). Similarly,
we obtain (5.4) and (5.5) by use of (4.5) and the integral equations for the deri-
vatives of X and E obtained upon the differentiation of (5.6).

The following lemma gives a Hoélder estimate of (X, E) which do not depend
on the Holder continuity of Ag.

Lemma 5.2. Suppose |(x,&)—(«/,&")| <1, then
(5.7) [(X(s58,%,8), E(s;2,%,8)—(X(s'; ', %', &), E(s';0, &, E)) |
éLZ(”Ag“) (1—,_ ,g l ) I (S, t’ x’ E)_(sly t,,x,,f/) 181
holds with 8,=Ly(||Agl|])™* for any s,s’<[0,T] and (¢,x,8), (¢,&',&')E Q.

Proof. We follow the argument of [8]. It suffices to consider the special
cases
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(i) t=t,s=¢, (i) t=tha=o,E=F,
(i) s=¢,x=a,E=¢.

(1) Put py(s)=1X(s;2,%,8)—X(s; 8,2, &), ps)=1E(s; 2, x, §)—E(s; £, %', &) |.
It is easily seen from (5.6) and (4.9) that

ps)= [w—o' | +-T |E—E | +CTllAgll] Stx(pl(f))dfl )
(5.8) , '
po)S E—E1+ClIAgN | X(oi(m)ar .

Put a=2(|x—«'| +T|E—E&’|), b=CT||Ag||, and consider the integral equation
(59)  pls) = azb| p(r) (1—tmp(r)ar, s=t,
which can be eaisly solved as

p(s) = ae™ ¥ tlel—e7 0 0<Zst ST .

Suppose that 0 <a<el—¢”, then 0<p(s)<1 for 0=s=<T and hence (5.9) can be
written as

(5.10)  p(s) = a+b] Six(p(T))dT B

Since X(p)=0 and is strictly monotone increasing in 0=<p=1, the comparison
theorem (e.g.[10], p. 315) can be applied to (5.8) and (5.10), to conclude that
pi(s)=p(s) if 0<a<el—e”. Thus we have proved that if |(x,&)—(¥,&)| <1,

(5.11)  pi(s), p)=L([[AgIN | (%, E)— (', &)™

with §,=e~¢7"118¢!l. This suffices to prove the lemma for the case (i), but later,
we shall need estimates which are valid also for |(x,&)—(+/,&)| =1. To this
end, we note that (5.3) gives the estimates

pi(s) = |x—a' | +T|E—E'| +2L,(II1AglI)
pa(s) < |E—E"| +2L,(I1Agl])

whence, together with (5.11),

(5:12)  pu(s), Po(9)
=Ls(llagl) (14| (%, £)— (', &) ) =% (x, &) — («", &) | ™1,

holds good for any ¢,s€[0, T], and x,%’,£,£’ER".
(ii) By virtue of (4.8), (5.3), (5.6), we obtain

| X(s;t,%,E)—X(s; 2,%,E) |
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= lgz |E(r;2,%,8) | d7| <(|E| +L(l[Agl)) s—s'| ,
IE(S;th) E)_E(S,;t,x, g)]

<1{ lwtrs X8, 0l am <Cligllls— |

(iii) Put X'=X(¥';t,x,8), E'=E(';t,x,£), and note that X(s;z,x,£)=X(s;?,
X', E"), E(s; t,x,&)=E(s; ¢, X’,E’) in virtue of Proposition 5.1. Hence by (5.12)
| X—X(s;8,x,8)| = | X(s;¢, X", E)—X(s;¥,%,8)|
SLy(||Agl) 1+ (X, E)—(x, &) | ) (X, EN)— (%, E) %,
while by (ii)
(X, E)— ()| =1+ [E)L(lIAgl) =2 ,
since X'|,oy=x, E'| ,—y=E. |E(s;t',x,&)| can be estimated similarly and thus

(5.7) was proved for the case (iii).

6. Initial value problem (2.4)

From now on, we shall impose the following condition on the initial f.
(i) HEBR'XRY,
(1) | fo(x &) =wo(1412]) (14 1E1)7*,

where #,=0 and v>n. The condition (6.1) is much weaker than that in [2].

(6.1)

Proposition 6.1. Let X,= be as in Proposition 5.1 and assume (6.1) for f,.
Then f=f(t,x,£) given by (2.7) is in BY(Qy), continuously differentiable in Q, and
satisfies (2.4) in the classical sense. Moreover (14- |E|)0f[0t, V. f, Vif € BY(Qy).

Proof. The first assertion is due to Proposition 5.1 and the assumption
(6.1) (i), and the second assertion to (5.4) and (5.5).
Let us denote by «;,i=1,2,--+, positive constants depending only on «,,,

Il foll2 and [| foll5*-

Lemma 6.1. For f given in the preceding Proposition, we get

(6.2)  |Iflls%em = |l folls%axga 5

(6.3) ISt + Nlzrrxzm =  follzizrxzm, 0St<T,
(6.4) | f(t,%,E)| = xoL(lIAgI) (14 |21) "1+ [E])77,
(6.5)  lIfllstem=wmLAllAgll),

where 8,— Ly(||Agll).
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Proof. In view of the definition (2.7) of f, (6.2) is obvious and (6.3) is a
consequence of (5.1). Write L,=L(||Agll), i==1,2,---. By virtue of (5.3) and
(6.1) (ii), we have by repeated use of (3.5),

6.6) |t x,8)] = | f(XoEd)l
Sr(141 X0 ) (1+1Eol )™
Se(14| |o—Et| =Ly [)"2(1+ | |E| =L, )™
Sw(1+L)"(1+ [x—E2[) (14| §])
Se(1+L)A+T)Y(1+ =) (14 &),

which verifies (6.4). To prove (6.5), put x,=|| fllpi(r*xzm and write X /=X,
t,x', &), Ey=Eyt',«,E). From (5.7), it follows that, for |(z,%,&)—(t,x’,&")|
<1,
| (2,2, E)—f(t', &', E") | S rp| (X 0y Eg)— (X', Ey)
§M2(1+ | EI)LZ I (t) X, E)_(t/) x/’ ,) I & ’
while from (6.6) and (3.5),
| f(t,%,E)—f(t', 2", E') | SwoLe(1+27) (1+[E]) 7,

for |[E—E’| <1. These two inequalities yield the estimate

l f(t) X, E)—_f(t/’ xl7 g/) [
= {roe Lo Le( 14221+ [ E] )| (2, %, E)— (', 7, E) | 2472

for |(x,&)—(x’,&")| <1, which, together with (6.2), proves (6.5).
Lemma 6.2. Let f be as above. Then
t
©7)  IAF) @ )ll-Serted [ 1Ag) (, H(Ag) (7, -)lle-mdry
for 0=t=T.
Proof. In view of the first inequality of (6.6),
(A t) S e (1+15405,8)])7dE
holds for (¢,x)€Q;. We divide the region of integration as
t t
M (8122 Jlwtr, lledr, (D) g1 <2 g, )ldr

where w=aV,¢ is given in Proposition 4.1. In the region (I), it is easily
found by (5.6) that

lEol2IEI—SZIIw(Tw)IdeT;%IEI ,
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and thereby that
[ a1z e (14-11g) g <o
6 R 2
In the region (II), we simply estimate as
t
S (14 1E,l ) dE <mes (II) = &’(ZS [lw(T, «)||-dT)" .
an n 0

Now (6.7) follows from these two inequalities with (4.8) taken into account.
Finally set xs=rx,| B||| foll .%z*xz» and consider the integral equation

t
(6.8) po(t) = "3+"5(S0Po(7)(”_1)/”d7)” .
Reducing this to an ordinary differential equation, we can easily prove,

Lemma 6.3. Assume (6.1) for f,. Then,
(1) for the case n=2, (6.8) possesses a unique positive solution p(t) in any
interval [0, T'], and
(i) for the case n=3, there exists a constant T,>0 depending only on f, and
v, and (6.8) possesses a unique positive solution p(t) in the interval [0,T).
In both cases, py(t) is monotone increasing in t, and py(t)—>oo(t 7 T,) if n=3.

7. Construction of a solution

We are now in a position to prove the existence theorem for (1.2). We
have to specify the quantities defining the set S in (3.1) as follows. We start by
choosing freely a ¥>nr and assuming that an f, is given which satisfies (6.1).
We then choose a T'>0 arbitrarily for the case #=2 and in such a way as T'<T,
for the case #=3 where T is given in Lemma 6.3. Recall that 7,>0 and de-

pends only on 7 and f,. Put
(7,.1) 70 = | Bl follwrxzm+pT) ,

where @ is the constant in (1.2), while p(t) is the function given in Lemma
6.3. 7, is determined uniquely by v and f;. We shall now choose all the
remaining quantities in (3.1) as follows.

(7.2) M, = . Ly(n5), M, = xoLe(n0), M3 = || foll L2zmxz" »
8 = Lg(me)~", M(t) = pit) -

Denote again by S the class of functions g=g(t,x, ) satisfying (3.1) with the
quantities thus specified. Thus S is determined uniquely by v, f, and T
(T<T, for n=3).

Let us recall the definition of the map V' of §2: f=V[g] is defined through
(2.3), (2.5) and (2.7).
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Proposition 7.1. V maps S into itself and is continuous in the topology of

BAQr)-

Proof. We shall first prove f=V[g]& .S for eachge.S. That fsatisfies (3.1)
(iv) with M =||fl[;* is obvious from (6.3). Since g, it satisfies (3.1) with
the choice (7.2). In particular,

I(Ag) (2 ILh=1B1llg@, «» 2= B folly
I(Ag) (2, == po(?) -

Substitution of (7.3) into the right hand side of (6.7) shows, together with (6.8),
that f=V]g] satisfies (3.1) (v) with My(t)=py(¢). Moreover, since p, () is
monotone increasing in =0, we see from (7.3) that

1Agll = sup (I(A) ( i+ (Ag) (& -)l-)
= 1Bl foli+pT) = 1.

Therefore L,(||Agll)<L,(n,) for each g& S and i=1,2, -+, because L,(%) is mo-
notone increasing in 7=0. This and Lemma 6.1 imply that f satisfies also (3.1)
(i) (ii) (iii) with the choice (7.2). Thus ¥ maps S into itself.

To prove the continuity of ¥V, let us consider a sequence {g"} .S and a
2°€ B%Q;) such that [|g"—g°| s —>0 as n—oo. Clearly g°< S since S is closed
(Proposition 3.1). Thus, (3.1) holds for all g, =0, and we see that

(7.3)

(74) 1A(g"—&) |0 — 0 (n— o0) .

Define w"(t, x)=aV.¢" with
(75) &%) =$R”K(x—x’) (Ag") (t,')dx, n=0.
We find from (4.8), (6,3) and (7.4), that

(7.6) "=’ = C2Il fol| )"l A(g"—£°) | o™V
—0 (n—0).

Further we see from (4.5) that

7.7y llw"llsen=M

uniformly for =0.

Let X"(s)=X"(s;t,%,&), E"(s)=E"(s;t,%,&) be the solutions of (2.5), (2.6) with
$=¢" given by (7.5). Then (5.5) and (7.7) lead to

| X*(s)— X°(s) | < T?w" — 2| ooy~ MT| S' | X"(1)— X(7) | dT| ,
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. 4
|E"(6)— BN STl o+ M | | X(7)—X()ldr
whence we get with the aid of Gronwall’s inequality,

(7.8) | X"()—Xs) |, |E"(s)—Es)|
S+ T)T 74t —af] 000,
Finally we put f"=V[g"]. Since f"(¢,x,&)=fy(X"(0), E*(0)) by (2.7) and
since f,& BY(R"X R"),
| f”(t’ X, E)_fo(t’ X, E) |
<1 ull ez (X(0), E"(0))—(X0), Z(O)] .
This states, combined with (7.6) and (7.8), that [|f"—f|zo@m,—0 (n—oc0),
which we wished to prove.
In virtue of Proposition 3.1 and 7.1, Schauder’s fixed point theorem now
assures that V" has a fixed point f in S; f=V[f], f€S. On the other hand, any

fixed point of V' in S is a classical solution of (1.2), which is a consequence of Pro-
positions 4.1 and 6.1. Thus we have proved

Theorem 7.1.  Suppose that f, satisfy (6.1). Then the initial value problem
(1.2) admits a classical solution (f, ) in any time interval [0, T if n=2, and in the
time interval [0,T,) if n=3 with T,>0 determined by f, (and 7v). Moreover

(7.9) (i) fE€S, (i) V.f, Vef, A+ 1E])0flote BYQ,),
and (iii) V,p€BY*(Q,) for any T(T<T, if n=3)
where 8’ < Lg(my)™" .

RemMARK 7.1. f=0 in Q7 if f,=0 in R* by (2.7), and ||f(2, , *)l|ocrnxzm
=||foll2rnxzm for any pE[1, oo] by (5.1).

RemMARk 7.2. In the above, f€BYQ;) if we impose on the initial f, the
additional condition

(7‘10) |foo| ’ IVEfOl -——-<—K6(1+ ‘EI )_1: (x,f)eR”xR” .

To prove this, it remains only to show that 9 f/0¢ is uniformly bounded. Since
V:f €BY0Qr), V.pE BY(Q;) as stated in Theorem 7.1, (2.4) implies,

lg—ﬂélflIfo|+Ia|IVx¢HV5f|§IEIIfoH—M in Q.

Thus it suffices to prove

|V.fI<M(1+|£])" in O,
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and this is easily seen from (2.7), (5.3), (5.5) and (7.10) as

(7.11) VA SM(Vofo) (X Eo) |+ 1(Vefo) (X0 Eo)|)
SMrg(14 | ol ) ' SM(1+| | E] —Ly(n0) )
SM(1+Ly(no)) (14 1£1)7*,

where use was made of (3.5).

RemMARK 7.3. Theorem 7.1 holds also for Vlasov’s equation (1.1) if fi* is.
assumed to satisfy (6.1). 'The proof is essentially identical and is not repeated
here.

RemARK 7.4. We have not been able to construct a classical solution in the
large in time for =3. This is because no estimates have been available for
[I(fA) (2, *)ll~ other than [|[(Af) (¢, )|l =p.(t) (see (3.1) (v)) which turns to be
meaningless for =T, since py(t)—>oo(¢,7T,) in case =3 (Lemma 6.3).

However, such a solution can be constructed even for =3 if (1.2) is modi-
fied as follows. We change only the Poisson’s equation of (1.2) as

A= _ fitm .

That is, we replace only the region R" of the integration appearing in Poisson’s.
eq. by a sphere |£| =R with some R>0. All other equation and conditions
remain unaltered in (1.2). In this case the definition of the operater A of (3.2)
should be replaced by

(Ag) (t3) = B _ gt )i .

Clearly all the arguments of §3 to §6 still hold with this definition of A, and by
virtue of (6.2)

AL (@ = |,3I%R"Hfolls°(mxe")—=—Po .

This replaces Lemma 6.2 and gives a uniform estimate in any time interval
[0, T], implying that the above constant p, can be taken as py(z). In this way
we can construct a classical solution (1.2) thus modified, in the large in time for
any R>0 and »=2. The above-mentioned modification of (1.2) is also of
physical interest, [6].

8. Uniqueness of a solution
Assume, in addition to (6.1), the following condition on f;.
(1) Vifo Vefe€L(R'XR"),

8.1
DGy VAL IV Skl IE]), >0,y >0
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The aim of this section is to prove the uniqueness of the solution (f,¢) to
(1.2) constructed in Theorem 7.1 in the class of such functions that

(i) fEBY(Q)NCY(0,T)x R*X R")
(8.2) (ii) AfeB(0,T;L(R))NB(Q,), 0<as<1,
(i) V.pSB*(Q,),

where C'(Q) is the class of continuously differentiable functions on Q and
B¥[0,T]; X) with a Banach space X the class of Holder continuous functions
with values in X on [0,7] in the topology of X. Clearly the class of (f,¢)
defined by (8.2) is wider than that by (7.9).

First of all, we shall note that any solution (f, ¢) of (1.2) satisfying (8.2) has
the properties like (7.9). More precisely, f satisfies (3.1) and (7.9) (ii) with
«v of (6.1) and T of (8.2) and with M=« L(||Af|]), M= Le(||AfI), Ms=||foll11
=L Y([IAfI]), My(t)=I||Afl|, while ¢ satisfies (7.9) (iii) with 0<8’'<o. Here
IAfll<4oco in view of (8.2) (ii). In fact, (7.9) (iii) follows from (4.5) with
g=f since A¢p=Af holds by assumption and since the constant M of (4.5)
remains finite in virtue of (4.6) and (8.2) (ii). Moreover, it is easily seen that
Lemma 4.1 holds with g=f and that since all the constants M appearing in §5
and §6 depend only on M of (4.5), all the results obtained there are valid with
g=f, which is what was to be proved.

Let (f%,¢'), i=1,2, be any two solutions of (1.2) satisfying (8.2). On
subtracting the two equations for (ff,¢), 7=1,2, and writing f=f'—f? and
Pp=¢'—¢? we obtain

(8'3) %{+E'fo+avx¢l.véf: _avx¢'vff25h(th: E),fl t=0 = 0 ’
8.4) Ap = Af.
Put g=|f|. As stated above, Lemma 4.1 can be applied to (8.4), giving

B.5) (Vi) & IL=CI(AS) (& )L, - =CII(Ag) (& )y, -

On the other hand it is well known (see e.g. [5]) that if A(¢,x, &) is known, (8.3)
is solved as

6 S8 = | Hr, X, m(r)ar,

where X{(7)=X'(7;t,x,£), E{(T)=E(7;¢,x, £) are the solutions of (2.5) and (2.6)
for p=¢, i=1,2. Applying (5.1) and (5.5) to them, we get

&7 |1V (X, B v
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= 1(Vef) (r,n,8) ldxde
R"XR
=MV foll 2 +IVefoll22) 5
while, in a similar way as in (7.11), we get by (8.1) (ii),

(8.8) [(Vef?) (7, X(7), BY7)) | = Mu,(14- | EX(7) )™
=M, (14+1£1)7,

where M depend only on that of (4.5) and L,(||Agll) for g=f%, i=1,2, and
hence is finite as stated above. By means of (8.5) to (8.8), we finally obtain

A2 (& Y-S { 11(A8) (7, )

Since f | ,-,=0, (8.6) implies that [|(Ag) (¢, *)||; ~=0, and consequently f_=_-6 in
Orand V,¢=0 in Q, by (8.5). To summarize, we have proved

|1, dT .

Theorem 8.1. Assume (6.1) and (8.1) on f,. Then the solution of (1.2)
constructed in Theorem 7.1 is unique in the class of functions defined by (8.2) up to
an additive function of t to ¢.
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