ON COMPLEX COBORDISM GROUPS OF CLASSIFYING SPACES FOR DIHEDRAL GROUPS

Masayoshi KAMATA

(Received December 30, 1973)

1. Introduction

Let $G=H \cdot \Gamma$ be a semi-direct product of a finite group H by a finite group Γ, X a compact G-manifold which induces by restriction a principal H-manifold and Y a principal Γ-manifold. Then we have a principal G-space $X \times Y$ with a G-action defined by $h \gamma(x, y)=(h \gamma x, \gamma y), h \gamma \in H \cdot \Gamma$. The equivariant map $i: X \rightarrow X \times Y$ defined by $i(x)=\left(x, y_{0}\right)$, induces a homomorphism

$$
i^{*}: U^{*}((X \times Y) / G) \rightarrow U^{*}(X / H)
$$

We can define a Γ-action over $U^{*}(X / H)$ corresponding to a Γ-action over the complex bordism group of unitary G-manifolds defined by (1.3) of [7]. The action is denoted by $x^{\gamma}, x \in U^{*}(X / H), \gamma \in \Gamma$.

In this paper, we define a homomorphism

$$
i_{*}: U^{*}(X / H) \rightarrow U^{*}((X \times Y) / G)
$$

and obtain the following.
Theorem 1.1. For $x \in U^{*}(X / H), i^{*} i_{*}(x)=\sum_{y \in \Gamma} x^{\gamma}$.
Let $D_{p}(m, n)$ be the orbit manifold of $S^{2 m+1} \times S^{n}$ by the dihedral group D_{p} whose action is given in [7]. Making use of Theorem 1.1 and the AtiyahHirzebruch spectral sequence of the complex cobordism group, we have the following.

Theorem 1.2. Suppose that p is an odd prime. There exists an isomorphism

$$
\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right) \cong \widetilde{U}^{2 m}\left(L^{2 k+1}(p)\right)^{Z_{2}} \oplus \widetilde{U}^{2 m}\left(R P^{4 k+3}\right) \oplus U^{2 m-8 k-6},
$$

where $L^{l}(p)=S^{2 l+1} / Z_{p}$ is a $(2 l+1)$-dimensional lens space, $R P^{s}$ is an s-dimensional real projective space and $U^{*}()^{Z_{2}}$ is the subgroup consisting of the elements which are fixed under the Z_{2}-action.

Let $B Z_{p}$ be a classifying space for Z_{p}. There exists an isomorphism $U^{e v}\left(B Z_{p}\right) \cong U^{*}[[X]] /\left([p]_{F}(X)\right), U^{e v}()=\sum U^{2 i}()$ [8]. Consider the $Z_{z^{2}}$-action on $U^{e v}\left(B Z_{p}\right)$ defined by

$$
f(X)^{t}=f\left([-1]_{F}(X)\right)
$$

where t is a generator of Z_{2}. We use Milnor's short exact sequence [10] and Theorem 1.2 to compute the complex cobordism group of a classifying space for the dihedral group D_{p}.

Theorem 1.3. Suppose that p is an odd prime. There exist isomorphisms

$$
\widetilde{U}^{2 m}\left(B D_{p}\right) \cong \widetilde{U}^{2 m}\left(B Z_{p}\right)^{Z_{2}} \oplus \widetilde{U}^{2 m}\left(B Z_{2}\right)
$$

and

$$
\widetilde{U}^{2 m+1}\left(B D_{p}\right) \cong 0 .
$$

Making use of the Conner and Floyd isomorphism

$$
\widetilde{K}(X) \cong \widetilde{U}^{e v}(X) \otimes_{U^{*}} Z
$$

and Theorem 1.2, we can deduce the structure of the K-group of $D_{p}(2 k+1$, $4 k+3$) which is also obtained in [5] and [6].

2. The homomorphism $i^{*}: U^{*}(X / H) \rightarrow U^{*}((X \times Y) / G)$

By a G-manifold we mean a C^{∞}-manifold which can be embedded equivariantly in some Euclidean G-space [11]. Let M and X be G-manifolds. By a complex orientation of a G-map $f: M \rightarrow X$ we mean an equivalence class of factorizations

$$
Z \xrightarrow{i} E \xrightarrow{p} X
$$

where $p: E \rightarrow X$ is a complex G-vector bundle over X and where i is an equivariant G-embedding endowed with a complex structure compatible with the G-action on its normal bundle ν_{i}. As Quillen [12] we can define equivariantly a cobordant relation joining such proper complex oriented G-maps for a G-manifold X. We denote by $U_{G}^{m}(X)$ the set of cobordism classes of proper complex oriented G-maps of dimension $-m$. Assume that X is a principal G-manifold which is a G-manifold such that no element of the group other than the identity has a fixed point [2]. Then the complex cobordism group $U_{G}^{m}(X)$ is isomorphic to $U^{m}(X / G)$ by sending the equivariant cobordism class $[Z \xrightarrow{i} E \xrightarrow{p} X]_{G}$ to $\left[Z / G \xrightarrow{i^{\prime}} E / G \xrightarrow{p^{\prime}} X / G\right]$, where i^{\prime} and p^{\prime} are quotient maps.

From now on, we suppose that G is a semi-direct product $H \cdot \Gamma$ of a finite group H by a finite group Γ and that X is a G-manifold whose action restricted to H is free and Y is a principal Γ-manifold. The element γ of Γ acts on the group H by the inner automorphisms $h^{\gamma}=\gamma^{-1} h \gamma$ and the group operation of $H \cdot \Gamma$ is given by

$$
\left(h_{1} \gamma_{1}\right)\left(h_{2} \gamma_{2}\right)=h_{1} h_{2}^{\gamma_{1}^{-1}} \gamma_{1} \gamma_{2} .
$$

The map $i: X \rightarrow X \times Y, i(x)=\left(x, y_{0}\right)$, is an equivariant map. Then, there exists a composition homomorphism

$$
i^{*}: U^{*}((X \times Y) / G) \xrightarrow{r^{*}} U^{*}((X \times Y) / H) \xrightarrow{i_{H}^{*}} U^{*}(X / H)
$$

where r^{*} sends an equivariant cobordism class $[Z \rightarrow E \rightarrow X]_{G}$ to the class $[Z \rightarrow E \rightarrow X]_{H}$ obtained by restriction of the group action and i_{H} is the quotient map of i. Suppose that X is a compact principal G-manifold, $G=H \cdot \Gamma$. Let $[Z \xrightarrow{i} E \xrightarrow{p} X]_{H}$ be an element of $U_{H}^{m}(X)$ represented by an H-equivariant factorization. Since $q: X \rightarrow X / H$ is a principal bundle, a functor q^{*} from the category of vector bundles and homomorphisms over X / H to the category of H-vector bundles and H-homomorphisms over X is an equivalence [1]. There exists an H-complex vector bundle F over X such that $E \oplus F=X \times C^{n}$ where H acts on $X \times C^{n}$ by the rule $h(x, z)=(h x, z)$. Therefore,

$$
[Z \xrightarrow{i} E \xrightarrow{p} X]_{H}=\left[Z \xrightarrow{\hat{i}} X \times C^{n} \xrightarrow{\tilde{p}} X\right]_{H}
$$

as equivariant cobordism classes, where $\hat{i}(z)=(i(z), 0)$ and $\tilde{p}(x, z)=x$. We form the quotient space $G \times{ }_{H} Z$. The group G acts on $G \times{ }_{H} Z$ by $\hat{g}\left(g \times{ }_{H} x\right)=$ $\left(\hat{g} g \times_{H} x\right)$. We have then the equivariant embedding

$$
\begin{aligned}
& i_{1}: G \times{ }_{H} Z \times Y \rightarrow X \times C^{n} \times Y \times V \\
& i_{1}\left(h \gamma \times{ }_{H^{z}} z, y\right)=(h \gamma \hat{\imath}(z), y, e(\gamma))
\end{aligned}
$$

where $G \times{ }_{H} Z \times Y$ is a G-space by $h \gamma\left(g \times{ }_{H} z, y\right)=\left(h \gamma g \times{ }_{H^{z}}, \gamma y\right), V$ is a complex Euclidean Γ-space, for example a regular representation space of $\Gamma, X \times C^{n} \times Y$ $\times V$ is a G-space by $h \gamma(x, z, y, v)=(h \gamma x, z, \gamma y, \gamma v)$ and $e: \Gamma \rightarrow V$ is a Γ-equivariant embedding.

Lemma 2.1. If the normal bundle ν of $i: Z \rightarrow X \times C^{n}$ has a complex structure compatible with the H-action, then the normal bundle ν_{1} of $i_{1}: G \times{ }_{H} Z \times Y \rightarrow$ $X \times C^{n} \times Y \times V$ has a complex structure compatible with the G-action.

Proof. Let $J: \nu \rightarrow \nu$ be a complex structure compatible with H-action, that is, $h J=J h$. We may consider that X and Y are embedded in a Euclidean G-space V_{x} and a Euclidean Γ-space V_{y} respectively and that each element of G operates on $V_{x} \times C^{n} \times V_{y} \times V$ as an orthogonal linear transformation. The total space of the normal bundle ν_{1} is described as follows:

$$
\begin{array}{r}
E\left(\nu_{1}\right)=\left\{\left(i_{1}\left(h \gamma \times_{H} z, y\right),(h \gamma w, v)\right): w \text { is a vector of a fiber of } \nu\right. \\
\text { over } i(z) \text { and } v \in V\} .
\end{array}
$$

We put

$$
\tilde{J}\left(i_{1}\left(h \gamma \times_{H^{z}}, y\right),(w, v)\right)=\left(i_{1}\left(h \gamma \times_{H^{z}}, y\right),\left(\gamma J \gamma^{-1} w, \sqrt{-1} v\right)\right) .
$$

The homomorphism \tilde{J} is a complex structure of the bundle ν_{1} q.e.d.
From Lemma 2.1, we have a factorization

$$
G \times{ }_{H} Z \times Y \xrightarrow{i_{1}} X \times C^{n} \times Y \times V \xrightarrow{p_{1}} X \times Y,
$$

$p_{1}(x, z, y, v)=(x, y)$, which is a complex orientation of a map $p_{1} \cdot i_{1}$. We sct

$$
i_{*}[Z \xrightarrow{i} E \xrightarrow{p} X]_{H}=\left[G \times{ }_{H} Z \times Y \xrightarrow{i_{1}} X \times C^{n} \times Y \times V \xrightarrow{p_{1}} X \times Y\right]_{G} .
$$

This defines a U^{*}-module homomorphism

$$
i_{*}: U^{*}(X / H) \rightarrow U^{*}((X \times Y) / G)
$$

of degree 0 .
We define a Γ-action on $U^{*}(X / H)$: We take an equivariant cobordism class $\left[Z \xrightarrow{i} X \times C^{n} \xrightarrow{p} X\right]_{H} \in U_{H}^{*}(X)=U^{*}(X / H)$, with an H-action $\phi: H \times Z$ $\rightarrow Z$. Let Z^{γ} be a copy of Z whose action $\phi^{\gamma}: H \times Z \rightarrow Z$ is given by

$$
\phi^{\gamma}(h, z)=\phi\left(h^{\gamma}, z\right)
$$

and $i^{\gamma}: Z^{\gamma} \rightarrow X \times C^{n}$ be an equivariant H-map given by

$$
i^{\gamma}(z)=\gamma i(z) .
$$

Denote by ν the normal bundle of $i: Z \rightarrow X \times C^{n}$ and ν_{x} the fiber over x. The total space E of the normal bundle ν^{γ} of $i^{\gamma}: Z^{\gamma} \rightarrow X \times C^{n}$ is

$$
E=\left\{\left(i^{\nu}(z), \gamma v\right): v \text { is a vector in the fiber } \nu_{i(z)}\right\}
$$

Let $J: \nu \rightarrow \nu$ be a complex structure compatible with the H-action. Then, a bundle map $J^{\gamma}: E \rightarrow E, J^{\gamma}\left(i^{\gamma}(z), w\right)=\left(i^{\gamma}(z), \gamma J \gamma^{-1} w\right)$, is a complex structure of ν^{γ} compatible with the H-action. We set

$$
\left[Z \xrightarrow{i} X \times C^{n} \xrightarrow{p} X\right]_{H}^{\gamma}=\left[Z^{\gamma} \xrightarrow{i^{\gamma}} X \times C^{n} \xrightarrow{p} X\right]_{H} .
$$

Proof of Theorem 1.1.
We recall that $i_{*}\left[Z \xrightarrow{i} X \times C^{n} \xrightarrow{\tilde{p}} X\right]_{H}=\left[G \times{ }_{H} Z \times Y \xrightarrow{i_{1}} X \times C^{n} \times Y \times V\right.$ $\left.\xrightarrow{p_{1}} X \times Y\right]_{G}$. Consider the map $j: X \times C^{n} \times V \rightarrow X \times C^{n} \times Y \times V, j(x, z, v)=$ $\left(x, z, y_{0}, v\right)$. The map j is an H-map and transversally regular on $i_{1}\left(G \times{ }_{H} Z \times Y\right)$. Let Γ be the set consisting of $\gamma_{1}, \gamma_{2}, \cdots \gamma_{m}$. It follows that

$$
j^{-1}\left(i_{1}\left(G \times{ }_{H} Z \times Y\right)\right)=\bigcup_{k} Z_{k}
$$

where $Z_{k}=\left\{\left(h \gamma_{k} i(z), e\left(\gamma_{k}\right)\right): h \in H, z \in Z\right\} \subset X \times C^{n} \times V$. Clearly, Z_{k} is equivariantly diffeomorphic to $Z^{\gamma_{k}}$ and $\left[Z_{k} \xrightarrow{i_{k}} X \times C^{n} \times V \xrightarrow{\widetilde{p}} X\right]_{H}=\left[Z \xrightarrow{\hat{i}} X \times C^{n}\right.$ $\xrightarrow{\tilde{p}} X]_{H}^{\gamma_{k}}$, where i_{k} is an inclusion. Therefore, we have $i^{*} i_{*}\left[Z \xrightarrow{\hat{i}} X \times C^{n}\right.$ $\xrightarrow{\tilde{p}} X]_{H}=\Sigma\left[Z \xrightarrow{i} X \times C^{n} \xrightarrow{\widetilde{p}} X\right]_{H}^{\gamma_{k}} . \quad$ q.e.d.

3. The structure of $\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right)$

In [7], the manifold $D_{p}(l, n)=\left(S^{2 l+1} \times S^{n}\right) / D_{p}$ was useful to determine the structure of complex bordism group of principal dihedral group D_{p}-actions. In this section, we determine the additive structure of $\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right)$. Consider an action of the dihedral group $D_{p}=Z_{p} \cdot Z_{2}$ over $S^{2 l+1} \times S^{n}$ given by

$$
\begin{equation*}
\left(g^{i} t^{j}\right)(z, x)=\left(\rho^{i} c^{j}(z),(-1)^{j} x\right), \quad \rho=\exp 2 \pi \sqrt{-1} / p \tag{1}
\end{equation*}
$$

where g is a generator of order p and t is the generator of order 2 and $c(z)$ is the conjugation operator. The manifold $D_{p}(l, n)$ is the orbit space. This manifold is an example of manifolds described in §2. We take a Z_{p}-space $S^{2 l+1}$ with $g \cdot z=\rho z\left(z \in S^{2 l+1}, g\right.$ is a generator of $\left.Z_{p}\right)$, a Z_{2}-space S^{n} with $t \cdot x=(-1) x$ ($x \in S^{n}, t$ is the generator of Z_{2}) and a D_{p}-space $S^{2 l+1} \times S^{n}$ with the D_{p}-action given by (1). Then, there are equivariant maps

$$
\begin{array}{ll}
i: S^{2 l+1} \rightarrow S^{2 l+1} \times S^{n} & i(z)=(z,(1,0, \cdots, 0)) \\
j: S^{n} \rightarrow S^{2 l+1} \times S^{n} & j(x)=((1,0, \cdots, 0), x)
\end{array}
$$

and

$$
p: S^{2 l+1} \times S^{n} \rightarrow S^{n} \quad p(z, x)=x
$$

with respect to inclusions $i: Z_{p} \rightarrow D_{p}, j: Z_{2} \rightarrow D_{p}$ and a projection $p: D_{p} \rightarrow Z_{2}$ respectively. Denote by $U^{*}\left(S^{2 l+1} / Z_{p}\right)^{Z_{2}}$ the subgroup consisting of elements fixed under the Z_{2}-action over $U^{*}\left(S^{2 l+1} / Z_{p}\right)$ described in $\S 2$. Then we have the following.

Proposition 3.1. If p is an odd prime, the homomorphism $\Phi: \widetilde{U}^{2 m}\left(S^{2 l+1} / Z_{p}\right)^{Z_{2}}$ $\oplus \widetilde{U}^{2 m}\left(S^{n} / Z_{2}\right) \rightarrow \widetilde{U}^{2 m}\left(D_{p}(l, n)\right)$ given by $\Phi(x, y)=i_{*}(x)+p^{*}(y)$ is injective.

Proof. We remark that $\widetilde{U}^{2 m}\left(S^{2 l+1} / Z_{p}\right)$ is a p-group and $\widetilde{U}^{2 m}\left(S^{n} / Z_{2}\right)$ is a 2-group. Hence, $i^{*} p^{*}=0$. Since $j^{*} p^{*}=1$ and from Theorem 1.1 $i^{*} i_{*}(x)=2 x$, Φ is injective. q.e.d.

Denote by $L^{l}(p)$ a $(2 l+1)$-dimensional lens space. The manifold $D_{p}(l, n)$ is homeomorphic to the orbit space of $L^{l}(p) \times S^{n}$ by a Z_{2}-action $t([z], x)=$ $([c z],-x), t \in Z_{2}$ the generator. Let C_{i} and D_{j} be the standard cells of $L^{l}(p)$ and S^{n} respectively. The images $\left(C_{i}, D_{j}\right)$ of the $C_{i} \times D_{j}$ by the quotient map $L^{l}(p) \times S^{n}$ $\rightarrow D_{p}(l, n)$ give a cellular decomposition of $D_{p}(l, n)$. Denote by $\left(c^{i}, d^{j}\right)$ the dual
cochain element to $\left(C_{i}, D_{j}\right)$. Then we have the following coboundary relations

$$
\begin{aligned}
& \delta\left(c^{2 i+1}, d^{j}\right)=\left\{(-1)^{i}+(-1)^{j}\right\}\left(c^{2_{i}+1}, d^{j+1}\right)+p\left(c^{2_{i}+2}, d^{j}\right) \\
& \delta\left(c^{2 i}, d^{j}\right)=\left\{(-1)^{i}+(-1)^{j+1}\right\}\left(c^{2 i}, d^{j+1}\right) .
\end{aligned}
$$

Therefore, we have the following.
Proposition 3.2. The integral cohomology group $\tilde{H}^{*}\left(D_{p}(l, n) ; Z\right)$ is a direct sum of the following groups
(i$)$ case l : even and n : even
a free group generated by $\left(c^{2 l+1}, d^{n}\right)$, torsion groups generated by the $\left(c^{0}, d^{2 j}\right)$ and the $\left(c^{2 l+1}, d^{2 j-1}\right)$ whose orders are 2 and torsion groups generated by the $\left(c^{4 i}, d^{0}\right)$ and the $\left(c^{4 i-2}, d^{n}\right)$ whose orders are p,
(ii) case l: even and n : odd
a free group generated by $\left(c^{0}, d^{n}\right)$, torsion groups generated by the $\left(c^{0}, d^{2 j}\right)$ and the $\left(c^{2 l+1}, d^{2 j+1}\right)$ whose orders are 2 and torsion groups generated by the $\left(c^{4 i}, d^{0}\right)$ and the $\left(c^{4 i}, d^{n}\right)$ whose orders are p,
(iii) case l : odd and n : even
a free group generated by $\left(c^{2 l+1}, d^{0}\right)$, torsion groups generated by the $\left(c^{0}, d^{2 J}\right)$ and the $\left(c^{2 l+1}, d^{2 j}\right)$ whose orders are 2 and torsion groups generated by the $\left(c^{4 i}, d^{0}\right)$ and the $\left(c^{4 i-2}, d^{n}\right)$ whose orders are p,
(iv) case l: odd and n: odd
free groups generated by $\left(c^{0}, d^{n}\right),\left(c^{2 l+1}, d^{0}\right)$ and $\left(c^{2 l+1}, d^{n}\right)$, torsion groups generated by the $\left(c^{0}, d^{2 j}\right)$ and the $\left(c^{2 l+1}, d^{2 j}\right)$ whose orders are 2 and tosion groups generated by the $\left(c^{4 i}, d^{0}\right)$ and the $\left(c^{4 i}, d^{n}\right)$ whose orders are p, where $0 \leqq 2 j \leqq n$ and $0 \leqq 2 i \leqq l$.

Let Y_{k} be the $(8 k+5)$-skeleton of $D_{p}(2 k+1,4 k+3)$. Denote by $\left(E_{r}^{s, t}(X), d_{r}^{s, t}\right)$ the Atiyah-Hirzebruch spectral sequence for $U^{*}(X)$.

Lemma 3.3. If $s \neq 8 k+6$ then an inclusion $\iota: Y_{k} \rightarrow D_{p}(2 k+1,4 k+3)$ induces the isomorphism for any r

$$
E_{r}^{s, t}\left(Y_{k}\right) \cong E_{r}^{s, t}\left(D_{p}(2 k+1,4 k+3)\right)
$$

Proof. Using Proposition 3.2, it follows that $\iota^{*}: E_{2}^{s, t}\left(D_{p}(2 k+1,4 k+3)\right) \rightarrow$ $E_{2}^{s, t}\left(Y_{k}\right)$ is isomorphic if $s \neq 8 k+6$. We note that the images of the differentials $d_{r}^{s, t}$ for any r are torsion groups [4]. By induction on r we have the lemma. q.e.d.

Proposition 3.4. There exists a short exact sequence

$$
0 \rightarrow U^{2 m-8 k-6} \rightarrow \widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right) \rightarrow \widetilde{U}^{2 m}\left(Y_{k}\right) \rightarrow 0 .
$$

Proof. Consider the exact sequence of complex cobordism groups for a pair $\left(D_{p}(2 k+1,4 k+3), Y_{k}\right)$:

$$
\cdots \rightarrow \tilde{U}^{*}\left(D_{p}(2 k+1,4 k+3)\right) \rightarrow \tilde{U}^{*}\left(Y_{k}\right) \rightarrow \tilde{U}^{*+1}\left(D_{p}(2 k+1,4 k+3) / Y_{k}\right) \rightarrow
$$

From Lemma $3.3 \iota^{*}: \widetilde{U}^{i}\left(D_{p}(2 k+1,4 k+3)\right) \rightarrow \widetilde{U}^{i}\left(Y_{k}\right)$ is isomorphic for i odd. Since $\tilde{H}^{i}\left(D_{p}(2 k+1,4 k+3) / Y_{k} ; Z\right)=0$ if $i \neq 8 k+6$ and $\tilde{H}^{8 k+6}\left(D_{p}(2 k+1,4 k+3) /\right.$ $\left.Y_{k} ; Z\right) \cong Z$, we have that $\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3) / Y_{k}\right) \cong U^{2 m-8 k-6}$. q.e.d.

We investigate the Thom homomorphism $\mu: U^{*}(X) \rightarrow H^{*}(X)$ which is the edge homomorphism of the spectral sequence associated with $U^{*}(X)$. Let X be an orientable manifold. We take an element $[M \xrightarrow{i} X \xrightarrow{i d} X] \in U^{*}(X)$ which is represented by an inclusion map $M \xrightarrow{i} X$ with the normal bundle ν equipped with a complex structure. Denote by $N(\nu)$ the tubular neighborhood of M, and we have a canonical map $j:(X, \phi) \rightarrow\left(X,\{\operatorname{Int} N(\nu)\}^{c}\right)$. Then, we can describe the Thom homomorphism as $\mu[M \xrightarrow{i} X \xrightarrow{i d} X]=j^{*} \tau(\nu), \tau(\nu)$ is the Thom class of ν, and

$$
\begin{equation*}
\mu[M \xrightarrow{i} X \xrightarrow{i d} X]=D i_{*} \sigma(M) \tag{2}
\end{equation*}
$$

where D is the Poincaré duality isomorphism $H_{*}(M) \cong H^{*}(M)$ and $\sigma(M)$ is a fundamental class of M.

We put

$$
L_{k-m}=\left[S^{4 m+3} \xrightarrow{i} S^{4 k+3} \xrightarrow{i d} S^{4 k+3}\right]_{z_{p} \in U_{Z_{p}}^{4(k-m)}\left(S^{4 k+3}\right), ~}^{\text {and }} \text {, }
$$

where $S^{4 k+3}$ and $S^{4 m+3}$ are Z_{p}-spaces with canonical action $g \cdot z=\rho z$ and i is the canonical inclusion, and

$$
R_{2 k+1-n}=\left[S^{2 n+1} \xrightarrow{i} S^{4 k+3} \xrightarrow{\text { id }} S^{4 k+3}\right]_{Z_{2}} \in U_{Z_{2}}^{4 k+2-2 m}\left(S^{4 k+3}\right)
$$

where $S^{2 \boldsymbol{n + 1}}$ and $S^{4 k+3}$ are Z_{2}-spaces with the canonical action $t \cdot x=(-1) x$, and i is the canonical inclusion.

Proposition 3.5. Suppose that p is an odd prime, then

$$
\mu i_{*}\left(L_{k-m}+L_{k-m}^{t}\right)=a\left(c^{4(k-m)}, d^{0}\right), \quad a \neq 0 \text { modulo } p
$$

and

$$
\mu p^{*}\left(R_{2 k+1-n}\right)=\left(c^{0}, d^{4 k+2-2 m}\right) .
$$

Proof. The manifold $D_{p}(2 k+1,4 k+3)$ is orientable. Using Theorem 1.1 and (2), we have the proposition. q.e.d.

Proof of Theorem 1.2.
Proposition 3.5 shows that in the Atiyah-Hirzebruch spectral sequence for $\tilde{U}^{*}\left(D_{p}(2 k+1,4 k+3)\right)$, the $\left(c^{4 i}, d^{0}\right)$ and the $\left(c^{0}, d^{2 j}\right)$ are parmanent cycles. It is
easy to prove that the spectral sequence is trivial. Therefore it follows from Propositions 3.1 and 3.5 that there exists an isomorphism

$$
\begin{gathered}
\lambda^{*}+i_{*}+p^{*}: \widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3) / Y_{k}\right) \oplus \widetilde{U}^{2 m}\left(S^{4 k+3} / Z_{p}\right)^{Z_{2} \oplus \widetilde{U}^{2 m}\left(S^{4 k+3} / Z_{2}\right)} \\
\rightarrow \widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right)
\end{gathered}
$$

where $\lambda: D_{p}(2 k+1,4 k+3) \rightarrow D_{p}(2 k+1,4 k+3) / Y_{k}$ is the projection map. q.e.d.

4. $\widetilde{U}^{*}\left(B Z_{p}\right), p$ an odd prime

The complex cobordism group $\widetilde{U}^{e v}\left(L^{n}(p)\right) \cong \widetilde{U}^{e v}\left(S^{2 n+1} / Z_{p}\right)$ is a U^{*}-module with a generating set $\left\{\left[S^{2_{k+1}} \xrightarrow{i} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right]_{Z_{p}} ; Z_{p}\right.$-equivariant cobordism classes which are represented by the canonical equivariant inclusion map $\left.i\left(z_{0}, \cdots, z_{k}\right)=\left(z_{0}, \cdots, z_{k}, 0, \cdots, 0\right), 0 \leqq k \leqq n-1\right\}$.

Lemma 4.1. $\left\{\iota_{n}^{*}\left(\left[S^{2 k+1} \xrightarrow{i} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right] z_{p}\right)\right\}^{t}$

$$
=l_{n}^{*}\left(\left[S^{2 k+1} \xrightarrow{i} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right]_{Z_{p}}^{t}\right),
$$

where $\iota_{n}: L^{n-1}(p) \rightarrow L^{n}(p)$ is the inclusion map $\iota_{n}\left(z_{0}, \cdots, z_{n-1}\right)=\left(z_{0}, \cdots, z_{n-1}, 0\right)$.
Proof. By the definition of the Z_{2}-action, $\left[S^{2 k+1} \xrightarrow{i} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right]_{Z_{p}}^{t}=$ $\left[\left(S^{2 k+1}\right)^{t} \xrightarrow{i^{t}} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right]_{z_{p}}$ with $i^{t}(z)=c i(z) . \quad$ Let $H_{n}: S^{2 n-1} \times I \rightarrow S^{2 n+1}$ be a map defined by

$$
H_{n}\left(z_{0}, \cdots, z_{n-1}, t\right)=\frac{1}{A}\left(t z_{0}, t z_{1}+(1-t) z_{0}, \cdots, t z_{n-1}+(1-t) z_{n-2},(1-t) z_{n-1}\right)
$$

where A is the norm of $\left(t z_{0}, t z_{1}+(1-t) z_{0}, \cdots,(1-t) z_{n-1}\right) . \quad H_{n}$ is an equivariant Z_{p}-map. Put

$$
j_{n}(z)=H_{n}(z, 0)
$$

then we have that $j_{n}^{*}=\iota_{n}^{*}$. Moreover $j_{n}: S^{2 n-1} \rightarrow S^{2 n+1}$ is transverse regular on $i^{t}\left(S^{2 k+1}\right)$. Therefore, we have

$$
j_{n}^{*}\left[\left(S^{2 k+1}\right)^{t} \xrightarrow{i^{t}} S^{2 n+1} \xrightarrow{i d} S^{2 n+1} z_{p}=\left[\left(S^{2 k-1}\right)^{t} \xrightarrow{i^{t}} S^{2 n-1} \xrightarrow{i d} S^{2 n-1}\right]_{z_{p}}\right.
$$

Let $F(X, Y)$ be the formal group of the complex cobordism theory. Denote by $[-1]_{F}(X)$ the element of $U^{*}[[X]]$ satisfying $F\left(X,[-1]_{F}(X)\right)=0$ and by $[k]_{F}(X)$ the element of $U^{*}[[X]]$ defined by the following formulae

$$
\left\{\begin{array}{l}
{[1](X)_{F}=X} \\
F\left(X,[k]_{F}(X)\right)=[k+1]_{F}(X)
\end{array}\right.
$$

We define a Z_{2}-action on $U^{*}[[X]]$ by

$$
f(X)^{t}=f\left([-1]_{F}(X)\right)
$$

By the definition of the formal group law, it follows immediately that $\left\{[p]_{F}(X)\right\}^{t}$ and $\left(X^{n+1}\right)^{t}$ belong to the ideal $\left([p]_{F}(X), X^{n+1}\right)$ generated by $[p]_{F}(X)$ and X^{n+1} in $U^{*}[[X]]$ and thus Z_{2} acts on $U^{*}[[X]] /\left([p]_{F}(X), X^{n+1}\right)$. We can see that the element $\left[S^{2 n-1} \xrightarrow{i} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right]_{z_{p}}$ corresponds to the cobordism 1-st Chern class $c_{1}\left(\xi_{n}\right)$ of the canonical line bundle ξ_{n} over $L^{n}(p)$ and that $\left[S^{2 n-1} \xrightarrow{i} S^{2 n+1}\right.$ $\left.\xrightarrow{i d} S^{2 n+1}\right]_{z_{p}}^{t}$ is the cobordism 1-st Chern class $c_{1}\left(\xi_{n}\right)$ of the conjugate bundle $\bar{\xi}_{n}$. Therefore, we have the following.

Lemma 4.2. $U^{e v}\left(L^{n}(p)\right)^{Z_{2}} \cong\left\{U^{*}[[X]] /\left([p]_{F}(X), X^{n+1}\right)\right\}^{Z_{2}}$.
Proof. From the definition of the multiplication in $U^{e v}\left(L^{n}(p)\right)$ we hav ϵ that for $0 \leqq k, l \leqq n$

$$
\begin{aligned}
& {\left[S^{2 k+1} \xrightarrow{i} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right]_{z_{p}}\left[S^{2 l+1} \xrightarrow{i} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right]_{z_{p}} } \\
= & \left\{\begin{array}{l}
{\left[S^{2(-n+k+l)+1} \xrightarrow{i} S^{2 n+1} \xrightarrow{i d} S^{2 n+1}\right]_{z_{p}}} \\
0
\end{array} \text { if } n-k-l>0 .\right.
\end{aligned}
$$

Then, it follows immediately that the Z_{2}-action on $U^{*}\left(L^{n}(p)\right)$ is multiplicative. There exists an isomorphism $U^{e v}\left(L^{n}(p)\right) \cong U^{*}[[X]] /\left([p]_{F}(X), X^{n+1}\right)$ which maps $c_{1}\left(\xi_{n}\right)$ to X [13]. Since $F\left(c_{1}\left(\xi_{n}\right), c_{1}\left(\xi_{n}\right)\right)=c_{1}\left(\xi_{n} \otimes \bar{\xi}_{n}\right)=0$, the lemma follows. q.e.d.

Denote by $j_{k}: D_{p}(2 k-1,4 k-1) \rightarrow D_{p}(2 k+1,4 k+3)$ and $\hat{j}_{k}: L^{2 k-1}(p) \rightarrow$ $L^{2 k+1}(p)$ respectively, the maps induced by the inclusions $S^{4 k-1} \times S^{4 k-1} \subset S^{4 k+3} \times$ $S^{4 k+3}$ and $S^{4 k-1} \subset S^{4 k+3}$. The following diagram is commutative

Since the Z_{2}-action on $U^{*}\left(L^{n}(p)\right)$ and \hat{j}_{k}^{*} are U^{*}-homomorphisms, it follows from Lemma 4.1 that i_{*} induces a homomorphism of inverse systems

$$
i_{*}:\left\{\widetilde{U}^{2 m}\left(L^{2 k+1}(p)\right)^{z_{2}}, \hat{j}_{k}^{*}\right\} \rightarrow\left\{\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right), j_{k}^{*}\right\} .
$$

Consider the quotient map of j_{k}

$$
\tilde{j}_{k} ; D_{p}(2 k-1,4 k-1) / Y_{k-1} \rightarrow D_{p}(2 k+1,4 k+3) / Y_{k}
$$

where Y_{k} is a $(8 k+5)$-skeleton of $D_{p}(2 k+1,4 k+3)$. Maps $\lambda: D_{p}(2 k+1,4 k+3)$
$\rightarrow D_{p}(2 k+1,4 k+3) / Y_{k}$ and $p ; D_{p}(2 k+1,4 k+3) \rightarrow R P^{4 k+3}$ induce homomorphisms of inverse systems

$$
\begin{aligned}
& \lambda^{*}:\left\{\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3) / Y_{k}\right) \cong U^{2 m-8 k-6}, \tilde{j}_{k}^{*}\right\} \\
& \rightarrow\left\{\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right), j_{k}^{*}\right\}
\end{aligned}
$$

and

$$
p^{*}:\left\{\widetilde{U}^{2 m}\left(R P^{4 k+3}\right), \hat{j}_{k}^{*}\right\} \rightarrow\left\{\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right), j_{k}^{*}\right\},
$$

where $\hat{j}_{k}: R P^{4 k-1} \rightarrow R P^{4 k+3}$ is the inclusion map. From Theorem 1.2, we have an isomorphism

$$
\begin{align*}
i_{*}+p^{*}: & \underset{\rightarrow}{\leftrightarrows} \lim _{\leftrightarrows} \widetilde{U}^{2 m}\left(L^{2 k+1}(p)\right)^{z_{2}} \oplus \widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right), \tag{4.1}\\
\lim ^{2 m} & \widetilde{U}^{2 m}\left(R P^{4 k+3}\right)
\end{align*}
$$

because $\tilde{j}_{k}^{*}: \widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3) / Y_{k}\right) \rightarrow \widetilde{U}^{2 m}\left(D_{p}(2 k-1,4 k-1) / Y_{k-1}\right)$ is a zero homomorphism.

Lemma 4.3. $j_{k}^{*}: \widetilde{U}^{2 m+1}\left(D_{p}(2 k+1,4 k+3)\right) \rightarrow \widetilde{U}^{2 m+1}\left(D_{p}(2 k-1,4 k-1)\right)$ is a zero homomorphism.

Proof. Let \tilde{Y}_{k} be a $(8 k+2)$-skeleton of $D_{p}(2 k, 4 k+2)$. We consider the map j_{k} as a composition map $j_{k}: D_{p}(2 k-1,4 k-1) \rightarrow \tilde{Y}_{k} \rightarrow D_{p}(2 k, 4 k+2) \rightarrow$ $D_{p}(2 k+1,4 k+3)$. By Proposition 3.2 case (i), it follows that $\hat{H}^{\text {odd }}\left(Y_{k} ; Z\right) \cong 0$ and $\widetilde{U}^{2 m+1}\left(\widetilde{Y}_{k}\right) \cong 0$. Therefore, j_{k}^{*} is the zero homomorphism. q.e.d.

Lemma 4.4. $\lim ^{1} \widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right)=0$.
Proof. From Proposition 3.5 and Theorem 1.2 it follows that $\left\{L_{k-m}\right.$ $\left.+L_{k-m}^{t}\right\}$ is a generating set for U^{*}-module $\widetilde{U}^{e v}\left(S^{4 k+3} / Z_{p}\right)^{Z_{2}}$. By Lemma 4.1, $\hat{j}_{k}^{*}: \widetilde{U}^{2 m}\left(L^{4 k+3}(p)\right)^{z_{2}} \rightarrow \widetilde{U}^{2 m}\left(L^{4 k-1}(p)\right)^{z_{2}}$ is surjective. Therefore, it follows that an inverse system $\left\{\widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right), j_{k}^{*}\right\}$ satisfies the Mittag-Leffler condition and the lemma follows. q.e.d.

Proof of Theorem 1.3.
There exists Milnor's short exact sequence

$$
\begin{align*}
0 \rightarrow \lim ^{1} \widetilde{U}^{*-1} & \left(D_{p}(2 k+1,4 k+3)\right) \rightarrow \widetilde{U}^{*}\left(B D_{p}\right) \tag{4.2}\\
& \rightarrow \lim _{\longleftarrow} \widetilde{U}^{*}\left(D_{p}(2 k+1,4 k+3)\right) \rightarrow 0[10] .
\end{align*}
$$

Using Lemma 4.3 and 4.4, we have $\widetilde{U}^{2 m+1}\left(B D_{p}\right)=0$.
Lemma 4.3 implies that the inverse system $\left\{\widetilde{U}^{2 m+1}\left(D_{p}(2 k+1,4 k+3)\right), j_{k}^{*}\right\}$ satisfies the Mittag-Leffler condition. Therefore we have that

$$
\widetilde{U}^{2 m}\left(B D_{p}\right) \cong \lim \widetilde{U}^{2 m}\left(D_{p}(2 k+1,4 k+3)\right) .
$$

Using Theorem 1.2 and Lemma 4.2 we complete the proof.

5. The structure of $\tilde{K}\left(D_{p}(2 k+1,4 k+3)\right)$

In [3], Conner and Floyd gave the isomorphism

$$
\begin{equation*}
c: \tilde{K}(X) \cong \tilde{U}^{e v}(X) \otimes_{U^{*}} Z \tag{5.1}
\end{equation*}
$$

which maps $\eta_{n}-n$ to $c_{1}\left(\eta_{n}\right) \times 1$. Consider a Z_{2}-action on $K\left(L^{n}(p)\right)$ defined by $\eta^{t}=\bar{\eta}, t$ a generator of Z_{2}. Since Z_{2}-action on $U^{*}\left(L^{n}(p)\right)$ is multiplicative, we have the commutative diagram

Lemma 5.1. $\quad \tilde{U}^{e v}\left(\left(L^{n}(p)\right) \otimes_{U^{*}} Z\right)^{Z_{2}}=\widetilde{U}^{e v}\left(L^{n}(p)\right)^{Z_{2}} \otimes_{U^{*}} Z$, where $\left(\widetilde{U}^{e v}\left(L^{n}(p)\right)\right.$ $\left.\otimes_{U^{*}} Z\right)^{Z_{2}}$ is an invariant subgroup of $\widetilde{U}^{e v}\left(L^{n}(p)\right) \otimes_{U^{*}} Z$ under the $Z_{2^{-}}$-action ${ }^{t} \times_{U^{*}} i d$.

Proof. By the definition of Z_{2}-action of $\widetilde{U}^{e v}\left(L^{n}(p)\right) \otimes_{U^{*}} Z$, it follows that $\widetilde{U}^{e v}\left(L^{n}(p)\right)^{z_{2}} \otimes_{U^{*}} Z \subset\left(\widetilde{U}^{e v}\left(L^{n}(p)\right) \otimes_{U^{*}} Z\right)^{Z_{2}}$. Suppose that $x \otimes_{U^{*}} m \in \widetilde{U}^{e v}\left(L^{n}(p)\right)$ $\otimes_{U^{*}} Z$ and $x^{t} \otimes_{U^{*}} m=x \otimes_{U^{*}} m$. Since c is isomorphic, there exists an element $\eta \in \tilde{K}\left(L^{n}(p)\right)$ with $c(\eta)=x \otimes_{U^{*}} m$. By the commutative diagram (5.2),

$$
c(\eta)=c(\eta)^{t}=c\left(\eta^{t}\right) \quad \text { and } \quad \eta=\eta^{t} .
$$

N. Mahammed [9] proved that $\tilde{K}\left(L^{n}(p)\right)=Z\left[\xi_{n}\right] /\left(\xi_{n}^{n}-1,\left(\xi_{n}-1\right)^{n+1}\right), \xi_{n}$ is the canonical line bundle over $L^{n}(p)$. Put $X=c_{1}\left(\xi_{n}\right)$. Then, the element $c_{1}(\eta)$ is described as a polynomial $f(X)$ with the coefficient in U^{*}. We can see that $c_{1}(\bar{\eta})=f\left([-1]_{F}(X)\right)$. By the observation in Lemma 4.2, it follows that $c_{1}(\eta) \in$ $\tilde{U}^{e v}\left(L^{n}(p)\right)^{z_{2}}$. Therefore, we have that if $x \otimes_{U^{*}} m \in\left(\widetilde{U}^{e v}\left(L^{n}(p)\right) \otimes_{U^{*}} Z\right)^{z_{2}}$, then there exists an element $\eta \in \tilde{K}\left(L^{n}(p)\right)$ such that

$$
x \otimes_{U^{*} m}=c_{1}(\eta) \otimes_{U^{*}} 1, \quad c_{1}(\eta) \in \tilde{U}^{e v}\left(L^{n}(p)\right)^{Z_{2}} .
$$

q.e.d.

From the isomorphism (5.1), Lemma 5.1 and Theorem 1.2, we have the following.

Theorem 5.2 ([5] and [6]).

$$
\tilde{K}\left(D_{p}(2 k+1,4 k+3)\right) \cong Z \oplus \tilde{K}\left(L^{2 k+1}(p)\right)^{Z_{2} \oplus \tilde{K}\left(R P^{4 k+3}\right) . ~}
$$

Kyushu University

References

[1] M.F. Atiyah and G.B. Segal: Equivariant K-theory, Lecture Note, University of Warwick (1965).
[2] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Ergebnisse der Math. und ihrer Grengebeite, Springer Verlag, 1964.
[3] P.E. Conner and E.E. Floyd: The Relation of Cobordism to K-theories, Springer, Berlin, 1966.
[4] A. Dold: Relations between ordinary and extraordinary cohomology, Notes, Aarhus Colloquim on Algebraic Topology, Aarhus, 1962.
[5] T. Fujino, N. Ishikawa and M. Kamata: On the complex K-group of certain manifold, Math. Rep. College Ed. Kyushu Univ. 9 (1973), 1-6.
[6] M. Imaoka and M. Sugawara: On the K-ring of the orbit manifold $\left(S^{2 m+1} \times S^{l}\right) / D_{n}$ by the dihedral group D_{n}, Hiroshima Math. J. 4 (1974), 53-70.
[7] M. Kamata and H. Minami: Bordism groups of dihedral groups, J. Math. Soc. Japan 25 (1973), 334-341.
[8] P. S. Landweber: Coherence, flatness and cobordism of classifying spaces, Proc. Adv Study inst., Aarhus, 1970.
[9] N. Mahammed: A propos de la K-theories des espaces lenticulaires, C.R. Acad. Sci. Paris, 271 (1970), 639-642.
[10] J. Milnor: On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341.
[11] R.S. Palais: The classification of G-spaces, Mem. Amer. Math. Soc. No. 36 (1960).
[12] D. Quillen: Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29-56.
[13] K. Shibata: Oriented and weakly complex bordism algebra of free periodic maps, Trans. Amer. Math. Soc. 177 (1973), 199-220.

