
Kamata, M.
Osaka J. Math.
11 (1974), 367-378

ON COMPLEX COBORDISM GROUPS OF CLASSIFYING
SPACES FOR DIHEDRAL GROUPS

MASAYOSHI KAMATA

(Received December 30, 1973)

1. Introduction

Let G=H Γ be a semi-direct product of a finite group H by a finite group
Γ, X a. compact G-manifold which induces by restriction a principal //-manifold
and Y a principal Γ-manifold. Then we have a principal G-space XxY with
a G-action defined by hj(x, y)=(hyx, <γy), hy^H Γ. The equivariant map
i: X->Xx Y defined by i(x)=(x, y0), induces a homomorphism

i*: U*((Xx Y)IG) - U*(X/H).

We can define a Γ-action over U*(X/H) corresponding to a Γ-action over the
complex bordism group of unitary G-manifolds defined by (1.3) of [7], The
action is denoted by xy, χ(= U*{XfH), γ G Γ .

In this paper, we define a homomorphism

i*: U*(X/H) - U*((Xx Y)IG)

and obtain the following.

Theorem 1.1. For xELU*(X/H)y i*i*(x)=Y#<=rXy.

Let Dp(m, n) be the orbit manifold of S2m+1X Sn by the dihedral group Dp

whose action is given in [7]. Making use of Theorem 1.1 and the Atiyah-
Hirzebruch spectral sequence of the complex cobordism group, we have the
following.

Theorem 1.2. Suppose that p is an odd prime. There exists an isomorphism

U2m(Dp(2k+l, 4&+3))- U2m{Uk+\p))z2($U2m{RPAk^)®U2m-*k-\

where Lι(p)=S2/+1/Zp is a (2l-\-\)-dίmensίonal lens space, RPS is an s-dimensίonal
realprojective space and U*( )z* is the subgroup consisting of the elements which are
fixed under the Z2-action.

Let BZp be a classifying space for Zp. There exists an isomorphism
Uev(BZp)^U*[[X]]l([p]F(X))y Uev( )=^U2\ ) [8]. Consider the f a c t i o n
on Uev(BZp) defined by
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where t is a generator of Z2. We use Milnor's short exact sequence [10] and
Theorem 1.2 to compute the complex cobordism group of a classifying space
for the dihedral group Dp.

Theorem 1.3. Suppose that p is an odd prime. There exist isomorphisms

U2m{BDp)^ U2m(BZp)
z2®U2m(BZ2)

and

Making use of the Conner and Floyd isomorphism

and Theorem 1.2, we can deduce the structure of the i^-group of Dp(2k+l,
4 / J + 3 ) which is also obtained in [5] and [6],

2. The homomorphism ι*: U*(X/H) -> U*((Xx Y)jG)

By a G-manifold we mean a C°°-manifold which can be embedded equivari-
antly in some Euclidean G-space [11]. Let M and X be G-manifolds. By a
complex orientation of a G-map f: M-+X we mean an equivalence class of
factorizations

i p
Z > E-ϊ-» X

where p: E-+X is a complex G-vector bundle over X and where i is an
equivariant G-embedding endowed with a complex structure compatible with
the G-action on its normal bundle v{. As Quillen [12] we can define equivari-
antly a cobordant relation joining such proper complex oriented G-maps for a
G-manifold X. We denote by Uc(X) the set of cobordism classes of proper
complex oriented G-maps of dimension — m. Assume that X is a principal
G-manifold which is a G-manifold such that no element of the group other
than the identity has a fixed point [2]. Then the complex cobordism group
UG(X) is isomorphic to Um(XjG) by sending the equivariant cobordism class

i p ϊ pr

[Z >E—=->X|Gto [ZjG >E/G-!—>XIG], where V and pf are quotient
maps.

From now on, we suppose that G is a semi-direct product H T of a finite
group H by a finite group Γ and that X is a G-manifold whose action restricted
to H is free and Y is a principal Γ-manifold. The element 7 of Γ acts on the
group H by the inner automorphisms h?=rγ~1hfγ and the group operation of
H Γ is given by
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The map /: X->Xχ Y, i(χ)=(χ, y0), is an equivariant map. Then, there exists

a composition homomorphism

/*: U*((Xx Y)jG) Ϊ—+ [/*((lx Y)jH) — U*(XjH)

where r* sends an equivariant cobordism class \Z->E-^X\G to the class

[Z->E^X]H obtained by restriction of the group action and iH is the quotient

map of /. Suppose that X is a compact principal G-manifold, G=H Γ. Let
i p

[Z • E • X]H be an element of U^(X) represented by an /f-equivariant

factorization. Since q: X—>XjH is a principal bundle, a functor q* from the

category of vector bundles and homomorphisms over X\H to the category of

//-vector bundles and i/-homomorphisms over X is an equivalence [1]. There

exists an //-complex vector bundle F over X such that £ φ F = Z χ Cn where H

acts on Xx Cn by the rule h(x, z)=(hx> z). Therefore,

' Λ X]H

as equivariant cobordism classes, where i(z)=(i(z), 0) and p(x, z)=x. We

form the quotient space Gx HZ. The group G acts on GxHZ by g(gX ##)=

(SS X H^)- We have then the equivariant embedding

ix: GxHZxY->XxCnxYxV

h{hj x Hz, y) = (hyi(z), y, e(y))

where GxHZx Y is a G-space by hj(gχHzy y)=(hrygXHz, γj>), F is a complex

Euclidean Γ-space, for example a regular representation space of Γ, Z x CnX Y

x F ί s a G-space by hj(x, z> y, v)=(hjx, z> <γy, <γv) and e: T-^V is a Γ-equi-

variant embedding.

Lemma 2.1. If the normal bundle v of ί: Z->Xx Cn has a complex struc-

ture compatible with the H-actίon, then the normal bundle vλ of ix\ Gx HZχ Y—>

XχCnxYxV has a complex structure compatible with the G-action.

Proof. Let/: v^v be a complex structure compatible with /f-action, that

is, hj=]h. We may consider that X and Y are embedded in a Euclidean G-space

Vx and a Euclidean Γ-space Vy respectively and that each element of G operates

on VxxCnxVyxV as an orthogonal linear transformation. The total space of

the normal bundle v1 is described as follows:

E(vi) = {(h(hΎXiiZ> y)> (hγw, v)): w is a vector of a fiber of v
over i(z) and

We put
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J{φjXHz, y), («;, v)) = (h(h7XHz, y),

The homomorphism / is a complex structure of the bundle vx q.e.d.
From Lemma 2.1, we have a factorization

GxHZx Y-^U XχCnx Yx V-^-> Xx Y,

Pi(x> z> J<> v)=(χ> y)> which is a complex orientation of a map pλ*iλ. We set

/*[Z—^ E-^+ X]H= [GxHZx Y-^-+XxCnx Yx V-^-+ Xx Y]G .

This defines a C/*-module homomorphism

i # : U*(XIH) -> ί / * p χ F)/G)

of degree 0.
We define a Γ-action on C/*(X//f): We take an equivariant cobordism

class [ Z Λ Z x C Λ Λ Z ] H G t / | ( I ) = [/*(X/H), with an iϊ-action φ: HxZ

->Z. Let ZΊ be a copy of Z whose action φ 7 : HxZ^Z is given by

φ7(A, *) - φ(A7, z)

and ί7: Z γ—>Zx Cn be an equivariant ίί-map given by

Denote by z> the normal bundle of z: Z->Xχ Cn and ^ the fiber over x. The
total space E of the normal bundle vy of iy: Zy-^Xx Cn is

£ = {(ίγ(^), 7^): ^ is a vector in the fiber viiz^] .

Let / :^-»y be a complex structure compatible with the //-action. Then, a
bundle map Jy: E-^E, Jy(iy(z)> w)=(iy(z)> rγjy1w), is a complex structure of
vy compatible with the i/-action. We set

-^->X]y

H= [Zy -!—> XχCn -?-+ X]H.

Proof of Theorem 1.1.

We recall that i*[Z-^XxCn-^->X]H=[Gx HZ χY-^-+XχCnχYχV

Y]G, Consider the map j: XxCnx V^XxCx Yx V,j(x, z, υ)=
(x, z,yQ, v). The map j is an iϊ-map and transversally regular on ίλ(Gx HZχ Y).
Let Γ be the set consisting of yly γ2, ••• ym. It follows that

j-1(i1(GxHZxY)) = [jZk
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where Zk= {(h<γki(z), e(jk)): h(=H, ^ G Z } C I X C " X F . Clearly, Zk is equiva-

riantly diffeomorphic to Z^ and [Zk-*^XχCnX V-^->X]H=[Z-^XχCn

>X]H> where ik is an inclusion. Therefore, we have i*i*\Z >XxCn

Λzj^ΣtzΛlxcΛjβ. q.e.d.

3. The structure of U2m(Dp(2k+l, 4&+3))

In [7], the manifold Dp(l, n)=(S2ί+1χSn)IDp was useful to determine the

structure of complex bordism group of principal dihedral group D^-actions.

In this section, we determine the additive structure of U2nt(Dp(2k-\-l, 4&+3)).

Consider an action of the dihedral group Dp=Zp>Z2 over S2l+1xSn given by

( 1 ) tef *')(*> *) = (P* *'"(*)> (- !) '*)> P = e x P

where g is a generator of order p and t is the generator of order 2 and c(z) is the

conjugation operator. The manifold Dp(l, n) is the orbit space. This manifold

is an example of manifolds described in §2. We take a Z^-space S2ί+1 with

g z=pz ( # e S 2 / + 1 , g is a generator of Zp), a Z2-sρace Sn with t x=(—l)x

(x<=Sn, t is the generator of Z2) and a Z^-space S2l+1xSn with the Z^-action

given by (1). Then, there are equivariant maps

ί: S2ί+1 -> S2ί+1xSn i(z) = (s, (1, 0, .-, 0))

j: S*^S*'+1xS" j(x) = ((l,0,~.,0),x)

and

p: S2l+1xSn^Sn p(z,x) = x

with respect to inclusions i: Zp^Dpy j: Z2->Dp and a projection p: Dp->Z2

respectively. Denote by U*(S2l+1IZp)
z2 the subgroup consisting of elements

fixed under the Z2-action over U*(S2ί+1IZp) described in §2. Then we have the

following.

Proposition 3.1. If p is an odd prime, the homomorphism Φ: U2m(S2ι+1IZp)
z2

®U2m(SnIZ2)-> U2m(Dp(l, n)) given by Φ(x, y)=i*{x)+P*{y) is injective.

Proof. We remark that U2m(S2l+ηZp) is a />-group and O2tn(Sn\Z2) is a

2-grouρ. Hence, i*p*=0. Since j*ρ*=l and from Theorem 1.1 i*i*{x)=2x,

Φ is injective. q.e.d.

Denote by Lι(p) a (2/-f-l)-dimensional lens space. The manifold Dp(l, ή)

is homeomorphic to the orbit space of Lι(p)χSn by a Z2-action £([#], x) =

([cz], —x),t<= Z2 the generator. Let C, and Dj be the standard cells of Lι(p) and SM

respectively. The images (C, , Z>y) of the C, X D y by the quotient map Lι(p) xSn

-+Dfi(l, n) give a cellular decomposition of Dp(l, ή). Denote by (c\ dj) the dual
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cochain element to (C, , Dj). Then we have the following coboundary relations

S(c2\ d') = {(—1) + ( — i y + 1 } ( ^ , rf>+1).

Therefore, we have the following.

Proposition 3.2. 77ze integral cohomology group fΐ*(Dp(l> n) Z) is a direct

sum of the following groups

( j ) case I: even andn: even

a free group generated by (c2 / + 1, dn), torsion groups generated by the (c°, d2j)

and the (c21^1, d2j~ι) whose orders are 2 and torsion groups generated by the

(c4/, d°) and the (c4i~2, dn) whose orders are p,

(ii) case I: even andn: odd

a free group generated by (c°, dn), torsion groups generated by the (c°, d2j)

and the (c2ί+1

y d2jJrl) whose orders are 2 and torsion groups generated by the

(c4i

y d°) and the (c4i, dn) whose orders are p,

(iii) case I: odd andn: even

a free group generated by (c2 / + 1, d°), torsion groups generated by the (c°, d2j)

and the (c2l+1, d2j) whose orders are 2 and torsion groups generated by the

(c4i, d°) and the (c4i~2, dn) whose orders are p,

(iv) case I: odd andn: odd

free groups generated by (c°, dn)y (c2ί+\ d°) and (c2ί+1, dn), torsion groups

generated by the (c°, d2j) and the (c2ί+1, d2j) whose orders are 2 and tosion

groups generated by the (c4i, d°) and the (c4i, dn) whose orders are p,

where 0^2j^n and 0^

Let Yk be the (8^+5)-skeleton of Dp(2k+1, 4k + 3). Denote by
(Es

r'\X), d'r'e) the Atiyah-Hirzebruch spectral sequence for U*(X).

Lemma 3.3. If s^ Sk-{-6 then an inclusion ι: Yk~>Dp(2k-\-1, 4k-\- 3) induces
the isomorphism for any r

Proof. Using Proposition 3.2, it follows that t*: E^^D^k+ϊ, 4&+3))->
E'l'^Y/t) is isomorphic if s^8k-\-6. We note that the images of the differentials
ds

r'
c for any r are torsion groups [4]. By induction on r we have the lemma, q.e.d.

Proposition 3.4. There exists a short exact sequence

0 _^ t/2«-βjr-β ̂  U2m(Dp(2k+ly 4k+3)) -> U2m(Yk) -> 0 .

Proof. Consider the exact sequence of complex cobordism groups for a
pair (Dp(2k+\,4k+3),Yk):
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- - 0*(Dp(2k+l, 4£+3)) - 0*(Yh) - U*+\Dp(2k+l, 4k+3)/Yk) -

From Lemma 3.3 **: U^D p(2k+ly 4k+3))-^Ui(Yk) is isomorphic for z odd.

Since # "(Z),(2*+1, 4&+3)/YAϊ; Z ) = 0 if i φ 8 Λ + 6 and B8k+6(Dp(2k+ly 4A+3)/

Y*; Z ) ^ Z , we have that U2m(Dp(2k+l, 4k+3)lYk)^U2m-8k~6. q.e.d.

We investigate the Thorn homomorphism μ: U*(X)->H*(X) which is the

edge homomorphism of the spectral sequence associated with U*(X). Let X
i id

be an orientable manifold. We take an element [M >X >X\

which is represented by an inclusion map M > X with the normal bundle v

equipped with a complex structure. Denote by N(v) the tubular neighborhood

of My and we have a canonical map j : (X, φ)->(X, {Int N(v)}c). Then, we can
i id

describe the Thorn homomorphism as μ[M >X >X]=j*τ(v), τ (^) is the

Thorn class of v> and

i id
( 2 ) μ[M >X >X]

where D is the Poincare duality isomorphism H*(M)^H*(M) and σ(M) is a

fundamental class of M.

We put

i id
Lk_m = [S4m+Z • S4k+3 > S4k+3]Zp(Ξ U£k-m\S'h+z),

where Sik+3 and S4m+3 are Z^-spaces with canonical action g z=ρz and / is the

canonical inclusion, and

where S2n+1 and SAk+3 are Z2-sρaces with the canonical action t x=(—l)xy and

/ is the canonical inclusion.

Proposition 3.5. Suppose thatp is an odd prime, then

μί*(Lk-m+LUm) = a(c*Ck-™\ d°), α ΐ O modulo p

and

Proof. The manifold Dp(2k+l, 4Λ+3) is orientable. Using Theorem 1.1

and (2), we have the proposition, q.e.d.

Proof of Theorem 1.2.

Proposition 3.5 shows that in the Atiyah-Hirzebruch spectral sequence for

U*(Dp(2Jι+l, 4A+3)), the {c4i, d°) and the (c\ d2J) are parmanent cycles. It is
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easy to prove that the spectral sequence is trivial. Therefore it follows from

Propositions 3.1 and 3.5 that there exists an isomorphism

X*+H+p*: 02m(Dp(2k+l,

->U2m(Dp(2k+l,4k+3))

where λ: Dp(2k+ί, 4k+3)->Dp(2k+l, 4£+3)/y* is the projection map. q.e.d.

4. U*(BZp), p an odd prime

The complex cobordism group Ue"{Ln{p))^Uev{S2n+1jZp) is a £/*-module
i id

with a generating set {[S2k+1 > S2n+1 > S2n+1]Zp; Z^-equivariant cobordism

classes which are represented by the canonical equivariant inclusion map

ί(*o, -> **)=(*o, -> **> 0, -> 0), 0 ^ Λ ^ » - l } .

Lemma 4.1. {**( ^

= ^ ( [ 5 2 Λ + l - i - * s 2 n + 1 •?—> s 2 n + 1 y Z p ) ,

where ιn\ L"~\p)->Ln(p) is the inclusion map tn(z0, •••, zn.1)=(zoy •••, ̂ _ j , 0 ) .

Proof. By the definition of the Z2-action, [S2k+1-^-+ S2n+1^—> S2n+1]e

Zp =
i* id

[(S2k+1γ >S2n+1 >S2n+1]Zp with it(z) = ci(z). Let Hn: S2"'1 x I->S2n+1

be a map defined by

Hn(zQy •••, zH-191) = —(tz09 ^ + ( 1 —φr0, "'9tzn^+(l—t)zn-2y (1—ί)^«-i)

where 4̂ is the norm of (tz0, tzλ-{-{l — t)zQy •••, (1 — ί)^- ! ) . i/M is an equivariant

Z^-map. Put

Uz) = ̂ * , 0),

then we have that j*=$. Moreover jn: s2n~1^S2n+1 is transverse regular on

ι'(52*+1). Therefore, we have

ί*
j*[(S2k+1Y > S2n+1 • S2n+1]zp = [ ( 5 2 * " 1 ) ' • S2"-1 > S2n~1]Zp .

q.e.d.

Let F(X, Y) be the formal group of the complex cobordism theory.

Denote by [-1]F(X) the element of U*[[X]] satisfyingF(X, [-l]F{X))=0 and

by [k]F(X) the element of t/*[[^]] defined by the following formulae

[ί](X)F = X

F(X,[k]F(X)) =
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We define a Z2-action on U*[[X]] by

f(XY=f([-\]F(X)).

By the definition of the formal group law, it follows immediately that {[J>]F(X)}'
and (Xn+1Y belong to the ideal {[ρ]F{X\ Xn+1) generated by [p]F(X) and Xn+1

in U*[[X]] and thus Z2 acts on U*[[X]]l([p]F(X)y Xn+1). We can see that the
i id

element [S2"'1 > S2n+1 >S2n+λ]Zp corresponds to the cobordism 1-st Chern

class c^n) of the canonical line bundle ξn over Ln(p) and that [S2*-1 > S2n+1

id
>S2n+lγZp is the cobordism 1-st Chern class ^(^M) of the conjugate bundle ξn.

Therefore, we have the following.

Lemma 4.2. U°\L\p)f ^{U*[[X]]l([p]F(X), X"+i)}^.

Proof. From the definition of the multiplication in Uev(Ln(p)) we have
that for O^k,

- {

> s2n+i > s 2 n + l ] z [ s 2 ί + 1 ι > s2n+1 — > s 2 n + 1 ] 2

i id
£2tt + l £f2»+Γ|

0 ifn-k-l>0.

Then, it follows immediately that the Z2-action on U*(L"(p)) is multiplicative.
There exists an isomorphism Uev(Ln(p))^U*[[X]]l([p]F(X), Xn+1) which maps

Cl(ξn) to X [13]. Since F(Cl(ξn), cΎ(ξn))=Cl{ξn®ξn)=Q, the lemma follows, q.e.d.
Denote by jk:Dp(2k—l,4k—l)-*Dp(2k+l,4k+3) and j k : L2"-\p)->-

L2k+1(p) respectively, the maps induced by the inclusions S*k~1xS'k~1c:S"'+3X
54*+3 and 5 4 *" 1 c5 4 * + 3 . The following diagram is commutative

U2m{U»+\p)) - ^ U O2m(Dp(2k+ί, 4A+3))

I/? ,
U2m(L2k-\p)) ^ϊ-> U2m(Dp(2k-l, 4 ^ -

Since the Z2-action on U*(L"(p)) and jf are ί/*-homomorphisms, it follows from
Lemma 4.1 that ί * induces a homomorphism of inverse systems

*„,: {U2m{L2*+\p))zI,/?} -> {U2m(Dp(2k+l, 4k+3)),j*} .

Consider the quotient map of j k

h\ Dp(2k-ί, U-iyY^ - Dp(2k+ί, 4k+3)IYk ,

where Yk is a (8&+5)-skeleton of Dp(2k+1, 4Λ+3). Maps λ: Dp(2k+\, 4Λ+3)
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-^Dp(2k+l, 4k+3)/Yk and p; Dp(2k+ί, 4k+3) -* RPik+3 induce homomor-
phisms of inverse systems

λ*: {U*m(Dp(2k+l,

and

p*: {U^iRP^J* ,

where j k : RP^'1 —> RP4k+z is the inclusion map. From Theorem 1.2, we have
an isomorphism

(4.1) i*+P*: lίm U2m(L2k+\p))z2φlim U2m(RPik+3)

-Γΰm U2M(Dp(2k+h 4^+3)),

because/?: ^ ( Z J ^ + l , 4A+3)/y i k)^^(fl ί(2A-l, ^ - l j / y ^ ) is a zero
homomorphism.

Lemma 4.3. jf: U2m+1(Dp(2k+l, 4k+3))-+ U2m+1(Dp(2k-l, 4ft-1)) w α
homomorphism.

Proof. Let F* be a (8&+2)-skeleton of Z)/2ft, 4ft+2). We consider the
map j k as a composition map 7 :̂ Z)^(2ft—1, 4ft—1)-> Ϋk-^Dp(2k, 4k-\-2)->
Dp(Zk+l, 4ft+3). By Proposition 3.2 case (i), it follows that ffodd(Yk; Z ) ^ 0
and ί/2fW+1(YΆr)=0. Therefore, jf is the zero homomorphism. q.e.d.

Lemma 4.4. lim1 O2m(Dp(2k+l, 4ft+3))=0.

Proof. From Proposition 3.5 and Theorem 1.2 it follows that {Lkm

+Z4_m} is a generating set for C/*-module Uev(SAk^jZp)
z2. By Lemma 4.1,

jΐ: U2m(L4k+3(p))z2-^U2m(L4k-\p))z2 is surjective. Therefore, it follows that
an inverse system {U2m(Dp(2k+l, 4ft+3)),yf} satisfies the Mittag-Leίϊler con-
dition and the lemma follows, q.e.d.

Proof of Theorem 1.3.
There exists Milnor's short exact sequence

(4.2) 0 ^ lim1 U*-\Dp(2k+l, 4ft+3)) — U*(BDp)

-> lim U*(Dfi(2k+l, 4ft+3)) -> 0 [10] .

Using Lemma 4.3 and 4.4, we have U2m+\BDp)=0.
Lemma 4.3 implies that the inverse system {U2m+1(Dp(2k+l, 4k+3))Jf}

satisfies the Mittag-Lefϊler condition. Therefore we have that

U2m(BDp)^\\m U2m(Dp(2k+l, 4ft+3)).

Using Theorem 1.2 and Lemma 4.2 we complete the proof.
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5. The structure of K(Dp(2k+1, 4k+3))

In [3], Conner and Floyd gave the isomorphism

(5.1) c

which maps ηn—n to c^η^xl. Consider a Z2-action on K(Ln(p)) defined by
ηt=ηy t a generator of Z2. Since Z2-action on U*(Ln(p)) is multiplicative, we
have the commutative diagram

(5.2) \ c l
^ Ueυ (Ln(p))®v*Z

Lemma 5.1. Uev{{Ln{p))®v*Z)z2= Uev(Ln(p))z2®^Zf where (Uev(Ln(p))
®u*Z)z2 is an invariant subgroup of Uev(Ln(p))®u*Z under the Z2-action

Proof. By the definition of Z2-action of Ueυ{Ln{p))®u*Z, it follows that
Ueυ(Ln(p))z2®u,Z(z{Ueυ{Ln{p))®u,Z)z2, Suppose that x®u*m^Uev(Ln(p))
®u*Z and xt®u*m=x®u*m. Since c is isomorphic, there exists an element
η(=K{Ln(p)) with c(η)=x®u*nι. By the commutative diagram (5.2),

c(v) = c(v)* = c(rf) and η = rf .

N. Mahammed [9] proved that £(L*(ί)) = Z[f J/(£S-1, (ξn-l)n+1), ξn is the
canonical line bundle over Ln(p). Put X= cx(ξn). Then, the element cjjj) is
described as a polynomial f(X) with the coefficient in £/*. We can see that
cλ{ψj)=f{\—1]F(X)). By the observation in Lemma 4.2, it follows that ^χ(^)^
Uev(Ln(p))z2. Therefore, we have that if x®u*nιeί(Uev(Ln(p))®u*Z)z2, then

there exists an element η^K(Ln(p)) such that

x®v*ni = φ)®vΛ , φ)<Ξ Uev(Ln(p))z2.
q.e.d.

From the isomorphism (5.1), Lemma 5.1 and Theorem 1.2, we have the
following.

Theorem 5.2 ([5] and [6]).

K(Dp(2k+l,
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