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1. Introduction

Let G=H -T be a semi-direct product of a finite group H by a finite group
T, X a compact G-manifold which induces by restriction a principal H-manifold
and Y a principal I'-manifold. Then we have a principal G-space X X Y with
a G-action defined by hvy(x, y)=(hyx, vy), hyeH-T. The equivariant map
i: X — XX Y defined by #(x)=(x, y,), induces a homomorphism

i*: UX(XX Y)/G) - U*(X/H).

We can define a T-action over U*(X/H) corresponding to a I'-action over the
complex bordism group of unitary G-manifolds defined by (1.3) of [7]. The
action is denoted by «?, xe U*(X/H), vy<T.

In this paper, we define a homomorphism

ix: UXX/H) - U¥(X X Y)/G)
and obtain the following.

Theorem 1.1. For xe U*(X/H), t*iy(x)=> \yer &".

Let D ,(m, n) be the orbit manifold of S*”**x S” by the dihedral group D,
whose action is given in [7]. Making use of Theorem 1.1 and the Atiyah-
Hirzebruch spectral sequence of the complex cobordism group, we have the
following.

Theorem 1.2. Suppose that p is an odd prime. There exists an isomorphism
(’jzm(Dp(Zk_I_ 1’ 4k+ 3))g ﬁzm(sz-H(P))zz@ ﬁzm(RP4k+3)€B Um-8k-6 ,

where L'(p)=S**'|Z , is a (214 1)-dimensional lens space, RP° is an s-dimensional
real projective space and U *( )%z is the subgroup consisting of the elements which are
fixed under the Z,-action.

Let BZ, be a classifying space for Z,. There exists an isomorphism
U*(BZ,)=U*[[X]]/([p] (X)), U*( )=22U%( ) [8]. Consider the Z,-action
on U®(BZ,) defined by
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JfX) = fA[—11+(X)),

where ¢ is a generator of Z,. We use Milnor’s short exact sequence [10] and
Theorem 1.2 to compute the complex cobordism group of a classifying space
for the dihedral group D,

Theorem 1.3.  Suppose that p is an odd prime.  There exist isomorphisms

U™™BD )= U"(BZ Y& U*™(BZ,)
and
U+(BD,)=0.

Making use of the Conner and Floyd isomorphism
R(X)=U"(X)QuZ

and Theorem 1.2, we can deduce the structure of the K-group of D (2k+1,
4k+-3) which is also obtained in [5] and [6].

2. The homomorphism *: U*(X/H)— U*(X X Y)/G)

By a G-manifold we mean a C~-manifold which can be embedded equivari-
antly in some Euclidean G-space [11]. Let M and X be G-manifolds. By a
complex orientation of a G-map f: M —X we mean an equivalence class of
factorizations

i P
Z— E— X
where p: E— X is a complex G-vector bundle over X and where 7 is an
equivariant G-embedding endowed with a complex structure compatible with
the G-action on its normal bundle »;,. As Quillen [12] we can define equivari-
antly a cobordant relation joining such proper complex oriented G-maps for a
G-manifold X. We denote by Ug(X) the set of cobordism classes of proper
complex oriented G-maps of dimension —m. Assume that X is a principal
G-manifold which is a G-manifold such that no element of the group other
than the identity has a fixed point [2]. Then the complex cobordism group
U ’”(X) is isomorphic to U ”‘(X /G) by sending the equivariant cobordism class

(Z— B2 X1, to [2/6—> /G -2 X/G], where i and p’ are quotient

maps.

From now on, we suppose that G is a semi-direct product H-T" of a finite
group H by a finite group I' and that X is a G-manifold whose action restricted
to H is free and Y is a principal T"-manifold. The element v of T acts on the
group H by the inner automorphisms A'=9~'hy and the group operation of
H T is given by
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(h1 ')’1)(h2 'Yz) == h1 hzl_ ' Y12 -

The map 7: X — XX Y, i(x)=(x, y,), is an equivariant map. Then, there exists
a composition homomorphism
r* *

i*: U¥(XX Y)/G) —> U*(Xx Y)/H) i, U*(X/H)

where 7* sends an equivariant cobordism class [Z—FE—X]; to the class

[Z — E — X]y obtained by restriction of the group action and 7y is the quotient

map of 2. Suppose that X is a compact principal G-manifold, G=H -T". Let
: b

[z N E— X]y be an element of Ug(X) represented by an H-equivariant
factorization. Since ¢: X — X/H is a principal bundle, a functor ¢* from the
category of vector bundles and homomorphisms over X/H to the category of
H-vector bundles and H-homomorphisms over X is an equivalence [1]. There
exists an H-complex vector bundle F over X such that E@F=X x C” where H
acts on X X C” by the rule A(x, 2)=(hx, 2). Therefore,

z—e-Ls x1,— 7% xxc-2s xq,

as equivariant cobordism classes, where i(2)=(i(2), 0) and p(x, 2)=x. We
form the quotient space GX zZ. The group G acts on G X zZ by g(g X pgx)=
(g X gx). We have then the equivariant embedding

1: GX gZXY - XXC"XYXV
W(hy X u2, y) = (hvi(2), 3, €(7))

where G X yZ X Y is a G-space by hy(g X g2, y)=(hvgX uz, vy), V is a complex
Euclidean T"-space, for example a regular representation space of I', XX C*"X Y
X V is a G-space by hy(x, 2, y, v)=(hvx, 2, vy, vv) and e: T—V is a T'-equi-
variant embedding.

Lemma 2.1. If the normal bundle v of i: Z —>X X C” has a complex struc-
ture compatible with the H-action, then the normal bundle v, of i,;: GX zkZX Y —
XX C"X Y XV has a complex structure compatible with the G-action.

Proof. Let J: v—v be a complex structure compatible with H-action, that
is, hJ=Jh. We may consider that X and Y are embedded in a Euclidean G-space
V. and a Euclidean I'-space V, respectively and that each element of G operates
on V,xC"XV,xV as an orthogonal linear transformation. The total space of
the normal bundle v, is described as follows:

E(v,)) = {(@(hy X g2, ), (hyw, v)): w is a vector of a fiber of v
over {(2) and ve V'}.

We put
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](il(h')/X % Y), (w, 0)) = (L,(hy X &3, ¥), (v 7 ', \/:'17’)) .

The homomorphism [ is a complex structure of the bundle », q.e.d.
From Lemma 2.1, we have a factorization

Gx nZX Y — XxC*x Yx VL5 Xx v,

pi(x, 2, ¥, v)=(%, y), which is a complex orientation of a map p,-7,. We sct

iZ— B2 Xl = [GxuZx ¥ 2 XxC*x Y x V24 Xx Yo

This defines a U*-module homomorphism
ix: UX/H) - U*(XX Y)/G)

of degree 0.
We define a T-action on U*(X/H): We take an equivariant cobordism

class [Z——s X x C*—Ls X] e Uk(X)= U*(X/H), with an H-action ¢: Hx Z

—Z. Let Z" be a copy of Z whose action ¢”: HX Z—Z is given by
¢'(h, 2) = H(H", 2)
and ¢": Z7— X X C" be an equivariant H-map given by
(=) = 7i().

Denote by v the normal bundle of i: Z—Xx C” and v, the fiber over x. The
total space E of the normal bundle »” of 2¥: Z¥— XX C" is

E = {(?(2), 7v): v is a vector in the fiber v;.,,} .

Let J: v—v be a complex structure compatible with the H-action. Then, a
bundle map J¥: E—E, J'(i%(2), w)=("(=), vJv 'w), is a complex structure of
v” compatible with the H-action. We set
i » o ?
[Z— XXC"— X}y =[2"—>XXC"— X]y.
Proof of Theorem 1.1.

i A
We recall that 7,[Z—> X X C”LX]H:[GX w2 X Y—z—+X><C”><Y><V

LXX Y]e. Consider the map j: XX C*XV—->XXC*"XYXV, j(x, 2, v)=

(%, 2,¥5,v). The map j is an H-map and transversally regular on {,(GX zZ X Y).
Let T be the set consisting of v,, v,, +** 7,,. It follows that

7T E(CGX gZXY)=UZ,
k
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where Z,={(hv,i(2), e(7r)): heH,2€Z}c XX C"X V. Clearly, Z,is equiva-
) b i
riantly diffeomorphic to Z% and [Zk—i» XX C"X V—p—>X]H= [Z—XXxC"

i
—p—>X 1%, where i, is an inclusion. Therefore, we have i*i,[Z—> XX C"
? i V]

i
—~ > X]g=3[Z—> XXC"—— X]}. q.e.d.

3. The structure of U*™(D ,(2k+1, 4k+3))

In [7], the manifold D (I, n) =(S**'x S")/D, was useful to determine the
structure of complex bordism group of principal dihedral group D ,-actions.
In this section, we determine the additive structure of T**(D »(2k+1, 4k+-3)).
Consider an action of the dihedral group D ,=Z,-Z, over S**'x S" given by

(1) (&)=, x) = (p*c’(2), (—1)%), p = exp 2/ —1/p

where g is a generator of order p and ¢ is the generator of order 2 and ¢(2) is the
conjugation operator. The manifold D ,(/, n) is the orbit space. This manifold
is an example of manifolds described in §2. We take a Z,-space S**' with
g-x=pz (€S8*", g is a generator of Z,), a Z,-space S” with t-x=(—1)x
(x€S™, t is the generator of Z,) and a D ,-space S***'x.§” with the D ,-action
given by (1). Then, there are equivariant maps

in SHT - SN ST i(2) = (%, (1,0, -+, 0))
ji S*— SHTx S j(x) = ((1, 0, -+, 0), x)
and

p: SHUXS" > S* p(z, x) =«

with respect to inclusions i: Z,—D,, j: Z,—~ D, and a projection p: D,—Z,
respectively. Denote by U*(S***/Z,)?: the subgroup consisting of elements
fixed under the Z,-action over U*(S**'/Z,) described in §2. Then we have the
following.

_Proposition 3.1.  If p is an odd prime, the homomorphism ®: U»(S*+|Z )7
DU™(S™|Z,)— U™(D ,(I, n)) given by ®(x, y)=i(x)+p*(y) is injective.

Proof. We remark that U**(S¥+'|Z ») 18 a p-group and U™(S"Z,) is a
2-group. Hence, i*p*=0. Since j*p*=1 and from Theorem 1.1 7*i,(x)=2x,
@ is injective. q.e.d.

Denote by L!(p) a (2I+1)-dimensional lens space. The manifold D ,(/, n)
is homeomorphic to the orbit space of L/(p)x S™ by a Z,-action #([2], x)=
([cz], —x), t= Z, the generator. Let C; and D; be the standard cells of L’(p) and S™
respectively. The images (C;, D;) of the C;x D; by the quotient map L’(p)x S™*
—D (I, n) give a cellular decomposition of D (I, n). Denote by (c?, d’) the dual
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cochain element to (C;, D;). Then we have the following coboundary relations

S(c¥+, d7) = {(__1):‘_,_(_1)]'}(62;'-}—1, A7 +-p(c¥ 2, d7)
(e, &) = {(=DH(—1) ), &)

Therefore, we have the following.

Proposition 3.2.  The integral cohomology group H*(D (I, n); Z) is a direct
sum of the following groups
(3) casel: even and n: even
a free group generated by (c**', d™), torsion groups generated by the (¢°, d*/)
and the (c**', d*~") whose orders are 2 and torsion groups generated by the
(c*, d°) and the (c*~*, d™) whose orders are p,
(ii) case l: even and n: odd
a free group generated by (c°, d"), torsion groups gemerated by the (c°, d*7)
and the (¢*'*, d*7*") whose orders are 2 and torsion groups generated by the
(c*, d°) and the (c*i, d™) whose orders are p,
(iii) case l: odd and n: even
a free group generated by (c*'**, d°), torsion groups generated by the (c°, d*?)
and the (¢**, d*) whose orders are 2 and torsion groups gemerated by the
(c*, d°) and the (c*~*, d™) whose orders are p,
(iv) casel: odd and n: odd
free groups gemerated by (c° d™), (¢***', d°) and (c**, d™), torsion groups
generated by the (¢°, d*7) and the (c¢****, d*7) whose orders are 2 and tosion
groups generated by the (c*, d°) and the (c*!, d*) whose orders are p,

where 0<2j <n and 0=2i<1.

Let Y, be the (8%+-5)-skeleton of D, (2k+ 1,4k 3). Denote by
(E¥*(X), d;'*) the Atiyah-Hirzebruch spectral sequence for U*(X).

Lemma 3.3. If s4-8k+-6 then an inclusion v: Y ,—D ,(2k+-1, 4k+3) induces
the isomorphism for any r

Er(Y)=E2'(D(2k+1, 4k+3)).

Proof. Using Proposition 3.2, it follows that .*: E§°(D (2k+1, 4k-+3)) —
$°(Y,) is isomorphic if s3=8k-+6. We note that the images of the differentials
d:'* for any r are torsion groups [4]. By induction on » we have the lemma. q.e.d.

Proposition 3.4. There exists a short exact sequence
0 — U= ™D (2k+1, 4k+3)) — U™(Y,) - 0.

Proof. Consider the exact sequence of complex cobordism groups for a

pair (D ,(2k+1, 4k+3), ¥}):



CompLEX CoBORDISM GROUPS 373

v = UXD(2k+1, 4k+3)) - U¥(Y,) — U*(D (2k+1, 4k+3)]Yy) —

From Lemma 3.3 *: Ui(D (2k+1, 4k+3))—Ui(Y,) is isomorphic for i odd.
Since H¥(D ,(2k+1, 4k+3)/Y}; Z)=0 if i%8k+6 and H**(D ,(2k+1, 4k+3)]
Y,.; Z)=Z, we have that U*™(D ,(2k+1, 4k+-3)/Y,)=U*""%"°, q.e.d.

We investigate the Thom homomorphism p: U*(X)— H*(X) which is the
edge homomorphism of the spectral sequence associated with U*(X). Let X

d
be an orientable manifold. We take an element [M—l—>X ~l—>X]e U*(X)

which is represented by an inclusion map M L, X with the normal bundle »
equipped with a complex structure. Denote by N(v) the tubular neighborhood
of M, and we have a canonical map j: (X, ¢)— (X, {Int N(»)}°). Then, we can

describe the Thom homomorphism as u[M Lxtx 1=7*7(v), 7(») is the
Thom class of v, and

] id
(2) W[ M —— x 2, X] = Dio(M)
where D is the Poincaré duality isomorphism H(M)=H*(M) and o(M) is a
fundamental class of M.
We put

i id
4m-+3 k+3 4f+3 4k~ 3
Ly =[S — ST SW+0], & Sk (S k)

where S*** and S*”*** are Z ,~spaces with canonical action g-z=pz and ¢ is the
canonical inclusion, and

7 id
R2k+1—n — [Szn+1 s Stet3_ . SA[¢+3]ZZE U}§+2—zm(S4k+3)

where S*** and S*** are Z,-spaces with the canonical action ¢-x=(—1)x, and
7 is the canonical inclusion.

Proposition 3.5. Suppose that p is an odd prime, then
wiy(Ly- L) = a(c**=m, d°), a==0 modulo p
and
BD*(Ropsr-n) = (¢ d¥H2777)

Proof. The manifold D ,(2k+1, 4k+-3) is orientable. Using Theorem 1.1
and (2), we have the proposition. q.e.d.

Proof of Theorem 1.2,

Proposition 3.5 shows that in the Atiyah-Hirzebruch spectral sequence for
U*(D ,(2k+1, 4k-+3)), the (c*, d°) and the (¢°, d*/) are parmanent cycles. It is
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easy to prove that the spectral sequence is trivial. Therefore it follows from
Propositions 3.1 and 3.5 that there exists an isomorphism

M tigtp*s U™(D (2k+1, 4k+3)] Y ) D U™(S**|Z Y2 D U™(S *+°| Z,)
— U™(D (2k+1, 4k+3))
where n: D ,(2k+1, 4k+-3) — D ,(2k+-1, 4k+3)/ Y, is the projection map. q.e.d.

4. U*(BZ,), p an odd prime
The complex cobordism group U*(L*(p))=U*(S*+|Z ,) is a U*-module

. l l . . .
with a generating set {[S**'— §*"*' — S+, . Z -equivariant cobordism
classes which are represented by the canonical equivariant inclusion map
Z.(zoy HAEY zk):(zo’ 0ty By 0’ "ty 0); Oékén_l}

Lemma 4.1. {}([S**" —l—> N i» S )Y
= (s~ e 2, gy ),
where ,,: L™ 7(p)— L™(p) is the inclusion map ¢,(2q, *+*, Zu-1)=(20, ***» Zn-1, 0).
Proof.. By the qeﬁnition of the Z,-action, [S 2"+‘~L> S 2”+l—l—> S 2"+1]2p=

: d
(S —— gmes 2, 4], ith #(2) —ci(s). Let H,: S™1 x [—> 8™+

be a map defined by
Hn(zm s Bp—1y t) = ‘%‘(tzm t21+(1—t)20, Tty tzn—l_"(l_t)zn—m (l_t)zn—l)

where 4 is the norm of (z,, tz,+(1—%)z,, -+, (1—1%)z,-,). H, is an equivariant
Z,-map. Put

Jn(2) = Hy(z, 0),
then we have that j¥=,¥. Moreover j,: S '— S** is transverse regular on

#(S**").  Therefore, we have

. . o .

d d
j:r[(SZk'Fl)t t S2ﬂ+1 ¢ S2ﬁ+l]zﬁ [(Szk—l)t ! SZ”—! SZ”—I]ZP .
q.e.d.

Let F(X,Y) be the formal group of the complex cobordism theory.
Denote by [—1](X) the element of U*[[X]] satisfying F(X, [—1]4(X))=0 and
by [k] /(X) the element of U*[[X]] defined by the following formulae

{ [1(X)r =X
F(X, [R] (X)) = [k+1]4(X) .
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We define a Z,-action on U*[[X]] by

JX) = f([—1]X)) -

By the definition of the formal group law, it follows immediately that {[p]-(X)}*
and (X ') belong to the ideal ([p]«(X), X™*") generated by [p]«(X) and X"**
in U*[[X]] and thus Z, acts on U*[[X]]/([p]#(X), X™*'). We can see that the

i i
element [S*~'—— §*"'—— §***!], " corresponds to the cobordism 1-st Chern
class ¢,(&,) of the canonical line bundle £, over L*(p) and that [S ma L, N

2.5 #+1]%, is the cobordism 1-st Chern class c,(&,) of the conjugate bundle g,
Therefore, we have the following.

Lemma 4.2. U®(L%(p))?=={U*[[X]I/([p]AX), X"*")}?z.

Proof. From the definition of the multiplication in U®(L"(p)) we have
that for 0=k, I=n

7 id i id
[Szk—H ) Szn+1 SN Szn+1]zp[S21+1 S2n+1 S21x+1]zp
[Sz(_”+k+1)+1 4 S+t d S2n+1]
{ 0 if n—k—1>0.
Then, it follows immediately that the Z,-action on U*(L"(p)) is multiplicative.
There exists an isomorphism U *“(L*(p))== U*[[X]]/([p] #(X), X"*") which maps
() to X [13]. Since F(c,(£,), () =c,(E,®E,)=D0, the lemma follows. q.e.d.
Denote by j.: D,(2k—1, 4k—1)— D ,(2k+-1, 4k+3) and j.: L*7'(p)—

L***'(p) respectively, the maps induced by the inclusions S*~'x S*~'C S***x
S*+3and S*~'C.S**®.  The following diagram is commutative

DL+ (p) —> T*(D ,(2k-+1, 4k-+3)
o i

T(Lo#(p)) =2 T*™(D ,(2k—1, 4k—1)).

Since the Z,-action on U*(L*(p)) and j¥ are U *-homomorphisms, it follows from
Lemma 4.1 that 7, induces a homomorphism of inverse systems

i {U(L*(p))%, 5} — {U™(D (241, 4k+3)), ji} .
Consider the quotient map of j,
J#s Dy(2k—1, 4k—1)|Y,_, — D (2k+1, 4k+3)Y,,
where Y is a (8k+5)-skeleton of D (2k+1, 4k+-3). Maps \: D (2k+1, 4k+3)
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— D ,(2k-+1, 4k+4-3)]Y, and p; D (2k+1, 4k+3) — RP**** induce homomor-
phisms of inverse systems
Nz DD (2h4 1, 44 3)] V)= U=, 71}
— {U™(D (2k+1, 4k+-3)), j¥}
and

p*: {TU™™(RP*+), ¥} — {0*™(D (2k-+1, 4k+3), ¥},

where ;},,: RP*~'— RP**? s the inclusion map. From Theorem 1.2, we have
an isomorphism
4.1) i +p*: lim UL p))2:Dlim U*™(RP*+?)
<« “«—
— lim U*(D (2k+1, 4k+3)),

because 7¥: U*™(D ,(2k+1, 4k+-3)]Y,) —U™(D (2k—1, 4k—1)]Y,_,) is a zero
homomorphism.

Lemma 4.3. j¥: U'”"“(DI,(Zk—I—I, 4k-+3)) — U'””“(Dp(Zk— 1,4k—1))isa
zero homomorphism.

Proof. Let Y, be a (8k+2)-skeleton of D ,(2k, 4k+2). We consider the
map j, as a composition map j,: D,(2k—1, 4k—1)— Y, — D (2k, 4k+2)—

D (2k+1, 4k+3). By Proposition 3.2 case (i), it follows that H*(Y,; Z)=0
and U™*(Y,)=0. Therefore, j¥ is the zero homomorphism. q.e.d.

Lemma 4.4. lim' U*™(D ,(2k-+1, 4k+3))=0.

Proof. From Proposition 3.5 and Theorem 1.2 it follows that {L,_,
+L5_n} is a generating set for U*-module U®(S***/Z,)%. By Lemma 4.1,
f;“: U*(L*e+¥(p))%2 — U™ (L**(p))?: is surjective. Therefore, it follows that
an inverse system {U*"(D ,(2k+1, 4k+3)), j¥} satisfies the Mittag-Leffler con-
dition and the lemma follows. q.e.d.

Proof of Theorem 1.3.
There exists Milnor’s short exact sequence
(4.2) 0 - lim* U*-(D ,(2k+1, 4k+3)) — U*(BD,)
— 1:2 U*(D ,(2k+1, 4k+3)) — 0 [10] .
Using Lemma 4.3 and 4.4, we have U**+*(BD,)=0.

Lemma 4.3 implies that the inverse system {T**+(D S(2k+1, 4k+-3)), j¥}
satisfies the Mittag-Leffler condition. Therefore we have that

U(BD,)=lim U"(D ,(2k+1, 4k+3)) .

Using Theorem 1.2 and Lemma 4.2 we complete the proof.
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5. The structure of K(D ,(2k+1, 4k+3))

In [3], Conner and Floyd gave the isomorphism
(5.1) ¢: K(X) = U*(X)QunZ,

which maps 7,—n to ¢,(n,)X1. Consider a Z,-action on K(L"(p)) defined by
7'=n, t a generator of Z,. Since Z,-action on U*(L"(p)) is multiplicative, we
have the commutative diagram

R(LY(p) — T*(L*(p))@u+Z
(5.2) t . jf@,,* id
R(L"(p) — T (L*(p) @+ Z

Lemma 5.1. U“((L"(p))Qu» Z)e= U (L (p))%eQy» Z, where (TU(L*(p))
QurZ)?2 is an invariant subgroup of U (L*(p))Qu+Z under the Z,-action +* X y+id.

Proof. By the definition of Z,-action of U (LY(p))Ru+Z, it follows that
U(L"(p))2:@ue Z < (U (LY(p))Qu+ Z)?:.  Suppose that x@yeme U*(L*(p))
Qu+Z and ¥ Qypn=xQy+m. Since c is isomorphic, there exists an element
ne K(L™(p)) with ¢(n)=xQ y+m. By the commutative diagram (5.2),

c(n) =c(n) =c(v") and =7

N. Mahammed [9] proved that K(L*(p))= Z[£,]/(E2—1, (E,—1)*""), &, is the
canonical line bundle over L*(p). Put X=¢,(&,). Then, the element ¢,(7) is
described as a polynomial f(X) with the coefficient in U*. We can see that
(1) =f([—1]#(X)). By the observation in Lemma 4.2, it follows that ¢,(7)=
U*(L*(p))?.. Therefore, we have that if x® yeme (U (L*(p))R y+Z)?:, then

there exists an element n& K(L*(p)) such that

XQuem = ()Rl  c(n)€ UL (p))?.
q.e.d.

From the isomorphism (5.1), Lemma 5.1 and Theorem 1.2, we have the
following.

Theorem 5.2 ([5] and [6]).
K(DP(Zk—I—I, 4k+3))= ZDK(L*+(p))?DK(RP**?) .
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