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MULTIPLICATIVE P-SUBGROUPS OF SIMPLE ALGEBRAS
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Amitsur ([1]) determined all finite multiplicative subgroups of division
algebras. We will try to determine, more generally, multiplicative subgroups
of simple algebras. In this paper we will characterize p-groups contained in
full matrix algebras M ,(A) of fixed degree n, where A are division algebras of
characteristic 0. _

All division algebras considered in this paper will be of characteristic 0.

Let A beadivision algebra. We will denote by M ,(A) the full matrix algebra
of degree n over A. By a subgroup of M,(A) we will mean a multiplicative
subgroup of M, (A). Further let K be a subfield of the center of A and let G be a
finite subgroup of M,(A). Now we define Vg (G)={Dag;|a;EK, g;,=G}.
Then Vg(G) is clearly a K-subalgebra of M ,(A) and there is a natural epimor-
phism KG—V (G) where KG denotes the group algebra of G over K. Hence
Vk(G) is a semi-simple K-subalgebra of M ,(A), which is a direct summand of
KG. Asusual @, R, C, H denote respectively the rational number field, the real
number field, the complex number field and the quaternion algebra over R.

If an abelian group G has invariants (e,, -+, ¢,), ¢,¥+ 1, e,.,|e;, we say briefly
that G has invariants of length #.

We begin with

Proposition 1. Let n be a fixed positive integer and let G be a finite abelian
group. Then there is a division algebra A such that GC M ,(A)if and only if G
has invariants of length <n.

Proof. This may be well known. Here we give a proof. Suppose that
there is a division algebra A such that GC M ,(A). An abelian group G has in-
variants of length <z whenever each Sylow subgroup of G has invariants of
length <n. Hence we may assume that G is a p-group (=1). Let m be the
length of invariants of G. Then G contains the elementary abelian group G, of

1 ptoeetp™?
order p™. We can write QG,~QDQ(E,)D---DR(E,) where &, denotes the

primitive p-th root of unity. Since V¢(G,) is a direct summand of QG, and
m

G,CVo(G,), we have Vo(G,)=Q(E,)D-DQ(E,). On the other hand, since
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Vo(Gy)© M ,(A), there exist at most z orthogonal idempotents in Vo(G,). Thus
we have m<n. The converse is obvious. Q.E.D.

Proposition 2 Let p be an odd prime and 0<n<<p. Let P be a finite p-group.
If there exists a division algebra A such that PC M, (A), then P is abelian.

Proof. Let Vg(P)=M 1,(A)® - DM ,(A;) be the decomposition of
V o(P) into simple algebras where each A, is a division algebra. Then we easily

see that p/1+ ... +p/*<n. Therefore, when n<<p, we have /,=---=1[,=0. Since
P is odd, each division algebra A; is commutative ([3]). Hence Vg(P) is com-
mutative. This conclude that P is abelian. Q.E.D.

DEFINITION. Let P,=<g> be a cyclic group of order p. Let P, P’ be finite
p-groups and let P/, P/, .-+, P,/ be the copies of P’. We will call P a simple
(1-fold) p-extension of P’ if P is an extension of P,/XP,’X--XP, by P,such
that P¥=P/, ..., P;£,=P,/, Pjf=P/. Itshould be remarked that this extension
does not always split. More generally, a finite p-group P will be called an n-
-fold p-extension of a finite p-group P’, if there exist finite p-groups, P,.=F’, P,,
<oy P,_1, P,=Psuch that, for each0<i<n—1, P, is a simple p-extension of P;.

Now we set

T = { {all cyclic p-groups} when p=+2,
{all generalized quaternion 2-groups} when p=2,

and 7= {all cyclic p-groups} for any prime p. An element of T (resp. T)
is called a p-group of O-type (resp. o-type).
A finite p-group P is said to be of n-type (resp. #i-type) if P is an n-fold p-extension
of a p-group of O-type (resp. i-type). We denote by T (resp. T”) the set of
all p-groups of n-type (resp. #i-type).

Our main result is given the following

Theorem. Let n be a fixed positive integer and let P be a finite p-group.
Then following conditions are equivalent:

(1) Pis asubgroup of M, (H) (resp. M ,(C)).

(2) There is a division algebra A (resp. a commutative field K) such that
PC M, (A) (resp. M (K)).

t
(3) There exist non-negative integers, t, mg, -+, m, with 20 pim;<n and

- t mg
PP, PP, ..., PP TP (resp. TSP) for each 0<i<t such that PC ]_'IO ]'[1 P,
1=0 j=
The following theorem plays an essential part in the proof of our main
theorem.

Theorem (Witt-Roquette [3], [4]). Let P be a p-group. Let K be a
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commutative field of characteristic 0. Suppose that one of the following hypotheses
is satisfied.

() p*2,

(b) p=2and/—1€K.

(c) p=2 and P does not contain a cyclic subgroup of index 2.

Then if X is a nonlinear irreducible faithful character of P there exists Py<|P
and a character § of P, such that |P: P,|=p, X=¢F and K(X)=K(}).

From this theorem the following remark follows directly.

Remark. If K is an algebraic number field in this theorem, each division
algebra equivalent to a simple component of KP is an algebraic number field or a
quaternion algebra.

Lemma 3. Let P be a finite non-abelian p-group and let A be a division
algebra such that PC M ,(A). Suppose that V o(P)=M ,(A).

(1) Suppose that P is a 2-group which is not of type 0 and that A is non-
commutative. Then there exists a subgroup P, of P of index 2 such that V o(P,)==
Mn/z(A)®Mn/2(A)'

(2) Suppose that A is commutative. Then we have V o(P)=M,(C) and
there exists a normal subgroup P, of P of index p such that Vo(P,)=

2
M,y (C)D+- DM, ,(C).

Proof. (a) Let M be a simple M ,(A)-module and let E be a splitting field
of A. Since M is a non-linear faithful @P-module by the assumption that
V o(P)=M,(A), there exists a non-linear faithful irreducible EP-module N such
that M@ gE=mo(N)(NDN°PD--), o= Gal (Q(£)/Q), where ¢ is the character of
N and mg(N) denotes the Schur index of N. Applying the Witt-Roquette's
theorem to NNV, we can find a normal subgroup P, of P and an irreducible EP -
module N, with character ¢, such that Nf=~N and Q({)=@Q({,). Let X denote
the character of M. Then we have X=mg({)({+& 7+ )=me(L) o+ o+ ++)+
me(£)(E8+(E8)"+ --) where {1, g} are representatives of P/P,. Since 2=mqy({)<
mq(,)=2, we have mo(§)=mq({)=2. Let XOZmQ(Co)(Co—i_gg—l—"')' Then X,
is a @-character of P,. Further let M, be the QP -module corresponding to X,.
Then we see that M, POMi=QPR op M,=QPR qp M§=M as QP-module.
Since M 2 M$% as QP -module, we have

A = Homgp(M, M)
=~ Homgp(QP R gp,M,, QPR op,M )
= Homgp (M,, Homp(QP, QPR op,M,))
= Homgp (M,, QPR gp,M ,)
=~ HomQPO(MO, My,



372 M. Hikarr:

and, similarly, A =Homgp(M%, M%). Clearly dimgM = dimoM%=14dimgM,;
and the semi-simple subalgebra Vg(P,)C Vo(P)=M,(A) has only two simple
compotents corresponding to M, M§. Thus we get Vo(P))=M,,/,(AYDM,,/,(A).
(b) Since A is commutative by the assumption, we have CQ ,Vq(P)=
CQRaM, (A)=M,(C). From this it follows directly that V(P)=M,(C). Let
M be a simple V¢(P)-(CP-)module and let X be the character of M. According
to the Witt-Roquette’s theorem, there exists a normal subgroup P, of P of index p
and an irreducible CP-module M, such that M=M}. Hence, along the same
P
line as in the case (a), we can show that V¢(P,)=M,,(C)+---+M,,;,(C).
Q.E.D.

Lemma 4. Let P be a finite p-group. Suppose one of the following condi-
tions:

(@) p=2 and P is a subgroup of M (A) such that Vo(P)=M (A) where A
1S a quaternion algebra. '

(b) P is a subgroup of M ,»(C) such that V(P)=M ,(C). Then P is a sub-
group of a p-group of n-type. Further, in the case (b) P is a subgroup of a p-group
of fi-type.

Proof. We will give the proof only in the case (a), because the proof in the
-case (b) can be done similarly. This will be done by inductionon z.  In case n=0
this is obvious. Hence we assume that n>1. By Lemma 3, there exists a normal
subgroup P, of P of index 2 such that Vy(P,)=A4,P A, where A;==M ;-1(A).
Let M, be a simple A,-module and let {1, g} be representatives of P/P,. Then
M ,==M%as QP,-module. Let P, denote the image of P, by the projection on A4,.
Then Vy(P;)=M-1(A). Hence, by induction, each P; is a subgroup of a 2-
group of (n—1)-type. We regard M, as QP -module by the projection P,—P;
and so, since M,=~M¢, we have P,—=Pf and the following commutative diagram:

P, —i—> P,

l (8 8) l

P, XP, —> P,XP,

On the other hand, we can find 2-groups P,, P, of (n-1)-type such that P,~P,.
Here we may assume that the restriction of the isomorphism P,~<P, on P, coin-
cides with g: P,~xP,. We denote this isomorphism from P, onto P, by ¢. Put
h=g*. Then themap (1, h); P,x P,—P,x P, is an isomorphism and so (o, ks™*):
,Pl X P,—P,x ‘231 is an isomorphism, too. Since the restriction of Ao ~* on P, coin-
cides with hg™'=g, we get the following commutative diagram:
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P, __g;) P,
(g 8) l

P, xP, ——> P,xP,

R

P, xP, ——> P,xP,

Let <u> be a cyclic group of order 2. The automorphism (o, ko) and the
factor set {(1, 1)=(u, 1)=(1, u)=1,(u, u)=h} define a group P with normal
subgroup P, x P, and P|P, x P,~<u), because (ha?, ¢)+(a, ho™")=(h, cho™!)=
(hy h"")=(h, k¥ ")=(h, k). Then the group P is clearly a 2-group of n-type

which contains P. Thus the proof of the lemma is completed.

Lemma 5. If P T (resp. TS™), Pis a subgroup of M,«(H) (resp. M ,(C))
and V g(P)=M,»(H) (resp. V o(P)=M ,4(C)).

Proof. We will prove this in the caée PeTP.

(a) n=0. Since P is a generalized quaternion group, P is a subgroup of
H and Vg(P)=H ([1], [2]).

(b) #>0. We proceed by inductiononz. By the definition of 75", there
exist 2-groups P,, P,& T$" such that P, X P, is a subgroup of P of index 2 and
that P§=P,, where g is a representative of a generator of P/P, X P,. By the in-
duction hypothesis each P; is a subgroup of M,»-i(H) and Vg(P;)=M y»-1(H).
Let M, be a simple Vg(P,)«(RP,-)module. Put M=M,® gp,xpp,RP. Since
P¢=P, M% is a simple RP,-module. It follows that M, 2:M¥ as R(P,x P,)-
module and therefore Homgp(M, M) = Hompgep,xp, (M,, M, D M§) =
Hompgp,xppy(M,, M,)=H. We see that the simple component of RP correspond-
ing to M is M ,«(H). Because M is a faithful RP-modlue, P is a subgroup of
M s(H) and Vg(P)=M»(H).

We will omit the proof in the case P& T, because we can prove it along the
same line as in the case P T9. Q.E.D.

Now we give the proof of our main theorem.

Proof of the main theorem. The implication (1)=(2) is obvious and there-
fore it suffices to show the implications (2)=(3)=(1).

(@) (2)=(3). Assume PCM,(A). Let Vo(P)=M 1(A)D:-- DM ,is(A;)
be the decomposition of Vg(P) into simple algebras where each A; is a division
algebra. Here we easily see that p/14---4p’s<n. Let P; be the image of P by
the projection to M ,i(A;), for each 1<i<s. Then P can be identified with a

subgroup of f[ P; and, for each 1=<i=<s, Vo(P;)=M ,u(A;). According to the
i=1
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remark on the Witt-Roquette’s theorem, A; is a quaternion algebra or an alge-
braic number field. Further if A; is a quaternion algebra for some 1=<i<s,
p=2([3]). If A;isanalgebraic number field, by Lemma 3 (2) V¢(P;)=M ,1i(C).
Applying Lemma 4, it follows that each P; is a subgroup of a p-group of /;-type.
Here (3) is concluded in this case.

Assume PC M (K). LetL be the algebraic closure of K and let L’=C N L.
Since K is commutative, we have L® M, (K)=M,(L). From this it follows
directly that V (P)c M,(L). In addition, each division algebra equvalent to
a simple component of L’P conicides with L'([3]). Let V (P)=M (L")
M ,1(L’) be the decomposition of V,/(P) into simple algebras. Then p/i+---+
p=<n. If P; is the image of P by the projection to M ,(L’), P; is a sub-
group of M ,1(C)=M ,(L")®/C and V¢(P;)=M ,i(C). It follows from Lemma
4 that P, is a subgroup of /-type. On the other hand P can be identified with a

subgroup of 1:[ P, and so we conclude (3).
(b) (3);:( 1). Since P{” is a p-group of i-type (resp {-type), by Lemma 5,
Py is a subgroup of M ,i(H) (resp. M ,i(C)) and so H H PP Z@M (H)C
,,(H) (resp. H II PYPc M, (C)) by Zp m;=n. Smce P is a subgroup of
IT ]] P, Pisa subgroup of M, (H) (resp. M ,(C)). Q.E.D.

i j=1
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