Hikari, M.
Osaka J. Math.
10 (1973), 369-374

MULTIPLICATIVE P-SUBGROUPS OF SIMPLE ALGEBRAS

Michitaka HIKARI

(Received May 1., 1972)

Amitsur ([1]) determined all finite multiplicative subgroups of division algebras. We will try to determine, more generally, multiplicative subgroups of simple algebras. In this paper we will characterize p-groups contained in full matrix algebras $M_{n}(\Delta)$ of fixed degree n, where Δ are division algebras of characteristic 0 .

All division algebras considered in this paper will be of characteristic 0 .
Let Δ be a division algebra. We will denote by $M_{n}(\Delta)$ the full matrix algebra of degree n over Δ. By a subgroup of $\mathrm{M}_{n}(\Delta)$ we will mean a multiplicative subgroup of $M_{n}(\Delta)$. Further let K be a subfield of the center of Δ and let G be a finite subgroup of $M_{n}(\Delta)$. Now we define $V_{K}(G)=\left\{\sum \alpha_{i} g_{i} \mid \alpha_{i} \in K, g_{i} \in G\right\}$. Then $V_{K}(G)$ is clearly a K-subalgebra of $M_{n}(\Delta)$ and there is a natural epimorphism $K G \rightarrow V_{K}(G)$ where $K G$ denotes the group algebra of G over K. Hence $V_{K}(G)$ is a semi-simple K-subalgebra of $M_{n}(\Delta)$, which is a direct summand of $K G$. As usual $\boldsymbol{Q}, \boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$ denote respectively the rational number field, the real number field, the complex number field and the quaternion algebra over \boldsymbol{R}.

If an abelian group G has invariants (e_{1}, \cdots, e_{n}), $e_{n} \neq 1, e_{i+1} \mid e_{i}$, we say briefly that G has invariants of length n.

We begin with
Proposition 1. Let n be a fixed positive integer and let G be a finite abelian group. Then there is a division algebra Δ such that $G \subset M_{n}(\Delta)$ if and only if G has invariants of length $\leqq n$.

Proof. This may be well known. Here we give a proof. Suppose that there is a division algebra Δ such that $G \subset M_{n}(\Delta)$. An abelian group G has invariants of length $\leqq n$ whenever each Sylow subgroup of G has invariants of length $\leqq n$. Hence we may assume that G is a p-group ($\neq 1$). Let m be the length of invariants of G. Then G contains the elementary abelian group G_{0} of $\overbrace{Q\left(\varepsilon_{p}+\cdots+p^{m-1}\right.}^{1+p+\varepsilon_{p}}$
order p^{m}. We can write $\boldsymbol{Q} G_{o} \cong \boldsymbol{Q} \oplus \overbrace{\boldsymbol{Q}\left(\varepsilon_{p}\right) \oplus \cdots \oplus \boldsymbol{Q}\left(\varepsilon_{p}\right)}$ where ε_{p} denotes the primitive p-th root of unity. Since $V_{\boldsymbol{Q}}\left(G_{0}\right)$ is a direct summand of $\boldsymbol{Q} G_{0}$ and $G_{0} \subset V_{\boldsymbol{Q}}\left(G_{0}\right)$, we have $V_{\boldsymbol{Q}}\left(G_{0}\right) \cong \overbrace{\boldsymbol{Q}\left(\varepsilon_{p}\right) \oplus \cdots \oplus \boldsymbol{Q}\left(\varepsilon_{p}\right)}^{\boldsymbol{m}}$. On the other hand, since
$V_{Q}\left(G_{0}\right) \subset M_{n}(\Delta)$, there exist at most n orthogonal idempotents in $V_{Q}\left(G_{0}\right)$. Thus we have $m \leqq n$. The converse is obvious.
Q.E.D.

Proposition 2 Let p be an odd prime and $0<n<p$. Let P be a finite p-group. If there exists a division algebra Δ such that $P \subset M_{n}(\Delta)$, then P is abelian.

Proof. Let $V_{Q}(P) \cong M_{p_{1} l_{1}}\left(\Delta_{1}\right) \oplus \cdots \oplus M_{p^{l_{t}}}\left(\Delta_{t}\right)$ be the decomposition of $V_{Q}(P)$ into simple algebras where each Δ_{i} is a division algebra. Then we easily see that $p^{l_{1}}+\cdots+p^{l_{t}} \leqq n$. Therefore, when $n<p$, we have $l_{1}=\cdots=l_{t}=0$. Since p is odd, each division algebra Δ_{i} is commutative ([3]). Hence $V_{Q}(P)$ is commutative. This conclude that P is abelian.
Q.E.D.

Definition. Let $P_{0}=\langle g\rangle$ be a cyclic group of order p. Let P, P^{\prime} be finite p-groups and let $P_{1}{ }^{\prime}, P_{2}{ }^{\prime}, \cdots, P_{p}{ }^{\prime}$ be the copies of P^{\prime}. We will call P a simple (1 -fold) p-extension of P^{\prime} if P is an extension of $P_{1}{ }^{\prime} \times P_{2}{ }^{\prime} \times \cdots \times P_{p}{ }^{\prime}$ by P_{0} such that $P_{1}^{\prime g}=P_{2}^{\prime}, \ldots, P_{p-1}^{\prime g}=P_{p}{ }^{\prime}, P_{p}^{\prime g}=P_{1}^{\prime}$. It should be remarked that this extension does not always split. More generally, a finite p-group P will be called an n --fold p-extension of a finite p-group P^{\prime}, if there exist finite p-groups, $P_{0}=P^{\prime}, P_{1}$, $\cdots, P_{n-1}, P_{n}=P$ such that, for each $0 \leqq i \leqq n-1, P_{i+1}$ is a simple p-extension of P_{i}.

Now we set

$$
T_{p}^{(0)}=\left\{\begin{array}{l}
\{\text { all cyclic } p \text {-groups }\} \quad \text { when } p \neq 2, \\
\{\text { all generalized quaternion 2-groups }\}
\end{array} \quad \text { when } p=2,\right.
$$

and $\tilde{T}_{p}^{(0)}=\{$ all cyclic p-groups $\}$ for any prime p. An element of $T_{p}^{(0)}\left(\right.$ resp. $\left.\widetilde{T}_{p}^{(0)}\right)$ is called ap-group of 0 -type (resp. \tilde{o}-type).
A finite p-group P is said to be of n-type (resp. \tilde{n}-type) if P is an n-fold p-extension of a p-group of 0 -type (resp. $\tilde{\sigma}$-type). We denote by $T_{p}^{(n)}\left(\right.$ resp. $\left.\widetilde{T}_{p}^{(n)}\right)$ the set of all p-groups of n-type (resp. \tilde{n}-type).

Our main result is given the following
Theorem. Let n be a fixed positive integer and let P be a finite p-group. Then following conditions are equivalent:
(1) $\quad P$ is a subgroup of $M_{n}(\boldsymbol{H})\left(\right.$ resp. $\left.M_{n}(\boldsymbol{C})\right)$.
(2) There is a division algebra Δ (resp. a commutative field K) such that $P \subset M_{n}(\Delta)\left(r e s p . M_{n}(K)\right)$.
(3) There exist non-negative integers, t, m_{0}, \cdots, m_{t} with $\sum_{i=0}^{t} p^{i} m_{i} \leqq n$ and $P_{i}^{(1)}, P_{i}^{(2)}, \cdots, P_{i}^{\left(m_{i}\right)} \in T_{p}^{(i)}\left(\right.$ resp. $\left.\widetilde{T}_{p}^{(i)}\right)$ for each $0 \leqq i \leqq t$ such that $P \subset \prod_{i=0}^{t} \prod_{j=1}^{m_{i}} P_{i}^{(j)}$.

The following theorem plays an essential part in the proof of our main theorem.

Theorem (Witt-Roquette [3], [4]). Let P be a p-group. Let K be a
commutative field of characteristic 0 . Suppose that one of the following hypotheses is satisfied.
(a) $p \neq 2$,
(b) $p=2$ and $\sqrt{-1} \in K$.
(c) $\quad p=2$ and P does not contain a cyclic subgroup of index 2 .

Then if χ is a nonlinear irreducible faithful character of P there exists $P_{0} \triangleleft P$ and a character ζ of P_{0} such that $\left|P: P_{0}\right|=p, \chi=\zeta^{P}$ and $K(\chi)=K(\zeta)$.

From this theorem the following remark follows directly.
Remark. If K is an algebraic number field in this theorem, each division algebra equivalent to a simple component of $K P$ is an algebraic number field or a quaternion algebra.

Lemma 3. Let P be a finite non-abelian p-group and let Δ be a division algebra such that $P \subset M_{n}(\Delta)$. Suppose that $V_{Q}(P)=M_{n}(\Delta)$.
(1) Suppose that P is a 2-group which is not of type 0 and that Δ is noncommutative. Then there exists a subgroup P_{0} of P of index 2 such that $V_{Q}\left(P_{0}\right) \simeq$ $M_{n / 2}(\Delta) \oplus M_{n / 2}(\Delta)$.
(2) Suppose that Δ is commutative. Then we have $V_{c}(P)=M_{n}(C)$ and there exists a normal subgroup P_{0} of P of index p such that $V_{c}\left(P_{0}\right) \cong$ $\overbrace{M_{n / p}(\boldsymbol{C}) \oplus \cdots \oplus M_{n / p}(\boldsymbol{C})}^{p}$.

Proof. (a) Let M be a simple $M_{n}(\Delta)$-module and let E be a splitting field of Δ. Since M is a non-linear faithful $\boldsymbol{Q} P$-module by the assumption that $V_{\boldsymbol{Q}}(P)=M_{n}(\Delta)$, there exists a non-linear faithful irreducible $E P$-module N such that $M \otimes_{\boldsymbol{Q}} E \cong m_{\boldsymbol{Q}}(N)\left(N \oplus N^{\sigma} \oplus \cdots\right), \sigma \in \operatorname{Gal}(\boldsymbol{Q}(\zeta) / Q)$, where ζ is the character of N and $m_{Q}(N)$ denotes the Schur index of N. Applying the Witt-Roquette's theorem to N, we can find a normal subgroup P_{0} of P and an irreducible $E P_{0}$ module N_{0} with characte1 ζ_{0} such that $N_{0}^{P} \cong N$ and $\boldsymbol{Q}(\zeta)=\boldsymbol{Q}\left(\zeta_{0}\right)$. Let χ denote the character of M. Then we have $\chi=m_{Q}(\zeta)\left(\zeta+\zeta^{\sigma}+\cdots\right)=m_{Q}(\zeta)\left(\zeta_{0}+\zeta_{0}^{\sigma}+\cdots\right)+$ $m_{Q}(\zeta)\left(\zeta_{0}^{g}+\left(\zeta_{0}^{g}\right)^{\sigma}+\cdots\right)$ where $\{1, g\}$ are representatives of P / P_{0}. Since $2=m_{Q}(\zeta) \leqq$ $m_{Q}\left(\zeta_{0}\right) \leqq 2$, we have $m_{Q}(\zeta)=m_{Q}\left(\zeta_{0}\right)=2$. Let $\chi_{0}=m_{Q}\left(\zeta_{0}\right)\left(\zeta_{0}+\zeta_{0}^{\sigma}+\cdots\right)$. Then χ_{0} is a \boldsymbol{Q}-character of P_{0}. Further let M_{0} be the $\boldsymbol{Q} P_{0}$-module corresponding to χ_{0}. Then we see that $M_{0} \oplus M_{0}^{g} \cong \boldsymbol{Q P} \otimes_{Q P_{0}} M_{0} \cong \boldsymbol{Q} P \otimes_{\boldsymbol{Q} P_{0}} M_{0}^{g} \cong M$ as $\boldsymbol{Q P}$-module. Since $M_{0} \neq M_{0}^{g}$ as $\boldsymbol{Q} P_{0}$-module, we have

$$
\begin{aligned}
\Delta & \cong \operatorname{Hom}_{\boldsymbol{Q P}}(M, M) \\
& \cong \operatorname{Hom}_{\boldsymbol{Q} P}\left(\boldsymbol{Q} P \otimes_{\boldsymbol{Q} P_{0}} M_{0}, \boldsymbol{Q} P \otimes_{\boldsymbol{Q} P_{0}} M_{0}\right) \\
& \cong \operatorname{Hom}_{\boldsymbol{Q} P_{0}}\left(M_{0}, \operatorname{Hom}_{\boldsymbol{Q P}}\left(\boldsymbol{Q} P, \boldsymbol{Q} P \otimes_{\boldsymbol{Q} P_{0}} M_{0}\right)\right) \\
& \cong \operatorname{Hom}_{\boldsymbol{Q} P_{0}}\left(M_{0}, \boldsymbol{Q} P \otimes_{\boldsymbol{Q} P_{0}} M_{0}\right) \\
& \cong \operatorname{Hom}_{\boldsymbol{Q} P_{0}}\left(M_{0}, M_{0}\right),
\end{aligned}
$$

and, similarly, $\Delta \simeq \operatorname{Hom}_{Q P_{0}}\left(M_{0}^{g}, M_{0}^{g}\right) . \quad$ Clearly $\operatorname{dim}_{Q} M_{0}=\operatorname{dim}_{Q} M_{0}^{g}=\frac{1}{2} \operatorname{dim}_{Q} M$; and the semi-simple subalgebra $V_{Q}\left(P_{0}\right) \subset V_{Q}(P)=M_{n}(\Delta)$ has only two simple compotents corresponding to M_{0}, M_{0}^{g}. Thus we get $V_{Q}\left(P_{0}\right) \simeq M_{n / 2}(\Delta) \oplus M_{n / 2}(\Delta)$.
(b) Since Δ is commutative by the assumption, we have $\boldsymbol{C} \otimes_{\Delta} V_{Q}(P) \cong$ $\boldsymbol{C} \otimes_{\Delta} M_{n}(\Delta) \cong M_{n}(\boldsymbol{C})$. From this it follows directly that $V_{\boldsymbol{C}}(P)=M_{n}(\boldsymbol{C})$. Let M be a simple $V_{c}(P)-(C P-)$ module and let χ be the character of M. According to the Witt-Roquette's theorem, there exists a normal subgroup P_{0} of P of index p and an irreducible $\boldsymbol{C} P_{0}$-module M_{0} such that $M \cong M_{0}^{P}$. Hence, along the same line as in the case (a), we can show that $V_{C}\left(P_{0}\right) \cong \overbrace{M_{n^{\prime} p}(\boldsymbol{C})+\cdots+M_{n / p}(\boldsymbol{C})}^{p}$. Q.E.D.

Lemma 4. Let P be a finite p-group. Suppose one of the following conditions:
(a) $p=2$ and P is a subgroup of $M_{2^{n}}(\Delta)$ such that $V_{Q}(P)=M_{2^{n}}(\Delta)$ where Δ is a quaternion algebra.
(b) P is a subgroup of $M_{p^{n}}(\boldsymbol{C})$ such that $V_{C}(P)=M_{p^{n}}(\boldsymbol{C})$. Then P is a subgroup of a p-group of n-type. Further, in the case (b) P is a subgroup of a p-group of \tilde{n}-type.

Proof. We will give the proof only in the case (a), because the proof in the _case (b) can be done similarly. This will be done by induction on n. In case $n=0$ this is obvious. Hence we assume that $n \geqq 1$. By Lemma 3, there exists a normal subgroup P_{0} of P of index 2 such that $V_{Q}\left(P_{0}\right)=A_{1} \oplus A_{2}$ where $A_{i} \cong M_{2^{n-1}}(\Delta)$. Let M_{i} be a simple A_{i}-module and let $\{1, g\}$ be representatives of P / P_{0}. Then $M_{2} \cong M_{1}^{g}$ as $\boldsymbol{Q} P_{0}$-module. Let P_{i} denote the image of P_{0} by the projection on A_{i}. Then $V_{Q}\left(P_{i}\right)=M_{2^{n-1}}(\Delta)$. Hence, by induction, each P_{i} is a subgroup of a 2group of $(n-1)$-type. We regard M_{i} as $\boldsymbol{Q} P_{0}$-module by the projection $P_{0} \rightarrow P_{i}$ and so, since $M_{2} \cong M_{1}^{g}$, we have $P_{2}=P_{1}^{g}$ and the following commutative diagram:

$$
\underset{P_{1} \times P_{2} \xrightarrow{P_{0}} \xrightarrow{g} P_{0}}{\substack{(g, g) \\ P_{2}} P_{1}}
$$

On the other hand, we can find 2-groups $\widetilde{P}_{1}, \widetilde{P}_{2}$ of (n-1)-type such that $\widetilde{P}_{1} \cong \widetilde{P}_{2}$. Here we may assume that the restriction of the isomorphism $\widetilde{P}_{1} \leftrightharpoons \widetilde{P}_{2}$ on P_{1} coincides with $g: P_{1} \cong P_{2}$. We denote this isomorphism from \widetilde{P}_{1} onto \widetilde{P}_{2} by σ. Put $h=g^{2}$. Then the map $(1, h) ; \widetilde{P}_{2} \times \widetilde{P}_{1} \rightarrow \widetilde{P}_{2} \times \widetilde{P}_{1}$ is an isomorphism and so $\left(\sigma, h \sigma^{-1}\right)$: $\widetilde{P}_{1} \times \widetilde{P}_{2} \rightarrow \widetilde{P}_{2} \times \widetilde{P}_{1}$ is an isomorphism, too. Since the restriction of $h \sigma^{-1}$ on P_{2} coincides with $h g^{-1}=g$, we get the following commutative diagram:

Let $\langle u\rangle$ be a cyclic group of order 2. The automorphism ($\sigma, h \sigma^{-1}$) and the factor set $\{(1,1)=(u, 1)=(1, u)=1,(u, u)=h\}$ define a group \widetilde{P} with normal subgroup $\widetilde{P}_{1} \times \widetilde{P}_{2}$ and $\tilde{P} / \widetilde{P}_{1} \times \widetilde{P}_{2} \cong\langle u\rangle$, because $\left(h \sigma^{-1}, \sigma\right) \cdot\left(\sigma, h \sigma^{-1}\right)=\left(h, \sigma h \sigma^{-1}\right)=$ $\left(h, h^{\sigma^{-1}}\right)=\left(h, h^{g-1}\right)=(h, h)$. Then the group \widetilde{P} is clearly a 2-group of n-type which contains P. Thus the proof of the lemma is completed.

Lemma 5. If $P \in T_{2}^{(n)}\left(\right.$ resp. $\left.\widetilde{T}_{p}^{(n)}\right), P$ is a subgroup of $M_{2^{n}}(\boldsymbol{H})\left(\right.$ resp. $\left.M_{p^{n}}(\boldsymbol{C})\right)$ and $V_{\boldsymbol{R}}(P)=M_{2^{n}}(\boldsymbol{H})\left(\right.$ resp. $\left.V_{\boldsymbol{C}}(P)=M_{p^{n}}(\boldsymbol{C})\right)$.

Proof. We will prove this in the case $P \in T_{2}^{(n)}$.
(a) $n=0$. Since P is a generalized quaternion group, P is a subgroup of \boldsymbol{H} and $V_{\boldsymbol{R}}(P)=\boldsymbol{H}([1],[2])$.
(b) $n>0$. We proceed by induction on n. By the definition of $T_{2}^{(n)}$, there exist 2-groups $P_{1}, P_{2} \in T_{2}^{(n-1)}$ such that $P_{1} \times P_{2}$ is a subgroup of P of index 2 and that $P_{\mathrm{I}}^{g}=P_{2}$, where g is a representative of a generator of $P / P_{1} \times P_{2}$. By the induction hypothesis each P_{i} is a subgroup of $M_{2^{n-1}}(\boldsymbol{H})$ and $V_{R}\left(P_{i}\right)=M_{2^{n-1}}(\boldsymbol{H})$. Let M_{1} be a simple $V_{\boldsymbol{R}}\left(P_{1}\right)-\left(\boldsymbol{R} P_{1^{-}}\right)$module. Put $M=M_{1} \otimes_{\boldsymbol{R}\left(P_{1} \times P_{2}\right)} \boldsymbol{R} P$. Since $P_{1}^{g}=P_{2}, M_{1}^{g}$ is a simple $\boldsymbol{R} P_{2}$-module. It follows that $M_{1} \neq M_{1}^{g}$ as $\boldsymbol{R}\left(P_{1} \times P_{2}\right)$ module and therefore $\operatorname{Hom}_{R P}(M, M) \cong \operatorname{Hom}_{R\left(P_{1} \times P_{2}\right)}\left(M_{1}, M_{1} \oplus M_{1}^{g}\right) \cong$ $\operatorname{Hom}_{\boldsymbol{R}\left(P_{1} \times P_{2}\right)}\left(M_{1}, M_{1}\right)=\boldsymbol{H}$. We see that the simple component of $\boldsymbol{R} P$ corresponding to M is $M_{2^{n}}(\boldsymbol{H})$. Because M is a faithful $\boldsymbol{R} P$-modlue, P is a subgroup of $M_{2^{n}}(\boldsymbol{H})$ and $V_{\boldsymbol{R}}(P) \cong M_{2^{n}}(\boldsymbol{H})$.

We will omit the proof in the case $P \in \widetilde{T}_{p}^{(n)}$, because we can prove it along the same line as in the case $P \in T_{2}^{(n)}$.
Q.E.D.

Now we give the proof of our main theorem.
Proof of the main theorem. The implication $(1) \Rightarrow(2)$ is obvious and therefore it suffices to show the implications $(2) \Rightarrow(3) \Rightarrow(1)$.
(a) $\quad(2) \Rightarrow(3)$. Assume $P \subset M_{n}(\Delta)$. Let $\mathrm{V}_{Q}(P) \cong M_{p^{l_{1}}}\left(\Delta_{s}\right) \oplus \cdots \oplus M_{p^{t s}}\left(\Delta_{s}\right)$ be the decomposition of $V_{\boldsymbol{Q}}(P)$ into simple algebras where each Δ_{i} is a division algebra. Here we easily see that $p^{l_{1}}+\cdots+p^{l_{s}} \leqq n$. Let P_{i} be the image of P by the projection to $M_{p^{l_{i}}}\left(\Delta_{i}\right)$, for each $1 \leqq i \leqq s$. Then P can be identified with a subgroup of $\prod_{i=1}^{s} P_{i}$ and, for each $1 \leqq i \leqq s, V_{Q}\left(P_{i}\right) \cong M_{p^{t_{i}}}\left(\Delta_{i}\right)$. According to the
remark on the Witt-Roquette's theorem, Δ_{i} is a quaternion algebra or an algebraic number field. Further if Δ_{i} is a quaternion algebra for some $1 \leqq i \leqq s$, $p=2$ ([3]). If Δ_{i} is an algebraic number field, by Lemma 3 (2) $V_{\boldsymbol{C}}\left(P_{i}\right) \cong M_{p^{t_{i}}}(\boldsymbol{C})$. Applying Lemma 4, it follows that each P_{i} is a subgroup of a p-group of l_{i}-type. Here (3) is concluded in this case.

Assume $P \subset M_{n}(K)$. Let L be the algebraic closure of K and let $L^{\prime}=\boldsymbol{C} \cap L$. Since K is commutative, we have $L \otimes_{K} M_{n}(K) \cong M_{n}(L)$. From this it follows directly that $V_{L^{\prime}}(P) \subset M_{n}(L)$. In addition, each division algebra equvalent to a simple component of $L^{\prime} P$ conicides with $L^{\prime}([3])$. Let $V_{L^{\prime}}(P) \cong M_{p^{l_{1}}}\left(L^{\prime}\right) \oplus \cdots \oplus$ $M_{p^{l_{s}}}\left(L^{\prime}\right)$ be the decomposition of $V_{L^{\prime}}(P)$ into simple algebras. Then $p^{l_{1}+\cdots+}$ $p^{l_{s}} \leqq n$. If P_{i} is the image of P by the projection to $M_{p^{l_{i}}}\left(L^{\prime}\right), P_{i}$ is a subgroup of $M_{p^{l_{i}}}(\boldsymbol{C}) \cong M_{p^{t_{i}}}\left(L^{\prime}\right) \otimes_{L^{\prime}} \boldsymbol{C}$ and $V_{\boldsymbol{C}}\left(P_{i}\right) \cong M_{p^{t_{i}}}(\boldsymbol{C})$. It follows from Lemma 4 that P_{i} is a subgroup of \tilde{l}_{i}-type. On the other hand P can be identified with a subgroup of $\prod_{i=1}^{s} P_{i}$ and so we conclude (3).
(b) $\quad(3) \Rightarrow(1)$. Since $P_{i}^{(j)}$ is a p-group of i-type (resp. \tilde{i}-type), by Lemma 5, $P_{i}^{(j)}$ is a subgroup of $M_{p_{i}}(\boldsymbol{H})\left(\right.$ resp. $\left.M_{p^{i}}(\boldsymbol{C})\right)$ and so $\prod_{i} \prod_{j=1}^{m_{i}} P_{i}^{(\xi)} \subset \sum_{i, j}^{\oplus} M_{p^{i}}(\boldsymbol{H}) \subset$ $M_{m_{i}}(\boldsymbol{H})\left(\right.$ resp. $\left.\prod_{i} \prod_{j=1}^{m_{i}} P_{i}^{(j)} \subset M_{n}(\boldsymbol{C})\right)$ by $\sum_{i=0}^{t} p^{i} m_{i} \leqq n$. Since P is a subgroup of $\prod_{i} \prod_{j=1}^{m_{i}} P_{i}^{(j)}, \mathrm{P}$ is a subgroup of $M_{n}(\boldsymbol{H})\left(\operatorname{resp} . M_{n}(\boldsymbol{C})\right)$.
Q.E.D.

Tokyo University of Education

References

[1] S. Amitsur: Finite subgroups of division rings, Trans. Amer. Math. Soc. 80 (1955), 361-386.
[2] I.N.Herstein: Finite multiplicative subgroups in division rings, Pacific J. Math. 1 (1953), 121-126.
[3] P. Roquette: Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arch. Math. 9 (1958), 241-250.
[4] E.Witt: Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zalenkörper, J. Reine Angew. Math. 190 (1952), 231-245.

