## MULTIPLICATIVE P-SUBGROUPS OF SIMPLE ALGEBRAS

## MICHITAKA HIKARI

(Received May 1., 1972)

Amitsur ([1]) determined all finite multiplicative subgroups of division algebras. We will try to determine, more generally, multiplicative subgroups of simple algebras. In this paper we will characterize p-groups contained in full matrix algebras  $M_n(\Delta)$  of fixed degree n, where  $\Delta$  are division algebras of characteristic 0.

If an abelian group G has invariants  $(e_1, \dots, e_n)$ ,  $e_n \neq 1$ ,  $e_{i+1} \mid e_i$ , we say briefly that G has invariants of length n.

We begin with

**Proposition 1.** Let n be a fixed positive integer and let G be a finite abelian group. Then there is a division algebra  $\Delta$  such that  $G \subset M_n(\Delta)$  if and only if G has invariants of length  $\leq n$ .

Proof. This may be well known. Here we give a proof. Suppose that there is a division algebra  $\Delta$  such that  $G \subset M_n(\Delta)$ . An abelian group G has invariants of length  $\leq n$  whenever each Sylow subgroup of G has invariants of length  $\leq n$ . Hence we may assume that G is a p-group  $(\pm 1)$ . Let m be the length of invariants of G. Then G contains the elementary abelian group  $G_0$  of  $1+p+\cdots+p^{m-1}$ 

order  $p^m$ . We can write  $QG_0 \cong Q \oplus \widetilde{Q(\varepsilon_p) \oplus \cdots \oplus Q(\varepsilon_p)}$  where  $\varepsilon_p$  denotes the primitive p-th root of unity. Since  $V_Q(G_0)$  is a direct summand of  $QG_0$  and

 $G_0 \subset V_Q(G_0)$ , we have  $V_Q(G_0) \cong Q(\varepsilon_p) \oplus \cdots \oplus Q(\varepsilon_p)$ . On the other hand, since

370 M. Hikari

 $V_{Q}(G_{0}) \subset M_{n}(\Delta)$ , there exist at most *n* orthogonal idempotents in  $V_{Q}(G_{0})$ . Thus we have  $m \leq n$ . The converse is obvious. Q.E.D.

**Proposition 2** Let p be an odd prime and 0 < n < p. Let P be a finite p-group. If there exists a division algebra  $\Delta$  such that  $P \subset M_n(\Delta)$ , then P is abelian.

Proof. Let  $V_{\mathbf{Q}}(P) \cong M_{p^{l_1}}(\Delta_1) \oplus \cdots \oplus M_{p^{l_t}}(\Delta_t)$  be the decomposition of  $V_{\mathbf{Q}}(P)$  into simple algebras where each  $\Delta_i$  is a division algebra. Then we easily see that  $p^{l_1} + \cdots + p^{l_t} \leq n$ . Therefore, when n < p, we have  $l_1 = \cdots = l_t = 0$ . Since p is odd, each division algebra  $\Delta_i$  is commutative ([3]). Hence  $V_{\mathbf{Q}}(P)$  is commutative. This conclude that P is abelian. Q.E.D.

DEFINITION. Let  $P_0 = \langle g \rangle$  be a cyclic group of order p. Let P, P' be finite p-groups and let  $P_1'$ ,  $P_2'$ , ...,  $P_p'$  be the copies of P'. We will call P a simple (1-fold) p-extension of P' if P is an extension of  $P_1' \times P_2' \times \cdots \times P_p'$  by  $P_0$  such that  $P_1'^g = P_2'$ , ...,  $P_{p-1}'^g = P_p'$ ,  $P_p'^g = P_1'$ . It should be remarked that this extension does not always split. More generally, a finite p-group P will be called an n-fold p-extension of a finite p-group P', if there exist finite p-groups,  $P_0 = P'$ ,  $P_1$ , ...,  $P_{n-1}$ ,  $P_n = P$  such that, for each  $0 \le i \le n-1$ ,  $P_{i+1}$  is a simple p-extension of  $P_i$ . Now we set

and  $\tilde{T}_{p}^{(0)} = \{\text{all cyclic } p\text{-groups}\}\$ for any prime p. An element of  $T_{p}^{(0)}$  (resp.  $\tilde{T}_{p}^{(0)}$ ) is called a p-group of 0-type (resp.  $\tilde{o}$ -type).

A finite p-group P is said to be of n-type (resp.  $\tilde{n}$ -type) if P is an n-fold p-extension of a p-group of 0-type (resp.  $\tilde{o}$ -type). We denote by  $T_p^{(n)}$  (resp.  $\tilde{T}_p^{(n)}$ ) the set of all p-groups of n-type (resp.  $\tilde{n}$ -type).

Our main result is given the following

**Theorem.** Let n be a fixed positive integer and let P be a finite p-group. Then following conditions are equivalent:

- (1) P is a subgroup of  $M_n(\mathbf{H})$  (resp.  $M_n(\mathbf{C})$ ).
- (2) There is a division algebra  $\Delta$  (resp. a commutative field K) such that  $P \subset M_n(\Delta)$  (resp.  $M_n(K)$ ).
- (3) There exist non-negative integers,  $t, m_0, \dots, m_t$  with  $\sum_{i=0}^t p^i m_i \leq n$  and  $P_i^{(1)}, P_i^{(2)}, \dots, P_i^{(m_i)} \in T_p^{(i)}$  (resp.  $\tilde{T}_p^{(i)}$ ) for each  $0 \leq i \leq t$  such that  $P \subset \prod_{i=0}^t \prod_{j=1}^{m_i} P_i^{(j)}$ .

The following theorem plays an essential part in the proof of our main theorem.

**Theorem** (Witt-Roquette [3], [4]). Let P be a p-group. Let K be a

commutative field of characteristic 0. Suppose that one of the following hypotheses is satisfied.

- (a)  $p \neq 2$ ,
- (b) p=2 and  $\sqrt{-1} \in K$ .
- (c) p=2 and P does not contain a cyclic subgroup of index 2.

Then if  $\chi$  is a nonlinear irreducible faithful character of P there exists  $P_0 \triangleleft P$  and a character  $\zeta$  of  $P_0$  such that  $|P: P_0| = p$ ,  $\chi = \zeta^P$  and  $K(\chi) = K(\zeta)$ .

From this theorem the following remark follows directly.

REMARK. If K is an algebraic number field in this theorem, each division algebra equivalent to a simple component of KP is an algebraic number field or a quaternion algebra.

**Lemma 3.** Let P be a finite non-abelian p-group and let  $\Delta$  be a division algebra such that  $P \subset M_n(\Delta)$ . Suppose that  $V_Q(P) = M_n(\Delta)$ .

- (1) Suppose that P is a 2-group which is not of type 0 and that  $\Delta$  is non-commutative. Then there exists a subgroup  $P_0$  of P of index 2 such that  $V_{\mathbf{Q}}(P_0) \cong M_{n/2}(\Delta) \oplus M_{n/2}(\Delta)$ .
- (2) Suppose that  $\Delta$  is commutative. Then we have  $V_c(P)=M_n(C)$  and there exists a normal subgroup  $P_o$  of P of index p such that  $V_c(P_o)\cong$

$$\overbrace{M_{n/p}(C) \oplus \cdots \oplus M_{n/p}(C)}^{p}.$$

Proof. (a) Let M be a simple  $M_n(\Delta)$ -module and let E be a splitting field of  $\Delta$ . Since M is a non-linear faithful QP-module by the assumption that  $V_Q(P)=M_n(\Delta)$ , there exists a non-linear faithful irreducible EP-module N such that  $M\otimes_Q E\cong m_Q(N)(N\oplus N^\sigma\oplus\cdots)$ ,  $\sigma\in Gal(Q(\zeta)/Q)$ , where  $\zeta$  is the character of N and  $m_Q(N)$  denotes the Schur index of N. Applying the Witt-Roquette's theorem to N, we can find a normal subgroup  $P_0$  of P and an irreducible  $EP_0$ -module  $N_0$  with character  $\zeta_0$  such that  $N_0^P\cong N$  and  $Q(\zeta)=Q(\zeta_0)$ . Let  $\chi$  denote the character of M. Then we have  $\chi=m_Q(\zeta)(\zeta+\zeta^\sigma+\cdots)=m_Q(\zeta)(\zeta_0+\zeta^\sigma_0+\cdots)+m_Q(\zeta)(\zeta^\sigma_0+\zeta^\sigma_0+\cdots)$  where  $\{1,g\}$  are representatives of  $P/P_0$ . Since  $2=m_Q(\zeta)\leq m_Q(\zeta)\leq 2$ , we have  $m_Q(\zeta)=m_Q(\zeta)=2$ . Let  $\chi_0=m_Q(\zeta_0)(\zeta_0+\zeta^\sigma_0+\cdots)$ . Then  $\chi_0$  is a Q-character of  $P_0$ . Further let  $M_0$  be the  $QP_0$ -module corresponding to  $\chi_0$ . Then we see that  $M_0\oplus M_0^g\cong QP\otimes_{QP_0}M_0^g\cong QP\otimes_{QP_0}M_0^g\cong M$  as QP-module. Since  $M_0\cong M_0^g$  as QP-module, we have

$$\begin{split} &\Delta \cong \operatorname{Hom}_{QP}(M,M) \\ &\cong \operatorname{Hom}_{QP}(QP \otimes_{QP_0} M_0, \, QP \otimes_{QP_0} M_0) \\ &\cong \operatorname{Hom}_{QP_0}(M_0, \, \operatorname{Hom}_{QP}(QP, \, QP \otimes_{QP_0} M_0)) \\ &\cong \operatorname{Hom}_{QP_0}(M_0, \, QP \otimes_{QP_0} M_0) \\ &\cong \operatorname{Hom}_{QP_0}(M_0, \, M_0) \,, \end{split}$$

372 M. Hikari

and, similarly,  $\Delta \cong \operatorname{Hom}_{QP_0}(M_0^g, M_0^g)$ . Clearly  $\dim_Q M_0 = \dim_Q M_0^g = \frac{1}{2} \dim_Q M$ , and the semi-simple subalgebra  $V_Q(P_0) \subset V_Q(P) = M_n(\Delta)$  has only two simple compotents corresponding to  $M_0, M_0^g$ . Thus we get  $V_Q(P_0) \cong M_{n/2}(\Delta) \oplus M_{n/2}(\Delta)$ .

(b) Since  $\Delta$  is commutative by the assumption, we have  $C \otimes_{\Delta} V_Q(P) \cong C \otimes_{\Delta} M_n(\Delta) \cong M_n(C)$ . From this it follows directly that  $V_C(P) = M_n(C)$ . Let M be a simple  $V_C(P)$ -(CP-)module and let X be the character of M. According to the Witt-Roquette's theorem, there exists a normal subgroup  $P_0$  of P of index P and an irreducible  $CP_0$ -module  $M_0$  such that  $M \cong M_0^P$ . Hence, along the same

line as in the case (a), we can show that 
$$V_c(P_0) \cong \widehat{M_{n/p}(C)} + \cdots + \widehat{M_{n/p}(C)}$$
.

O.E.D.

**Lemma 4.** Let P be a finite p-group. Suppose one of the following conditions:

- (a) p=2 and P is a subgroup of  $M_{2^n}(\Delta)$  such that  $V_Q(P)=M_{2^n}(\Delta)$  where  $\Delta$  is a quaternion algebra.
- (b) P is a subgroup of  $M_{p^n}(C)$  such that  $V_C(P)=M_{p^n}(C)$ . Then P is a subgroup of a p-group of n-type. Further, in the case (b) P is a subgroup of a p-group of  $\tilde{n}$ -type.

Proof. We will give the proof only in the case (a), because the proof in the case (b) can be done similarly. This will be done by induction on n. In case n=0 this is obvious. Hence we assume that  $n \ge 1$ . By Lemma 3, there exists a normal subgroup  $P_0$  of P of index 2 such that  $V_Q(P_0) = A_1 \oplus A_2$  where  $A_i \cong M_{2^{n-1}}(\Delta)$ . Let  $M_i$  be a simple  $A_i$ -module and let  $\{1, g\}$  be representatives of  $P/P_0$ . Then  $M_2 \cong M_1^g$  as  $\mathbb{Q}P_0$ -module. Let  $P_i$  denote the image of  $P_0$  by the projection on  $A_i$ . Then  $V_Q(P_i) = M_{2^{n-1}}(\Delta)$ . Hence, by induction, each  $P_i$  is a subgroup of a 2-group of (n-1)-type. We regard  $M_i$  as  $\mathbb{Q}P_0$ -module by the projection  $P_0 \to P_i$  and so, since  $M_2 \cong M_1^g$ , we have  $P_2 = P_1^g$  and the following commutative diagram:

$$P_{0} \xrightarrow{g} P_{0}$$

$$\downarrow \qquad \downarrow$$

$$P_{1} \times P_{2} \xrightarrow{(g,g)} P_{2} \times P_{1}$$

On the other hand, we can find 2-groups  $\tilde{P}_1$ ,  $\tilde{P}_2$  of (n-1)-type such that  $\tilde{P}_1 \cong \tilde{P}_2$ . Here we may assume that the restriction of the isomorphism  $\tilde{P}_1 \cong \tilde{P}_2$  on  $P_1$  coincides with  $g: P_1 \cong P_2$ . We denote this isomorphism from  $\tilde{P}_1$  onto  $\tilde{P}_2$  by  $\sigma$ . Put  $h=g^2$ . Then the map (1,h);  $\tilde{P}_2 \times \tilde{P}_1 \to \tilde{P}_2 \times \tilde{P}_1$  is an isomorphism and so  $(\sigma,h\sigma^{-1})$ :  $\tilde{P}_1 \times \tilde{P}_2 \to \tilde{P}_2 \times \tilde{P}_1$  is an isomorphism, too. Since the restriction of  $h\sigma^{-1}$  on  $P_2$  coincides with  $hg^{-1}=g$ , we get the following commutative diagram:

Let  $\langle u \rangle$  be a cyclic group of order 2. The automorphism  $(\sigma, h\sigma^{-1})$  and the factor set  $\{(1, 1) = (u, 1) = (1, u) = 1, (u, u) = h\}$  define a group  $\tilde{P}$  with normal subgroup  $\tilde{P}_1 \times \tilde{P}_2$  and  $\tilde{P}/\tilde{P}_1 \times \tilde{P}_2 \cong \langle u \rangle$ , because  $(h\sigma^{-1}, \sigma) \cdot (\sigma, h\sigma^{-1}) = (h, \sigma h\sigma^{-1}) = (h, h^{\sigma^{-1}}) = (h, h)$ . Then the group  $\tilde{P}$  is clearly a 2-group of *n*-type which contains P. Thus the proof of the lemma is completed.

**Lemma 5.** If  $P \in T_2^{(n)}$  (resp.  $\tilde{T}_p^{(n)}$ ), P is a subgroup of  $M_{2^n}(H)$  (resp.  $M_{p^n}(C)$ ) and  $V_R(P) = M_{2^n}(H)$  (resp.  $V_C(P) = M_{p^n}(C)$ ).

Proof. We will prove this in the case  $P \in T_2^{(n)}$ .

- (a) n=0. Since P is a generalized quaternion group, P is a subgroup of  $\mathbf{H}$  and  $V_R(P) = \mathbf{H}([1], [2])$ .
- (b) n>0. We proceed by induction on n. By the definition of  $T_2^{(n)}$ , there exist 2-groups  $P_1$ ,  $P_2 \in T_2^{(n-1)}$  such that  $P_1 \times P_2$  is a subgroup of P of index 2 and that  $P_1^g = P_2$ , where g is a representative of a generator of  $P/P_1 \times P_2$ . By the induction hypothesis each  $P_i$  is a subgroup of  $M_{2^{n-1}}(H)$  and  $V_R(P_i) = M_{2^{n-1}}(H)$ . Let  $M_1$  be a simple  $V_R(P_1) (RP_1)$  module. Put  $M = M_1 \otimes_{R(P_1 \times P_2)} RP$ . Since  $P_1^g = P_2$ ,  $M_1^g$  is a simple  $RP_2$ -module. It follows that  $M_1 \not\cong M_1^g$  as  $R(P_1 \times P_2)$ -module and therefore  $Hom_{RP}(M, M) \cong Hom_{R(P_1 \times P_2)}(M_1, M_1 \oplus M_1^g) \cong Hom_{R(P_1 \times P_2)}(M_1, M_1) = H$ . We see that the simple component of RP corresponding to M is  $M_2^n(H)$ . Because M is a faithful RP-modlue, P is a subgroup of  $M_2^n(H)$  and  $V_R(P) \cong M_2^n(H)$ .

We will omit the proof in the case  $P \in \tilde{T}_p^{(n)}$ , because we can prove it along the same line as in the case  $P \in T_2^{(n)}$ . Q.E.D.

Now we give the proof of our main theorem.

Proof of the main theorem. The implication  $(1)\Rightarrow(2)$  is obvious and therefore it suffices to show the implications  $(2)\Rightarrow(3)\Rightarrow(1)$ .

(a) (2) $\Rightarrow$ (3). Assume  $P \subset M_n(\Delta)$ . Let  $V_Q(P) \cong M_{p^{l_1}}(\Delta_s) \oplus \cdots \oplus M_{p^{l_s}}(\Delta_s)$  be the decomposition of  $V_Q(P)$  into simple algebras where each  $\Delta_i$  is a division algebra. Here we easily see that  $p^{l_1} + \cdots + p^{l_s} \leq n$ . Let  $P_i$  be the image of P by the projection to  $M_{p^{l_i}}(\Delta_i)$ , for each  $1 \leq i \leq s$ . Then P can be identified with a subgroup of  $\prod_{i=1}^s P_i$  and, for each  $1 \leq i \leq s$ ,  $V_Q(P_i) \cong M_{p^{l_i}}(\Delta_i)$ . According to the

374 M. Hikari

remark on the Witt-Roquette's theorem,  $\Delta_i$  is a quaternion algebra or an algebraic number field. Further if  $\Delta_i$  is a quaternion algebra for some  $1 \le i \le s$ , p=2 ([3]). If  $\Delta_i$  is an algebraic number field, by Lemma 3 (2)  $V_c(P_i) \cong M_{p'i}(C)$ . Applying Lemma 4, it follows that each  $P_i$  is a subgroup of a p-group of  $l_i$ -type. Here (3) is concluded in this case.

Assume  $P \subset M_n(K)$ . Let L be the algebraic closure of K and let  $L' = C \cap L$ . Since K is commutative, we have  $L \otimes_K M_n(K) \cong M_n(L)$ . From this it follows directly that  $V_{L'}(P) \subset M_n(L)$ . In addition, each division algebra equivalent to a simple component of L'P conicides with L'([3]). Let  $V_{L'}(P) \cong M_{p^{l_1}}(L') \oplus \cdots \oplus M_{p^{l_2}}(L')$  be the decomposition of  $V_{L'}(P)$  into simple algebras. Then  $p^{l_1} + \cdots + p^{l_2} \leq n$ . If  $P_i$  is the image of P by the projection to  $M_{p^{l_1}}(L')$ ,  $P_i$  is a subgroup of  $M_{p^{l_1}}(C) \cong M_{p^{l_1}}(L') \otimes_{L'} C$  and  $V_C(P_i) \cong M_{p^{l_1}}(C)$ . It follows from Lemma 4 that  $P_i$  is a subgroup of  $\tilde{l}_i$ -type. On the other hand P can be identified with a subgroup of  $\prod_{i=1}^s P_i$  and so we conclude (3).

(b) (3) $\Rightarrow$ (1). Since  $P_i^{(j)}$  is a p-group of i-type (resp.  $\tilde{i}$ -type), by Lemma 5,  $P_i^{(j)}$  is a subgroup of  $M_{p^i}(H)$  (resp.  $M_{p^i}(C)$ ) and so  $\prod_i \prod_{j=1}^{m_i} P_i^{(j)} \subset \sum_{i,j}^{\oplus} M_{p^i}(H) \subset M_n(H)$  (resp.  $\prod_i \prod_{j=1}^{m_i} P_i^{(j)} \subset M_n(C)$ ) by  $\sum_{i=0}^{t} p^i m_i \leq n$ . Since P is a subgroup of  $\prod_i \prod_{j=1}^{m_i} P_i^{(j)}$ , P is a subgroup of  $M_n(H)$  (resp.  $M_n(C)$ ). Q.E.D.

TOKYO UNIVERSITY OF EDUCATION

## References

- [1] S. Amitsur: Finite subgroups of division rings, Trans. Amer. Math. Soc. 80 (1955), 361-386.
- [2] I.N.Herstein: Finite multiplicative subgroups in division rings, Pacific J. Math. 1 (1953), 121-126.
- [3] P. Roquette: Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arch. Math. 9 (1958), 241-250.
- [4] E.Witt: Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zalenkörper, J. Reine Angew. Math. 190 (1952), 231-245.