Komatsu T.
Osaka J. Math.
10 (1973), 271-303

MARKOV PROCESSES ASSOCIATED WITH CERTAIN
INTEGRO-DIFFERENTIAL OPERATORS

Takasa1 KOMATSU

(Received June 27, 1972)

Introduction. Let us consider a linear operator L:
(1) Lv (s,x):%z a; (s, x)D;D ;o(s, x)+23 by(s, x)D;o(s, x)
ij i

+ S[v(s,x—{— ) — (s, X)— I < (0,7 0(s,2))]S (s, %, du),

where D;=0/0x;, F=(D,), a is a non-negative definite d X d-matrix, b is a d-
vector and S is a Lévy kernel, that is, a kernel satisfying S (s, x,{0} )=0 and

SRdlulz/\l S(s, x, du)<< oo

In case S=0, the Markov process on R? having L as its generator can be
constructed by solving Ito’s stochastic equation

@) dX,=a(t, X,)*dB,+-b(t, X,)dt,

where B, is the d-dimensional Brownian motion. It is well known that if @ and
b are continuous in (s, x), then there exists at least a solution of (2). Roughly
speaking, the problem whether the equation (2) has a unique solution in the
sense of probability law corresponds to the analytical problem whether the
equation

(x—-%wL>v —f

has solutions v for each A (= some A) and for sufficiently wide class of functions
f. We know that if a is continuous in (s, x) and is positive definite, then the
above equation has a solution o (in the sense of distribution) for each A >0 and
test function f. Using this fact, Strook-Varadhan [8] proved that the equation
(2) has a unique solution in the sense of probability law. Their method is
basically analytic but it also needs some probabilistic arguments. They intro-
duced and made use of certain martingale equations equivalent to the equation

).
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In this paper, we shall consider the case where S is not always 0. In
§2, three equivalent martingale formulations of the stochastic equation associated
with the operator L are defined, and we call each of them ‘the (a,b,S)-stochastic
equation’. 'The main aim of this paper is to prove the uniqueness and existence
of the solution of the (4, b, S)-stochastic equation. Our results are as follows.
To explain them, let us introduce some conditions: :
I. for each bounded domain DC R, X R?, there exist positive constants a,
and g, such that 4,|6|*<(0, a(s, x)0)<a,|0|? for each 6= R? and (s, x) €D,
II. lim sup 33| a;(s, ¥')—a; (s, x)| =0 for each T and ¥& R?; b(s, x) is locally

%5x ST
bounded; and, for each bounded domain DC R, X R¢, there exists a measure
S(du) such that

Slulz/\l 5 (du) < oo
and S(du)—S (s, x, du) is a non-negative measure for (s, x)E D,
Il. for each bounded interval [0, T, there exists a constant K such that
S (s, x, {|u] >1})<K and
|, b(s, 3)) | +trace @ (5, 2)-+ s |21%S (5, %, du) S K(1+ | ] og* | ])

for all (s, x)[0, T]x R®. (We shall give a more general condition in §5.)

If conditions T and I are satisfied, then the (a, b, S)-stochastic equation has at
most a solution; if condition T, I[ and II are satisfied, then there exists
uniquely a solution of the equation; and if condition II and II are satisfied and
a, b, S are continuous in x, then the equation has at least a solution.

The proof of the uniqueness is progressed in the same way as in Strook-
Varadhan [8]. But, in our case, there arise some difficulties, for the condition
1 is very weak and a(s, ) is not always continuous in s. Our proof of the
existence is based on Hille-Yosida’s semi-group theory. The merit of the way
is in the fact that one can weaken continuity condition for a, b and S (especially
with respect to the time variable s).

Finally we should mention that Tsuchiya [10] disposed of a similar problem
in a different context. In his case, a=a (x), b=>b (x) and S=K (%, u) |u| ¢~ du
where K is a positive and bounded function and 1<a<2, and he considered
two cases: i) a(x) is positive definite, ii) a(x) is identically 0. In Case i), his
results are included in ours. But Case i) is quite different; Tsuchiya solved the
problem by making use of a purturbation method based on the a-stable process.

I wish to give my thanks to Professor T. Watanabe who kindly gave me many
suggestions in the course of my research,
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1. Notation and preliminalies

We shall consider the space W of trajectories consisting of right continuous
functions admitting limits from the left, defined on [s, {]C R,, with values in
R?. The value of a funciton w at time ¢ is denoted by x,(w). Let W} be the
o-field generated by (x,; s<7=<t). The function space W} becomes a complete
separable metric space by the Billingsley metric and the o-field W7} conincides
with the o-field of Borel sets of the metric space. Let W* be the space of func-
tions w on [s, o) satisfying w (7 A ¢) W] for eacht>s. The o-field W}is
identified with the o-field in W*° generated by (x,; s< 7 <1).

Lemma 1.1. (Skorokhod [7]) Let Q be a family of probability measures on
(Wi, W) If the family Q satisfies the condition :

lim sup Q (sup |%,|>1) =0 and

14 Qe

lim sup sup Q (|x,—x/| >€&) =0 for any €>0,

8¥0 QEQ IT-TI<8
then it is possible to pick up a sequence (Q™) from Q and is possible to construct
a sequence (X?) of processes and a process X, which are defined on a certain probab-
ility space (', F’, P') such that a) for each n, the processes (x, Q™) and (X7, P’) are
equivalent, b) the process X, is stochastically continuous and the sequence (X7) of
random variables converges to the random variable X, in probability for any T.

We call T'(w) an s-stopping time if s< T and the set {T<¢} is Wi-measurable
for all t=s. The o-field W%, defined as the collection of sets {Ae W*;
AN(T<t)e Wi for all =5}, coincides with the o-field generated by (x,17;t=5).
The o-field W admits ‘regular conditional probabilities’. (see Parthasarathy [6])

Lemma 1.2. (Strook-Varadhan [8]) Let T be a finite s-stopping time. Let
Q' be a probability measure on (W*, W*), and for each we W?, let Q,, be a pro-
bability measure on (W°, W T) where W T is the o-field generated by (x, (w');
t=T(w)). Suppose that
1) QU ;%1 (W) = X7en(®’)) = 1 for each we W,
2) for each t=s and A= W*, ww— Ol (A) Ircpr<p 15 Wi-measurable.
Then there exists a unique probability measure Q on (W*, W*) such that Q = Q’ on
W<, and for almost all w (w.r.t. Q') the regular conditional probability of Q given
the o-field W coincides with Q;, on W7T,

Let (Q,F,P) be a complete probability space with a non-decreasing and right
continuous family (F}),», of sub-o-fields of F. Without loss of generality, we
can suppose that the o-field F, contains all the negligible sets of F. Moreover,
we assume that the family (F;) has no time of discontinuity. In the rest of this
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section, we suppose that each real valued process is adapted to the family (F,) and
its paths are right continuous, have limits from the left and equals 0 at time 0.
We shall pick up some notation and remarks from Meyer [5]- T .

Notation and remarks. We say that a process X, is ‘natural’ if 4Xr
= X;—X7_ = 0 for any totally inaccesible stopping time 7. Each martingale
is quasi-left-continuous, for the family (F,) has no time of discontinuity. There-
fore each martingale has no common jump with any natural process. We say
that a process X, is ‘locally integrable’ if there exists a sequence (T',) of stopping
times such the T, { oo as n—oco and each stopped process X, sz, is uniformly
integrable.

1) We denote by A4,,. the space of all processes whose total variations on any
bounded intervals are finite. Each process X,E A4,,. is decomposed to the sum
of a continuous process and a purely discontinuous process as follows:

X, =[X,— 24X, ]+ 24X, where 4X, = X,—X,_
=t =<t

We denote the subspace of A,,. consisting of all continuous (resp. purely
discontinuous) processes by A, (resp. A7,.). The decomposition A4,,.=Af,.+
A$,. is always direct, and the decomposition A7,.= A§,.+ A%s, is also direct, where
the spaces with superfix ‘n’ express the subspaces consisting of natural processes.
In the sequel, we shall consider the subspace A¢,,= {A,E A4,,.; A4, is quasi-left
continuous} instead of the space 4,,.. If A, A{,. is locally integrable, then
we can uniquely choose B,E A{,, such that A,—B, is a locally integrable
martingale. We denote the process B, (resp. A,—B,) by <4,> (resp. °4,).

2) We denote the space of all locally integrable martingales by M,,,. Let X,
be in M,,, and let a sequence (T',) of stopping times carry all the jumps of X,,
that is to say, P [T,=T,,<oo]=0 for any n=m and {(w, ) ; X, (w)+X,_(w)}

< U(graph T,). We call the process 3" “(4X 7,1 c7,<p), which is formally denoted
n=1 n=1
by (3} 4X,), the ‘purely discontinuous local maringale’ part of X,. Let M3,
<t

(resp. M}.) be the subspace consisting of all continouus (resp. purely discon-
tinuous) local martingales, then we have M, .= M/,.+ M/, (direct sum). If M,
and N, inM,,, are locally square integrable, then there exists a unique 4,E Af,.
such that M,N,— A, M,,.. The process 4, is denoted by {M,, N >.

Every process X,=M,+ A, with M,e M,,. and A, A,,, is called a ‘weak

local semi-martingale’.

Let C*(D) (resp. C™¥D)) be the space of functions on a domain D whose
r-th (0= r <n) derivatives are continuous (resp. bounded and continuous).
The formula of change of variables on semi-martingale (see Kunita-Watanabe
[4] and Meyer [5]) gives a base of the discussions in this paper,
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Theorem 1.3. (Kunita-Watanabe’s formula) Let X,=(X}) be a d-dimen-
sional weak local semi-martingale such that

Xi—X!{=M!+N}+At+ B} with M{€ M;,., N'E M¥,., AL AS,, and
B AL,

and that AN{4B}=0 for all i, j and t. If F(x)e C*(R*) N C"*(R?), then the process
F(X,)—F(X,) has the unique decomposition :

F(X,)—F(X,) = M/+N/+A, with M/< M;,., N/ € M{,. and A/ € A;,.,
where

33 [y
N/ = (SIFX)~FX )+ (SIF(X)—FX.)),

4K 0 48,%0
A/ St L $\D,D,F(X,) d{M:, M2>+ 3} D,F (X,) dA:
t= 0 ?i;l i~y ( 'r) < Ty T>+§. : ( T) K

+( 3 IFX)—F(X, )~ 2} DF(X, AN+ SR~ FX D

4N %0 4B %0

The following lemma is useful.

Lemma 14. If a process X, is uniformly integrable and E[X]=0 for
any bounded stopping time T, then the process is a martingale.

Proof. Lets<tand A= F,. Considering the stopping time T=sI,+t] 4c,
we have E[X 1] = E[X[,]4+E[X 4] = 0. On the other hand E[X,|=E[X,1,]
+E[XI4c]=0. Thus, E[X,[,] = E[X]1,].

Notation. The spaces A,,., M,,. etc. are also defined for d-dimensional
real valued processes (resp. complex valued processes) in such a way that each
coordinate (resp. real and imaginary parts of each coordinate) belongs to the
spaces A,;,., M,,. etc. of the previous sense. We often denote the spaces A4,,,,
M;,,. etc. and the expectation E with respact to (Q, F, F,, P)by A,,. (F., P), M,,.
(F}, P) etc. and by Ep respectively, lest we should get confused.

Let S and S’ be kernels. It is simply denoted by S< S’ the fact that S'—S
is non-negative. And | S—.S’| stands for the total variation of the signed measure

S'—S.

2. Martingale problems of stochastic equations

Let (Q, F, P) and (F}),», be the object as we stated in §1. Let us choose
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a d-dimensional Brownian motion B,, a Poisson random measure p (dt, dz) on
R, X R? with parameter dtxdz[|2z|?" and the Poisson martingale measure
q (dt, dz). 'These are defined as follows: for each Borel set 4 in R¥— {0}, the
process p ([0, #]x A4) is a Poisson process adapted to (F;) which is independent of
B, and satisfies that

B0, x4 =[] T8

And q (dt, d2)=p (dt, d=z)—dt dz[|=|?".

For each seR,, x, z&R?, let o (s, x) denote a dXd-matrix, b (s, x) and
¢ (s, x, 2) d-vectors. We suppose that o, b and ¢ are Borel measurable. Let T
be an s-stopping time and let (X,; tE[s, T']) be an R?-valued right continuous
process admitting limits from the left and adapted to (F,), where [s, T]=
{t<oo; s<t<T}. From now on, we shall assume these conditions without

any assignment,
DErINiTION. We call a process X, a solution of the original (o, b, c)-stochastic

equation starting from (s, x), constructed over (Q, F, F,, P, B,, p, q) if

S0) X,=x+$'a(r, XT)dBT—{—Stb(T,XT)dT—f-StScl(T, X,, 2)g(dr, dv)
—l—StScl(‘r, X, 2)p(dT, dz) for all te[s, T], where ¢'=cl( 1<, and ¢,=cl¢ 5 p-

We assume that

s:{trace (a0%) (7, X)+ 1b(r, X) 4 { le(r, X, 5)|*A1 dz }d~r<oo

|z|d+l

for all ¢t€[s, T], where the domain of integration by dz is the set R*— {0}.
Let a(s, x) be a measurable and non-negative definite dXd-matrix and
S (s, x, du) be a Lévy kernel. Let us introduce an integro-differential operator
L defined by, for each v&C*? (R, X R?),
Lo(s, x)= —;- ? a;;D;D (s, x)+ Z b;D;u(s, x)
+ [, )66, 2)— Faursolu, po(s, )] S(s, », du).

Set Dy(s, x) = e~ * @D Le! (s, x). Then we have

Dy(s, x) = ——%(0, a(s, x)0) +i(0, b(s, x))—i—g[e"“”“)— 1—1 5080, w)1S(s, x, du).

Now suppose that a=oc* (o* stands for the transposed matrix of o),
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S(s, %, D) — 4% _ ¢or cach DCRI—{0
(s, x, D) = ds'x'Z)EDW or each open set DC RY— {0},

and that (X,, P;te[s, T]) is a solution of the original (o, b, ¢)—stochastic equa-
tion starting from (s, ). Then we have

o(t, X,)—o(s, x)—St(a—i—i—L)v(T, X,)dre M,, (F,, P)
for all v C*%(R, X R?). This can be verified by the Kunita-Watanabe formula
(Th.1.3.).

Notation and remarks. Let J(dt, du) be the random measure defined by

J (dt, du) ZSEZ‘.‘“ I(dXsEIdu—(o))'
Then it holds that
T/ T’
E[S Sh(t, X,_, u)J(dt, du)] — E[S Sh(t, X, 8@ X, du)dt].

for any non-negative and measurable function % (s, x, #) and s-stopping time
T’ (T'<T); where if any one of the members is integrable, so is the other. Set,
for p=1, 2,

H? = {h(s, x, u)S'S \h(z, X, u)| 2S(7, X,, du)dr< oo a. e. for all t s, T]}.
If 4 is a function of H', then the purely discontinuous process
[ {1, x., wsar, du)
is locally integrable. By Lemma 1.4, we have

<S:Sh(7’ X,, u)J(dr, du) > = S:Sh(T, X,, u)S(r, X,, du)d-.

Set °J(dt, du)=J(dt, du)—S(t, X,, du)dt. Then stochastic integrals by °J are
local martingales, therefore we shall say that °J is a ‘martingale measure’. 1f h
is a function of H? then the locally square integrable martingale:

[[{ncr X, wyear, dy = (S hir, X..., ax2)

t
s STt
AX_,_:|:o

is defined. And if &, and £, are elements of H?, then we have

e § (s> = [ s ar.
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In order to give the martingale formulation of stochastic equation, we need
the following theorem. (a, b, S are given and L, ®, are defined as before.)

Throrem 2.1. Let (X,, P;t<[s, T) be a process such that lim P [sup | X, | >1]
1> TSt
=0 and
St{trace a(r, X))+ |b(r, X,)| + S |u|2A1 S(7, X, du)}dr<<oo

for all te[s, T). Then the following three conditions are equivalent.
S1) For any v (s, x) € C**(R, X R?),

t
ot, X)—o(s, )~ | (-2 L)o(r, X)drE My, (F, P)
S2) For all 0 R?,
expli(6, X,—)— | Dy(r, X.)dr]—1€ M (F,, P).

S3) X, is a weak local semi-martingale which has the following property :
a) for any positive measurable function h and for any s-stopping time T’
(T'<T),

E[Sj,Sh(T, X,, u)J(dr, du)] — E[Sj,h(‘r, X, u)S(r, X, du)d-r]

if a measure J of jumps of the process X, is defined as before. That is to say, J
(dt, du)—S (¢, X,, du) dt is a martingale measure (which we shall denote by ° J(dt, du)).
b) there exists a d-dimensional process M,=(M ;) such that

M€ Ms. (F, P), <Ml M = [a,; (X)) ar,
and the process X, can be decomposed as follows :
t t t
X=at- Mot 5, XJar+ | s Jar, duy+{ s g (@, du).

Proof. 1° Condition S1) implies the next condtion:

S27) for all 9 RY,
expli(6, X,—x)]—1 —stexp[i(é', X,—x)]®y(7, X,)drE M,,.(F,,P).

By the Kunita-Watanabe formula, it is easily proved that Condition S2) and S2)
are equivalent,
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2° Next, we shall show that Condition S2’) implies Condition S3). Set
T,=inf {t&[s, T];| X,| >n}.
Each stopped process X, r, can be decomposed as follows:

Xinry = Yi+4X1, L1, S';lp‘ Yi=n

If| 6| <2z/n, theni(d, Y7)=log exp [{(f,Y})]. Since the process exp [#(f, Y?)] is
a weak local semi-martingale, the process 7(6, Y'?7) is a weak local semi-martingale.
From the fact that 7', 1 T, the process X, is a weal Jocal semi-martingale. It is
easy to show that the process X, has no natural jump, in other words, the process
X, is quasi-left-continuous. Thus the process X, is decomposed as follows:

Xt = x+Mt+At+Nt+Bh M:EMfoc; A:EAgocy N:EM?M’ B:EAggc

We suppose that|4N,| <1 (resp.|4B,|>1) if AN,=0 (resp. 4B,=0).
By the Kunita-Watanabe formula, we have

¢'@%;~®__]1=[a local martingale taking value 0 at time ]

oo xo] = 2ac(6, M), 0, M)>+i(6, 44, |
+< 2 ei(GrXq-_ —x)[ei(OrAXT) —_ 1 — i(e’ AN.,.)]>.

st
AX 40

Condition S2’) and the uniqueness of Meyer’s decomposition imply that, for
each f= R?, the process

2= [~ 240, M), 0. Ma>+i(6, A+ T (e =0—1—i(6, AN |

A4X .50

_ S’q;o(T, X,)dr

is identically zero. An elementary computation shows that
X sin (B, 4X, )€ 4X%— S tS sin’ (B, u)-e* > S(7, X, du) dt
ST s
a0
= (ZPTo—4ZBr0 627 —4Z PO Z7 )20 = 0.
Thus, for each s-stopping time T" (T'<T),
T’

E[ST ISSi“‘ (8, w)-e 2] (dt, d“)] :E[S S sin‘(8, u)-€"**S(t, X, du)dt] :

(If any one of the members is integrable, so is the other.) Set
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S, — inf {t< s, T’];S'S |u|2A1S(r, X., du)dr>n}, and
H= {bounded measurable function % () on R?;
S’l

E[Sj"Ssin‘(ﬁ, w)h(u) ] (dt, du)] — E[S Ssin‘(ﬁ, Wh(w)S(t, X, du)dt].

We note that the class C= {exp [i(a, u)]; a€ R} is included in H. Itis easy to
show that H is closed under the formation of limits of uniform or bounded
monotone sequences. Since C is closed under the multiplication and contains
1, H contains all the o (C)-measurable bounded functions, where o (C) is the
o-field generated by the functions of C. Thus H contains all the bounded
measurable functions. As 8 and 7 are arbitrary, we have

E[Sjlgh(u) J(dt, du)] — E[Sjlgh(u)S(t, X, du)dt]

for each non-negative measurable function % on R?. Property S3)-a) follows
immediately from this fact. On the other hand it hold that

0= Re 28 =— (6, M), 0 M+ | (0, a(r, X )0)ar
+<{[(cos(6, w)—1) @, dup>—{ [(cos(6, )~ 1)S (7, X., duyar,
that is to say,

<(01 Mt)’ (‘9: Mt)>= S:(a, a("', XT)H)dT.

It is immediate to show that
¢ t c t
A={br, X ar, N, = { sy (@, du), B, = | 1) o, du.

3° By the Kunita-Watanabe formula, it is easily proved that Condition S3)
implies Condition S1). Q.E.D.

DefiniTioN. We say that a process (X,, P;t<[s, T']) is a solution of the
martingale problem of the (a, b, S)-stochastic equation starting from (s, x) if X,
satisfies either one of the conditions of Theorem 2. 1.

A solution of the original stochastic equation is also a solution of the associ-
ated martingale problem. We can prove the converse of this fact under some
restriction for a and S.

Theorem 2.2 Let (Q, F,, P, X,) be a martingale solution of the (a, b, S)-
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stochastic equation starting from (s, x). If a (s, x) is strictly positive, and the kernel
S (s, x, du) has no point mass and its support is R*-{0}, then there exist o, ¢, and
(B;, p (dt, dz), q (dt, d?)) such that

a) o and c are Borel measurable, co*=a and

S z _ _ g (s, x,D) for each open set DC R4 — {0}.

c(s,x,2)ED I 2 | d+1

b) By (resp. p, q) is a Brownian motion (resp. a Poisson random measure, a
Poisson martingale measure) on the probabillity space (Q, F,, P). B,, p and q
satisfy the same condition as we stated at the beginning of this section.

¢) X, s a solution of the original (o, b, c)-stochastic equation starting from
(s, x) constructed over (Q, F,, P, By, p, q).

We omit the proof, since we never make use of the original stochastic
equation.

3. Operator L and transition probabilities

T. (Some inequalities for solutions of a parabolic equation)

Let a(s) be a measurable d X d symmetric matrix such that
4|01°< (0, a©))=a, |01, 0<a<a,<oo,
for all 9 R and s& R,. We shall consider the parabolic equation:

(x_ 363_ — %:,z,] aij(s)D,-D].> &(s, x) =f(s,x), A>0.

Define an operator G, acting on a suitable class of functions on R, X R? by

det U(s, 1) ,

g ¢ Sy ) dedy
R T

Guf(s, 9= |

s -1/2
where U(s, t)=<%s Ha("r)d'r) .

We say that a function f on R, X R? belongs to the class Cx (or is a test
function) if and only if f is a C=(R, X R?)-function with compact support. We
can verify that if f&Cg, then g(s, x)=G, f(s, ) is a solution of the parabolic
equation. Set

FAGYA x) = d‘(:;U—t)(j;zt) e~ |\ UGSDHE|22t=At
T

Then we have, for each fe Cg,
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Guf (e x) = | [ s .01, x—y)atdy,
DGf(5,9) = | [Dits, t ) f(st, w—y)atdy
Moreover, for the set B,={(¢, y)€ R, X R%; t>& or | U(s, t)y|*>&}, the integral:

S SB D.D; Ji(s, , ) f(s+2, x—y)dtdy

exists for each £>0 and it converges to a certain function as €} 0. Let us de-
note the limit by /¥f. We can verify that

D,-DjG;\f(S, x) = I’;{f(s, x)—|—cif(s)f(s, x)

where ¢?/(s) is a function on R, such that there exists a finite upper bound of
|¢’7| independent of A and f. (see Bers-John-Schechter [1] p—226)

ReEmMARK. We can verify that if a(s) is continuous, then the functions G, f,
D,G,f, D;D G, f and % G, f are continuous in (s, x) for f & Cfg, and that these
s
functions converge to 0 as s+ |x|?>—co.

Let us introduce some norms for functions on R, X R?.
1£11 = supl £(s, )|

H*(f) = sup | f(s, )= f(s, %) O<axl)

s,x,%/ lx__.x/lm

1o = (], §1 s w1 7asax)re - (1<p<eo)

In the sequel, these a and p are fixed, The following theorem can be
proved by a similar way to the proof by Jones [2] and in Bers ez. al. [1].

Theorem 3.1 If fis a function of Cg and Z\r*=1, then
1) H*(Iif)<c. H*(f) and ||I{f||<c. r*H*(f),
2) |I§jf|L1’§C- [ flee,
where the c.’s stand forrcertain constants independent of N, f and r.

REMARK. Let | f|ce be the norm || f||4+7*H®(f). Then there exist con-
stants ¢, and ¢, depending only on 4, a, p, @, and a, such that

‘Zj|DiD,-G>\f|c,‘”§cm|f|c2‘ and leIDiDthfleécplfle
for feCg and P21

In the following two lemmas, we suppose that Ar*>1 and feCg, and
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the ¢.’s stand for certain constants independent of A, f, and ». We will omit
the proofs of these lemmas, because these are not so difficult.

Lemma 3.2
1) IGI=71fll and ||D;GrflI<c. 7lIf]l,
2) H*G\f)=r*"H*(f) and H*(D,G\f)<c. rH*(f),
3) |Guflu=r|fls and |DGrf|pp=<c. 71f, -

Lemma 3.3
1) If 2—d[p>0, then ||Gifl|<c. r*~4/?| f| s,
and if 1—d[p>0, then ||D,G\f||<c. r* /2| f|».
2) If 14+a—d[p>0, then H (G f)<c. r'**4/?| f]|,»,
and if a—d[p>0, then H* *D,G\f)<c. r*9/?| f|».
3) IDGrf(-, -+u)—D;G\f(+, *) Lr=c. |ul|f]r2.

L. (A priori estimate for the operator L)

Let a(s, x), b(s, x), S(s, x, du) be as follows:
a) there exist positive constants g, and a, such that

a,|01*=(0, a(s, x)0)=a,|0|

for all fe R¢ and (s, x)€ R, X R?,
b) sup [b(s, x)| <oo,

c) there exists a measure S(du) such that
S |u|>A1S(du)y<<co and S(s, x, du) < S(du) for all (s, x)& R, X R? .
Let L be an operator defined by
Los, x) — % 3 as,(5, DD 0(s, x)+ 2 b, )Dio(s, 3

+ S[fv(s, x++u)—o(s, x)—Iou<p(, Fo(s, x))]S(s, x, du) .
Let x, be an arbitrary but fixed point of R? and set
1
L,= ) 2 a; (s, %)D;D; and Ty = (L—L,)G,,
where G, is an operator defined simiarly to that in Subsection T using a(s, x,)
in place of a(s). And denote by K, a formal expression G,[I—T,]".

Assumption. Let ¢, and ¢, be the constants defined in Subsection T.
(Aa) €y MAX SUp laij(sv x)_aij(s’ xo) [ =1.
ij s, %

(Ap) ¢, nﬁlx sup |a; (s, x)—a; (s, %) | < 1.
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Lemma 3.4 If Assumption (A,) is satisfied, then there exists a function o ,(r)
on R, such that lim o ,(r)=0 and
740

— max sup|a;(5, %) —a;,(5, %) [} DD, G f | -+ max{ B[S D,Gu S |
+ 1§16 f(5, 240G f(5, 90— Tz, PG F (s, 5) | S(c) 2
<(5 +o) 1710
In particular, [ThflL”§<‘12“+0'p(T))|f |2 for fECx and AMr*=1.
Proof. In this proof, the ¢.’s stand for certain constants independent of X, f

and r. For simplicity, we set a'(s, x)=af(s, x)—a(s, x,) and g(s, x)=G, f(s, ).
By Theorem 3.1 and Lemma 3.2, we have

- max[laj |} DiD, g | o+ max 6 221 Dig o2

= %n:;flx llalle,| £1 rtmax|iblles| f1or< (%—}—c.r)] flos.
On the other hand,
1§65 3+0)—(s, )1 S(a) 22
< a3 g o (342 1)
= CZS,(.%J,g |2)?S(du)<c;| g Br<c.(r*| f| 2)? (by Lemma 3.2).

Moreover,

[ Lt v+ —gls, 90— Pa(s, ) S(dw) 22

< S:Sds de:do(SIL u) |7g(s, %-+0u)—Pg(s, x)|S(du)”

= Sdes deldG(S |u| 25—(‘1"))”“&,'“,’;',2( [Pg(s, x+?1;)|——7g(s, %) )PS'(du)
(s 0 T s
<ec. (S|L,“§|,zs(du))Plf |2 (by Lemma 3.3-3)).

Similarly we have

|, 2-0) (5, )~ P s, ) 1 Stct)

=[x as{ a0({ 1) 175, 3+ 6w~ s, )1 S(au) )2
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(S |u IS(du))p/qS d¢9<s2|u| 7g| £ps(du))

r<l¥| =1 r<l¥| g1
=c (S |zf|IS(du))"(r|f [?)?  (by Lemma 3.2).
r<|¥| <1
Combining these inequalities, we see that

[ Lgtes ) —gts, 2)— (o PgCs, 2) 1 S(aw) |

Slulz(—A1>S(du)|f|Lp

l¥l <1

The right-hand side of this inequality tends to 0 as 7 | 0. 'Thus we can choose
o ,(r) of the form

o) (r) = c. ( y +S lu| ( A 1)S(du)> QE.D.
iz \u]
The kernel S is said to be continuous if
,lm} S|u| AL1|S(s, %', du)—S(s, x, du)| =0 for all (s, x)e R, X R* .

Lemma 3.5. Suppose that Assumption (A,) is satisfied. If a(s, x), b(s, x)
and S(s, x, du) are continuous in (s, x), and if there exists a constant h, such that

max |a; (s, ') —a; (s, x) | +max|b(s, x")—by(s, x)|
+S [#]2A1]|S(s, &', du)—S(s, x, du) | Sh,|x'—x|*  for any s, &/, x,

then there exists a function a,(r) on R, such that lim o ,(r)=0 and
740

1
|Taf ler=(5+u0)1 f Lot
for feCx and \r*=1.

We can prove this lemma by means of Theorem 3.1 and Lemma 3.2. Al-
though the computation is rather long, it is a routine work; so we omit the proof.
We only mention that we can choose o,(r) of the form

= 0 2(_T_ S
oolr) = c. (r+r ha—|-S|!‘ u| <|ul Al)S(du)).
Let us introduce two norms for functions on R, X R?.
[f |20 = Ifle_'_ElDifle_I_;IDiDif'L’;
| flezve = ||f||+2IID;f||+2j|lD;Djf||+%l H*D;D;f)

Completing the space Ck by the norms |- |2, |- |22, |+ |ce and |- |c2+e, we get

Banach spaces L?, L*?, Cg and C%'”, respectively.
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Remarks. 1) Let Assumption (A,) be satisfied and let 7, be a positive
constant such that o (7 ,) <%. Then |T,|p2<<1 for A=7r3% Therefore the
operators

[[—T\]*: L?—L? and K,:L*-L*?

are well defined,
2) Suppose that the conditions in Lemma 3.5 are satisfied, and let 7, be a posi-

tive constant such that o-,,,(r,,,)<% . Then |T)|cz<1 for A=r3% Therefore,
considering the first remark in Subsection T, the operators

[I—T,]': C4—Cx and K,: Cx—C%®
are well defined.

Theorem 3.6. 1) Suppose that Assumption (A,) is satisfied. If feL?
and AN=r3’, then v=K, f& L*? and this is a solution (in the distribution sense) of
the equation

(=L -L)o=r.

Moreover if p >d and % <a<<1, then there exists a constant c (independent of f)

such that
loll+ 33 1D ll+3 H-%D,2) el f 1.2

2) Suppose that conditions in Lemma 3.5 are satisfied. If f is a CE-function such
that the support of the funciton sup | f(s, x)| is a compact set in R, then v=K, f is

a C%®-function satisfying the equation
0 -
for any A>0, and ||v||<1/\]| fl].
Proof. 1) Set f'==[I—T,]"'f. Then f’eL? and K, f=G,f’. Therefore

(x—%—L)«; - [(x—%—/:o) — (L—Lo)]GAf’ — U-T\]f =f.

The rest of the assertion follows from Lemma 3.3.
2) Set A'=rz’. If fis a function concerned with, then the C"*~function K, f:

K, f(s, x) = eV K,s f (s, x) with f,(s, x) = e f(s, x)
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is well defined for each A>0. It is easy to show that v=K, f satisfies the equation

a
A—-—L)o—Ff.
( os v=/f
By the maximum principle of parabolic-type equation, we see easily the last

assertion. Q.E.D.

M. (Construction of transition probabilities)

Let a,b, S, a, a,, S, ¢4, ¢, 7, and other notations be the same as in Sub-
section I[.  In this subsection, we suppose that Assumption (A,) and (A,) are
satisfied. Let us denote the Radon-Nikodym derivative of S(s, x, du) given S(du)
by K(s, x, u).

It is easy to construct a sequence (a”, b", S™) satisfying a)—e).

a) a,|0]*<(6, a™(s, x)0)<a,|0|* for all § and (s, x)&R, X R?, and a” satisfies
Assumption (A,) and (A,).

b) [lal|=|la;,ll, [167]|=1|b;|| and there exists K" such that 0< K™(s, x, #)<1 and
S*(s, x, du) = K™(s, x, u)S(du).

c) There exists a bounded set D"C R, X R? such that a™(s, x)—a”(s, x,)="5"(s, x)
=K"(s, x, u)=0 for (s, x) D",

d) a” b" and S™ are continous in (s, x), and there exists a constant A" such that

23| aly(s, *')—aj(s, ) [ +2318F(s, ) —b (s, %) |

—I—S lu|2A1|K*(s, &', u)—K"(s, x, u) | S(du) < bt | &' —x|®

for all s, &/, x.
€) aji(s, x) —>a; (s, x), bi(s, x) > by(s, x) a.e. with respect to dsdx, and K™(s, x, u)
— K(s, x, u) a.e. with respect to dsdxS(du).

We define operators L” and K} similarly to L and K, respectively by using
(a”, 8", S™) in place of (a, b, S).

Lemma 3.7. Let f&L? N\ L~ and let (f™) be a sequence of Cy-functions with
compact supports such that f— f in L? and || f"||<||f||. Then K3Xf™is a C¥°N
L*?-function. And if \=r13?, then

| K2 fm"— K f | 1200 as m—>co, |Kif—Ky\f]|20—0 as n—co .
Moreover if 2p>d and N=13", then
K% f"— K% f||—0 as m—soo, ||K%f—K,f||—0 as n—co .

Proof. By Theorem 3.6 we see that K% " C% *NL>?. It is immediate
to show that lim | K% f”—K?%f|,2#=0 for A=7;?. By Lemma 3.3, this implies
My
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that lim||[K3f™—K3f||=0 for n=73” and 2p>d. On the other hand, for each
L*?-function v, iiml (L*—L)v|»=0. In fact, for example,
"= “dsdx [S Lo(s, 2+-10)—0(s, %) — Tt 705, %)| [S™(s, 2, do)— S(s, x, du)|]"
- ?

:SSdsdx[s |12 A Vh(s, %, u)| K*(s, %, u)— K (s, x, %) lS(du)]

< e f1ura 1[Sgh(s, x, w)? | K*(s, %, u)—K (s, %, u) | °ds dx] S(du),
where the c. stands for a constant independent of # and

ks, %, u) = |o(s, x+u)—o(s, x)—Iquso(u, Fo(s, x) | /(1u]* A1) .
It is easy to show that sup | (s, x, u) | p<<co. As |K*—K|=<2and K"K a..,
we conclude that lim I"=0. In particular, lim|(L"—L)K,|»=0 for A =73*
Since K3 f=K,[I—(L*—L)K,]™*f, we have lim |K%f—K, f|2+=0 for A=r3"
By Lemma 3.3, we have also lim||K%f — K, f||=0 for A=r3*and 2p>d.
Q.E.D.

Lemma 3.8. Let v be C% *-function with compact support and let
0
=(A——— 0).
f (x % L) v (A>0)

Then f is an L? (\ L=-function such that the support of sup| f(s, x)| is compact, and
7)=K A ﬁ
Proof. Set

g = (=g~ L7)o =f~—Lp.

s
Then g” is an L? N Cg-function such that the support of sup | g%(s, x) | is compact.

Thus

v = K%g" = KX} f—(L"—L)v).
From lim|(L"—L)v|, »=0, which have proved in the proof of Lemma 3.7, it
follows that lim | K3(L*—L)v|,;2»=0. In fact, in the case A=77? this follows

from Theorem 3.6; and in the case A <73? it follows from Theorem 3.6 and the
next remark that if f” is an L?-function such that the support of sup| f'(s, )| is

compact, then we have

Kf,(s: x)=e""‘""”K’,{/fl’(s, x) With fll(s’ x) — e(A/_A)sf/(s, x) ,
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where A'=r3%  On the other hand lim|K%f—XK, f|,2»=0 by Lemma 3.7 (and
the above remark). Thus v=K, f. Q.E.D.

Let C, be the class of all continuous function f(s, x) on R, X R? such that
lim f(s,x)=0. In the rest of this section, we assume that 2p>>d.

5+]5)2508
By Lemma 3.7 and Theorem 3.6, we see that if A>73* and f& L? N L~, then
K, fis an L*? N C,-function and

. n rm : i m _l_
K1l = l:’gll“KAf || < lim N = S Al

where ( /™) is a sequence approximating f, having the same properties as in Lemma
3.7. Let K\ be a unique extention of K, onto C,. Then ||K\/||[S1/A. Itis
easy to show that

Kif"—Kif"=—(—)KIKLf™ (r, p20), and K320 if f20.
This implies that, for each A, p=73%
Ky —Ky = —(A— KK, and K0,
Set K=K, (L? N C;) (which is independent of 1), and let A=8iS+L. The

family K is dense in C,. In fact, let v and f be the functions considered in Lemma
3.8 and let (f™) be a sequence approximating f which has been considered in
Lemma 3.7. Then we have lim || K, f”—v||=1lim||K, f"—K, f||=0 for a=r3*

(by Lemma 3.7 and Lemma 3.8). This implies that K is dense in C,. It is easy
to show that

(AZ—A)K,=1Ion L?NC, and K\(A—A4A)=1Ion K.
Therefore
(h“‘A)K)\I = K}\I(X—A) == I on K-

By Hille-Yosida’s semi-group theory, there exists a closed extension 4’ of the
operator A and a positive contraction semi-group (P,) on C, whose infinitesimal
generator is A’ and whose resolevents are (K,’). That is,

Ky f=(n—A)tf= Swe”“P, fdt, feC,and A2r;?.
Let p(¢) be a C~(R")-function such that 0= p(§)<1, p(§)=1 for |EI§—;—
and p(£)=0 for |£|=1.

Lemma 3.9. Suppose that the domain of the operator P, is extended to
C*¥ R, X R?) by such a way that P,f=1im P,f™ for each f = C**(R, X R?) where
ﬂl_'oa
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176, = 6 )5 ) p(L21).

Then 1) P,1=1, and 2) if f is a bounded continuous function on R, with
compact support, then P,f(s, x)=f(s+1t) (P,f is independent of x).

Proof. 1) Let 1™=p(s/m?)p(|x|/m). Then we have
(x—_g_—L)lm = Mmg, g"eL0L” and lim]|g™| = 0.
S
By Lemma 3.8, 1”=)\K, 1"+ K,g™. Since HKAg"'||< [lg™ll, it holds that hm

KAI”'=;1V—. And so we have

S“’e-MP,ldt S N fim P, 1"t = 11m$ e-MP,1"dt — lim Ky/1™ = %
0 0 m_y o0

LELEN

for A=7r3% Since P,1<1, it must hold that P,1=1.

2) Let h(s)= S TAEED f (t)dt—g e~ f(s+t)dt and h™(s, x)=h(s)p(| x| /m). Then
we have

(x— % —L)h’” — £(s) p(”:—l)—[——g”', "€ L0 L~ and lim|g"]| = 0.
By a similar way to the item 1), we have |

So eMP, fdt = lim K " = h(s) —S N f(st-)dt

for all A=73. This implies that P, f(s, x)=f(s+¢). Q.E.D.

There exists a kernel p,’(s, x; d7, dy) such that

P.f(s, %) = { /(5,3 dr, ) f(r,)

for each bounded continuous function f on R, X R?. By Lemma 3.9, we see that

(s, x; Ry, dy) = Pt,(s’ x5 {t+$}, dy)’ p,’(s, xR, Rd) =1.

Set p,/(s, x; R, dy)=p(s, x; t-+s, dy). Then p(s, x; t, dy) is a kernel such that
a) p(s, x;t, RH)=1,
b) p(s, x; s, dy)=38,(dy) (3-measure at x),

c) p(s, x;t, dy):Sp(s, x;7, d2)p(r, 25 ¢, dy) for s<r<t, and

d) P fG, x)=S (s, %3, dy)f(y) for each feC™¥(RA).
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4. Uniqueness of martingale solution

In this section, we suppose that the following condition is satisfied.

Condition (U)
1) For each bounded domain D, there exist constants 0<<a,<a, such that
a,101*<(0, a(s, x)0)<a,|01*
for all §R? and (s, )& D, Moreover lim sup 33 |a; (s, ¥")—a; (s, x)| =0 for
*>x ST ij

any 7.

2) b(s, x) is locally bounded.
3) For each bounded domain D, there exists a measure S(du) such that

Slulz/\l S(du)< o, and S(s, x, du)< S(du) for (s, x)€D .

Let T be a positive constant, and p(£) the function defined in §3—1I.
Let y be an arbitrary but fixed point of R?, and set

“als, ¥) = as AT, )+l AT, #)—a(s AT, o 1229),
R — Jx—y]|
b(s, x) = b(s AT, x) p(—R ) ,
RS(s, x, du) = S(s A\ T, x, du)p(ﬂ) .
R
In §3— T, we have learnt that if a,|6|*<(0,a(s)0)<a,|6|* for all § and s,
then there exist constants ¢,(a,, a,) and c,(a,, a,) such that
Z_ |DiDjG)\ I Lpécp(av az), 2 |DiDjG)\ ‘ Cgéca(ap az) (7\47‘22 1) )

where G, is the Green operator associated with the parabolic operator

0 1

Let a and & be positive constants such that
al|01°<(0,"a(s, x)0)=al0|*,

for any 6= R?, R<1, (s, x) R, X R?. 'There exists a positive constant R(y)=<1
such that

co(a, @)V cy(a, @) max sup [RPa; (s, x)—Ra; (s, x)| <1

It is possible to assume, without any loss of generality, that R(y) is measurable and
1/R(y) is locally bounded,
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As we have proved in §3—1II, there exists a system of transition probabilities
p(s, x5 ¢, dy) associated with the operator L with coefficients (*¥q, B, B»S),
Therefore it is possible to construct a strong Markov process (%;, Qs »; tE[s, ))
on the measurable space (W*, W*, W73) such that

B ) W= st it d)f()  (Sr=t)

for each bounded Borel function f on R4.
In the next lemma, (®*a, B*%p, R S) are simply denoted by («, b, S). And
L and K, are the operators associated with these coefficients.

Lemma 4.1. The strong Markov process (x;, Qs ) is a martingale solution
of the (a, b, S)- stochastic equation starting from (s, x).

Proof. Suppose that 2p>d, A>r;?and f& L? N C, (see §3.) Then we have
Kaf(s, %) = [ e, [f(t, x)ldt .
Set py(x)=p(|*|[N) and
H={7eL" K(fon) (s %) = B[ | e o)t m)at ]}

Then H contains 1 and all test functions. If f,& H and f,— f in sup-norm, then
fapn—fpy in L? and in sup-norm, and hence f€ H. Similarly, if f,€ H, f,=0
and f, } f(f€L>), then f€eH. Therefore H must contain all the bounded
measurable functions. From this fact, it is easily verified that if A=77* and
feL?NL®, then

Knf(s, %) = Es,,[re"‘“"” 1, x,)dt] .
This fact and the Markov property of (»,, O; ) imply that the process
eNDK, f(t, %) — Ko f (s, 2) 4| e fr, 0 )dr

is a square integrable martingale for each A =732 and feL?NL". Let v be a
C*-function with compact support and let

(x—%—L)sz.

Then fe L? N L~ and v=K, f (by Lemma 3.8). Thus the process
e Dy(, x,)—o(s, x)—}—Ste"‘(T‘” f(7, x,)dT

is a square integrable martingale. It is easy to show that this property holds for
any C*?(R, x R%)-function v, Moreover the property lim Q; [sup|x,| >I]=0
(e i
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follows easily from the above facts. Consequently, the process (x,, O, ,) is a
martingale solution of the (g, b, S)-stochastic equation starting from (s, x).
Q.E.D.

ReMARK. In the above proof, we used the constant 7, which was not well
identified. Here we shall give a discussion upon this. In this remark, let us
denote (Rq, R, RNS) by (a, b, S). And let G5 be the Green operator asso-
ciated with the parabolic operator

0 1 0 2
X—E——?%}a,J(s,z)D,Dj= X_-‘gs‘—"L .

There exists a measure S(du) (depending on R(y)) such that
S |u|2A1 §(a’u)<<>0, S(s, x, du)§§(du) for each (s, x) R X R?.

The definition of R(y) shows the existence of positive constants 7 and 7, such that
0<vy<1and

2 maxla; (5, 5)—a(6, S DD,Gf | -+ max|ib X D.G3f |

+1§1G3 /(s a0~ G3f (5, ) Lamsow, PG f (5, 9) 1) | < 1 f 12
for each A =73? fe L? and z€ R°.

In the following theorem, (a, b, S) means the coefficient (F*’q, R, RS,
and G}, S(du), v and 7,, are the objects defined in the above remark.

Theorem 4.2. The martingale solution of the (a, b, S)-stochastic equation
starting from (s, x) exists uniquely, and this is a strong Markov process.

Proof. 1° Let (w,, O, ) be any martingale solution of the (a, b, S)-stochastic
equation starting from (s, x). Let us define an operator V), acting on bounded
measurable functions f on R, X R? by the formula:

Vaf(s,3) = B, [T s, war).

We shall prove thatif p>d, A=rz%and f&e L? N L=, then K, f (s, x)=V, f(s, %),
where K, is the operator associated with the coefficient (a,b,.S). From this fact,
the assertion of the theorem follows immediately.

2° There exists a Brownian motion B, such that

%, = x4 S’ a(r, x,)"%dB.+ S’ b(r, %,)d

g a0+

¥ <1
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where [ is the measure of jumps of x, and °J is the martingale measure associated

with J and S (see §2). Let r, be a function satisfying ,(t)=s+ — when s+-—
n n

<t§s—{—y—+—1 , and define a new process x7 by the formula:
n
t
Xy = x—[—S a(T, Xg ry)/?dB,+ St b(r, x,)dt

L ram e § g, .

t
1| <1 s

Let V% be an operator defined by

Vaf(s, x) = Es,,,[j”e-w-” 1, x?)a’til .
It is not so difficult to prove that, for each £>0 and 7V <o,
lim sup Q. .[lx—x/|>€]1=0.

540 O<tt’<T/
1t-t1<8

This property and the martingale inequality imply that
lim Q; [ sup |2}—x,|>€]=0.
nyo0 0ost<1/

Thus we have lim V3f(s, x)="V,f(s, x) for each bounded continuous function f.

3° Weshall prove that there exists a constant N such that ||V f[|S N3 f| .2
for each feCxNL?, p>d and A =737
Set o(z; s, )=G5f(s, x) for fECENL?, then o(z; -, -)ECF*NL*? for

each & R?. Let us denote s+ — by #, and v(x,,; 5, x) by v,(s,x). Then the
n
process

t
e Dy (1, xf)—e AT (2, &7)) +S¢ e MO f(r, xTdT
v

+{, e (S0 (r, w)D0r a0+ for, ) v, 47)
ty i 1ul>1/n

_I(|u|§1)(u1 V‘Z),,('T, x:‘))] S(T’ x'r)du)} dr
is a square integrable martingale on the time interval (¢,, ¢,,,]. Therefore,
IVEAIIS 33 (e v —e 4 )supl[o(z; -, )|
—I—Sse—m—s){g ||b,.[|5121p|[D,-'v(z;-,.)H +2 slepHv(z; . .)||Sl“|>1§(du)

+2 32 sup 1D 0(s;-, -)nngwgl |u|2S(du)}dt.
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Since, by Lemma 3.3, there exists a constant ¢ independent of f and 2 such that
2 IDw(Ese, ) F-llo(=; 5 Il = ¢] fler,

there exists a constant N} such that ||V f||<N3| f|.» for each feCENL2.

4° We shall prove that there exists a constant N, such that||V,f||<N,|f| .
for each feCL N L? provided that A=>7,%(p>d).

Let feCxNL? and o(s, x)=Gj f(s, ) where z is an arbitrary but fixed
point of R?.
Set

ke (s, @) = max|la; (s, x)—a; (5, ) | 23 | D:D0(s, )| +max|lb;[| 35 | Do(s, x)]

+{ 1o, w-+0)—0s, 9)—Laursolas Po(s, x)) | S(d)
Since the process
et=0(t, x8)—o(s, 3)+ | e f(r, an)ar
- S:e —m-s){% ‘,/—-—‘, (@ (75 %per)—a: (7, 2))D;D (7, %7)+ 2' by(r, x,)D (T, x7)
] B w0 —o(r, 20— Lol Po(r, 2IS(r, ., di) e

is a square integrable martingale, we have ||[V3f|| < ||v||+ ||V} k||. Let N? be
the smallest constant such that ||V} f||<N3%|f|.» for any CgN L?-function
f, and let N, be a constant such that ||G} f|| < (1—v)N, | f | for any L? N L>-
function f. Since |k| 2=v] f|.?, we have

HV:fllé(l_rY)NhlfILP-I_Ny)tlhleé(l_'Y)N)\lfILp_l_'YN;\‘Ifle
This implies that N} < (1—)N,+vN?%, and so N?<N,. Therefore, for any
felinl?,
IVASIl = im || VXFIIS NI e

5° The inequality ||V fI|=Ny| f|.” holds good for any L? N L>-function
f. This may be proved by making use of general results in measure theory.
Therefore we omit the proof.

6° Let p>d, A27,% fEC{NL? and set v=G} where 2 is an arbitrary
fixed point. Then the process

e ot x,) —o(s, x)+ Ste‘“f'” (A= ai —L)o(7, x)d7
s T

is a square integrable martingale. Therefore
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oo

o, x)=Es,x[sse w-”(x—ait—L)v(t, x,)dt] = V\(I=T) (s, %),

where T ;=(L—L?*) G;. On the other hand G{=K,([—T3). Hence K,g=
V,g for each function g of the form: g=(I—T%) f,f€CyNL?. The set of such
functions g is dense in L?N L~ with L?-norm, and so K,f=V,f for each
feL?NL” for p>d and A =72 QED

ReEMARK. Let ¢ be a bounded s-stopping time and p>>d, then

K f(C, %) = Es,,[gze-w-o (2, %)dt| W;] ae. (Q..)

for each feL?NL~ and A=r,%. (This can be proved similarly to the above
theorem.)

In the following lemma, we do not assume that (a, b, S) satisfy Condition
(U). (And (a, b, S) does not mean the coefficient (?*’g, B, RS),)

Lemma 4.3 We assume that (a, b, S) satisfy the condition
max] o, |-+ maxlfp,] 4+ { 4 A 1 S(s, 3, dul|<oo.

Let T be a bounded s-stopping time. Let Q' be a probability measure on (W?*, W*)
such that (x,, Q';t €[s, T]) is a martingale solution of the (a, b, S)-stochastic
equation starting from (s, x). Suppose that Q., (w € W?*) is a probability measure
on (W*, WT™) a. e. w (Q’) such that (x,, Q. ;t< [T (w), =) is a martingale
solution of the (a, b, S)-stochastic equation starting from (T(w), X1¢y), and w Wi—>

w( D) ra<e 15 Wi-measurable for each A W' (t=s). Then there exists a
unique probability measure Q on (W*, W¥) such that Q=Q' on W4 and the regular
conditional disfribution of Q given W equals Q) on W™, If Q is this probability,
then the process (x,, Q;t E[s, o)) is a martingale solution of the (a, b, S)-stochastic
equation starting from (s, x).

Proof. The first assertion is the conclusion of Lemma 1.2. Extend QJ, onto
W* so that Q[A| Wi]=Q.[A] for all A= W*. Then, for each A= W* and
Be Wi, we have

014N B] = |5 011410 (aw)

Let @, (s, x) be Ito’s differential associated with (a, b, S) (see the paragraph
under the first definition in §2), and set

M7 — expli(0, x,—x,)-S'@o(r, x,)d7), s<r<t.
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From the assumption, M% ., (resp. MT) is a square integrable martingale
with respect to (W3, Q) (resp. (W%, QL)). Let A= Wi be of the form:
A=A,N AZ where

A= {x,,€F,, -+, 2, F}, Ai={wn,, EF\,,, -, %, EF,},s<5,< - <5,Z7.

Sy+1
Then we have,

[ ourmio=x

v S(‘y§T<-‘y+l)

QullaM:]Q’

— s M)/ T /
= MQUIME L0
=5 M3 QUIMF L0’
v JeysT<sya N4y
=3 QUm0 = | QuiLLMQ.
v CysT<Sy4+1) <)
on the other hand,
[ ourmag=| s, QumMrvg
T rsT)N4
— S 4 — 8 /.
- S('gr)n.i MTAtQ j(’éT)ﬂA MJQ

Combining these equalities, we have Eg[I,M}]=E[I,M;]. This equality holds
good for each A= W7}, provided that s<r=<¢. 'This implies that M7 is a square
integrable martingale (for each f= R?) with respect to (W{, Q). Thus (x,, Q;
te[s, o)) is a martingale solution of the (g, b, S)-stochastic equation. Q.E.D.

Theorem 4.4. If (a, b, S) satisfy Condition (U), then a martingale solution
(%, O, xs tE [s, T]) of the (a, b, S)-stochastic equation starting from (s, x) is
uniquely determined for any (s, x)€ R, X R®. It is all the same when T is an
s-stopping time with respect to to the family (W?).

Proof. For the simplicity let us suppose that 7' is a constant.
1° Set T,=inf {t€[s, T];|x,—x|>1/2R(x)}. Let (x;, Q’; tE[s, T]) be a
martingale solution of the (a, b, S)-stochastic equation starting from (s, x). Then
(% O’;t<[s, T,]) is a martingale solution of the (**®q, F®}p, B®S)-stochastic
equation starting from (s, x). By Lemma 4.1, there exists a martingale solution
(% Q'¢ 15t €[ s, 0)) of the (R¥q, B®p, B S)-stochastic equation starting from
(s, '). Since the probability measure Q’y ./ is Borel measurable in (5" x’),
=07 w>,zr,w> Satisfies the conditions of Lemma 4.3. And so, there exists a
martingale solution (x,, Q;tE[s, o)) of the (F*®a, R}, R S)-stochastic equation
starting from (s, x) such that O0=0Q" on W; and Q[:|W; ]=0,[-]on W7i.. By
Theorem 4.2, a martingale solution (x,, Q) is uniquely determined. Thus the



298 T. Komatsu

restricted measure Q| Wy, is uniquely deternined.
2° Let us define a non-decreasing sequence of s-stopping times by

T,., = inf{te(T,, T];|2,—x1,| >1/2 R(x1,)}.
Then lim Q[ T, < T]=0 holds, for the process (x,, Q’, t&[s, T']) is right con-

tinous, stochastically bounded and 1/R(y) is locally bounded. By applying the
same method used in 1° for the (R“rla, ®¥rbh, ®“r>S)-stochastic equation, it
can be shown that the restricted measure Q| W}, is uniquely determined. In-
ductively, we conclude that Q’| W;,_is uniquely determined for each n. Q.E.D.

5. Existence of martingale solutions
Let T be a positive constant. We shall introduce a new condition.

Condition (B)

1) There exists a constant K such that S(s, x, {|u| >1})<K for all (s, x)=
[0.T]1x R4

2) There exists a C'(R,)-function k() satisfying the following conditions.
a) k(0)>0, ' (£)=0 and k(&) is a concave function.

b g

c) |(x, b(s, x))| 4-trace a(s, x)—{—SI - [2]2S(s, %, du)<k(|x|)(1+ |x]?)
for all (s, x)[0, T] x R“. - ~
3) For each bounded domain D C R’ there exists a measure S(du) such that

Slulz/\l S(du)< o> and S(s, x, du)<S(du) for (s, x)[0, T]x D.
(The function log (e-+£) is an example satisfying a) and b) of Condition (B)—2).)

Let p(£) be the function defined in §3—1I. Set
Na(s, x) = a(s\ T, 0)+(a(s\ T, x)—a(sA\ T, 0))p(|x|/N),
Nb(s, x) = b(sA\ T, x)p(|x|/N) and ¥ S(s, x, du) = S(sA T, x, du)p(|x|[N).
Lemma 5.1. Let (a, b, S) satisfy Condition (B), and let (x,, YO ;t<[s, T])

be a martingale solution of the (Na, Vb, N.S)-stochastic equation starting from (s, x).
Then

1) lim sup ¥Q[sup|x,| > 1]=0, and
> N t

2) lim sup sup MO[|x,—xy| >&]=0 for each £>0.
5

>0 N [t-¥]<Z8
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Proof. 1°Set T,=s, T,,,=inf{te(T,, T];|4x,| >1}. Since
T -
YOI, <T1="0Ql | _ Jat, duy>m=T=2%
s JI¥[>1 n
where ] is the measure of jumps of x, (see §2), we have lim sup YO[T,< T]=0.
By N
If the property lim sup YQ[sup|x;ar,| > 1]=0 implies the property lim sup
I>~ N ¢ > N
NQ[sup |#;a1,,,| > ]=0, then assertion 1) of the lemma holds.
t

2° There exists a non-negative function k(¢) e C?(R,) such that #'(+0)=
h’(+0)=0 and

_ (¢ wdy n oo
h(f)—som on [1,00).

Let VL be an operator defined by
NLo(s, x) = % ‘,v"", Na; (s, x)D;D jo(s, x)+ 23 N(),-(s, x)D;v(s, x)

—l—S 3 {o(s, x+u)—o(s, x)—(u, Po(s, 2))} NV S(s, x, du).
lul=1
An elementary computation shows that there exist constants H and H, such that
i) |¥Lh(|x|)|=<H and
N
f) WL BT L el )21V S(s, %, du) S H,

NEIR
for each (s, x)[0, T] X R? and N.
3° Let us denote (tVT,)AT,,, by t,. Let us introduce a new process y,:

ye=yn={_ |  Jar,aw.

Then the process y, has the Meyer decomposition (with respect to the measure ¥Q

"t ty tn

Ye= xT"+$ dM.,’Y.{_ST”N[,(-,-, x)d-r—l-g

T, T,

S wJN(dr, du),

ITIESY

where
M7 € Mo (W2, NO), M+ MYi— | Va (7, )d7€ Mioo(W1,¥Q) and
SJN(dt, du) = J(dt, du)—" S(2, x,, du)dt.

From inequality i) and the Kunita-Watanabe formula,we have
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i )(x'n dMy)
EA

+ Stn jmhé(llx‘_{—u I)_h | X ‘ ))c]N(dT, du)_*_H(t”_ Tn)

Ty

4
T,

Wy <h(ar, 4| w1

Let us denote the right-hand side of the inequality by 2, then the process z, is a
positive submartingale with respect to the measure ¥(Q. By the martingale
inequality,

YO[sup |y | > 1| W3,] = ¥Olsup A(ly: )2 (1) | W3,]

4
< 2 *T°*+4-2H.T).

Since A(o0)= oo, the right-hand side of the above inequality tends to 0 as [—co.

On the other hand, sup |x; | <sup|y,|+ |4x7, .|, and
t t

Tnia
VOl dir, | > Wi ) = "BI| (782, y, duyde| W)
T, Jsi>

<T s S NS(s, x, du).
0<SS<T,|*|<suply lJ 14| >
t

By Condition (B)—3), it hods that

limsup sup S NS(s, x, du)=0 for each bounded domain DC R“.

1> N (5,%€E[0,T]xDJI4>1
Thus, if lim sup YQ[|xr,| >1]=0, then lim sup ¥Q[sup|y,| >1]=0; and if lim
[EL [EC ¢ 1>
sup YQO[sup|y,| >1]=0, then lim sup YQ[sup|x,, | >I]=0. Thus assertion 1)
N ¢ > N t

is verified.
4° Set U,=s and U,,,=inf {t&(U,, T];|x,| >n}. Then lim sup YQI[U,,
nyeo N
< T]=0.
The process (x;, YQ) has the Meyer decomposition:
x,—xZS’dMHS'Nb(T, xT)dT+S'S uJN (dr, du)-}—StS u J (dr, du).
s s sJl¥ <1 sJl¥I>1

Therefore, for each €>0 and s<t<t/'< T,

WOl sy, > QU | M+, w)drt | ) 1> €]
+901]"| . Jiar, a01+401U,< 1)

4] >1
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The second term of the right-hand side of this inequality tends to 0 uniformly
in N as|t—t’| | 0 because of the following inequality

/ /7

NQ[S’ S u J(dr, a’u):t:O]gNE[jt | Jar, ani=x@—).
t Ju>1 t J]¥>1

By Condition (B)—2), the first term also tends to 0 uniformly in N as |¢—#|

} 0. Consequently, the second assertion of this lemma holds good. Q.E.D.

Theorem 5.2. If (a,b, S) satisfies Condition (U) and (B), then there exists
(uniquely) a martingale solution (x,, Q, .;t<[s, T]) of the (a,b, S)-stochastic
equation starting form (s, x). And the solution is a strong Markov process.

Proof. By Theorem 4.2 and Lemma 4.3 (see also the proof of Theorem
4.4), it is possible to construct (uniquely) a martingale solution (x,,VQ, ,;t<[s, T])
of the (Ma, Nb, NS)-stochastic equation starting form (s, x). Let T'y=s, Tp,,=
int{te (T, T];|x,| >N/2}. By the uniqueness of the martingale solution of the
(Ma, Vb, N S)-stochatic equation, we have YO, .=N"'Q, . on the o-field W; .
Thus there exists a probability measure Q. on the o-field W? 7, such that
Q,.:="Q; . on the o-field W7 _. The process (x,, O .;t<[s, VTy]) is a
martingale solution of the (a, b, S)-stochastic equation starting from (s, x). Since,
by Lemma 5.1,

. L o . . _
lim Q, [Ty <T] = lim sup™Q, [Ty <T]<lim sup ™Q, .[sup|x,| >N/2] =0,

the process (x,, O, .) is a martingale solution of the (a, b, S)-stochatsic equation
on the time interval [s, T]. Itis easy to show that this process is a strong Markov
process. Q.E.D.

Condition (C)
1) Lim sup 33 |a;(s, x")—a,; (s, x)| =0 for each x& R".

#yx 0gSZT

2) b(s, x) is locally bounded, and
Br»r} {“‘__‘_,lb,-(s, x)—b(s, x)| +S lu|2A1|S(s, &', du)—S(s, x, du)|} =0
for all (s, x)[0, T]x R?¢
Lemma 5.3, If Condition (B) and (C) are satisfied, then there exists a

martingale solution (x,, Q; .;t E[s, T]) of the (Na, Nb, NS)-stochastic equation
starting from (s, x).

Proof. We shall omit the super-prefix N of ¥a, ¥b,. and ¥S in this proof.

1° If a"™=a+1/m-1I, then there exists a martingale solution (x,, Q™) of
the (a™, b, S)-stochastic equation starting from (s, x), by Theorem 5.2. Similarly
to the proof of Lemma 5.1, we can prove that
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1) 111:11 sup o [S}Jplx,l >1]=0, and
2) lim sup sup O"[|x/,—x,| >&]=0 for any £>0.

840 m |t -t[<s _
By Lemma 1.1, it is possible to extract a subsequence Q"= from the sequence
Q“ and it is possible to construct a sequence (X;, X7:n=1,2,--) of processes
on a certain probability space (Q, F}, P) such that the processes (x,, Q") and
(X%, P) are equivalent for each 7, and the random sequence X7 converges in
probability to X, for each te[s, T]. Let (x,, O, .) be the process on the base
space (W?*, W*, W73) equivalent to the process (X, P).

2° Let @, (s, x) be Ito’s differential associated with (, b, S) (defined in the
paragraph under the first definition of §2). Then

Epl{expli(6,X5—X5)~ | @, X2)dr— |01 (=] D5 fXE)]=0.
for any s<s,< .- <s,<r<{, and for any f,, -+, f,& C*%R?). Therefore

Ep [{expli(6, X— X,)— | @(r, X)drI—1H(X..) = fuX.,)]

=cTim By [ [@r, X)—ay(r, X,)ld7]

where ¢ is a constant depending only on || f,|| (j=1, -+, k), £—7 and ||®,]|.
By Condition (C), I”IIE Ep[| Dy(T, X7)—Dy(7, X,)|]=0 for each 7€ [r, £]. Thus,

tim [ Bol | @4(7, X2)—@y(, X.)[Jdr =0,
Consequently, for any s<r<t and f= R¢,
E» [exp (i(0, X,——X,)—Std)g(‘r, X.)d7) |F,] = 1.

This limplies that the process (X, P) or (¥, Qs .) is a2 martingale solution of the
(a, b, S)-stochastic equation starting form (s, x). Q.E.D.

Theorem 5.4 If Condition (B) and (C) are satisfied, then there exists a
martingale solution (x;, Q; .;tE[s, T]) of the (a, b, S)-stochastic equation starting
from (s, x).

Proof. By Lemma 5.3, we can construct a martingale solution (x,, YQy./;
te[s, T) of the (NVa, Vb, VS)-stochastic equation starting form (s’ x’) for each
(s"xye[s, TIXRY Set T,=s and Ty,,=inf{t& (Ty, T];|x,|>N/2}. By
Lemma 4.3, there exists a probability measure *Q’; . on the o-field W, such
that *Q’; ,="'Q; . on the o-field W%, and *Q’ [+ | W7 ]="0Or, .r, [*] on the
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o-field W% Inductively, we can construct a sequence YQ’; , of probability
measures on the o-fields W%, such that ¥*'Q’; .=~(Q’, . on the o-field W5,
and ¥ [« | W, =" 0y 20, ] on the o-field W;j‘gﬂ. Let Q, . be the
probability measure on the o-field W?, 7, such that Q, ,=~(Q’; , on the o-field
Wi, The method used in the proof of Theorem 5.2. yields us the fact that
the process (%;, Q), » is a martingale solution of the (a, b, S)-stocahstic equation
starting form (s, x) Q.E.D.
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