PRINCIPAL CIRCLE ACTIONS ON A PRODUCT OF SPHERES

Hideki OZEKI and Fuichi UCHIDA

(Received February 4, 1972)

0. Introduction

A smooth circle action $\varphi: S^{1} \times X \rightarrow X$ on a smooth manifold X is called principal if the isotropy subgroup

$$
I(x)=\left\{z \in S^{1} \mid \varphi(z, x)=x\right\}
$$

consists of the identity element alone for each point x of X. For a principal smooth circle action on a smooth manifold X, the orbit space M is a smooth manifold, the natural projection $\pi: X \rightarrow M$ is a smooth principal S^{1}-bundle, and in addition the manifold M is orientable if and only if the manifold X is orientable.

Two principal smooth circle actions (φ, X) and ($\phi^{\prime}, X^{\prime}$) are called to be equivalent if there is an equivariant diffeomorphism of (φ, X) onto ($\phi^{\prime}, X^{\prime}$). A principal smooth circle action (φ, X) on a closed oriented smooth manifold X is called to bord if there is a principal smooth circle action (Φ, W) on a compact oriented smooth manifold W and there is an equivariant orientation preserving diffeomorphism of (φ, X) onto $(\Phi, \partial W)$, the boundary of W.

In this paper we consider principal smooth circle actions on a closed orientable smooth manifold which is cohomologically a product of spheres. We show that any principal circle action on a manifold which is cohomologically a product $S^{2 m+1} \times S^{2 n+1}$ of odd dimensional spheres bords but on a certain manifold which is cohomologically $S^{2 m} \times S^{2 n+1}(n \geqq m)$ there is a principal circle action which does not bord. And the cohomology rings of orbit manifolds show that there are infinitely many (topologically) distinct principal circle actions on $S^{2 m+1} \times S^{2 n+1}(m \neq n)$. We can also show that the Pontrjagin classes of orbit manifolds well distinguish some of the circle actions on a product of spheres.

1. Cobordism of principal circle actions

Let E be a topological space whose integral cohomology group $H^{*}(E)$ is isomorphic to an integral cohomology group $H^{*}\left(S^{2 m+1} \times S^{2 n+1}\right)$ of a product of
odd dimensional spheres with $0 \leqq m \leqq n$. Let $\pi: E \rightarrow M$ be a principal S^{1} bundle over an orientable closed smooth manifold M. Then,

Lemma 1.1.

(1) The integral cohomology ring $H^{*}(M)$ of M is isomorphic to one of the truncated polynomial rings given under:
(a) $\boldsymbol{Z}[c, x] /\left(x^{2}, c^{n+1}\right)$, where $\operatorname{deg} c=2$ and $\operatorname{deg} x=2 m+1$,
(b) $\boldsymbol{Z}[c, y] /\left(y^{2}, c^{n+1}, k c^{m+1}, y c^{m+1}\right)$, where $\operatorname{deg} c=2$ and $\operatorname{deg} y=2 n+1$
and k is a positive integer. Here the element c corresponds to the Euler class of the principal S^{1}-bundle $\pi: E \rightarrow M$.
(2) The each odd dimensional Stiefel-Whitney class of M vanishes.

Proof. By the Thom-Gysin sequence ([5] p. 60, Theorem 21) for the principal S^{1}-bundle $\pi: E \rightarrow M, H^{2 m-1}(M)=0$ and $H^{2 m}(M)$ is an infinite cyclic group generated by c^{m}. Then $H^{2 n+2}(M)=0$ by the universal coefficient theorem and the Poincare duality of M. Now the ring structure of $H^{*}(M)$ is obtained from the Thom-Gysin sequence by a routine calculation. Next, let $V_{i} \in H^{i}\left(M ; \boldsymbol{Z}_{2}\right)$ be a class characterized by the equation

$$
S q^{i} \alpha=\alpha \cup V_{i} \quad \text { for all } \quad \alpha \in H^{\operatorname{dim} M-i}\left(M ; \boldsymbol{Z}_{2}\right),
$$

and let $V=V_{0}+V_{1}+\cdots+V_{i}+\cdots$, then $S q V=W(M)$, the total Stiefel-Whitney class of M by the Wu's formula ([5] p. 55, Theorem 17). Then $W_{2 i+1}(M)=0$ follows from the ring structure of $H^{*}\left(M ; \boldsymbol{Z}_{2}\right)$ and a property of the Steenrod operations ([6] p. 5, Lemma 2.5). q.e.d.

Theorem 1. Let E be an orientable closed smooth manifold. Assume that the integral cohomology group of E is isomorphic to one of a product $S^{2 m+1} \times S^{2 n+1}$ of odd dimensional spheres. Then any principal smooth circle action on E bords as an orientable principal smooth circle action.

Proof. Let $\pi: E \rightarrow M$ be a principal S^{1}-bundle associated with a given principal smooth circle action on E. Denote by \bar{c} the modulo 2 reduction of the Euler class c of the principal S^{1}-bundle $\pi: E \rightarrow M$. Then the circle action on E bords as an orientable principal smooth circle action if and only if all bordism Stiefel-Whitney numbers vanish

$$
\left\langle W_{i_{1}}(M) \cdots W_{i r}(M) \bar{c}^{k},[M]_{2}\right\rangle=0
$$

and all bordism Pontrjagin numbers vanish

$$
\left\langle P_{i_{1}}(M) \cdots P_{i r}(M) c^{k},[M]\right\rangle=0
$$

where $[M]_{2}$ is the modulo 2 reduction of the fundamental class $[M]$ of M ([3]
p. 49, Theorem 17.5). But the orbit manifold M is odd dimensional and each odd dimensional Stiefel-Whitney class of M vanishes by Lemma 1.1. Hence all bordism Stiefel-Whitney numbers and all bordism Pontrjagin numbers of $\pi: E \rightarrow M$ vanish. Therefore this principal smooth circle action bords as an orientable principal smooth circle action. q.e.d.

2. Principal circle actions on a product of spheres

For a sequence $a=\left(a_{0}, \cdots, a_{m}\right)$ of integers, we define the circle action φ_{a} on \boldsymbol{C}^{m+1} by

$$
\varphi_{a}\left(z,\left(u_{0}, \cdots, u_{m}\right)\right)=\left(z^{a} u_{0}, \cdots, z^{a_{m}} u_{m}\right)
$$

and denote by $S^{2 m+1}\left(a_{0}, \cdots, a_{m}\right)$ the unit sphere $S^{2 m+1}$ in \boldsymbol{C}^{m+1} with this action φ_{a}.
Let $a=\left(a_{0}, \cdots, a_{m}\right), b=\left(b_{0}, \cdots, b_{n}\right)$ be sequences of integers. We also define the circle action $\varphi_{a, b}$ on $S^{2 m+1} \times S^{2 n+1}$ by

$$
\varphi_{a, b}(z,(\vec{u}, \vec{v}))=\left(\varphi_{a}(z, \vec{u}), \varphi_{b}(z, \vec{v})\right)
$$

where $\vec{u}=\left(u_{0}, \cdots, u_{m}\right), \vec{v}=\left(v_{0}, \cdots, v_{n}\right)$, and denote by

$$
S^{2 m+1}\left(a_{0}, \cdots, a_{m}\right) \times S^{2 n+1}\left(b_{0}, \cdots, b_{n}\right)
$$

the product $S^{2 m+1} \times S^{2 n+1}$ with the action $\varphi_{a, b}$. Then the circle action $\varphi_{a, b}$ is principal if and only if each a_{i} is relatively prime to each b_{j}. When the circle action $\varphi_{a, b}$ is principal, the orbit manifold is denoted by

$$
M\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)
$$

In particular, $M\left(a_{0} ; b_{0}, \cdots, b_{n}\right)$ is naturally diffeomorphic to the lens space obtained from $S^{2 n+1}$ by the identification $\vec{v}=\varphi_{b}(\lambda, \vec{v})$ for all $\lambda \in \boldsymbol{C}, \lambda^{a_{0}}=1$. The cohomology ring of $M\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)$ is determined as follows:

Theorem 2. Suppose $0 \leqq m \leqq n$. Then the integral cohomology ring of $M\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)$ is isomorphic to
(i) $Z[c, x] /\left(x^{2}, c^{n+1}\right)$, where $\operatorname{deg} c=2$ and $\operatorname{deg} x=2 m+1$, if $m=n$ or if a_{i} $=0$ for some i,
(ii) $Z[c, y] /\left(y^{2}, c^{n+1}, k c^{m+1}, y c^{m+1}\right)$, where $\operatorname{deg} c=2$, $\operatorname{deg} y=2 n+1$ and $k=\prod_{i} a_{i}$ if $m<n$ and $\prod_{i} a_{i} \neq 0$. Here the element c corresponds to the Euler class of the principal S^{1}-bundle

$$
\pi: S^{2 m+1}\left(a_{0}, \cdots, a_{m}\right) \times S^{2 n+1}\left(b_{0}, \cdots, b_{n}\right) \rightarrow M\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right) .
$$

By virtue of Lemma 1.1, it is sufficient to determine the $(2 m+2)$ dimensional cohomology group of $M\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)$, and furthermore if
$m=n$ the cohomology ring is determined by Lemma 1.1 already.
Denote by ξ_{n} the canonical complex line bundle over the complex projective n-space $P^{n}(\boldsymbol{C})$ obtained from $S^{2 n+1} \times \boldsymbol{C}$ by the identification $(\vec{u}, \rho)=(\lambda \vec{u}, \lambda \rho)$ for all $\lambda \in \boldsymbol{C},|\lambda|=1$ ([5] p. 75). Then there is a mapping

$$
p: M(a_{0}, \cdots, a_{m} ; \underbrace{1, \cdots, 1)}_{(n+1) \text { times }} \rightarrow P^{n}(C)
$$

given by the following commutative diagram:

where p_{2} is the projection to the second factor and π_{0} is the projection of the principal S^{1}-bundle associated with the canonical complex line bundle ξ_{n}.

Lemma 2.1.

(i) The natural projection

$$
p: M\left(a_{0}, \cdots, a_{m} ; 1, \cdots, 1\right) \rightarrow P^{n}(C)
$$

is a sphere bundle associated with the complex $(m+1)$-plane bundle

$$
\xi_{n}^{a_{0}} \oplus \cdots \oplus \xi_{n}^{a_{m}}
$$

where ξ^{a} is the a-fold tensor product of a complex line bundle ξ for $\mathrm{a} \geqq 0$ and the (-a)-fold tensor product of the conjugate line bundle ξ of ξ for $a<0$.
(ii) For $M=M\left(a_{0}, \cdots, a_{m} ; 1, \cdots, 1\right)$, we have

$$
H^{2 m+2}(M) \cong\left\{\begin{array}{cc}
Z /\left(\prod_{i} a_{i}\right) \cdot Z & \text { if } m<n \\
0 & \text { if } m \geqq n .
\end{array}\right.
$$

Proof. (i) is proved easily from the fact that the total space $E\left(\xi_{n}^{a}\right)$ of the complex line bundle ξ_{n}^{a} can be represented as the space obtained from $S^{2 n+1} \times \boldsymbol{C}$ by the identification $(\vec{u}, \rho)=\left(\lambda \vec{u}, \lambda^{a} \rho\right)$ for all $\lambda \in \boldsymbol{C},|\lambda|=1$. Next the Euler class of the complex $(m+1)$-plane bundle $\zeta=\xi_{0}^{a} \oplus \cdots \oplus \xi_{n}^{a m}$ is

$$
e(\zeta)=\left(\prod_{i=0}^{m} a_{i}\right) \cdot e\left(\xi_{n}\right)^{m+1}
$$

Then, by the Thom-Gysin sequence for the complex $(m+1)$-plane bundle ζ, there is an exact sequence;

$$
H^{0}\left(P^{n}(\boldsymbol{C})\right) \xrightarrow{h} H^{2 m+2}\left(P^{n}(\boldsymbol{C})\right) \xrightarrow{p^{*}} H^{2 m+2}(M) \xrightarrow{P_{*}} H^{1}\left(P^{n}(\boldsymbol{C})\right)
$$

where the homomorphism h is given by $h(x)=x \cdot e(\zeta)$. And this implies (ii). q.e.d.

Lemma 2.2. We have

$$
H^{2 m+2}\left(M\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)\right) \cong Z /\left(\prod_{i} a_{i}\right) \cdot Z
$$

for $m<n$.
Proof. Consider the following commutative diagram:

where $a=\left(a_{0}, \cdots, a_{m}\right), b=\left(b_{0}, \cdots, b_{n}\right), c=\left(c_{0}, \cdots, c_{n}\right), i_{1}((\vec{u}, \vec{v}))=(\vec{u},(\vec{v}, 0)), i_{2}((\vec{u}, \vec{v}))$ $=(\vec{u},(0, \vec{v}))$ and f_{1}, f_{2} are induced mappings. Then f_{1}, f_{2} induce isomorphisms of ($2 m+2$)-dimensional cohomology groups if $m<n$, and we have
$H^{2 m+2}\left(M\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)\right) \cong H^{2 m+2}\left(M\left(a_{0}, \cdots, a_{m} ; c_{0}, \cdots, c_{n}\right)\right)$. Thus Lemma 2.2 follows from this isomorphism and Lemma 2.1 (ii). q.e.d.

The proof of Theorem 2 completes.
Corollary. There are infinitely many (topologically) distinct principal smooth circle actions on $S^{2 m+1} \times S^{2 n+1}$ for each $m \neq n$.

This follows directly from Lemma 2.2.

3. Pontrjagin classes of orbit manifolds

For a given principal smooth circle action on E in our examples, the Pontrjagin classes of the orbit manifold M can be expressed by the Euler class c of the principal S^{1}-bundle $\pi: E \rightarrow M$.

Let E be a smooth submanifold of an N-dimensional euclidean space \boldsymbol{R}^{N}. For each point p of E, the tangent space $\tau_{p}(E)$ of E at p can be canonically imbedded into the tangent space $\tau_{p}\left(\boldsymbol{R}^{N}\right)$ of \boldsymbol{R}^{N} at p. If we denote by $\nu_{p}(E)$ the orthogonal complement of $\tau_{p}(E)$ in $\tau_{p}\left(\boldsymbol{R}^{N}\right)$, then $\nu(E)=\bigcup_{p \in B} \nu_{p}(E)$ is the normal bundle of E in \boldsymbol{R}^{N}. Let t be an isometry of \boldsymbol{R}^{N} such that $t(E) \subset E$. Then the differential $(d t)_{p}$ of t at p in E maps $\tau_{p}(E)$ onto $\tau_{t(p)}(E)$, and $\nu_{p}(E)$ onto $\nu_{t(p)}(E)$. Suppose the normal bundle $\nu(E)$ is trivial, i.e.

$$
\nu(E) \cong E \times R^{k}
$$

If $d t$ on $\nu(E)$ satisfies:

$$
(d t)_{p}(p, v)=(t(p), v) \text { for } p \in E, v \in \mathbf{R}^{k},
$$

then we say the action of t on $\nu(E)$ is compatible with the trivialization, or simply t acts on $\nu(E)$ trivially.

Lemma 3.1. Let E be a smooth submanifold of an N-dimensional euclidean space \boldsymbol{R}^{N}, and T a circle subgroup of $\mathbf{S O}(N, \boldsymbol{R})$ acting principally on E. Suppose the normal bundle $\nu(E)$ of E in \boldsymbol{R}^{N} is trivial and the action of T on $\nu(E)$ is compatible with the trivialization. Then the tangent bundle $\tau(M)$ of the orbit manifold M is stably equivalent to the vector bundle obtained from $E \times \boldsymbol{R}^{\boldsymbol{N}}$ by the identification $(p, v)=(t(p), t(v))$, for all $t \in T$.

Proof. At each point p of \boldsymbol{R}^{N}, we have the usual identification of $\tau_{p}\left(\boldsymbol{R}^{N}\right)$ with $\mathbf{R}^{\boldsymbol{N}}$, which is denoted by $h_{\boldsymbol{p}}$. First we remark that for any element t in $\boldsymbol{G} \boldsymbol{L}(N, \boldsymbol{R})$, the differential $d t$ of t is compatible with the above identifications, i.e.

$$
\begin{equation*}
h_{t(p)} \circ(d t)_{p}=t \circ h_{p} \quad \text { at each } \quad p \in \boldsymbol{R}^{N} . \tag{3.1}
\end{equation*}
$$

Denote by $\lambda(E)$ the restriction of $\tau\left(\boldsymbol{R}^{N}\right)$ over E given by

$$
\lambda_{p}(E)=\tau_{p}\left(\boldsymbol{R}^{N}\right), \text { for } p \in E .
$$

Consider the equivalence relation on $\lambda(E)$ as follows: $X \sim Y$ if and only if $Y=(d t)(X)$ for some t in T. Now (3.1) shows that the bundle over M obtained from $\lambda(E)$ by the above relation is isomorphic with the vector bundle stated in Lemma 3.1. Let $\gamma_{p}(E)$ be the kernel of $(d \pi)_{p}: \tau_{p}(E) \rightarrow \tau_{p}(M)$, and $\tau_{p}^{\prime}(E)$ the orthogonal complement of $\gamma_{p}(E)$ in $\tau_{p}(E)$. We have the decomposition:

$$
\lambda(E)=\tau^{\prime}(E) \oplus \gamma(E) \oplus \nu(E),
$$

where T acts on each factor. From the assumption in Lemma 3.1, $\nu(E)$ is trivial and T acts trivially on $\nu(E)$. The bundle $\gamma(E)$ is trivial and the action of T on $\gamma(E)$ is compatible with this trivialization since T is abelian. Thus the bundle over M obtained from $\lambda(E)$ by the above equivalence relation is stably equivalent to the bundle over M obtained from $\tau^{\prime}(E)$ by the same relation. The differential $d \pi$ of the projection $\pi: E \rightarrow M$ gives an isomorphism $\tau_{p}^{\prime}(E)$ with $\tau_{\pi(p)}(M)$ and $d \pi$ is compatible with the action of T, i.e.

$$
d \pi \circ d t=d \pi \quad \text { for any } \quad t \in T .
$$

Now it is easy to see that the bundle obtained from $\tau^{\prime}(E)$ is isomorphic with the tangent bundle $\tau(M)$. q.e.d.

Theorem 3. Under the same notations as in section 2, the total Pontrjagin class of the orbit manifold $M=M\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)$ is

$$
P(M)=\prod_{i=0}^{m}\left(1+a_{i}^{2} c^{2}\right) \cdot \prod_{j=0}^{n}\left(1+b_{j}^{2} c^{2}\right)
$$

where c is the Euler class of the principal S^{1}-bundle associated with the circle action $\varphi\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)$.

Proof. For the unit $(2 m+1)$-sphere $S^{2 m+1}$ in $\boldsymbol{C}^{m+1}=\boldsymbol{R}^{2 m+2}$, we choose a unit normal vector field X on $S^{2 m+1}$. Then each element in $\boldsymbol{S O}(2 m+2, \boldsymbol{R})$ fixes X, thus the action of $\boldsymbol{S O}(2 m+2, \boldsymbol{R})$ is trivial on the normal bundle of $S^{2 m+1}$. $S^{2 n+1}$ in C^{n+1} has the same property. It is easy to see that our action $\varphi\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n}\right)$ on $E=S^{2 m+1} \times S^{2 n+1}$ in $\boldsymbol{C}^{m+1} \times \boldsymbol{C}^{n+1}=\boldsymbol{R}^{N}$ satisfies the required assumption in Lemma 3.1, where $N=2 m+2 n+2$ and $S^{1}=T$ is expressed as

$$
S^{1}=\left\{\left(\begin{array}{ccccc}
z^{a_{0}} & & & & 0 \\
& \ddots & & & \\
& & z^{a_{m}} & & \\
& & z^{b_{0}} & \\
& & & \ddots & \\
0 & & & z^{b_{n}}
\end{array}\right)\right\}
$$

by the complex coordinates. On the other hand, if we denote by ξ the complex line bundle over M associated with the principal S^{1}-bundle $\pi: E \rightarrow M$, then the bundle constructed in Lemma 3.1. is isomorphic with

$$
\zeta=\xi^{a_{0}} \oplus \cdots \oplus \xi^{a_{m}} \oplus \xi^{b_{0}} \oplus \cdots \oplus \xi^{b_{n}}
$$

where ξ^{a} denotes the a-fold tensor product of ξ. Thus, by Lemma 3.1, the tangent bundle $\tau(M)$ of the orbit manifold is stably equivalent to the real restriction of the complex vector bundle ζ. Now the conclusion of Theorem 3 follows from properties of Pontrjagin classes ([5], Chapter XII). q.e.d.

Corollary. If two principal circle actions $\varphi_{a, b}$ and $\varphi_{c, d}$ are equivalent, where $a=\left(a_{0}, \cdots, a_{m}\right), b=\left(b_{0}, \cdots, b_{n}\right), c=\left(c_{0}, \cdots, c_{m}\right)$ and $d=\left(d_{0}, \cdots, d_{n}\right)$, then

$$
\begin{equation*}
\sigma_{k}\left(\mathrm{a}_{0}^{2}, \cdots, \mathrm{a}_{m}^{2}, b_{0}^{2}, \cdots, b_{n}^{2}\right)=\sigma_{k}\left(c_{0}^{2}, \cdots, c_{m}^{2}, d_{0}^{2}, \cdots, d_{n}^{2}\right) \tag{1}
\end{equation*}
$$

for $2 k \leqq m \leqq n$,

$$
\begin{equation*}
\left|\prod_{i=0}^{m} a_{i}\right|=\left|\prod_{i=0}^{m} c_{i}\right| \quad \text { for } \quad m<n \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{k}\left(a_{0}^{2}, \cdots, a_{m}^{2}, b_{0}^{2}, \cdots, b_{n}^{2}\right)=\sigma_{k}\left(c_{0}^{2}, \cdots, c_{m}^{2}, d_{0}^{2}, \cdots, d_{m}^{2}\right) \tag{3}
\end{equation*}
$$

$\bmod \left|\prod_{i=0}^{m} a_{i}\right|$ for $m<2 k \leqq n$. Here σ_{k} is the k-th elementary symmetric function on ($m+n+2$)-variables.

4. Gysin homomorphism

Let ξ be an oriented n-plane bundle over a topological space X with a Thom class $U \in H^{n}(D(\xi), S(\xi))$, where $p: D(\xi) \rightarrow X$ and $\pi: S(\xi) \rightarrow X$ are the associated disk bundle and the associated sphere bundle respectively. Then there is a commutative diagram:

where the homomorphism ϕ_{ξ} is a Thom isomorphism defined by $\phi_{\xi}(x)=p^{*}(x) U$, $e(\xi)$ is a Euler class of ξ and the homomorphism π_{*} is a Gysin homomorphism. The lower horizontal line is a Thom-Gysin sequence for the oriented n-plane bundle ξ ([5] p. 60).

Lemma 4.1.

(1) $\pi_{*}\left(\pi^{*} x \cup y\right)=(-1)^{\operatorname{deg} x} x \cup \pi_{*} y$ for $x \in H^{*}(X)$ and $y \in H^{*}(S(\xi))$, ([4] p. 71; [7] p. 121)
(2) $\pi_{*}\left(S q^{i} u\right)=\sum_{j+k=i} S q^{j} \pi_{*} u \cup W_{k}(\xi)$ for $u \in H^{*}\left(S(\xi) ; Z_{2}\right)$ where $W_{k}(\xi)$ is a k-th Stiefel-Whitney class of ξ, ([5]p. 35; [7] p. 137)
(3) $\pi_{*}\left(P^{i} v\right)=\sum_{j+k=i} P^{j} \pi_{*} v \cup Q_{k}(\xi)$ for $v \in H^{*}\left(S(\xi) ; Z_{p}\right)$ where p is an odd prime, P^{i} is a reduced power operation and $Q_{k}(\xi) \in H^{2 k(p-1)}\left(X ; Z_{p}\right)$ is a k-th $W u$ class defined by $Q_{k}(\xi)=\phi_{\xi}^{-1} P^{k} U$, ([5] p. 120).

Proof.

$$
\begin{aligned}
\phi_{\xi} \pi_{*}\left(\pi^{*} x \cup y\right) & =\delta\left(\pi^{*} x \cup y\right) \\
& =\delta\left(i^{*} p^{*} x \cup y\right) \\
& =(-1)^{\operatorname{deg} x} p^{*} x \cup \delta y \\
& =(-1)^{\operatorname{deg} x} p^{*} x \cup\left(p^{*} \pi_{*} y \cup U\right) \\
& =(-1)^{\operatorname{deg} x} \phi_{\xi}\left(x \cup \pi_{*} y\right) .
\end{aligned}
$$

This implies (1), since ϕ_{ξ} is an isomorphism. Next

$$
\begin{aligned}
\phi_{\xi} \pi_{*}\left(S q^{i} u\right) & =\delta\left(S q^{i} u\right) \\
& =S q^{i}(\delta u) \\
& =S q^{i}\left(p^{*} \pi_{*} u \cup U\right) \\
& =\sum_{j+k=i} S q^{j} p^{*} \pi_{*} u \cup S q^{k} U \quad \text { (Cartan formula) }
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{j+k=i} p^{*} S q^{j} \pi_{*} u \cup\left(p^{*} W_{k}(\xi) \cup U\right) \tag{5}\\
& =\phi_{\xi \in}\left(\sum_{j+k=i} S q^{j} \pi_{*} u \cup W_{k}(\xi)\right)
\end{align*}
$$

This implies (2). The relation (3) is proved similarly by the Cartan formula of reduced power operations ([6] p. 76) and the definition of Wu classses ([5] p. 120). q.e.d.

5. Miscellaneous principal circle actions

In this section we give some examples of principal circle actions on a closed orientable smooth manifold E which is cohomologically a product $S^{2 m} \times S^{2 n+1}$.
5.1. Given a sequence $a=\left(a_{1}, \cdots, a_{m}\right)$ of integers, let ψ_{a} be a principal smooth circle action on $S^{2 m} \times S^{2 n+1}$ given by

$$
\psi_{a}\left(z,\left(\left(u_{0}, \cdots, u_{m}\right),\left(v_{0}, \cdots, v_{n}\right)\right)\right)=\left(\left(u_{0}, z^{a_{1}} u_{1}, \cdots, z^{a_{m}} u_{m}\right),\left(z v_{0}, \cdots, z v_{n}\right)\right)
$$

in complex coordinates, where u_{0} is a real number. Denote by M_{a} the orbit manifold. Then there is a mapping $p: M_{a} \rightarrow P^{n}(C)$ given by the following commutative diagram as in section 2:

where p_{2} is a projection to the second factor, π and π_{0} are natural projections.
The projection $p: M_{a} \rightarrow P^{n}(C)$ is a sphere bundle associated with a real $(2 m+1)$-plane bundle

$$
\zeta=\theta_{R}^{1} \oplus \xi_{n^{1}}^{a} \oplus \cdots \oplus \xi_{n^{m}}^{a}
$$

where ξ_{n} is the canonical complex line bundle over $P^{n}(\boldsymbol{C})$ and θ_{R}^{1} is a trivial real line bundle (see Lemma 2.1), and there is a cross-section $s: P^{n}(\boldsymbol{C}) \rightarrow M_{a}$ defined by $s\left(\left[v_{0}, \cdots, v_{n}\right]\right)=\pi\left((1,0, \cdots, 0),\left(v_{0}, \cdots, v_{n}\right)\right)$, so the Euler class $e(\zeta)=0$. Then, by the Thom-Gysin sequence for ζ, there is a short exact sequence:

$$
\begin{equation*}
0 \longrightarrow H^{k}\left(P^{n}(\boldsymbol{C})\right) \xrightarrow{p^{*}} H^{k}\left(M_{a}\right) \xrightarrow{P_{*}} H^{k-2 m}\left(P^{n}(\boldsymbol{C})\right) \longrightarrow 0 . \tag{5.1.1}
\end{equation*}
$$

Proposition 5.1.

(1) The integral cohomology ring of M_{a} is

$$
H^{*}\left(M_{a}\right)=Z[c, x] /\left(c^{n+1}, x^{2}-\left(\prod_{i} a_{i}\right) \cdot x c^{m}\right)
$$

where $c=p^{*} e\left(\xi_{n}\right), \operatorname{deg} x=2 m, p_{*} x=1$ and $s^{*} x=0$.
(2) The total Pontrjagin class of M_{a} is

$$
P\left(M_{a}\right)=\left(1+c^{2}\right)^{n+1} \cdot \prod_{i=1}^{m}\left(1+a_{i}^{2} c^{2}\right)
$$

Proof. The module structure of $H^{*}\left(M_{a}\right)$ and the relation $c^{n+1}=0$ are obtained directly by the exact sequence (5.1.1). And the total Pontrjagin class of M_{a} is calculated similarly as Theorem 3. Finally the relation $x^{2}=\left(\prod_{i} a_{i}\right) \cdot x c^{m}$ is obtained from Lemma 4.1 (2), (3), a property of the reduced power operations ([6] p. 1, p. 76) and a property of Wu classes ([5] p. 120), so we leave it to the reader. q.e.d.

Corollary. If the corresponding actions ψ_{a} and ψ_{b} are equivalent for sequences $a=\left(a_{1}, \cdots, a_{m}\right)$ and $b=\left(b_{1}, \cdots, b_{m}\right)$ of integers. Then

$$
\sigma_{p}\left(a_{1}^{2}, \cdots, a_{m}^{2}\right)=\sigma_{p}\left(b_{1}^{2}, \cdots, b_{m}^{2}\right)
$$

for any positive integer p with $2 p \leqq n$, where σ_{p} is the p-th elementary symmetric function on m-variables.
5.2. Let ξ_{1} be the canonical complex line bundle over $P^{1}(\boldsymbol{C})$. Given a sequence $a=\left(a_{0}, \cdots, a_{n}\right)$ of integers, denote by

$$
S\left(\xi_{1}^{a} \oplus \cdots \oplus \xi_{1}^{a} n\right)
$$

the total space of a sphere bundle associated with the complex $(n+1)$-plane bundle $\xi_{10}^{a} \oplus \cdots \oplus \xi_{1}^{a} n$ over $P^{1}(\boldsymbol{C})$. Then there is a natural principal circle action φ on $S\left(\xi_{1}^{a_{0}} \oplus \cdots \oplus \xi_{1^{n}}^{a^{n}}\right)$ whose orbit space is $\boldsymbol{C P}\left(\xi_{1^{0}}^{a^{0}} \oplus \cdots \oplus \xi_{1}^{a}\right)$, the total space of a projective space bundle.

Proposition 5.2.
(1) $\quad H^{*}\left(\boldsymbol{C P}\left(\xi_{1}^{a_{0}} \oplus \cdots \oplus \xi_{1}^{a} n\right)\right) \cong \boldsymbol{Z}[c, x] /\left(x^{2}, c^{n+1}+\left(a_{0}+\cdots+a_{n}\right) x c^{n}\right)$, where deg $c=\operatorname{deg} x=2$, and c is the Euler class of the canonical line bundle over $\boldsymbol{C P}\left(\xi_{1}^{a_{0}}\right.$ $\left.\oplus \cdots \oplus \xi_{1}^{a}{ }^{n}\right)$,
(2) $H^{*}\left(S\left(\xi_{10}^{a} \oplus \cdots \oplus \xi_{1}^{a} n\right)\right) \cong H^{*}\left(S^{2} \times S^{2 n+1}\right)$ if $n>0$,
(3) If $a_{0}+\cdots+a_{n}=1(\bmod 2)$, then the principal circle action φ on $S\left(\xi_{1}^{a_{0}}\right.$ $\left.\oplus \cdots \oplus \xi_{1}^{a} n\right)$ does not bord even as unoriented principal smooth circle action.

Proof. (1), (2) are clear from the cohomology ring structure of the projective space bundle ([2] p. 8, Proposition 3.1, 3.2). Next, assume $a_{0}+\cdots+a_{n}=1$ $(\bmod 2)$, then

$$
\left\langle\bar{c}^{n+1},\left[\boldsymbol{C P}\left(\xi_{1}^{a_{0}} \oplus \cdots \oplus \xi_{1^{n}}^{a}\right)\right]_{2}\right\rangle \neq 0
$$

where \bar{c} is a modulo 2 reduction of the Euler class c. Thus the action φ does
not bord as unoriented principal smooth circle action ([3] p. 47, Theorem 17.2). q.e.d.

Remark. If $a_{0}+\cdots+a_{n}=1(\bmod 2), S\left(\xi_{1}^{a_{0}} \oplus \cdots \oplus \xi_{1}^{a} n\right)$ is not the same homotopy type as a product $S^{2 m} \times S^{2 n+1}$, since $S q^{2} u \neq 0$ for non-zero element $u \in H^{2 n+1}\left(S\left(\xi_{1}^{a_{0}} \oplus \cdots \oplus \xi_{1}^{a} n\right) ; \boldsymbol{Z}_{2}\right)$ by Lemma 4.1 (2).
5.3. There is a complex $(n+1)$-plane bundle ξ over $S^{2 m}$ with $\left\langle c_{m}(\xi),\left[S^{2 m}\right]\right\rangle$ $=(m-1)!$ for any $n+1 \geqq m([1]$ p. 349, Theorem $26.5(a))$.

Proposition 5.3. Assume $n \geqq m>0$, then

$$
\begin{equation*}
H^{*}(\boldsymbol{C P}(\xi)) \cong \boldsymbol{Z}[c, x] /\left(x^{2}, c^{n+1}+(m-1)!x c^{n-m+1}\right) \tag{1}
\end{equation*}
$$

where $\operatorname{deg} c=2, \operatorname{deg} x=2 m$ and c is the Euler class of the canonical line bundle over $\boldsymbol{C P}(\xi)$,

$$
\begin{equation*}
H^{*}(S(\xi)) \cong H^{*}\left(S^{2 m} \times S^{2 n+1}\right) \tag{2}
\end{equation*}
$$

(3) the natural principal circle action on $S(\xi)$ does not bord as an orientable principal smooth circle action.

Proof. (1), (2) are clear. And

$$
c^{n+m}=-(m-1)!x c^{n} \neq 0
$$

Hence (3) is obtained (see the proof of Theorem 1). q.e.d.
5.4. Let E be a topological space which is cohomologically a product $S^{2 m}$ $\times S^{2 n+1}$ with $m>n \geqq 0$. Let $\pi: E \rightarrow M$ be a principal S^{1}-bundle over an orientable closed smooth manifold M. Then,

Proposition 5.4.

(1) The integral cohomology ring $H^{*}(M)$ of M is

$$
H^{*}(M)=Z[c, x] /\left(c^{n+1}, x^{2}\right), \text { where } \operatorname{deg} c=2, \operatorname{deg} x=2 m
$$

and the element c is the Euler class of the principal S^{1}-bundle $\pi: E \rightarrow M$
(2) The Stiefel-Whitney classes of M are

$$
W_{2 i+1}(M)=0, W_{2 i}(M)=a_{i} \bar{c}^{i}\left(a_{i}=0,1\right)
$$

where \bar{c} is a modulo 2 reduction of the Euler class c.
Proof. This is proved similarly as Lemma 1.1, but it makes Lemma 4.1 (1) necessary to determine the ring structure of $H^{*}(M)$. We leave it to the reader. q.e.d.

Proposition 5.5. Let E be an orientable closed smooth manifold which is cohomologically a product $S^{2 m} \times S^{2 n+1}$ with $m>n \geqq 0$. Then any principal smooth circle action on E bords as unoriented princpal smooth circle action.

Proof. By Proposition 5.4, all bordism Stiefel-Whitney numbers of an associated principal S^{1}-bundle vanish (see Theorem 1). Thus the result is obtained ([3] p. 47, Theorem 17.2). q.e.d.

Remark. There is no principal smooth circle action on a compact smooth manifold whose each odd dimensional integral cohomology group is zero.

Osaka University

References

[1] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, II, Amer. J. Math. 80 (1958), 458-538; 81 (1959), 315-382.
[2] R. Bott: Lectures on K(X), Benjamin Inc., 1969.
[3] P. Conner and E. Floyd: Differentiable Periodic Maps, Springer-Verlag, 1964.
[4] F. Hirzebruch: Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.
[5] J. Milnor: Lectures on Characteristic Classes, Princeton University, (mimeographed), 1957.
[6] N. Steenrod and D. Epstein: Cohomology Operations, Princeton University Press, 1962.
[7] R. Thom: Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup. 69 (1952), 109-181.

