ON RIBBON 2-KNOTS THE 3-MANIFOLD BOUNDED BY THE 2-KNOTS TAKAAKI YANAGAWA (Received February 24, 1969) (Revised May 19, 1969) ## 1. Introduction It is known that any locally flat, orientable, closed 2-manifold M^2 in a 4-space R^4 bounds an orientable 3-manifold W^3 in R^4 , see [1]. Nevertheless, the question "what type of 3-manifolds can be bounded" seems to be still an open question, for which we will give a partial answer in Theorem (2, 3) in this paper: If the 2-manifold M^2 is a 2-sphere of a special type of 2-knots, which will be called a ribbon 2-knot, see (2, 2), it bounds a 3-manifold W^3 homeomorphic to $\#(S^1 \times S^2)$ $-\mathring{\Delta}^3$. Moreover, a little inspection on the 3-manifold W^3 shows that there exists a trivial system of the 2-spheres in W^3 , see (3, 5), and we can easily prove a converse of the above theorem in Theorem (3, 3). In §4, we will define the following concepts; R(3): A 2-knot K^2 satisfies that $c(\{K\})=0$, R(4): A 2-knot K^2 bounds a 3-ribbon in R^4 , R(5): A 2-knot K^2 bounds a monotone 3-ball in H_+^5 . Since it is easily seen that the concepts R(4) and R(5) are the natural extensions of the definition and the property of the ribbon (1-) knots, we can explain the reason why we denominate simply knotted 2-knots defined in [2] as ribbon 2-knots in this paper, after we will have accomplished the proof of the equivalence of these three concepts in Theorem (4, 5). In §5, we will introduce a normal-form for ribbon 2-knots and an equivalence relation between 2-knots. The equivalence relation is a cobordism relation between 2-knots with the strong restriction, although ribbon 2-knots are equivalent to a trivial 2-knot under the relation. In this paper, everything is considered from the combinatorial stand point of view. ^{0) #} means the connected sum, and Δ^3 a 3-simplex and $\mathring{\Delta}^3$ is its interior. ## 2. Ribbon 2-knots An orthogonal projection p of a 4-space R^4 , containing a locally flat 2-sphere K^2 which will be called a 2-knot, onto an hyperplane R^3 is called a regular projection, or simply a projection, if the locally linear map $p \mid K^2$ of K^2 into R^3 is normal.¹⁾ The homeomorphism class of (K^2, R^4) of 2-knots in R^4 will be called the knot-type containing K^2 , and will be denoted by $\{K\}$. DEFINITION (2.1). c(K) is the minimal number of the triple points and the branch-lines²⁾ of p(K) in R^3 , where the projection p ranges over the set consisting of all the projections for the 2-knot K. $c(\{K\})$ is the minimal number of c(K), where K ranges over the knot-type $\{K\}$. A pair (p, K) will be called a simple pair for the knot-type $\{K\}$, if it realizes the number $c(\{K\})$. DEFINITION (2.2).³⁾ A 2-knot K^2 will be called *a ribbon 2-knot*, if and only if $c(\{K\})=0$. **Theorem** (2.3). A ribbon 2-knot K^2 bounds a 3-manifold W^3 which is homeomorphic either to a 3-ball or to $\#(S^1 \times S^2) - \mathring{\Delta}^3$. Proof. According to the result in [2], we can find a 2-knot K' belonging to $\{K\}$ and satisfying the following (1), (2) and (3): - (1). $K' \cap R_0^3 = k$ is a ribbon knot in $R_0^{3.4}$ - (2). $K' \cap H_+^4$ and $K' \cap H_-^4$ are symmetric with respect to the hyperplane R_0^3 , and necessarily each of them is a locally flat 2-ball. - (3). each saddle point transformation⁵⁾ on $K' \cap H_+^4$ increases the number of components of the cross-sections of $K' \cap R_t^3$ as the height t increases; in other words, $K' \cap H_+^4$ has no minimal point. In the following three-steps, we illustrate the construction of the 3-manifold W^3 . First-step. Since k is a ribbon knot, there is an immersion ψ of a 2-ball $\tilde{D} = \tilde{D}_0 \cup \tilde{D}_1 \cup \cdots \cup \tilde{D}_n \cup \tilde{B}_1 \cup \cdots \cup \tilde{B}_n$ on a plane into R_0^3 such that (1) $\psi(\partial \tilde{D}) = k$, $\psi(\tilde{D})$ is a ribbon, $$R_1^3 = \{(x_1, x_2, x_3, x_4) \mid | x_4 = t\}$$ $$H_+^4 = \{(x_1, x_2, x_3, x_4) \mid | x_4 \ge 0\}$$ $$H_-^4 = \{(x_1, x_2, x_3, x_4) \mid | x_4 \le 0\}$$ $$H_-^4(J) = \{(x_1, x_2, x_3, x_4) \mid | x_4 \in J\}$$ ¹⁾ See p. 3 of [8]. ²⁾ An arc whose end-points are branch-points is called a branchline. ³⁾ In [2], this type of 2-knots is defined as "simply-knotted 2-sphere". ⁴⁾ \mathring{X} means the interior, and ∂X the boundary of a set X. ⁵⁾ See [5], p. 136. - (2) \tilde{B}_i spans \tilde{D}_0 and \tilde{D}_i coherently at the segments on $\partial \tilde{B}_i \cap \partial \tilde{D}_0$ and $\partial \tilde{B}_i \cap \partial \tilde{D}_i$ $(i=1, 2, \dots, n)$, - (3) ψ ; $\tilde{D}_0 \cup \tilde{D}_1 \cup \cdots \cup \tilde{D}_n \rightarrow D_0 \cup D_1 \cup \cdots \cup D_n$ ψ ; $\tilde{B}_1 \cup \cdots \cup \tilde{B}_n \rightarrow B_1 \cup \cdots \cup B_n$ are both imbeddings, - (4) D_0, D_1, \dots, D_n are on a plane, and moreover we may suppose that the visible face of each D_k is the image of the visible-face of \tilde{D}_k $(k=0, 1, 2, \dots, n)$. - (5) the intersection of B_i and $D_0 \cup D_1 \cup \cdots \cup D_n$, except two segments on ∂B_i , consists of at most the ribbon-type segments $\alpha_{i1}, \alpha_{i2}, \cdots, \alpha_{im_i}$, where we indexed these segments in the order from D_0 to D_i on B_i ($i=1, 2, \cdots, n$). The segments $\tilde{\alpha}_{i\lambda} = \psi^{-1}(\alpha_{i\lambda}) \cap \tilde{B}_i$, and $\tilde{\beta}_{i\lambda}$, β_{i0} go across the band \tilde{B}_i , and $\tilde{B}_{i\lambda}$ is the piece of \tilde{B}_i bounded by $\tilde{\beta}_{i,\lambda-1}(\lambda=1,2,\cdots,m_i)$ as in Fig. (1). Fig. (1) If B_i goes through D_k from its visible side to the opposite at α_{i1} , we perform the (—)-twist for k, otherwise the (+)-twist as in Fig. (2±), where the knot-type of k is left fixed. Now, we have a new immersion ψ' of \tilde{D} into R_0^3 such that $$\psi'| ilde{D}- ilde{B}_{i_1}=\psi| ilde{D}- ilde{B}_{i_1}$$, $\psi'(ilde{B}_{i_1})\cap D_{\scriptscriptstyle 0}=\psi'(ilde{eta}_{i_1})=eta_{i_1}$, and $\psi'(\tilde{B}_{i_1})$ is the shaded portion in Fig. $(2\pm)$, $\psi'(\tilde{D})$ is a ribbon and $\psi'(\partial \tilde{D})$ is the twisted k. Moreover, if there is α_{i2} , we perform the twist of the same type as before considering \tilde{B}_{i2} , $\tilde{\beta}_{i2}$, β_{i2} , β_{i1} , ψ' as \tilde{B}_{i1} , $\tilde{\beta}_{i1}$, β_{i1} , β_{i0} , ψ . Repeat successively these processes for $\lambda=3, 4, \dots, m_i$, $i=1, 2, \dots, n$. Second-step. In the first-step, we have finally a ribbon $\psi^*(\tilde{D}) = D_0 \cup D_1 \cup \cdots \cup D_n \cup B_1^* \cup \cdots \cup B_n^*$, where $B_i^* \cap (D_0 \cup D_1 \cup \cdots \cup D_n) = \beta_{i_1} \cup \cdots \cup \beta_{i_{m_i}} \cup \cdots \cup \alpha_{i_{m_i}}$. Remove the mutually disjoint 2-balls $Q_{i\lambda}$ and $Q'_{i\lambda}$ from $D_0 \cup D_1 \cup \cdots \cup D_n$ such that $$\mathring{D}_{k} \supset Q_{i\lambda} \supset \mathring{Q}_{i\lambda} \supset \alpha_{i\lambda}, \mathring{D}_{0} \supset Q'_{i\lambda} \supset \mathring{Q}'_{i\lambda} \supset \beta_{i\lambda} \quad (\lambda = 1, 2, \dots, m_{i}, i = 1, 2, \dots, n).$$ Combine $\partial Q_{i\lambda}$ and $\partial Q'_{i\lambda}$ with a tube $T_{i\lambda}$ coherently so that $T_{i\lambda} \cap T_{j\mu} = \phi$ $(i \neq j \text{ or } \lambda \neq \mu)$, and that $T_{i\lambda} \cap (\psi^*(\tilde{D}) - \bigcup_{i,\lambda} (\mathring{Q}_{i\lambda} \cup \mathring{Q}'_{i\lambda}) = \partial T_{i\lambda} = \partial Q_{i\lambda} \cup \partial Q'_{i\lambda}$. Finally, we have an orientable 2-surface F_0 such that $$F_0^2 = \{(D_0 \cup D_1 \cup \cdots \cup D_n) - \bigcup_{i,\lambda} (Q_{i\lambda} \cup Q'_{i\lambda})\} \cup \{B_1^* \cup \cdots \cup B_n^*\} \cup \{\bigcup_{i,\lambda} T_{i\lambda}\},$$ see Fig. (3). Third-step. To construct the 3-manifold W^3 bounded by K', we make use of the method described schematically in Fig. (4), which was already used in the proof of the theorem in [4], p. 267 \sim 269, Fig. 5. $W_+ = \bigcup_{0 \le t} F_t^2$ and $W_- = \bigcup_{t \le 0} F_t^2$ are both homeomorphic to a solid torus perhaps with a large genus, therefore W^3 gained by the natural identification on $F_0^2 = W_+ \cap R_0^3 = W_- \cap R_0^3$ is homeomorphic either to a 3-ball or to $\#(S^1 \times S^2) - \mathring{\Delta}^3$, since K' is symmetric with respect to R_0^3 . This completes the proof. ## 3. A fusion of 2-knots⁶ A collection of the mutually disjoint 2-knots $\{K_1^2, K_2^2, \dots, K_n^2\}$ is called a splitted 2-link, if there exists a collection of the mutually disjoint combinatorial 4-balls V_1, V_2, \dots, V_n such that $V_i \supset K_i$ ($i=1, 2, \dots, n$) in R^4 . Especially, a splitted 2-link is called a trivial 2-link, if each component K_i is unknotted? in R^4 ($i=1, 2, \dots, n$). DEFINITION (3.1). If there are a collection of the 3-balls B_1, B_2, \dots, B_{n-1} and a splitted 2-link $\{K_1^2, K_2^2, \dots, K_n^2\}$ such that, for each $B_i, B_i \cap K_j = \partial B_i \cap K_j$ is a 2-ball $E_{i,j}$ for just two 2-knots K_j of the 2-link $(i=1, 2, \dots, n-1, 1 \le j \le n)$, and that the 2-sphere $K=(\bigcup_j K_j - \bigcup_{i,j} E_{i,j}) \cup (\bigcup_i \partial B_i - \bigcup_{i,j} E_{i,j})$ is a 2-knot in R^4 , then the 2-knot K is called a fusion of the splitted 2-link. **Lemma (3.2).** If a 2-knot K^2 is a fusion of the splitted 2-link $\{S_1^2, S_2^2, \dots, S_n^2\}$, then $c(\{K\}) \leq \sum_{i=1}^n c(\{S_i\})$. Proof. Since the 2-link is splitted, there is an ambient isotopy ξ of R^4 under which the pair $(p, \xi(S_j))$ is a simple pair for the knot-type $\{S_j\}$ by a projection p for all $\{S_j\}$ $(j=1, 2, \cdots, n)$, and moreover $p(\xi(S_j)) \cap p(\xi(S_k)) = \phi$ $(j \neq k)$. For convenience' sake, we denote $\xi(S_j)$, $\xi(B_i)$, $\xi(E_{i,j})$ by S_j , B_i , $E_{i,j}$, again, where the 3-balls B_i $(i=1, 2, \cdots, n-1)$ belong to the collection of the 3-balls in the construction of the fusion K. Let the 2-balls $E_{i,j} = B_i \cap S_j$ and $E_{i,k} = B_i \cap S_k$ be the intersection of ∂B_i and $\bigcup_i S_j$ and let α_i be the arc in B_i spanning $E_{i,j}$ and $E_{i,k}$, where $\alpha_i \cap \partial B_i = \alpha_i \cap (E_{i,j} \cup E_{i,k}) = \partial \alpha_i$ and α_i is unknotted⁸⁾ in B_i ($i = 1, 2, \dots, n - 1$). We may ⁶⁾ The concept "fusion" is introduced in [6], p. 364 for 1-knots, but now we will consider an analogy of this concept for 2-knots. ⁷⁾ K_i bounds a combinatorial 3-ball in R^4 . ⁸⁾ A circle $\alpha_i \cup \alpha$ bounds a 2-ball in B_i^3 for an arc α on ∂B_i . 452 T. Yanagawa suppose in addition that $p(\alpha_1 \cup \alpha_2 \cup \cdots \cup \alpha_{n-1})$ contains no double points and each $p(\alpha_i)$ pierces the singular 2-spheres $p(S_j)$ at most at its non-singular points. Let U_i^3 be a sufficiently fine tubular neighborhood of α_i in B_i , where $U_i^3 \cap \partial B_i = U_1^3 \cap (E_{i,j} \cup E_{i,k})$ are two 2-balls, see Fig. (5). Fig. (5) According to the properties of the arcs α_i and the tubes U_i^3 , the 2-sphere $K' = (\overline{\bigcup_j S_j - \bigcup_{i,j} F_{i,j}}) \cup (\overline{\bigcup_i \partial U_i - \bigcup_{i,j} F_{i,j}})$ is isotopic to $\xi(K) = (\overline{\bigcup_j S_j - \bigcup_{i,j} E_{i,j}}) \cup (\overline{\bigcup_i \partial B_i - \bigcup_{i,j} E_{i,j}})$, where $F_{i,j} = U_i^3 \cap E_{i,j} = U_i^3 \cap \partial B_i$, and under the projection p, $c(K') = \sum_{j=1}^n c(S_j)$. Since the pairs (p, S_j) are simple pairs for the knot-type $\{S_i\}$ $(j=1, 2, \dots, n)$ and $K' \in \{K\}$, we have $$c(\{K\}) \le c(K') = \sum_{i=1}^{n} c(S_i) = \sum_{i=1}^{n} c(\{S_i\}).$$ Corollary (3.3). If a 2-knot K^2 is a fusion of a trivial 2-link, then $c(\{K\})=0$. **Lemma (3.4).** Let a 2-knot K^2 bound a 3-manifold W^3 in R^4 such that W^3 is homeomorphic to a 3-ball or to $\#(S^1 \times S^2) - \mathring{\Delta}^3$, and that, if W^3 is not a 3-ball, W^3 has a trivial system of 2-spheres¹⁰⁾ which will be difined as below. Then, K^2 is a fusion of a trivial 2-link in R^4 . DEFINITION (3.5). A collection of the 2-spheres S_1^2 , S_2^2 , ..., S_{2n}^2 in a 3-manifold W^3 in R^4 which is homeomorphic to $\#(S^1 \times S^2) - \mathring{\Delta}^3$, is called a trivial system of 2-spheres in W^3 if it satisfies the following (1), (2) and (3): - (1) the collection $\{S_1^2, S_2^2, \dots, S_{2n}^2\}$ is a trivial 2-link in \mathbb{R}^4 , - (2) $S_i^2 \cup S_{n+i}^2$ bounds a spherical-shell $N_i^{(1)}$ in W^3 and $N_i \cap N_j = \phi$ for $i \neq j$, $i, j = 1, 2, \dots, n$. ⁹⁾ At the non-multiple points. ¹⁰⁾ The terminology "a trivial system" is due to R.H. Fox in his paper "Ribbon and Slice" (to appear). ¹¹⁾ A combinatorially imbedded $S^2 \times [0, 1]$. (3) $W^3 - \bigcup_{i=1}^n \mathring{N}_i$ is the closure of a combinatorial 3-sphere removed of the mutually disjoint 2n+1 combinatorial 3-balls. Proof of (3.4). Let $\alpha_1, \alpha_2, \cdots, \alpha_{2n}$ be the mutually disjoint arcs in $Q = W - \bigcup_{i=1}^n \mathring{N}_i$ such that α_λ spans S_λ and S_0 ($\lambda = 1, 2, \cdots, 2n$), where S_0 is a 2-sphere in Q which bounds a combinatorial 3-ball B_0^3 in \mathring{Q} , and that for sufficiently fine tubular neighborhoods U_λ of α_λ in \mathring{Q} , $\overline{Q - U_1 \cup U_2 \cup \cdots \cup U_{2n} \cup B_0^3}$ is a combinatorial spherical-shell. Then, a boundary 2-sphere K' of $\overline{Q - U_1 \cup U_2 \cup \cdots \cup U_{2n} \cup B_0}$ belongs to the knot-type $\{K\}$. Moreover, it is clear that the 2-knot K' is a fusion of a trivial 2-link $\{S_0^2, S_1^2, \cdots, S_{2n}^2\}$ in R^4 . **Theorem (3.6).** A 2-knot K^2 bounds a 3-manifold W^3 in R^4 which is homeomorphic to a 3-ball or to $\#(S^1 \times S^2) - \mathring{\Delta}^3$ and has a trivial system of 2-spheres¹²⁾, if and only if K^2 is a ribbon 2-knot. Proof. Remembering the third-step of the construction in the proof of (2, 3), we have easily the imbeddings of the spherical-shell N_i in W^3 , see Fig. (6). Thus, we have that if K is a ribbon 2-knot, K bounds the desired 3-manifold. The converse follows from (3.4) and (3.3). ## 4. Equivalence of the definitions We introduce the following properties. R(3): A 2-knot K^2 satisfies that $c(\{K\})=0$. R(4): A 2-knot K^2 bounds a 3-ribbon in R^4 . ¹²⁾ If W^3 is a 3-ball, we consider that the system is empty. R(5): A 2-knot K^2 bounds a monotone 3-ball in H_+^5 . DEFINITION (4.1). An image of a 3-ball B^3 into R^4 by an immersion φ will be called a 3-ribbon bounded by a 2-knot K^2 , if it satisfies the following (1), (2) and (3): - (1) $\varphi \mid \partial B$ is an imbedding and $\varphi(\partial B) = K^2$, - (2) the self-intersection of $\varphi(B)$ consists of a finite number of the mutually disjoint 2-balls D_1, D_2, \dots, D_n , - (3) for each D_i , the inverse image $\varphi^{-1}(D_i)$ consists of a pair of 2-balls D'_i , D''_i , satisfying that $$D'_i \cap D''_i = \phi$$, $D'_i \subset \mathring{B}$, $\partial D''_i = D''_i \cap \partial B$ $(i=1, 2, \dots, n)$. Fig. (7) DEFINITION (4.2). A 3-ball D^3 will be called a monotone 3-ball bounded by a 2-knot K^2 in H_+^5 , if it satisfies the following (1), (2) and (3): - (1) $K^2 = \partial D = D \cap R_0^4$ - (2) D^3 is locally flat and has no minimal point in H_+^5 , - (3) in a neighborhood of each (non-maximal) critical point $p_i(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}, x_4^{(i)}, x_5^{(i)})$, D^3 is represented by the equation: $$\begin{cases} (x_1 - x_1^{(i)})^2 + (x_2 - x_2^{(i)})^2 - (x_4 - x_4^{(i)})^2 = x_5^{(i)} - x_5 \\ x_2 - x_3^{(i)} = 0 \end{cases}$$ For convenience' sake, we will say that F: A 2-knot K^2 is a fusion of a trivial 2-link. **Lemma** (4.3). R(4) is equivalent to F. Proof. $R(4) \Rightarrow F$. Let V_i^3 be 3-balls in B^3 such that $V_i \supset D_i''$, $V_i \cap V_j = \phi$ $(i \neq j)$ and that the annulus $V_i \cap \partial B$ contains $\partial D_i''$ in its interior $(i, j = 1, 2, \dots, n)$. Let $P_1^2, P_2^2, \dots, P_{n+1}^2$ be the boundary 2-spheres of $\overline{B^3 - V_1 \cup \dots \cup V_n}$, then $\{\varphi(P_1^2), \varphi(P_2^2), \dots, \varphi(P_{n+1}^2)\}$ is a trivial 2-link in R^4 , and it is clear that K^2 is a fusion of the trivial 2-link. $F \Rightarrow R(4)$. Remembering the technique in the proof of (3.2), we have a 3-ribbon $J_1^3 \cup \cdots \cup J_n^3 \cup U_1^3 \cup \cdots \cup U_{n-1}^3$ bounded by K^2 in R^4 , where J_1^3, \cdots, J_n^3 are disjoint 3-balls bounded by the 2-knots S_1, \cdots, S_n respectively and 3-balls U_1^3, \dots, U_{n-1}^3 are so fine that $U_1^3 \cap J_j^3$ are small 2-balls in J_j^3 $(1 \le i \le n-1, 1 \le j \le n)$. Lemma (4.4). R(5) is equivalent to F. Proof. $R(5) \Rightarrow F$. Let D^s be a monotone 3-ball bounded by K^2 in H_+^5 . We may suppose that the coordinates of all (non-maximal) critical points of D^s satisfy that $x_5^{(i)}=1$ $(i=1, 2, \dots, n-1)$. Then, by the property (3) in (4.2), it is not so difficult to prove the followings: for a sufficiently small positive number ε , - (1) $D^3 \cap R_{1+\epsilon}^4$ is a trivial 2-link $\{S_1^2, S_2^2, \dots, S_n^2\}$ in $R_{1+\epsilon}^4$, - (2) the equations $$\begin{cases} (x_1 - x_1^{(i)})^2 + (x_2 - x_2^{(i)})^2 - (x_4 - x_4^{(i)})^2 \le \varepsilon \\ x_3 - x_3^{(i)} = 0, & x_5 = 1 - \varepsilon \\ |x_4 - x_4^{(i)}| \le \sqrt{\varepsilon} & (i = 1, 2, \dots, n - 1) \end{cases}$$ give the disjoint 3-balls B_i^3 in $R_{1-\epsilon}^4$, - (3) $D^3 \cap R^4_{1-\epsilon}$ is a fusion of a trivial 2-link $\{S'_1, S'_2, \dots, S'_n\}$ by the 3-balls B^3_1, \dots, B^3_{n-1} , where trivial 2-knots S'_i are the image of S^2_i by the orthogonal projection of R^5 onto $R^4_{1-\epsilon}$. - (4) $D^3 \cap R_{1-s}^4$ and K^2 belong to the same knot-type. $F\Rightarrow R(5)$. By the result (4.3), if K^2 satisfies F, K^2 satisfies R(4); that is, K^2 bounds a 3-ribbon $\varphi(B)$. Let V^3_i be 3-balls such that $\mathring{B}\supset V^3_i\supset \mathring{V}^3_i\supset D'_i$ and $V^3_i\cap V^3_j=\varphi$ $(i\pm j,\,i=1,\,2,\,\cdots,\,n)$. Since φ imbeds $\overline{B^3-V^3_1\cup\cdots\cup V^3_n}$ into R^4_0 and $\{\varphi(\partial V^3_1),\,\cdots,\,\varphi(\partial V^3_n)\}$ is a trivial 2-link in R^4_0 , we can suspend these 2-spheres $\varphi(\partial V^3_1),\,\cdots,\,\varphi(\partial V^3_n)$ from n points of R^4_1 . With a little modification, we have a monotone 3-ball D^3 bounded by K^2 in H^5_+ . Remembering (3.3) and (3.4), we have that $\mathbf{R}(3) \Leftrightarrow \mathbf{F}$, and with (4.3) and (4.4), finally we have the following **Theorem** (4.5). R(3), R(4) and R(5) are equivalent to F. We refer to the following results. All 2-knots are "slice-knot", see [7]. There is a 2-knot which is not "simply-knotted 2-knot", see [2]. Then, we can assert that the concept "ribbon knot" is different from the concept "slice knot" for 2-knots, while we have not yet succeeded to distinguish one from another for 1-knots. ## 5. An equivalence relation Let K^2 be a ribbon 2-knot which is knotted in R^4 . Then, by (3.6) and (3.4), K^2 is a fusion of a trivial 2-link $\{S_0^2, S_1^2, \dots, S_{2n}^2\}$ in R^4 . In the following, we will use the same notations as in the proof of (3.4). We may suppose that P_1 : A 2-sphere S_0^2 and the spherical-shells N_1 , N_2 , ..., N_n are splitted in R^4 , where $\partial N_i = S_i^2 \cup S_{n+i}^2$ (i=1, 2, ..., n). P_2 : $S_{\lambda}^2 \cap H^4[-1, 1] = (S_{\lambda}^2 \cap R_0^3) \times [-1, 1] \ (\lambda = 0, 1, \dots, 2n)$. P_3 : $N_1 \cap R_0^3$, ..., $N_n \cap R_0^3$ are annuli on a plane in R_0^3 . The 3-balls B_1^3 , ..., B_{2n}^3 and the arcs α_1 , ..., α_{2n} which cause the fusion have the following properties P_4 , P_5 and P_6 : - P_4 : Since the 2-link $\{S_0^2, S_1^2, \dots, S_{2n}^2\}$ is trivial, the arcs $\alpha_1, \dots, \alpha_{2n}$ are moved into R_0^3 by an ambient isotopy of R^4 . Since $\mathring{\alpha}_{\lambda}$ is contained in B_{λ}^3 ($\lambda = 1, 2, \dots, 2n$), if we suppose that a finite subcomplex B_{λ}^3 of R^4 is in a general position with respect to the hyperplane R_0^3 , there is a sufficiently narrow band b_{λ}^2 containing α_{λ} in $B_{\lambda}^3 \cap R_0^3$ which spans a circle $c_0 = S_0^2 \cap R_0^3$ and a circle $c_{\lambda} = S_{\lambda}^2 \cap R_0^3$ ($\lambda = 1, 2, \dots, 2n$). - **P**₅: For a sufficiently small positive number ε , $B_{\lambda}^3 \cap H^4[-\varepsilon, \varepsilon]$ contains a 3-ball U_{λ}^3 which is level-preserving-isotopic to $b_{\lambda}^2 \times [-\varepsilon, \varepsilon]$ leaving the 2-balls $U_{\lambda}^3 \cap S_0^2$ and $U_{\lambda}^3 \cap S_{\lambda}^2$ fixed $(\lambda=1, 2, \dots, 2n)$. - **P**₆: In fusing $\{S_0^2, S_1^2, \dots, S_{2n}^2\}$ to get a 2-knot K^2 , we make use of the 3-balls U_1^3, \dots, U_{2n}^3 instead of the 3-balls B_1^3, \dots, B_{2n}^3 , and we will denote the new 2-knot belonging to $\{K^2\}$ by \tilde{K}^2 . We want to simplify the cross-sections of the 2-knot \tilde{K}^2 as follows. Let θ be an orthogonal projection of R_0^3 onto a plane R^2 , and if $\theta(b_{\lambda}^2) \cap \theta(b_{\mu}^2)$ $\pm \phi$ $(1 \le \lambda, \mu \le 2n)$, we may suppose that U_{λ}^3 and U_{μ}^3 are in the position as shown in (8_1) in Fig. (8). Move U_{λ}^3 and U_{μ}^3 isotopically in R^4 so as to be in the position in (8_2) . In the next step, lift up the tube in the level R_{ϵ}^3 as shown in (8_3) . Replace these in a general position again, and we have the situation in (8_4) . Thus, we have the following lemma. Fig. (8) **Lemma** (5.1). We can exchange the over-and-under passing relation with respect to x_3 -coordinate between b_{λ}^2 and b_{μ}^2 $(1 \le \lambda, \mu \le 2n)$ preserving the 2-knot type of \tilde{K}^2 . We will consider how to eliminate the twists of the band b_{λ}^2 in the following three steps. (1) If b_{λ}^2 contains an even number of twists, we perform a modification as follows: This modification is an isotopy only in the subspace R_0^3 in R^4 , but in each level R_t^3 ($-\varepsilon \le t \le \varepsilon$), the similar modification can be performed for $U_{\lambda}^3 \cap R_t^3$, therefore we can understand this modification as an isotopy of R^4 . (2) If b_{λ}^2 contains only one twist, we consider an orientable 2-surface $F = \{(B_0^3 \cup N_1 \cup \cdots \cup N_n) \cap R_0^3\} \cup b_1^2 \cup \cdots \cup b_{2n}^2$. Since the fusion in the present step depends on the 3-manifold W^3 , and since $F \cup (\tilde{K}^2 \cap H_+^4)$ bounds an orientable 3-manifold $(B_0^3 \cup N_1 \cup \cdots \cup N_n \cup U_1^3 \cup \cdots \cup U_{2n}^3) \cap H_+^4$ (a solid torus with a large genus), the surface F should be orientable, see Satz I, §64 in [9]. Therefore, there must be another twist on a band b_{μ}^2 ($\mu \sim \lambda = n$). Hence, we consider the following replacement of F in R_0^3 , see Fig. (10). After this replacement, the twist on b_{μ}^2 is transferred on b_{λ}^2 . This move can be easily extended to a modification of W^3 in R^4 , and the band b_{ν}^2 (, more precisely the tube U_{ν}^3) is left fixed through the modification, even if b_{ν}^2 links with $N_{\lambda} \cap R_0^3$ (or $N_{\mu} \cap R_0^3$) in R_0^3 as shown in Fig. (10). (3) After the modifications in (1) and (2), each band b_{λ}^2 contains a finite number of cirri as in (9_2) . If we exchange the over-and-under passings of b_{λ}^2 itself by (5.1), we may suppose that the band b_{λ}^2 contains just one cirrus. Here, as in the proof of (5.1), we can pull down U_{λ}^3 onto $R_{-\epsilon}^3$ isotopically in R^4 as shown in (11₁) and (11₂) in Fig. (11). In $R_{-\epsilon}^3$, we stretch this solid cylinder and pull up again so that each cross-section contains no cirrus as shown in (11₃) and (11₄). Hence, we have **Lemma** (5.2). We can cancel the twists and the cirri of b_{λ}^{2} $(1 \le \lambda \le 2n)$ preserving the 2-knot type of \tilde{K}^{2} . **Theorem** (5.3). Let K^2 be a ribbon-2-knot, then there is a 3-manifold W^3 and \tilde{K}^2 in \mathbb{R}^4 , which belongs to $\{K^2\}$, satisfying the following (1), (2), (3) and (4): - (1) $\partial W^3 = \tilde{K}^2$, and W^3 is symmetric with respect to R_0^3 - (2) $W^3 \approx B^3$ or $W^3 \approx \#(S^1 \times S^2) \mathring{\Delta}^3$, and moreover, if $W^3 \approx B^3$, - (3) W^3 has a trivial system of 2-spheres, - (4) $W^3 \cap R_0^3$ is an orientable surface F, which has a basis $\{\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n\}$ of $H_1(F)$ such that both $\alpha_1 \cup \dots \cup \alpha_n \cup \alpha_1' \cup \dots \cup \alpha_n'$ and $\beta_1 \cup \dots \cup \beta_n \cup \beta_1' \cup \dots \cup \beta_n'$ are trivial links in R_0^3 , where both $\alpha_i \cup \alpha_i'$ and $\beta_i \cup \beta_i'$ bound annuli on $F(i=1, 2, \dots, n)$. **Corollary** (5.4). Let K^2 be a ribbon 2-knot, there is a ribbon 2-knot \tilde{K}^2 belonging to $\{K^2\}$ satisfying the following (1) and (2) (1) \tilde{K}^2 is symmetric with respect to R_0^3 , ^{13) ≈} means to be homemorphic to. (2) there is a locally flat 2-ball \tilde{D}^2 in H^4_- such that a 2-knot $(\tilde{K}^2 \cap H^4_+) \cup \tilde{D}^2$ is an unknotted 2-knot in R^4 . Proof of (5.3). If K^2 is unknotted in R^4 , the theorem is trivial. Hence we will consider the case that K^2 is knotted in R^4 . Let \tilde{K}^2 be a 2-knot satisfying P_1, \dots, P_6 described in the beginning of this section. Let W^3 be a 3-manifold $B_0^3 \cup N_1 \cup \dots \cup N_n \cup U_1^3 \cup \dots \cup U_{2n}^3$. Then, $W^3 \cap R_0^3 = \{(B_0^3 \cup N_1 \cup \dots \cup N_n) \cap R_0^3\} \cup b_1^2 \cup \dots \cup b_{2n}^2$. Let $\alpha_1, \alpha_i', \beta_i$ and β_i' ($i=1, 2, \dots, n$) be the simple closed curves on F described in Fig. (12), then by (5.1) and (5.2) they satisfy the conditions (4) in (5.3). Proof of (5.4). If K^2 is unknotted in R^4 , it is obvious. If K^2 is knotted in R^4 , we consider the 3-manifold W^3 and \tilde{K}^2 in R^4 in (5.3). Then, the construction of the 2-ball \tilde{D}^2 is described in Fig. (13). Moreover if we apply the method in the proof of Theorem in [4], see Fig. 5, p. 269 in [4], it is not so difficult to construct a 3-ball bounded by $(\tilde{K}^2 \cap H^4_+) \cup \tilde{D}^2$ in R^4 . Now, we will define an equivalence relation between 2-knots. DEFINITION (5.5). Two 2-knots K_0^2 and K_1^2 will be called cobordant and denoted by $K_0^2 \sim K_1^2$, if and only if there exists a 3-manifold M^3 satisfying the following (1), (2), (3) and (4): (1) M^3 is homeomorphic to $S^2 \times [0, 1]$, - (2) M^3 is locally flat in $H^5[0, 1],^{14}$ - (3) $\partial M^3 = K_0^2 \cup (-K_1^2)$, and $K_i^2 = M^3 \cap R_i^4$ (i=0, 1), 15) - (4) $M^3 \cap R_t^4$ is connected for each $t \ (0 \le t \le 1)$. Clearly we have **Theorem** (5.6). The cobordant relation "~" is an equivalence relation. **Lemma** (5.7). If a 2-knot K^2 is a ribbon 2-knot, then $K^2 \sim 0^2$, where 0^2 is a trivial 2-knot in R^4 . Proof. Let X^3 be a compact, orientable 3-manifold in R^5 . The ordinary cross-section of X^3 by a hyperplane R_t^4 is a compact, orientable 2-manifold. If X^3 is represented by the next equation (*) in a neighborhood of a point $p(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4, \alpha)$: (*) $$\begin{cases} (x_1 - \bar{x}_1)^2 - (x_2 - \bar{x}_2)^2 + (x_4 - \bar{x}_4)^2 = x_5 - \alpha \\ x_3 - \bar{x}_3 = 0 \end{cases},$$ the transformation from the ordinary cross-section $X^3 \cap R^4_{\alpha-\epsilon}$ onto the ordinary cross-section $X^3 \cap R^4_{\alpha-\epsilon}$ (for a small number $\varepsilon > 0$) is a hyperbolic transformation in R^5 . In the following, we want to construct a 3-manifold M^3 which satisfies not only the conditions (1), (2), (3) and (4) in (5.5) but $M^3 \cap R_0^4 = K^2$, $M^3 \cap R_1^4 = 0^2$. If K^2 is unknotted in R_0^4 , the existence of the 3-manifold is clear, therefore we will suppose that K^2 is knotted in R_0^4 . The 3-manifold will be obtained by the following six steps. - (1) Consider a 2-knot \tilde{K}^2 belonging to $\{K^2\}$ and bounding the 3-manifold W^3 in (5.3), see (14₁) in Fig. (14). - (2) Between R_0^4 and $R_{1/2}^4$, we perform the hyperbolic transformations as shown schematically in (14_1) , (14_2) and (14_3) . In (14_2) , we show the exceptional cross-section of M^3 by $R_{1/4}^4$ and the cross-section by R_0^3 in $R_{1/4}^4$ is similar to that by $R_{-\epsilon}^3$ in Fig. (13). The cross-section by R_0^3 in $R_{1/2}^4$ is similar to that by $R_{-\epsilon}^3$ in Fig. (13), and the cross-section by R_0^3 in $R_{1/2}^4$ is similar to that by $R_{-\epsilon}^3$ in Fig. (13). This transformation satisfies the equation (*) in a sufficiently small neighborhood in R_0^4 of each saddle point at R_0^3 in $R_{1/4}^4$. 14) $$R_{t}^{4} = \{(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) | x_{5} = t\}$$ $$H_{+}^{5} = \{(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) | x_{5} \ge 0\}$$ $$H_{5}^{6}(J) = \{(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) | x_{5} \in J\}$$ The 3-manifold M^3 is locally flat in $H^5[0, 1]$ if the pair $(Lk(p, M^3), Lk(p, H^5[0, 1])$ is a trivial sphere pair for $p \in M^3$ and a trivial ball pair for $p \in \partial M^3$. ¹⁵⁾ Identify 2-knot (K_i^2, R^4) with a 2-knot (K_i^2, R_i^4) . $(-K^2)$ is the reversely-oriented 2-knot for K^2 . - (3) As shown in the proof of (5.3), the cross-section of the 2-surface by R_0^3 in $R_{1/2}^4$ is a trivial 1-link, say $\gamma_0 \cup \gamma_1 \cup \cdots \cup \gamma_n$ with n+1 components. - (4) Between $R_{1/2}^4$ and $R_{3/4}^4$, we will contract n circles $\gamma_1, \dots, \gamma_n$ to points continuously as shown in (14_3) and (14_4) so that in a small neighborhood in R^5 of each pinching point at R_0^3 in $R_{3/4}^4$, the transformation is given by the equation (**): (**) $$\begin{cases} (x_1 - \bar{x}_1)^2 + (x_2 - \bar{x}_2)^2 - (x_4 - \bar{x}_4)^2 = \bar{x}_5 - x_5 \\ x_3 - \bar{x}_3 = 0 \\ \bar{x}_5 = 3/4 \end{cases}$$ - (5) We have finally constructed a 2-knot \hat{K}^2 in R_1^4 which satisfies the following three properties: - (5₁) \hat{K}^2 is symmetric with respect to R_0^3 in R_1^4 , - (5₂) $\hat{K}^2 \cap R_0^3$ is a trivial 1-knot γ_0 in R_0^3 in R_1^4 , - (5₃) If we remind the proof of (5.4), a 2-knot K_1^2 is unknotted in H_+^4 , where K_1^2 is a union of a 2-ball $\hat{K}^2 \cap H_+^4$ and a 2-ball D^2 which is bounded by γ_0 in R_0^3 . - (6) Then, $\hat{K}^2 = K_1^2 * (-K_1^2)^{16}$ is a trivial 2-knot in R_1^4 . By the same method as in the proof of theorem in [4], we can construct the desirable 3-manifold M^3 in $H^5[0, 1]$ which is bounded by \tilde{K}^2 and the trivial 2-knot \hat{K}^2 . This completes the proof of (5.7). **Lemma** (5.8). For an arbitrary 2-knot K^2 , $K^2*(-K^2)$ is cobordant to a ribbon 2-knot. Proof. A 2-knot K^2 in R_0^4 can be placed in a position as follows: ^{(16) *} means the knot-product; that is, $K^2 = K_1^n * K_2^n$ if there exists a hyperplane P^3 in R^4 such that $k = K^2 \cap P^3$ is a 1-knot bounding a 2-ball D^2 in P^3 and that a 2-knot $D^2 \cup (P_+^4 \cap K^2)$ belongs to $\{K_1^2\}$ and a 2-knot $D^2 \cup (P_+^4 \cap K^2)$ to $\{K_2^2\}$, where P_{\pm}^4 are half 4-spaces bounded by P^3 in R^4 . Cf. the argument in §1 in [10]. - (1) $K^2 \cap R_{3g}^3$ is a knot k in R_{3g}^3 , - (2) $K^2 \cap H^4[3\varepsilon, \infty)$ has no minimal point, - (3) $K^2 \cap H^4[\mathcal{E}, 3\mathcal{E}]$ has no maximal point, - (4) all minimal points are at the level R_{ε}^3 . Place a 2-knot $(-K^2)$ in the symmetric position to K^2 with respect to R_0^3 , and product them as shown in (15_1) in Fig. (15). Then, the process from (15_1) to (15_5) follows almost the opposite course of the process from (14_1) to (14_5) in the proof of (5.7). The cross-section by R_0^3 in $R_{3/4}^4$ is the same as that by $R_{2\epsilon}^3$ in R_0^4 . In the final stage (15_5) , we have a 2-knot K_1^2 in R_1^4 which satisfies the followings: - (1) K_1^2 is symmetric with respect to R_0^3 in R_1^4 , - (2) $K_1^2 \cap H_+^4$ contains no minimal point. Then, the 2-knot K_1^2 is a ribbon 2-knot, see [2], [3]. Fig. 15 Concerning the knot-product "*", we have $$K_1^2 * K_2^2 = K_2^2 * K_1^2$$, and $K_1^2 * (K_2^2 * K_3^2) = (K_1^2 * K_2^2) * K_3^2$, see Theorem 1 in [10]. **Lemma** (5.9). If $K_0^2 \sim K_1^2$ and $L_0^2 \sim L_1^2$ for 2-knots K_0^2 , K_1^2 , L_0^2 and L_1^2 , then $K_0^2 * L_0^2 \sim K_1^2 * L_1^2$. Proof. There exist 3-manifolds M_1^3 and M_2^3 which satisfy the following (1), (2), (3) and (4): - (1) M_i^3 is homeomorphic to $S^2 \times [0, 1]$ (i=0, 1), - (2) M_i^3 is locally flat in $H^5[0, 1]$, - (3) $\partial M_1^3 = K_0^2 \cup (-K_1^2), \ \partial M_2^3 = L_0^2 \cup (-L_1^2),$ $$K_{i}^{2}=M_{1}^{3}\cap R_{i}^{4}$$ and $L_{i}^{2}=M_{2}^{3}\cap R_{i}^{4}$ $(j=0, 1)$, (4) M_1^3 and M_2^3 are splitted by an hyperplane Y^4 in R^5 which is orthogonal to the hyperplane R_t^4 ($0 \le t \le 1$). Then, it is not difficult to see that $K_0^2 * L_0^2 \sim \hat{K}_1^2$, where \hat{K}_1^3 is a fusion of the 2-knots K_1^2 and L_1^2 in R_1^4 by a sufficiently fine tube U^3 for which $U^3 \cap (Y^4 \cap R_1^4)$ is a 2-ball D^2 . Since K_1^2 and L_1^2 are splitted by a hyperplane $Y^4 \cap R_1^4$ in R_1^4 , the fusion in the present step is surely the product; that is, $\hat{K}_1^2 = K_1^2 * L_1^2$. This completes the proof. As the consequence of (5.9), the set $\mathfrak{G}=(\text{all }2-\text{knots})/\sim$ has an abelian semi-group structure, where the group operation is inherited from the knot-product operation * of 2-knots. Since we can find the inverse element for each element of the semigroup $\mathfrak G$ by (5.8), we have the final theorem in this paper: ## Theorem (5.10). S is an abelian group. In comerison with the result by M. A. Kervaire in [7], we must have a question: Does there exist a 2-knot non-cobordant to 0^2 in the present sense? Nevertheless, it is true that if a 2-knot K^2 is cobordant to 0^2 , then there exists a locally flat 3-ball B^3 in H_5^4 satisfying the following (1) and (2): - (1) $B^3 \cap R_0^4 = \partial B^3 = K^2$, - (2) B^3 has only one maximal point but no minimal point. Therefore, if we conjecture that "the method of the calculation of $\pi_1(R^4-K^2)$ in p. 133~139 in [5] is available for the calculation of $\pi_1(H_+^5-B^3)$ ", then we will be able to conclude the following: (5.11). $$\pi_1(H_+^5 - B^3) = \mathbf{Z}.$$ KOBE UNIVERSITY #### References - [1] H. Gluck: The embedding two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333. - [2] T. Yajima: On simply-knotted spheres in R4, Osaka J. Math. 1 (1964), 133-152. - [3] F. Hosokawa and T. Yanagawa: Correction to "Is every slice knot a ribbon knot?" (to appear). - [4] H. Terasaka and F. Hosokawa: On the unknotted sphere S^2 in E^4 , Osaka Math. J. 13 (1961), 265–270. - [5] R.H. Fox: A quick trip through knot theory, Topology of 3-manifolds and Related Topics, edited by M.K. Fort Jr. Prentice Hall, 1963. - [6] F. Hosokawa: A concept of cobordism between links, Ann. of Math. 86 (1965), 362–373. - [7] M.A. Kervaire: Les noeds de dimension superioures, Bull. Soc. Math. France 93 (1965), 225-271. - [8] C.D. Papakyriakopoulos: On Dehn's Lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26. - [9] H. Seifert und W. Threlfall: Lehrbuch der Topologie, Springer Verlag, 1935. - [10] H. Noguchi: Obstructions to locally flat embeddings of combinatorial manifolds, Topology 5 (1966), 203-213.