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For a commutative ring L wich is a Galois extension of a ring & with Galois
group G, Chase, Harrison, and Rosenberg, in [5] and [6] gave a seven terms exact
sequence about cohomology groups of G and Brauer group B(L/k) of Azumaya
k-algebras split by L, by using the generalized Amiztur cohomology and spectral
sequence. In this paper, we give a generalization of the concept of crossed pro-
duct, and for a commutative Galois extension L of a ring k with Galois group G,
we study the generalized crossed product of the commutative ring L and the
group G, and concerning the gorup of isomorphism classes of finitely generated
projective rank 1 L-modules. Finally, as an application to Brauer group, using
the generalized crossed product, we shall derive immediatly the ‘“‘seven terms
exact sequence theorem”.

In§1, we define the generalized crossed product A(f, A, @, G) of a k-algebra
A and a group G with factor set f related to @, where @ is a group homomor-
phism of G to the group of isomorphism classes of invertible A-A-bimodule
(see [4], p. 76), and f={f, .; o, TG} is a family of isomorphisms of modules
satisfying some commutative diagrams. In §2, we suppose that L is a com-
mutative Galois extension of a ring k with fimite Galois group G. Then we shall
show that A(f, L, ®, G) is an Azumaya k-algebra with a maximal commutative
subring L, and conversely, every Azumaya k-algebra with maximal commutative
subring L can be written by A(f, L, ®, G) for some ® and f. In §3. using the
results of §2, we derive the seven termes exact sequence:

(1) > HYG, L*) — P(k) — P(L)° — H¥G, L*) — B(L|k) — H'(G, P(L))
— H¥G, L*).

We suppose every ring has identity element and module is unital.

1. Generalized crossed product. Let k£ be a commutative ring with
identity, A a k-algebra with identity. A A-A-bimodule P is called invertible if P
is a finitely generated projective and generator (i.e. completely faithful by means
of [3]) left A-module and Hom,(,P, ,P)=~A°, where for ack and x€P,
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ax=xa. Let Pic,(A) be the group of isomorphism classes [P] of invertible
A-A-bimodules P with law of composition induced by tensor product over
A: [P]-[Q]=[P®A0], then [P]"'=[P*] where P*=Hom,(P, A). We define
the generalized crossed Product A(f, A, ®, G) of a k-algebra A and a group G
with factor set f={f, .: o, TG} as follows: For given group G and k-algebra
A, let @: G — Picy(A) be a group homomorphism. Put ®&(c)=[],] for cE€G.
If f={f,.; o, TG} which is a family of A-A-isomorphisms f,.: J,Q,J,—
Jon o, TEG satisfies the following commutative diagrams:

NN N
(2T P

]a"r@AJ'y I ]a"r'Y

for every o, 7, vyEG, then we call f to be factor set related to ®. Put
A(f, A, @, G)=>1PJ, as A-A-bimodule. When the multiplication of ele-
TEG

ments in A(f, A, ®, G) is defined by x- y=f, .(x®y) for x& J,, y< J., we call
A(f, A, @, G) a generalized crossed product of A and G with factor set f related
to @.

Proposition 1. Let G be a group and A a k-algebra. For a homomorphism
®: G— Picy(A) and a factor set f={f,,; o, TG} related to D, generalized
crossed product A(f, A, ®, G) is an associative k-algebra with identity element,
and A(f, A, @, G) contains a subring isomorphic to A, i.e. if D(c)=[],] for c =G,
Ji=A as k-algebra and A-A-bimodule.

Proof. Let ®(o)=[],], c€G. Since f,,: J,Q4J,— ], is A-A-isomor-
phism, J, is a subring of A(f, A, ®, G). Since ®(1)=[A]=[]], Ji=A as
A-A-bimodules. There exists # in J, such that J;=Au=uA and Mu=ux for
all x€A. Since f,,(/,;®J,)=],, we can write f, ,(#Qu)=cu for some c in A,
then ¢ is a unit in the center of A. If we put e=c™"u, then f, ;,(eRe)=e¢, so
the map A—J;: A —e is a ring isomorphism. Furthermore, e is identity of
A(f, A, @, G). Because, for any x< J,, o € G, there is y in J, such that
3=, (@), and f, (@)=, (eDf, (eRY)—1. f. eDE)RY)—F; feD Y)=.
Similarly, we have f, ,(x®@e)=x for every xE J,, c G. Therefore, e is identity
element of A(f, A, @, G).

Now, in the following, we may regard A=], in A(f, A, @, G).

RemARk 1. Let A be a k-algebra and G a group. Let ®@: G — Pic,(A) be
a homomorphism, and let the image of @ consists of [P] in Pic,(A) such that
P is left A-free module. Then for any factor set f related to ®, A(f, A, @, G)
coincides with an ordinary crossed product A(p, A, G) with a factor set p
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contained in Z* G, A*), where A* is the multiplicative group of unit in A.

REMARK 2. In Remark 1, in particular, let ®(G)=(1), so A(f, A, ®, G)
is an ordinary group ring of A and G with a factor set in 2%G, C*), where C*
is the group of units in the center of A.

ReMARK 3. Let AD#k be a central Galois extension with finite Galois
group G (cf. [9]). Then there exists a homomorphism ®: G — Pic,(k) and a
factor set f related to @ such that A(f, &, ®, G)~A as k-algebras (see [9]).

2. Generalized crossed product for a Galois extension

Let L be a commutative k-algebra with identity, Aut,(L) the group of all
k-algebra automorphisms of L. Then we have the homomorphism ¥ : Pic,(L)
— Aut, (L) defined by W([P])=cp for [P]€Pic, (L), where op is defined by
op(a)x=xa for all ac L, x& P (cf. [4], p. 80). We put Pic, (L)=P(L). Then
for [P]=P(L), P is regarded as new L-L-bimodule by new operation * defined
by axx=0"'(a)x=x0""(a) and xxa=xa (or axx=ax, xxa=xoc"'(a)=c '(a)x) for
allac L and x€P. We denote it by ,P; (or ,P,). If [PleP(L)and o € Aut,(L),
then [, P,] is in Picy(L) and ¥([,P;])=c. Since the map ®,:Aut,(L)— Pic,(L)
defined by ®y(oc)=[,L,] is a homorphism and satisfies Wo®=1,,,,,, We have
the following right split exact sequence;

(1) > P(L) — Picy(L) — Auty (L) — (1),  (cf. [4], p. 80).

Now, we assume that LDk is a Galois extension with finite Galois group G.
Then G C Aut,(L). Since P(L) is an abelian and normal subgroup of Pic,(L),
for each o €G, o defines the automorphism of P(L) by [Pl°=[,L,]:[P]-[-L:]™".
If we put P°=_L;Q ;PR .-.L;, [P°]=[P]° in P(L) for c=G. Let® be the
set of all homomorphisms ®: G — Pic,(L) such that Yo®d=1I;. Since ®,=O,
each @ in & determines a function @ of G into P(L) such that ®(c)=¢(c):D(c)
for all c€G.  Using @ and ®, to be group homomorphisms, we can easily check
that @(a7)=¢(c)-@(7)° for every o, T€G. This means that @ is contained in
1—cocycle group Z'(G, P(L)). Conversely, for any ¢ in Z(G, P(L)), putting
D =pd,, ie. DP(c)=@(c) Do) for all o € G, we see that ® is a group
homomorphism of G into Picy(L) and @ is in &. Therefore, between & and
ZY(G, P(L)) there exists the one to one correspondence ® = @pd,<— . For
D=pd, and ®'=¢ P, in &, we denote (p-p')D, by ®-D’'. Then under this
multiplication in &, & is isomorphic to Z(G, P(L)).

ReMARK 4. For any factor set f related to @, by Remark 1 A(f, L, ®,, G)
is an ordinary crossed product A(p, L, G) with a factor set p in Z%G, L*), i.e.
®,(0)=[,L;] and it has some L-free base {u,; 0 =G} such that ,L;=Lu,, o(x)u,
=u,x for all x& L and u,u,=p(o, 7)u,,.
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Proposition 2. Let LDk be a Galois extension with Galois group G. For
any ® =S such that there is a fator set f rerated to @, A(f, L, @, G) is an Azumaya
k-algebra (i.e. central separable), with maximal commutative subalgebra L.

Proof. We put A=A(f, L, ®, G)= Z;,;@]d, where [ [, ]=®(c), c€G. At

first, we shall show that L= ], is a maximal commutative subring of A(f, L, ®, G).
The commutor ring V,(L) of L in A contains L. On the other hand, if z is in

V(L), then 2z can be written as 2= >" 2, for some 2, in J, and so >\ az,—az
ceqd ced

=za= D) z,a= Zga-(a)z,,, for all ac L. Therefore, we have az,=a(a)z, for
ceq e

everyacsLand o =G. But,since LDk is Galois extension, there exist a,,a,,*,a,

and b,,b,,+,b, in L such that i a;o(b;)= {(1): :z?
i=1 ,

21 a0 (b;)3,=0 for 41 'Therefore, we have 2& J;=L and V,(L)=L. In

Accordingly, 2,=>)a;b;z,=

other words, L is a maximal commutative subalgebra of A(f, L, ®@, G).
Secondly, we shall show that % is the center of A(f, L, ®, G). Since V,(A)C
Vi(L)=L, for any a€V,(A), we have ax=o(a)x for every x& J_ and every
o€ G. Since J, is faithful L-module, a=o(a) for every o € G, therefore
acL®=k. Accordingly, k is the center of A. Finally, we shall show that
A(f, L, @, G) is separable over k. Since A is a finitely generated projective
k-module, by [7], Proposition 1.1 A is separable over % if and only if AQ,ky is
separable over ky for all maximal ideal m of k. Therefore, we may work with
A(fas Ly Pm, G)=AQrky, i.e. we may assume that k is local, so L is
semi-local. 'Then every finitely generated rank 1 projective L-module is free, so
® coincides with ®@,. 'Therefore, A(f, L, ®,, G) is an ordinary crossed product,
hence by [1], Theorem A. 12, A(f, L, ®, G) is separable over k. This com-
pletes the proof.

Proposition 3. Let LDk be a Galois extension with Calots group G, and let
A be an Azumaya k-algebra containing L as a maximal commutative subalgebra.
Then A is L-isomorphic to a generalized crossed product of L and G with some ® =
and some factor set f related to ®, as k-algebra.

Proof. For each =G, we put J,= -1 AF={a=A; o(x)a=ax, for all xL},
then, regarding A and ,-,A; as L®,A-left module, J,~Hom;g, (A, ,-1A)).
Since A is a faithful L®,A’-left module and L&, A’ is a separable k-algebra,
it follows from [8], Theorem 1 that A is finitely generated projestive generator
as an L®;A’-left module, and Hom,g, yo(A, A)=L. Accordingly, we have
JeQrA~Hom g, yo(A, ,-1A1) QL A~ ,-1A; as left L- and right A-modules.
Therefore, we obtain [ J,]€P,.,(L) and J,A=A. Using the inclusion map J.—A,
we define the L-L-homomorphism 0:@}@](, —A; 0(€§;x0)=2 %, in A, for

%,E J,. In order to show that 6 is an isomorphism it suffices to show that for
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every maximal ideal m of &, the localized map 6,: 3 PB(/J,)m — Ay is isomor-
phism. Therefore, we may suppose that % is a local ring, so L is a semi-local
ring. Then J, is a free L-module of rank 1; there is #, in J_, such that
Jo=u,L=Lu,. Since A=u,A, and u A is A-free, u,is a unit in A, and o is
extended to an inner automorphism induced by #,. Therefore, we obtain from
[1], Theorem A. 13 that A is isomorphic to an ordinary crossed product
A(p, A, G):;;_,:}@Aua. Consequently, € is an isomorphism. Since J,*J.C J,.

and for every maximal ideal m of & (J,/J.)m=(Js)m(J-)m=(Js:)m, We obtain
TRt~ e J:=Js:- If we define &: G— Picy(L) by ®(o)=[],] for each
oG, and f, .1 J,QrJ.—> ] by f, (xQ y)=xy for each o, TG, then P is in
® and f={f,.; o, TEG} is a factor set related to @, and we obtain that A and
A(f, L, @, G) are k-algebra isomorphic and L-isomorphic.

Proposition 4. Let LDk be a Galois extension with Galois group G, and let
D be an element in S. If f={f,.; o, TG} and g={g,.; o, TG} are factor
sets related to ®, then there is a cocycle p in Z G, L*) such that g=pf, i.e.
2o 2@Y)=p(o, p)fo(xRYy) for xQyE J, QL ] o, TEG, where L* is a
multiplicative group of units in L, and ®(c)=[],] for o =G. Furthermore,
A(f, L, @, G) is L-isomorphic to A(pf, L, ®, G) as k-algebra if and only if p is
in B(G, L*).

Proof. Let ®(c)=[],], s€G. Since f,, and g, . are isomorphisms of
J:QrJ: to J,, for o, 7EG, g, ,of L is an automorphism of J,., so there exists
a unit p(s, 7) in Hom,( /-, Jor)=L such that go‘,‘r(x®y) =p(o, T)'fa'.'f(x®y)
for every xQye J,&.J,. Since f and g are factor set related to @, we can
check easily that p is in Z*G, L*). We write g=pf. If h: A(f, L, ®, G)—>
Alpf, L, @, G) is a L-isomorphism as k-algebra, then i(J,)=], for each o €G.
Because for any x& J,,, one can write h(x):T;;zT for 2, 1in J,, so

T;1;7'(a)z7 = Z z,a = h(x)a = h(o(a)x) = o(a)h(x) =TZ a(a)z, .

=]

Therefore, 7(a)z,=ao(a)z, for all ac L and each rG. If we take a,, a,,*", a,,
b, b, -, b, in L such that 2a,~ry(b,-)={(1)§ 3;5
23 m(a)7(b)z, = 2] 7(a;)a(b;)z. = 7(2] a;77'a(b;))z, =0 for T=a. Thus we have

h(x)e J,. Therefore h(J,)=_J, and so, for each ¢ G, the isomorphism 7%
determies the element d, in L* such that A(x)=d,x for all x& J, . Since
h is L-isomorphism, d;=1. Since 4 is ring-isomorphism, A(f, . (*®y))=
Ay o fr A& DY) =p(, 7)), H(3))=p(, T)+dy o (d)fr (@) for all 3@y
e J,®J.. Accordingly, p(o, 7)=d,.-d;'-o(d,)™" for o, 7 G, hence p is in
B*(G, L*). Conversely, if p is in B¥G, L*), there exists {d,; c €G} in L* such
that p(o, 7)=d,,+d;'*a(d,)”" for o, 7= G. If one take d;=1, the map

vEG, then z =2 abz, =
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h: A(f, L, @, G)=GZ;€B]¢—>A(Pf, L, o, G):qZ(}EB]c defined by h(x)=d,x for

x< J, and ¢ €G, is L-isomorphism as k-algebra.

Lemma 1. Let LDk be a Galois extension with Galois group G, [P] an
element of P(L). Then the following conditions are equivalemt;

1) Homy(P, P) is L-isomorphic to A(L, G) as k-algebra, where A(L, G) means
the ordinary crossed product with trivial factor set.

2) There is an element [P,] in P(k) such that [P]=[P,&,L] in P(L).

Proof. 1)—2); Since L is a Galois extension of &, L is finitely generated
projective generator as a A(L, G)-module, and Hom,, ¢ (L, L)=k. Regarding
P as A(L, G)-module, we have P~Hom,, (L, P)®;L. Since P is a finitely
generated projective L-module of rank 1, P,=Hom,; ¢ (L, P) is a finitely gener-
ated projective k-module of rank 1, so [P,]€ P(k) and [P,®,L]=[P].

2)—1); If [P]€ P(k) and [P]=[P,®;L], then Hom,(P, P)~ Hom,
(P,®¢L, P,®,L)~ Hom,(P,, P)®,Hom,(L, L)Y~k ®,A(L, G)~A(L, G) as
L-modules and k-algebras.

RemMRAK 5. Let LDk be a trivial Galois extension with Galois group G,
ie. L:Ué];@kea, Z e,=1, e,-e,=— {%’: Z;:’ and o(e,)=e,, ke,~k as k-algebra,
for c=G. Then P(L)¢=Im(P(k)— P(L)) where P(k)—P(L) is defined by
[P]w—[P,®, L), and P(L)°={[P]< P[L]; [P]*=[P] forall c €G}.

Proof. Let [P]leP(L)% so ,L,Q; P~PQ, ,L; as L-L-bimodule, for all
oceG. Since L= P ek, we have P=>)Pe,P. Then e, P and e P are

cEG TEeEG

k-isomorphic for every o, 7 G. Because, from the L-L-isomorphism
h,: ¢L1®LP:TA:‘_(J; Bo(e), L Q. P—>PR, ¢L1=206961P ®r Lz, we obtain the

L-L-isomorphism a(e,),L;Q;, P=,L;Q,e,P—e,.,PR; Ly, for each ¢ and 7
in G. Since ,L;Q e, P and e P are k-isomorphic, and e, P and e,, PR, ,L;
are k-isomorphic, therefore e, P and e,, P are k-isomorphic for every o ,7=G.
Since [P]€P(L), P=¢2 De, P and (e, P)y=~(e,P)m for all maximal ideal m of &,

EF
we obtain [¢, P]=P(k). Now, we shall show L®Q,e,P~P as L-module. Let
h,' be the k-isomorphism of e, P to e, P obtained above, for each c=G. We
defined the map A: P—LQ e, P= }]GEBe(,k@kelP by A(x)=>e,Qh,'(e,x).
ce oceq
Then h(e,x)= de‘, Qh,' (e e.x)=e, Q@ h,' (e.x) = e, Zae(, R h,'(e,x))=e.h(x),
o= Te
therefore 4 is L-isomorphism. We obtain [¢, P] P(k) and [P]=[L®e, P].

Proposition 5. Let LDk be a Galois extension with Galois group G. Let
D be an element in & such that there exists a factor set f related to ® and there is
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a finitely generated faithful projective k-module P which satisfies A(f, L, @, G)~
Hom, (P, P) as k-algebras. Then, 1) [P] is in P(L), 2) we have ®(c)-[P]
=[P]- Do) for all s =G i.e. D=¢p- D, and @p(c)=[P]-([P]7")’ for all s €G.

Proof. Since L is a maximal commutative subalgebra of A(f, L, ®, G),
regarding P as L-module, L="Vy,p p(L)=Hom,(P, P). Since L is separable
over k, P is a finitely generated projective L-module, so [P] is contained in
P(L). We put ®(c)=[],] for s=G. Then from the proof of Proposition 3
we obtain J = _-i(Hom, (P, P)),*={f=Hom,(P, P); a(a)f(x)=f(ax) for all
x€P, acL}. We shall show the map 6; ,-1(Hom, (P, P))/*®@,P—>PQ, L,
=PQ®Lu,, defined by 0(fQx)=f(x)Qu,, is an L-L-isomorphism, where u, is a
base of ,L;. Since 0(fQxa)=f(xa)QQu,=f(ax)Qu,=o(a)f(x)Qu,=f(x)Qo(a)u,
=f(x)Qu.a and 0(af Qx)=af(x)Qu, for acL, xP, so §is a L-L-homomor-
phism. In order to show that is @ isomorphism, it suffices to show that
for every maximal ideal m of k Oy: (,-\(Homy(P, P)),*QR L P)u—>(PQr Li)m
is an isomorphism. But, Lyy=L®ky, is semi-local and (,-(Hom, (P, P))~)m=
--i(Homy (P, Py)),/“m is free Ly-module generated by a unit f in Homy,, (P,
Py). Therefore 0y is a homomorphism of Luf® P to Pu®r,, Lnu,defined
by On(f ®x)=f(x)Qu,. Since f is an automorphism of Py, we obtain that 8y, is
isomorphism. Thus, we obtain J &, P~PQ, ,L;, so ®(c):[P]=[P]:Dy(c),
ceC.

Corollary 1. Let LDk be a Galois extension with Galois group G, and [P]
an elemant of P(L). Then Hom,(P, P) is L-isomorphic to a generalized crossed
product A(f, L, ®,, G) of L and G with some factor set f related to @, as k-algebra,
if and only if [P] is contained in P(L)C.

Proof. If Hom,(P, P)~A(f, L, ®,, G), then by Proposition 5, 2) we obtain
[P]=[P]" for all s=G, so [P]eP(L)°. Conversely, let [P]P(L)¢. Since
Hom, (P, P) is an Azumaya k-algebra with maximal commutative subalgebra L,
Hom, (P, P) is written by A(f, L, ®, G) for some ® and f. Therefore, by
Proposition 5,2) we have ®(c):[P]=[P]®,(c) and so [P]°D(c)=[P]D(o).
Accordingly ®(c)=® (o) for all s =G, i.e. D=D,.

Proposition 6. Let LDk be a Galois extension with Galois group G. For
any D=pD,& with some factor set f related to ®, A(f, L, @, G) has an opposite
k-algebra A(f, L, @, G)'=A(f", L, ®°, G) where "= '®, and f° is some factor
set related to @°.

Proof. Put ®(c)=[/].], p(c)=[P,] and &°(c)=gp(c)"®y(c’)—=[P,* @y . L]
=[J,/] for ¢ €G, where P,*=Hom,(P,, L). Since 1=¢(l)=¢@(co™")=
@(c)-@(c7")°, we have [P,]=¢(c)=(p(c ") *)"=[P,*,]°. Thus P, and (P,*))"=
L1RLP*1®, ,-1L; are L-L-isomorphic. Let h,: P,—(P,*)” be the L-L-
isomorphism, and let g.: (P,*)°=Lu,®; P,*Q; Lu,-,— P,* be a k-isomor-
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phism defined by g (#,QxQu,-.)=x. Then g oh, is a k-isomorphism satisfying
g-oh(ax)=c""(a)g,oh (x) for all x&P,and acL. For each s =G, we define
the map g: J,=P,®.,L;—>],"1=P*®, ,-.L; as follows: For x® au,&
P.Q;.Li=P,Q;Lu,, g(xQau,)=g,oh,(x)Qo (@)u,-,. It is easily checked
that g is well defined. Then the map g induces the k-isomorphism of a‘E; D],

to é@]’,’ and satisfies g(*® ya)=g (xQa(a)y) =g(o(a)xR y)=ag(xX y) and
2ax® y)=g(x*Qay)=g(x® y)a for all xQ yeP, R, ,L;=], and ac L.
Now, we define the map f?.: J,'® J."—J,." as follows:

o' ®Y) = gl (0)REW))  for x'@y'E]/R. .
Then f3, is L-L-isomorphism. Because, f?.(ax' @y )=g(fi-1,-1(g7'(3")®
g (ax")) = g(fr-1,.-(877 (0 )R (x)a)) = g(fr-1,.-(87(¥) R (x"))a) =
a-g(fo-1,.-(g7(y" )R (x"))=af; (xRy), similarly, f3 (x’ @y a)=f; (¥’ Ry")a
forall ¥’ @y’ J,'®J.', acL. Furthermore, f*={f2.; o, TG} is a factor set
related to ®°’=¢@ 1P ;

e far(2'®Y)R2) = g(fy-1,60-1(g7 (RN (f2.(x'®Y)))

= &(fy-1,-10-1(87'(F)® fr1,0-:(&7(¥) Q&7 (%)

= 8(fy-1r-1,0-1(fr-1,:-1(87 ()R (¥)) @ &7 (%))

= g(fer1,.-(g7(f2.(y'®2")R g7 (x")))

=fom®@f14(y'®2)), for 2'Qy'®'€],'QJ RS -
Therefore, ®° and f° define a generalized crossed product A(f°, L, ®°, G)=
2BJ, of L and G. Since g(f,(x®@y))=fr-1,,-1(&(») D &(x)), for xRy E J,
®J,, g is an opposite k-algebraisomorphism of A(f, L, ®, G) to A(f°, L, ®°, G).

3. Application to Brauer group. The purpose of this section is to derive
the seven terms exact sequence, using the results in §2. We define the maps
0; in the sequence

0, 0, 0, 0, 05 b5
HY(G, L*) — P(k)— P(L)° — H*G, L*) — B(L|k)— H'(G, P(L)) — H*G, L*)
in the following way: We suppose that L is a Galois extension of k with finite
Galois group G.

(1) 6,: HY(G, L*)— P(k);

Let pZ*(G, L*). We define the new operation of element o of G on L;
for c€G, x€L, oxx=p(c)-o(x). Under this operation, we may regard L as
A(L, G)-left module, then we denote L by ,L. We put P,=,L°={acL; o*a
=p(o):-o(a)=a for all e G}~ Hom,, ¢ (L, ,L). Since LDk isa Galois
extension, L is finitely generated projective generator as a A(L, G)-module, so
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we have ,L~Hom, ¢ (L, ,L)®,L. Since LDk is a finitely generated pro-
jective k-module, [P,]=[,L¢]is in P(k). We define the map 6, by 6,(p)=
[P]=[,L€] for p= HY(G, L*). It is well defined. Because, if p'=p,p for
po€BY(G, L*), then there is aL* such that p(oc)=a'-o(a) for all cEG.
Then P,’=yL°={xeL;x=a"'o(a)p(c)o(x), for all c€G}=a™-,L°. Thus
P,’~ P, as k-module, therefore [P,"]=[P,] in P(k).

Lemma 2. The map 0,: H'(G, L*)— P(k) is a monomorphism.

Proof. In order to show that , is a homomorphism, it suffices to show that
for p,, p, in H'(G, L¥), , L°®4,, L=, ,,LC as k-module. It is easily seen that
o L0, L°C,,,L°.  We consider the map 7: , L°®4,,L°—,,,L° defined by
W(x®@y)=xy for x€, L ye&,LC Since ,,L°Q,L~,L¢ L=,L, for every
maximal ideal m of k, the localization (, L)m, (5,L%)m and (p,0,L)m are rank 1
ky-free module and generated by units in Ly. Therefore, (plLG)mzkmul,
(o, L)m=kmu, and (o L+, L) = (o, L) (p,L)m = Funtty thy C (p,0, L) = R ts.
Since wuy=(uuz'ui")u,u, and wuz'ui'€LyC=ky, we have (, LC:, L%)m=
Feun 116 = Ry 18,=(5,0,L)m, 80 7o, L@ gy 0,Lm = p,0,L%m i a ky-isomorphism.
Accordingly, » is a k-isomorphism, and so 6, is a homomorphism. Let
pEH'(G, L*) and 0,(p)=[,L¢]=[k], i.e. ,L°=Fk-u where u is a. free base in ,LC,
and so u is a unit in L. Therefore, u=p(c)-o(u) for every =G, i.e. p(a)=
u-a(u)™" so p is in BY(G, L*). Accordingly, 6, is a monomorphism.

(2). 6,: P(k)—~ P(L)°;
We put 0,([P,])=[L®.P,] for [PJ=P(k). Then 6, is a homorphism of
P(k) to P(L)° by Lemma 1 and Corollary 1.

) 0,
Lemma 3. HYG, L*)= P(k)— P(L)C is exact.

Proof. For any p in H(G, L*), 0.0,(p)=0([.L) =[,L°®,LI=[,.LI=[L]
in P(L). Let[P,] be in P(k) and [P,Q,L]=[L], i.e. there is an L-isomorphism
h: L —P,®,L. Since Homy(P,®,L, P,®,L)~Hom,(L, Ly=A(L, G)=
> @ Lu,, we can regard P®,L as a faithful A(L, G)-module by the isomor-

cEG

phism 4. Then Lu, is described as J,= {g&Hom,(P®,L, PQ,L); g-a=
o(a)g, for all acL}. The k-isomorphism 6=IQc: P,Q,L—>P,Q,L is a
unit element in Hom, (P,®,L, P,®,L) and is contained in J, for each o €G.
Therefore, there exists d, in L* such that 6=d, u, for each c&G. Then, the
map p: G— L* defined by p(c)=d, is in Z(G, L*). Because, d,,=57-u;}=
geruiteust=g-d,uyt=cu;'o(d,)=d,-a(d,). It follows that 6,(p)=[,L®)], and
oL={xEL; x=p(c)-o(x), for all cEG}~{yEP,®,L; y=p(c)-u,y}

={yEP,Q,L; y=p(c)-d;*-a(y), for all cEG}={yEP,Q,L; y=IRa(y) for
all e €G}=(P,®,L)"*¢. Since LDk is a Galois extension, there is an element
¢in L such that ¢§; o(c)=1, therefore any element y =37 x;®a,&(P,QL)"*
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y ———ggya(c) =a§; IRa(yc) :; x; ®¢§; a(a;c)= %} x;+>) o(a;c) ®1, so y is con-

oced

tained in P, ,L°=P,Qk=P,. Accordingly, we have 6,(p)=[P,)].

(3). 6,: P(L)°—H¥G, L*);

Let [P]€ P(L)°. By Corollary 1, there exists a factor set f related to @,
ie. f=p&Z*G, L*¥), such that Hom, (P, P) is L-isomrphic to A(f, L, ®,, G)
=A(p, L, G) as k-algebra. We define the map 6,: P(L)°—H*G, L*) by
0([P])=p for [Pl P(L)°. Then 6, is a homomorphism. Because, for
[P], [P']€P(L)°, we have Hom, (P, P)=A(p, L, G)zgg@Lf, and Hom,(P’, P")

=A(p', L, Q=2 @1, where p=0,[P)), p'=0([P), and {f},cc and

{f."}sec are L-free basis in Hom, (P, P) and Hom,(P’, P’), repsectively. 'Then
the k-isomorphism f,Qf,": PR, P —>PR, P defined by f,Qf,'(xRy)=
F(0)Rf, (y) for xQyePR, P, (it is well defined), satisfies o(a):f,Qf, =
fe®f, caforall ain L and f,Qf,"- f.Q f,'=p(o, 7)*p'(c, T)+ fr.R f.'. There-
fore, we can write Hom,(P®, P, PR, P)=A(p+p’, L, G)=21BL f,Qf,".
Accordingly, 6,([P]- [P)=0([P])-6:([P))

6 0,
Lemma 4. P(k)- P(L)° = H¥G, L*) is exact.

Proof. If [P)]€ P(k) then 0,([P,])=[P,®,L] and Hom.(P,®;L, P, ;L)
~ Hom, (L, L)=A(L, G) and so 0,0,([P,])=1. Let [P]P(L)¢ and ,[P])=1.
so Hom, (P, P)~A(L, G). By Lemma 1, there is [P,] in P(k), and P~P,Q.L,
therefore 0,([P,])=[P].

(4). 6,: H(G, L*)— B(L|k);

B(L|k) denotes the Brauer group of k-Azumaya algebras split by L.
0,: H¥G, L*)—>B(L[k) is defined by 6,(p)=[A(p, L, G)] in B(L[k) for
pE H*(G, L*), then 6, is a homomorphism by [1], Theorem A. 12.

0 0,
Lemma 5. P(L)°— H¥G, L*)— B(L/k) is exact.

Proof. Let [P1eP(L)¢ and Hom,(P, P)~A(p, L, G). Then 6,0,([P])=
[A(p, L, G)]=[Hom, (P, P)]=1 in B(L|k). On the other hand, if p is an element
in H¥G, L*) such tha 0,(p)=[A(p, L, G)]=[k], then there is a finitely generated
faithful projective k-module P such that A(p, L, G)=Hom, (P, P). By Proposi-
tion 5, [P]€ P(L) and by Corollary 1 [P]€ P(L)¢, and so p=04([P]).

(5). 6s: B(L/k)—H'(G, P(L));

For any [A]€ B(L/k), there is an Azumaya k-algebra A in [A] such that
A contains L as maximal commutative subalgebra (cf. [1], Theorem 5. 7). By

Proposition 3, A is written by A(f, L, @, G) for some P and f, and then ®=¢p®,.
for some @ in Z'(G, P(L)). We put 0,([4])=®. From the following lemma,
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it is shown that 6 defines the map B(L/k)— H'(G, P(L)).

Lemma 6. Let ®=¢p®, and ®'=q¢'D, be elements in &, and f and f’
factor set related to @ and @', respectively. If [A(f, L, @, G)]=[A(f', L, D', G)]
in B(L|R), then ¢’¢™" is in B'(G, P(L)).

Proof. If [A(f, L, ®, G)]=[A(f, L, @', G)], then there is a finitely gene-
rated projective and faithful k-module P such that

Hom, (P, P)~ A(f', L, @, G)QA(f, L, ®, G)°
== A(f) L) ¢/) G)@kA(fO’ L) ¢0’ G)
~Af'Qf, LRL, ¥R GXG),

where @'(c)=[],'], ®°(¢)=[J,"] and & Q®(c X 7)=[],' @, J."] in Pick(LR,L),
and (f'®f)gxr,o x? ~ftsQf,». Regarding P as LR, L-module, by Propo-
sition 5, [P]€P(LRQ,L) and (P(c)R® D°(7))-[P]=[P]:(DP(c) Q Dy(7)) for
o, 7€G. Since @' =¢'P, P’=¢ '@, we have ¢'(c)Rp '(T)=[P]-([P])™*"
in P(L®.L). In particular, if one put ®=’, then obtain similarly
?'(0)” Q@' (1)=[Q]-([Q] ")~ for some [Q] in P(LQ,L). From ¢'(c)@p(7)
—[P]-([P]"y*" and ¢’ (¢) @ (v)=[0]- ([Q] *)°*", we obtain [L]@e/(r)p()™
—[P@,6, O1-(PRrgys OV We put [Rl— [P s, O] and [P]=
PP (1)=¢/(7) @ }(7), so we have [LRQ,P,]=[R]-([R]')"*". If one takes
=1, then from ¢’¢p~'(1)=[P,]=[L], we have [LQ,L]=[R]- ([R]™") °*! and so
[R]=[R]"*! for all s=G. Regarding L®,L as a Galois extension of L with
Galois groop Gx 1, it is known that L& ,L is a trivlal Galois extension of L
with Galois group GXxI. From Remark 5, there is an element [R,] in P(L)
such that [R]=[(L®,L)Q; R]=[LR:R,] in P(LK,L). Therefore, [LQ,P,]
=[LRrR,]*([LRLR,])"*", and so it can be computed that LK,P,~
LRp(RRQ 1. LiQLR*R®,-1L,) as LR,L-module for every T€G. Therefore,
LRWLR, P,~LQRiLR,(R,Q.RE) as L®,L-moduoe. Since LQ,L=
S Pe, L is a trivial Galois extension of L, we have >)Pe, LR, P,zag@

oCEG cEG

e, LR (RQ . RF) as LR,L=2e,L-modules, and so e,LR,P.~e, LR,
(R,® . R§™) as L®,L-module for each s=G. On the other hand, ¢,L®, P,
and P, are L-isomorphic, and e,L®;(R,®Q, R%¥) and R,Q, R are so.
Therefore, we have P,~R,®Q; R¥™ as L-module for every 7€G, ie. [P]=
@' () =[R,)*([R,]")" in P(L) for every T€G. Accordingly, ¢’@~" is in
B'(G, P(L)).

0, 0,
Lemma 7. H*G, L*)— B(LJk)—= HYG, P(L)) is exact.

Proof. If p is in H¥G, L*), then 0,(p)=[A(p, L, G)] = [A(p, L, ®,, G)],
so 6,6,(p)=1. Let [A]=[A(f, L, ®, G)]€B(L[k) and 0,([A])—=p—1. Since
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@& BY(G, P(L)), there is [P] in P(L) and @(a)=[P]-([P]7")" for all c€G.
Since Hom, (P, P) is an Azumaya k-algebra with maximal commutative sub-
algebra L, by Proposition 3 Hom, (P, P) is L-isomorphic to A(g. L, ¢'®,, G) with
some @’ and g, as k-algebra. From Proposition 5, we have ¢/(c)®y(c)-[P]=
[P]-®y(o) for all =G, and so @'(c)=[P]-([P]')’=¢(s) for all cEG, i.e.
p=¢’. We put P=¢pd,=¢'®,. By Proposition 4, there exists an element p
in Z*G, L*) such the f=pg. Since p®p~* is in BY(GX G, (LQ,L)*) (cf. [1],
Proposition A. 11), by Proposition 4, A((p®p ) Rp)(gR1), LQL, PRD,,
GXG) and A(I®p)(gR1), LRQL, ®RQ®,, GXG) are LK, L-isomorphic
as k-algebra. On the other hand,

A(p®p™NIRpNg D), LR4L, PRD,, GXG)
~A(pg, L, @, G)@:A(, L, ®,, G) = A(f, L, ®, G)@,A(L, G),
and A(I®Rp)(g®1), LRy L, DRD,, GXG)
~A(g, L, @, G)RrA(p, L, @, G)=Hom, (P, P)®+A(p, L, G).

Accordingly, [A]=[A(f, L, @, G)]=[A(p, L, G)]=0.(p).

(6). 6,; HY(G, P(L))— H*G, L*);

Let peZY(G, P(L)). We put ®=¢@®, and ®(s)=[],] for each c=GC.
One takes a family {f,.; o, T€G} of L-L-isomorphism f,.: J,QrJ.—> Jo-
Put (o, 7, V)=for yo(f..QI)o(IQ fr4) o fsry ' for each o, T, yEG. Since
w(o, 7, ) is a unit in Homy (/,.y, Js.v)=L, we have a function w: GXGX G~
L*; (o, 7, ) W\ (o, T, v). We shall show that o is in Z*(G, L*) i.e. §(w)=1
where 8 is coboundary operator. Since §(w)(c, T, v, €) is a unit in L,
8(w)(a, 7, v, €)=1 for every o, 7, v, € in G, if and only if for any maximal ideal
m of L, the image of §(w)(o, 7, 7, &) in Ly, equals to 1 for every o, 7, 7, € in G.
But, if L is local, then, from that J is a free L-module, there is a map p of
G X G to L* such that w=38(p). Therefore, §(w)=8%p)=1, i.e. §(w)(c, 7, v, &)=1
for every o, 7, v, € in G. Accordingly w is in Z*(G, L*). For ® in ®, if one
takes another family {f’ .; o, T€G}, then there is a map p: GX G — L* such
that f7 .=p(o, 7)- f,. for every o, 7&G. Then. it is easily computed that

&' (0,7, %) = ferro(fer @D o(IQf 1 a) o f Tk
= a(p(e7, 7)) p(a7, ¥) e plo, T¥) plos T)* forvo(fo: Q@ I)o(I R frv) o f iy
= (p)(a, 7, 7)- (o, T, V).
If o'=@,-@ for some @, in B'(G, L*), then there is [P]€P(L) such that
@' D(0)=[P]-D(0)-[P*]. Iff,.: J.RL):—>Jsand IR [, .RI: (PR L], QL P*)
®L(P®]¢®P*)=P@LJa@L]¢®LP*“’>P®L]aT®LP* identify, then we
can consider that w(o, 7, v) is in Hom, (PR, J,v®rLP*, PRy J,y® L P¥).

Therefore, a element @ in H*G, L*) is determined by an element ¢ in
H'(G, L*). We can define the map 6,: H'(G, P(L))— H*(G, L*) by 0(P)=w,



GENERALIZED CROSSED PrRODUCT AND BRAUER GROUP 187

for pe H'(G, P(L)).
0, 0, .
Lemma 8. B(L/k)— H'(G, P(L))— H*G, L*) is exact.

Proof. For @ in H'(G, P(L)), we put ®=¢p®, and P(c)=[],] for
c=G. Then it is easily seen that (@)=1 if and only if there is a family
{for: JoJ- ®L = Jor; L-L-isomorphism, o, T€G} such that {f,.; o, 7EG} is a
factor set related to ®. Therefore 8,(®)=1 if and only if there is A[(f, L, ®, G)]
in B(L/k) such that 0,([A(f, L, @, G)])=7.

We have obtained the following seven terms exact sequence.

Theorem (Chase, Harrison and Rosenberg).

1)—H (G L*) P(k) 2, P(L)S —> 9, H¥G, L¥) b,

g,
B(L/k) — HY(G, P(L))-——-)H (G, L*)
is exact.
From Remark 5 and Therorm, we have

Corollary 2. If LDk is a trivial Galois extension, then

0,

(1) —> HY(G, L¥) 9‘,P(k) P(L)G (1) and
(1) — H¥G, L*)——»B(L/k) —2> HY(G, P(L))—9—>H3(G L¥)
are exact.
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