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For a commutative ring L wich is a Galois extension of a ring k with Galois
group G, Chase, Harrison, and Rosenberg, in [5] and [6] gave a seven terms exact
sequence about cohomology groups of G and Brauer group B(L/k) of Azumaya
Λ-algebras split by L, by using the generalized Amiztur cohomology and spectral
sequence. In this paper, we give a generalization of the concept of crossed pro-
duct, and for a commutative Galois extension L of a ring k with Galois group G,
we study the generalized crossed product of the commutative ring L and the
group G, and concerning the gorup of isomorphism classes of finitely generated
projective rank 1 L-modules. Finally, as an application to Brauer group, using
the generalized crossed product, we shall derive immediatly the "seven terms
exact sequence theorem''.

In § 1, we define the generalized crossed product Δ(/, Λ, Φ, G) of a Λ-algebra
Λ and a group G with factor set / related to Φ, where Φ is a group homomor-
phism of G to the group of isomorphism classes of invertible Λ-Λ-bimodule
(see [4], p. 76), andf={f(ΓT'ί σ, r^G} is a family of isomorphisms of modules
satisfying some commutative diagrams. In §2, we suppose that L is a com-
mutative Galois extension of a ring k with fimite Galois group G. Then we shall
show that Δ(/, L, Φ, G) is an Azumaya Λ-algebra with a maximal commutative
subring L, and conversely, every Azumaya Λ-algebra with maximal commutative
subring L can be written by Δ(/, L, Φ, G) for some Φ and/. In §3. using the
results of §2, we derive the seven termes exact sequence:

(1) -> H\G, L*) -» P(k) -» P(L)G -> H\Gy L*) -> B(L/k) -* H\G, P(L))

- #3(G, L*).

We suppose every ring has identity element and module is unital.

1. Generalized crossed product. Let k be a commutative ring with
identity, Λ a ^-algebra with identity. A Λ-Λ-bimodule P is called invertible if P
is a finitely generated projective and generator (i.e. completely faithful by means

of [3]) left Λ-module and HomΛ(ΛP, ΛP)^Λ°, where for a^k and
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ax=xa. Let Pick(A.) be the group of isomorphism classes [P] of invertible
Λ-Λ-bimodules P with law of composition induced by tensor product over

A: [P\ [Q]=[P®*Q], then [P]~l=[P*] where P*=HomΛ(P, Λ). We define
the generalized crossed Product Δ(/, Λ, Φ, G) of a ^-algebra Λ and a group G
with factor set/={/σ τ: σ, τ^G} as follows: For given group G and A-algebra
Λ, let Φ: G->Pick(A.) be a group homomorphism. Put Φ(σ)=[/σ] for
If f={f<r,τ', σ, T^G} which is a family of Λ-Λ-isomorphisms fσy. Jσ®
Jστy σ, reG satisfies the following commutative diagrams:

for every <r, r, γeG, then we call / to be factor set related to Φ. Put
Δ(/, Λ, Φ, G) = Σθ/σ as Λ-Λ-bimodule. When the multiplication of ele-

σe<?

ments in Δ(/, Λ, Φ, G) is defined by x y=fσtΎ(χ®y) for x^Jσ, y^Jn we call
Δ(/, Λ, Φ, G) a generalized crossed product of Λ and G with factor set / related
to Φ.

Proposition 1. Let G be a group and Λ a k-algebra. For a homomorphism
Φ: G-*Pick(A) and a factor set /={/(Γ>τ; cr, reG} related to Φ, generalized
crossed product Δ(/, Λ, Φ, G) is an associative k-algebra with identity element,
and Δ(/, Λ, Φ, G) contains a subrίng ίsomorphίc to Λ, i.e. if φ(σ}=[J^\ for cr£=G,
y^Λ as k-algebra and K-K-bimodule.

Proof. Let Φ(σ) = [Jσ]J σ^G. Since /M: /ι®Λ/ι~^/ι is Λ-Λ-isomor-
phism, /! is a subring of Δ(/, Λ, Φ, G). Since Φ(l) = [Λ] = [/J, / j^Λ as
Λ-Λ-bimodules. There exists z/ in /t such that J1=Au=uA and \u=u\ for
all λeΛ. Since fltι(Jι®Jι)=Jί9 we can write f11(u®u) = cu for some c in Λ,
then £ is a unit in the center of Λ. If we put e=c~1u9 thenfll(e®e) = e, so
the map A—*^: \-*\e is a ring isomorphism. Furthermore, e is identity of
Δ(/, Λ, Φ, G). Because, for any x^Jσ) σ e G, there is j; in /σ such that
*=/!><g);y), and/lfff(*®^
Similarly, we have/σtl(jc(g)e)=jc for every x^JσJ σ^G. Therefore, e is identity
element of Δ(/, Λ, Φ, G).

Now, in the following, we may regard A=/1 in Δ(/, Λ, Φ, G).

REMARK 1. Let Λ be a ^-algebra and G a group. Let Φ: G^Pick(A) be
a homomorphism, and let the image of Φ consists of [P] in Pick(A) such that
P is left Λ-free module. Then for any factor set / related to Φ, Δ(/, Λ, Φ, G)
coincides with an ordinary crossed product Δ(p, Λ, G) with a factor set p
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contained in Z2(G, Λ*), where Λ* is the multiplicative group of unit in Λ.

REMARK 2. In Remark 1, in particular, let Φ(G)=(1), so Δ(/, Λ, Φ, G)
is an ordinary group ring of Λ and G with a factor set in %2(G, C*), where C*
is the group of units in the center of Λ.

REMARKS. Let Λ Z ) A be a central Galois extension with finite Galois
group G (cf. [9]). Then there exists a homomorphism Φ: G-+Pick(k) and a
factor set/related to Φ such that Δ(/, k, Φ, G)^Λ as Λ-algebras (see [9]).

2. Generalized crossed product for a Galois extension

Let L be a commutative Λ-algebra with identity, Autk (L) the group of all
^-algebra automorphisms of L. Then we have the homomorphism Ψ: Pίck(L)
-*Autk(L) defined by ψ([P])=σP for [P]^Pick(L\ where σp is defined by
σp(a)x=xa for all αGΞL, x^P (cf. [4], p. 80). We put PicL(L)=P(L). Then
for [P]eP(L), P is regarded as new L-L-bimodule by new operation * defined
by a*x=σ-~l(a)x=xσ~1(a) and x*a=xa (or a*x=ax, x*a=xσ~λ(ά)=σ~l(ά)x) for
all a <Ξ L and x<ΞΞ P. We denote it by σP7 (or 7Pσ). If [P] <ΞP(L) and σ e Autk(L),
then [σP7] is in Pick(L) and Ψ([<ΓP/])=o . Since the map ΦQ:Autk(L)-^Pίck(L)

defined by ΦQ(σ)=[σLI] is a homorphism and satisfies Ψ^Φo^^w^ci,)? we have
the following right split exact sequence;

(1) - P(L) - Pich(L) -> Autk(L) - (1), (cf. [4], p. 80).

Now, we assume that L^)k is a Galois extension with finite Galois group G.
Then GdAutk(L). Since P(L) is an abelian and normal subgroup of Pick(L),
for each σ ^G, σ defines the automorphism of P(L) by [P]<τ=[(ΓLI] [P] [σLI]~1.
If we put Pσ=σLI®LP®Lσ.-lLI, [Pσ] = [P]σ in P(L) for σ-eG. Let ® be the
set of all homomorphisms Φ: G->Pick(L) such that ψoφ—/G. Since Φ0e@,

each Φ in @ determines a function φ of G into P(L) such that Φ(cr)=<£>(cr) Φ0(σ)
for all σ €Ξ G. Using Φ and Φ0 to be group homomorphisms, we can easily check
that φ(στ)=φ(cr) φ(τy for every cr, r^G. This means that 9? is contained in
1-cocycle group Zl(G, P(L)). Conversely, for any φ in Z1(Gy P(L))y putting
Φ = φφ0, i.e. φ(σ) = φ(σ) Φ0(σ) for all σ-e G, we see that Φ is a group
homomorphism of G into Pίck(L) and Φ is in ©. Therefore, between © and
Zl(Gy P(L)) there exists the one to one correspondence Φ = φΦ0^^φ. For
Φ=φφ0 and φ'^^'φo in ©, we denote (^-^^Φo by Φ Φ'. Then under this

multiplication in ©, © is isomorphic to Z^G, P(L)).

REMARK 4. For any factor set / related to Φ0, by Remark 1 Δ(/, L, Φ0, G)
is an ordinary crossed product Δ(p, L, G) with a factor set p in Z2(G, L*), i.e.
Φ0(σ)= [σL/] and it has some L-free base [uσ\ σ^G] such that σLI = Luσ, σ(x)uσ

= uσx for all x^L and uσuΊ = p(σ, r)uσr.
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Proposition 2. Let Luk be a Galois extension with Galois group G. For

any Φe© such that there is afator setf rerated to Φ, Δ(/, L, Φ, G) is an Azumaya

k-algebra (i.e. central separable], with maximal commutative subalgebra L.

Proof. We put Δ=Δ(/, L, Φ, G)= Σ ΘΛ > where L/J=*H> σ e G At

σe<?

first, we shall^show that L=Jl is a maximal commutative subring of Δ(/, L, Φ, G).

The commutor ring FΔ(L) of L in Δ contains L. On the other hand, if z is in

FΔ(L), then # can be written as #— 2 #σ for some #σ in /σ, and so 2 azσ=az
σeβ' σeer

=za= 2 #σ tf= 2°"(#Xr> f°r all α^L. Therefore, we have azσ=σ(a)zσ for
σe<? σe<?

every β e L and σ e G. But, since L Z) & is Galois extension, there exist a^)a2)^')an

n (1 (Γ = I
and blfb2, ybn in L such that 2 aiσ(bi)= j '̂ j. Accordingly, ^σ ̂ Σ^A ̂ σ—

2 ai<r(bi)zσ=() for σΦ/. Therefore, we have z^Jf = L and FΔ(L)— L. In

other words, L is a maximal commutative subalgebra of Δ(/, L, Φ, G).
Secondly, we shall show that k is the center of Δ(/, L, Φ, G). Since Fr

Δ(Δ)c

FΔ(L)=L, for any βeFΔ(Δ), we have fl#=cr(fl)# for every x^Jσ and every
σ e G. Since /σ is faithful L-module, α = σ(α) for every σ e G, therefore
a^LG=k. Accordingly, ^ is the center of Δ. Finally, we shall show that

Δ(/, L, Φ, G) is separable over k. Since Δ is a finitely generated projective

^-module, by [7], Proposition 1.1 Δ is separable over k if and only if Δ®kkm is

separable over km for all maximal ideal m of k. Therefore, we may work with

Δ(/m, Lm, Φm, G) = Δ®kkm, i.e. we may assume that k is local, so L is

semi-local. Then every finitely generated rank 1 projective L-module is free, so

Φ coincides with Φ0. Therefore, Δ(/, L, Φ0, G) is an ordinary crossed product,

hence by [1], Theorem A. 12, Δ(/, L, Φ, G) is separable over k. This com-
pletes the proof.

Proposition 3. Let Li) k be a Galois extension with Caloίs group G, and let

Λ be an Azumaya k-algebra containing L as a maximal commutative subalgebra.

Then Λ is L-ίsomorphίc to a generalized crossed product of L and G with some Φ e©
and some factor set f related to Φ, as k-algebra.

Proof. For each cr^G, we put Jσ=σ.-lΛI

L={a^Λ; σ(x)a=ax, for all x^L},

then, regarding Λ and σ-ιΛ7 as L(g)feΛ°-left module, yσ^HomL(g)ΛΛo(Λ, ^-iΛ/).
Since Λ is a faithful L®feΛ°-left module and L® f eΛ° is a separable Λ-algebra,
it follows from [8], Theorem 1 that Λ is finitely generated projestive generator

as an L(g)^Λ°-left module, and Hom^^ Λo(Λ, Λ) = L. Accordingly, we have
y<Γ®ι fΛ«HomI,(g) jkAo(Λ, σ.-ιΛ/)(g)ZίΛ«σ-ιΛ/ as left L- and right Λ-modules.

Therefore, we obtain [Jσ] ^Pick(L) and/σΛ=Λ. Using the inclusion map /σ->Λ,
we define the L-L-homomorphism θ: Σ 0/σ^Λ; θ ( Σ xσ) = Σ xσ in Λ, for

σ <=<9 σe<?

In order to show that θ is an isomorphism it suffices to show that for
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every maximal ideal m of ky the localized map θm: Σ®(/σ)m~^Λm is isomor-
phism. Therefore, we may suppose that k is a local ring, so L is a semi-local
ring. Then Jσ is a free L-module of rank 1; there is uσ in Jσ such that
Jσ.=uσL=Lu(r. Since Λ=wσΛ, and z/σΛ is Λ-free, uσ is a unit in Λ, and σ is
extended to an inner automorphism induced by uσ. Therefore, we obtain from
[1], Theorem A. 13 that Λ is isomorphic to an ordinary crossed product
Δ(p, Λ, G)=Σ 0Λwσ. Consequently, θ is an isomorphism. Since Jσ «/τe Jστ

σ"e#

and for every maximal ideal m of k (ΛΛ)m=(Λ)m(/τ)mHΛτ)m> we obtain
J.®Lj*~JJ.=J<π If we define Φ: G-*Pick(L) by Φ(σ) = [/J for each
o-ίΞG, and /^i /(r<8)jL/T->/(rr by/0.fT(Λ?(g)j;)=Λy for each σ, reG, then Φ is in
© and/=={/σfT; σ, τ^G} is a factor set related to Φ, and we obtain that Λ and
Δ(/, Ly Φ, G) are ^-algebra isomorphic and L-isomorphic.

Proposition 4. Let Li) k be a Galois extension with Galois group G, and let
Φ be an element in ©. 7//={/στ; σ, r^G} and g= {gσtΊ σ, τ^G} are factor
sets related to Φ, zAew Z/^e w β cocycle p in Z2(G, L*) swί A £A#£ g=pf, i>e

g<r,>r(x®y)==p(σ> P) f<rΛx®y) f°r x®y^Ja ®Lj^^τ^Gί where L* is a
multiplicative group of units in L, and Φ(σ )=[/σ] for creG. Furthermore ,
Δ(/, L, Φ, G) ts L-ίsomorphic to Δ(p/, L, Φ, G) #s k-algebra if and only if p is
in B\G, L*).

Proof. Let φ(σ)=[/σ], σeG. Since /σ>τ and ̂ στ are isomorphisms of
Jσ®LJΊ to /στ for σ, r^G, gσtr

0f<^l is an automorphism of /στ, so there exists
a unit p(<r,τ) in Hom^(/στ, 7^)= L such that £σ§τ(*® y) = p(σ, T)-/^^®^)
for every oc®y^Jσ®LJΊ. Since / and g are factor set related to Φ, we can
check easily that p is in Z2(G, L*). We write g=pf. If A: Δ(/, L, Φ, G)-*
Δ(p/, L, Φ, G) is a L-isomorphism as ^-algebra, then h(Jσ)=Jσ for each
Because for any x^JσJ one can write λ(#)= Σ #τ for ̂ τ in/τ, so

τe<?
%Ίa = h(x)a = h(σ(ά)x) = σ(a)h(x) = Σ σ(a)zr .

Therefore, r(a)zrr=σ(a)zr for all a^L and each reG. If we take aly a2, ~, any

b19 b2, ~,bn in L such that Σ^Ύ(*;) = (oj γφ/? T^G, then *τ = Σ«A*τ =

Σ τ(ai)τ(bg)zΎ = Σ τ(̂ >(έ,.χ = τ(Σ ΛίT-V^JX =0 for rφσ. Thus we have
ί ί I

h(x)^Jσ. Therefore h(Jσ)=Jσ and so, for each σeG, the isomorphism A
determies the element dσ in L* such that h(x)=dσx for all x^Jσ. Since
A is L-isomorphism, rf/=l. Since h is ring-isomorphism, h(fσ^(xξt)y)) =

<Jσ.τ\/σΛ*®j)=p(^τ)^ for all Λ?®y
e/σ(g)/τ. Accordingly, p(σ, r) = dσ.r d~I σ(dr)~1 for σ, reG, hence p is in
£2(G, L*). Conversely, if p is in £2(G, L*), there exists K.; σ-eG} in L* such
that p(cr, τ) = d<TΊ d~l σ(dΊ)~1 for σ, re G. If one take dI=l9 the map
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h: Δ(/, L, Φ, G)=Σ®Λ^Δ(p/, L, Φ, G)=ΣΘΛ defined by h(x)=djc for
<re# σe<?

σ and 0-eG, is L-isomorphism as ^-algebra.

Lemma 1. Let Li) k be a Galois extension with Galois group G, [P] an

element of P(L). Then the following conditions are equivalent

1) HomA,(PJ) P) is L-isomorphic to Δ(L, G) as k-algebra, where Δ(L, G) means

the ordinary crossed product with trivial factor set.

2) There is an element [P0] in P(k) such that [P]=[P0®kL] in P(L).

Proof. l)->2); Since L is a Galois extension of Λ, L is finitely generated

projective generator as a Δ(L, G)-module, and HomΔCZ, G)(L, L)=k. Regarding

P as Δ(L, G)-module, we have P^HomΔCjL>G)(L, P)®kL. Since P is a finitely

generated projective L-module of rank 1, P0=HomΔCZ, >G)(L, P) is a finitely gener-

ated projective A-module of rank 1, so [P0]eP(&) and [P0®kL] = [P].
2)-l); If [P0]eP(&) and [P] = [P0®*L], then Hom*(P, P)~ Hom^

(P0®feL, P0®,L)«Homfe(P0, P0)®feHom^(L, L)~£®*Δ(L, G)«Δ(L, G) as

L-modules and ^-algebras.

REMRAK 5. Let LDk be a trivial Galois extension with Galois group G,

i.e. L=^®keσί^eσ=l,eσ'eΊ=\e^\<l~T and σ(^)=^σ, foσ^& as Λ-algebra,
= = '

for σ<=G. Then P(L)G = Im(P(k) -+ P(L)) where P(K)->P(L) is defined by

[P0] A^[P0®,L], and P(L)G={[P]<Ξ P[L]; [P]-=[P] forall

Proof. Let [P]eP(L)G, so ^(gj^P^P®^^ as L-L-bimodule, for all
Since L = i]0e<Awe have P= Σ ®eσP. Then ^σP and ^TP are

^-isomorphic for every σ, r e G. Because, from the L-L-isomorphism
Aσ: (ΓLI®LP = ̂ ®σ(eΎ}σLI®LP-^P®LσLI = ̂ ®eΊP®L(TLI, we obtain the

ret? ret?

L-L-isomorphism σ(er)σLI®LP=<ΓLI(g)LerP->eστP®LσLIy for each σ and T
in G. Since σLf®LerP and eτP are Λ-isomorphic, and eσrP and e<rrP®LσLI

are &-isomorphic, therefore eτP and ^στP are Λ-isomorphic for every σ ,τeG.
Since [P]eP(L), P=Σθ^σP and (^P)m«(^σP)m for all maximal ideal m of k,

σ ^G

we obtain [e1P]^P(k). Now, we shall show L®kelP^P as L-module. Let
hσ' be the ^-isomorphism of eσP to ^P obtained above, for each σ^G. We

defined the map A: P-*L®keλP= Σ ®eσk®ke1P by A(*) = Σ*σ®V(*σ*)
σetί σetί

Then /*(eT,*) = Σ ̂ σ (g) hσ'(eσeΊx) = eΊ® hr'(erx) = er( Σ eσ ® hσ'(eσx)) = erh(x),
o~eέ? σeί?

therefore A is L-isomorphism. We obtain [elP]^P(k) and [P]=[L®kelP].

Proposition 5. Let Luk be a Galois extension with Galois group G. Let
Φ be an element in & such that there exists a factor set f related to Φ and there is
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a finitely generated faithful projective k-module P which satisfies Δ(/, L, Φ, G)«
Hom^P, P) as k-algebras. Then, 1) [P] is in P(L), 2) we have Φ(σ) [P]
= [P] Φ0((j) for all σ£ΞG i.e. Φ=<p Φ0 and φ(σ)=[P] ([P]~*γ for allσ^G.

Proof. Since L is a maximal commutative subalgebra of Δ(/, L, Φ, G),
regarding P as L-module, L= FH0m;feCp P)(Z/)=Homz/(P_, P). Since L is separable
over k, P is a finitely generated projective L-module, so [P] is contained in
P(L). We put Φ(σ-)=[/σ] for σeG. Then from the proof of Proposition 3
we obtain /σ=σ-ι(HomA(P, P ))/• = {/ eΞHom*(P, P); σ(*)/(*) =/(α*) for all
#eP, a^L}. We shall show the map 0; σ-ι(HomA(P, P))ιL®LP-^P®L(ΓLI

=Pξξ>Luσ, defined by θ(f®x}=f(x}®u(T, is an L-L-isomorphism, where uσ is a
base of σLI . Since θ(f®xa)=f(xa)®uσ=f(ax}®uσ=σ(a}f(x)®uσ=f(x)®σ(ά)u<τ

=f(x)®uσa and θ(af®x)=af(x}®uσ for α^L, # eP, so 0 is a L-L-homomor-
phism. In order to show that is θ isomorphism, it suffices to show that
for every maximal ideal tn of k θm: (σ-ι(Homk(P,P))I

L®LP)m->(P®Lσ.LI)m

is an isomorphism. But, Lm=L®kkm is semi-local and ((Γ-ι(Hom/!(PJ P))/

z-)m—

σ-ι(Hom*OT(Pm, Pm))/1-1" is free Lm-module generated by a unit/ in Hom^P,̂
Pm). Therefore θm is a homomorphism of Lmf®LmPm to Pm®z/mLmwσ.defined

by θm(f®χ)=f(x)®u<r Since / is an automorphism of Pm , we obtain that θm is
isomorphism. Thus, we obtain Jσ®LP^*P®LσLι, so Φ(σ) [P] = [P] Φ0(σ),

Corollary 1. L ί̂ L^k be a Galois extension with Galois group G, and [P]
an elemant of P(L). Then Hom^(P_, P) is L-ίsomorphίc to a generalized crossed
product Δ(/, Ly Φ0, G) of L and G with some factor set f related to Φ0 as k-algebra,
if and only if [P] is contained in P(L)G.

Proof. If Hom^P, P)^Δ(/, L, Φ0, G), then by Proposition 5, 2) we obtain
[P]=[P]σ for all σeG, so [P]eP(L)G. Conversely, let [P]EΞP(L)G. Since

P, P) is an Azumaya ^-algebra with maximal commutative subalgebra L,
P, P) is written by Δ(/, L, Φ, G) for some Φ and /. Therefore, by

Proposition 5,2) we have Φ(σ) [P] = [P]Φ0(σ ) and so [P]σΦ(σ-)=[P]Φ0(σ).
Accordingly Φ(σ)=Φ0(cr) for all creG, i.e. Φ=Φ0.

Proposition 6. Let L^Dk be a Galois extension with Galois group G. For
any Φ=φΦ0E:(& with some factor set f related to Φ, Δ(/, L, Φ, G) has an opposite
k-algebra Δ(/, L, Φ, G)°=Δ(/°, L, Φ°, G) where Φ°=φ-1Φ0 and f is some factor
set related to Φ°.

Proof. Put Φ(σ)=[/σ], φ(σ)=[Pv] and Φ\σ)=φ(σ)'^Φ0(σ)=[P^®LσLI]

= [//] for °"eG> where P<Γ* = HomIf(Pσ, L). Since 1 =φ(l) = φ(σσ-l) =
φ(σ) φ(σ-lγ, we have [Pσ]=φ(σ)=(φ(σ'1)-1γ=[Pσ^. Thus Pσ and (Pσ*ι)σ=

σL/(g)LPσ*ι(g)z<σ.-ιL/ are L-L-isomorphic. Let Aσ: Pσ-^(Pσ*ι)σ be the L-L-
isomorphism, and let ^σ: (P(T*ιf=Lu(T®LPσ*ι®LLuσ-l-^P(T*ι be a Λ-isomor-
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phism defined by gσ(u(Γ®x®uσ-1)=x. Then gσ°hσ is a ^-isomorphism satisfying
gσohσ(ax)=σ~l(a)g(Γohσ(x) for all x^Pσ and a^L. For each σ^G, we define
the map g: Jσ = Pσ®LσLI-^Jσ

f-ι=^P(^ι®Lσ-lLI as follows: For x®auσ<=
Pσ®LσLI = P(T®LLuσ, g(x®auσ)=gσohσ(x)®σ~\a)u(Γ-1. It is easily checked
that g is well defined. Then the map g induces the /^-isomorphism of Σ 0 Jσ

σeέf

to Σ θ/σ', and satisfies g(χ®yά)= g(x®σ (ά)y) =g(σ(ά)x® y)= ag(x®y)&nά
σe<?

g(ax®y)=g(x®ay)=g(x®y)a for all x®y<=Pσ®LσLI=Jσ and

Now, we define the map /° y. J^®}?'-*}^' as follows:

x' for

Then/° τ is L-L-isomorphism. Because,

). similarly, /
for all x'®y'^Jσ'®Jτ', a<=L. Furthermore, /°={/",τ; σ, reG} is a factor set
related to Φ0=φ-1Φ0;

for

Therefore, Φ° and /° define a generalized crossed product Δ(/°, L, Φ°, G)=
Σ ®// of L and G. Since g(f^(x®y))=fΎ-ltσ-ί(g(y)®g(X)), for *® je/σ

σe<?

®/τ, ̂  is an opposite Λ-algebraisomorphism of Δ(/, L, Φ, G) to Δ(/°, L, Φ°, G).

3. Application to Brauer group. The purpose of this section is to derive
the seven terms exact sequence, using the results in §2. We define the maps

θ{ in the sequence

P(K) ^ P(L)G ^ H\G, L*) ίί B(L/k) ^ H\G, P(L)) ̂  /ί3(

in the following way: We suppose that L is a Galois extension of k with finite
Galois group G.

(1) θ,: H\G,L*)^P(k);

Let p^Z^G, L*). We define the new operation of element σ of G on L;
for σeG, Λ eL, σ*Λ:=p(σ) σ(Λ:). Under this operation, we may regard L as

Δ(L, G)-left module, then we denote L by PL. We put P0=pL
G={a^L; σ*a

= p ( σ ) σ(ά) = a for all σ^G} « HomΔCjL,G)(L, PL). Since LlD/ί is a Galois
extension, L is finitely generated projective generator as a Δ(L, G)-module, so
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we have pL^HomΔ(z, t&(L, pL)®kL. Since L^Dk is a finitely generated pro-

jective A-module, [P0]=[PL
G] is in P(k). We define the map θl by ^(p)=

[PQ]=[PL
G] for pζΞH\G,L*). It is well defined. Because, if p'=pQp for

poeβXG, Z,*), then there is α<ΞL* such that pQ(σ)=a~l σ(a) for all creG.

Then P0'=p'L
G={χζΞL'yx=a-lσ(a)p(σ)σ(x), for all σ eGHα^ pL0. Thus

PO'^PO as ^-module, therefore [P0'] = [P0] i
n

Lemma 2. Γλe map 0t: /Γ(G, L*)->P(&) w 0 monomorphism.

Proof. In order to show that #j is a homomorphism, it suffices to show that
for px, ρ2 in /Γ(G, L*), PιL

G®kp2L
G^Pιp2L

G as ^-module. It is easily seen that

PιL
G p2L

GCPιP2L
G. We consider the map η: PιL

G®kp2L
G-+ Plp2L

G defined by
η(x®y)=xy for x^PιL°, y<=p2L

G. Since PiL
G®kL^p.L

G L=PiL, for every

maximal ideal m of k, the localization (PιL
G)m, (p2L

G)m and (Pιp2L
G)m are rank 1

Λm-free module and generated by units in Lm. Therefore, (PιL
G)m= kmu19

(p2L
G)m = km u2 and (PιL

G p2L
G)m = (PlL

G)m - (p2L
G)m = km u, u2 c (Plp2^

G)m = kmu3.
Since u3=(u3U2luϊ1)ulu2 and w3wi"1Mf1eLm

G=Λm, we have (PιL
G p2L

G)m=
kmu1u2=kmu3=(PιP2L

G)my so rίm:pL
G

m®kmP2L
G

m-^PιP2L
G

m is a ^-isomorphism.
Accordingly, 97 is a ^-isomorphism, and so ^x is a homomorphism. Let

ρ<Ξ/Γ(G, L*) and ίι(p)=[PL
G] = [Λ], i.e. pL

G=k u where w is a. free base in PL
G,

and so u is a unit in L. Therefore, u=p(σ) σ(u) for every <τ£ΞG, i.e. p(cr)=
w σ (M)"1 so p is in Bl(G, L*). Accordingly, ^j is a monomorphism.

(2). 02

We put 02([Λ])=[£®*Λ] for [^o]eί)(^) Then Θ2 is a homorphism of
P(k) to P(L)G by Lemma 1 and Corollary 1.

θ θ
Lemma 3. H\G, L*)-lP(K)-ίP(L)G is exact.

Proof. For any p in H\G, L*), θ2θ1(p)=θ2([pL
G])=[pL

G®kL]=[pL] = [L]
in P(L). Let [P0] be in P(K) and [P0(g)ΛL]=[L], i.e. there is an L- isomorphism
hi L -> P0 ®^L. Since Hom*(P0 ®^L, P0 ®ΛL) « Hom^L, L) = Δ(L, G) =
2 ®Luσ, we can regard P®kL as a faithful Δ(L, G)-module by the isomor-

σe6?

phism A. Then Lz/σ is described as Jσ= {g^Homk(P®kL, P®feL); g a=
cr(a)g, for all a^L}. The ^-isomorphism σ=I®σ: P0®kL-*P0®kL is a
unit element in Hom^(P0(g)^L, PQξζ>kL) and is contained in /σ for each σ^G.
Therefore, there exists dσ in L* such that σ=d(Tuσ. for each σ^G. Then, the
map p: G-^L* defined by p(σ)=dσ is in Z^G, L*). Because, d(ΓΎ=σr u~^=

σ τu-I u~l=σ dτu~l=σu~lσ(dΊ.)=dσ. σ(dΊ). It follows that #ι(p) = [P£
G], and

?=p(σ) σ(Λ;), for all σ^G}^{y^P,®kL', y=p(σ) uσy]

all creG}=(P0®jfeL)/xG. Since LZD^ is a Galois extension, there is an element

C in L such that 2 σ(c)=l, therefore any element J = S
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so s con~
<7

tained in P0®JίL
G=P0®k=PQ. Accordingly, we have 0ι(p)=[P0]

(3). 0,:P{L)*-»H»(G,L*);

Let [P]<=P(L)G. By Corollary 1, there exists a factor set / related to Φ0,
i.e. /= p<ΞZ2(G, L*), such that Hom*(P,P) is L-isomrphic to Δ(/, L, Φ0, G)
= Δ(p, L, G) as Λ-algebra. We define the map <93: P(L)G-*H\G, L*) by

0a(DP]) = P for [P] e P(£)G. Then 03 is a homomorphism. Because, for

[P], [P']eP(L)G, we have Homjk(P,P)=Δ(p,L>G)=Σβθ//σ and Hom^P'^P')

=Δ(P', L, G)=Σ 0L// where p=0,([P]), p'^atfP']), and {/σ}σeG and

{//lo-ec are L-free basis in HomΛ(P, P) and Hom^P', P'), repsectively. Then
the ^-isomorphism fσ®fσ': P®LP'-^P®LPr defined by fσ®fσ'(x®y) =

f<r(x)®f<r'(y) for x®y^P®LP', (it is well defined), satisfies σ(ά) fσ®fσ'=

f*®fσ' a for all a in L and /σ®/ΛΛ® //=/>(*, τ)-p'(σ, )̂ /rr®/rr/ There-
fore, we can write Hom^Pίg^P', PO^P^-Δίp p', L, G) =

Accordingly, Θ3([P] [P'])=Θ3([P]) Θ3([P']).

A A
Lemma 4. P(k) -ί P(L)G -^ H\G,L*) is exact.

Proof. If [P0]eP(Λ) then 02([P0])=[P0ιg)feL] and HomΛ(P0®feL, P0

~ HomΛ(L, L)==Δ(L, G) and so 6>3(<92([P0])=1. Let [P]eP(L)G and 03([P])=1.

so HomΛ(P, P)«Δ(Z, G). By Lemma 1, there is [P0] in P(K), and P«P0®feL,

therefore <92([P0])=[P].

(4). θt:H\

B(L/k) denotes the Brauer group of fc-Azumaya algebras split by L.
Θ4: H\G, L*)-*B(Llk] is denned by θt (p) = [Δ(p, L, G)] in ^(L/Λ) for
ρe//2(G, L*), then ^4 is a homomorphism by [1], Theorem A. 12.

Λ Λ

Lemma 5. P(L)G^H\G, L*) -4 £(L/Λ) is exact.

Proof. Let [P]eP(L)G and Hom^P, P)«Δ(p, L, G). Then 040a([P])=
[Δ(p, L, G)]= [HomΛ(P, P)] = 1 in B(L/k). On the other hand, if p is an element
in H\Gy L*) such tha 04(ρ)=[Δ(p, L, G)] = [&], then there is a finitely generated
faithful projective ^-module P such that Δ(p, L, G)^HomΛ(P, P). By Proposi-

tion 5, [P]eP(L) and by Corollary 1 [P]eP(L)G, and so p=fl3([P])

(5). θs:B(Llk)-+H\G9P(L)) ,
For any [^4]eP(L//e), there is an Azumaya ^-algebra Λ in [A] such that

Λ contains L as maximal commutative subalgebra (cf. [1], Theorem 5. 7). By
Proposition 3, Λ is written by Δ(/, L, Φ, G) for some Φ and/, and then Φ=99Φ0.
for some φ in Z\G, P(L)). We put θ^([A])=φ. From the following lemma,
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it is shown that Θ5 defines the map B(Llk)^>H\G, P(L)).

Lemma 6. Let Φ=φΦ0 and Φ'=φ'ΦQ be elements in ($, and f and f
factor set related to Φ andΦ', respectively. If [Δ(/, L, Φ, G)]=[Δ(/', L, Φ', G)]
in B(L/k), then φfφ~λ is in B\G, P(L)).

Proof. If [Δ(/, L, Φ, G)] = [Δ(/', L, Φ', G)], then there is a finitely gene-
rated projective and faithful ^-module P such that

Hom,(P, P)«Δ(/', L, Φ', G)®AΔ(/, L, Φ,

= Δ(/, L, Φ', G)®,Δ(/°, L, Φ°, G)

, Φ'®Φ° Gx G) ,

where Φ/(σ)=[/σ

/], Φ°(σ)=[/σ1 and Φ'®Φ°(σ X τ)=[/σ'® ̂  in Pίck(L®kL\
and (/'®/\XTyxT'^/i/®/ry. Regarding P as L(g)^L-module, by Propo-
sition 5, [P]e>(L®AL) and (Φ(σ)(g) φ°(τ)) [P]= [P] (Φ0(σ)® Φ0(τ)) for
σ, τ<ΞΞG. Since &=φ'Φ^ φ0^^-^, we have ^/(σ)®9?-1(τ)=[P].([P]-1)ιrXτ

in P(L®kL). In particular, if one put Φ = ΦX, then obtain similarly

φ'(σ)-l®φ'(r)=[Q\.([Q}^γ^ for some [Q] mP(L®kL). From

= [PJ ([P]-1rxτ and ^/"1W®^)=[β] ([0] 1)σxτ, we obtain
= [P®L*kLθ\ ([P®L*kLQ\-Ύ*r We put [P]-[P®^^ρ] and [Pτ] =
φ'φ-\r)=φ'(τ) φ-\τ\ so we have [L®ΛPT] = [Λ] ([12]-1)σχτ. If one takes

τ=l, then from 9>V"1(1)=[PJ = [L], we have [L®jkL] = [Jf?] ([P]'1) σ x / and so
[JE?] = [P](TX/ for all σeG. Regarding L®kL as a Galois extension of L with
Galois groop Gx/, it is known that L®kL is a trivial Galois extension of L
with Galois group Gxl. From Remark 5, there is an element [R0] in P(L)
such that [Λ]=[(L®AL)®£/?0] = [L®ΛΛ0] in P(L®kL). Therefore, [L®APT]
= [L®kR0] ([L®kR0]-lyxτ

y and so it can be computed that L®kPΊ^
L®k(RQ®LΊLl®LR*®Ύ-lL^) as L(g)ΛL-module for every reG. Therefore,
L®kL®LP,τ^L®kL®L(RQ®LR^τ) as L(g)&L-moduoe. Since L®kL =

2 ®eσL is a trivial Galois extension of L, we have y1. ffig^L^ i- P

eσL®L(RQ®LR$τ) as L(g)^L = Σ^σL-modules, and so eσL®LPΊ^eσL®L

(RQ®LR$Ύ) as L(g)feL-module for each creG. On the other hand, eσ.L®LPΊ

and Pτ are L-isomorphic, and ^σ.L®z,(/?0®ι, R:oτ) and RQ®L^T are so

Therefore, we have PΊ^R0ξξ>LR*r as L-module for every reG, i.e. [Pτ] =
9>V"1(τ)=[/?0] ([/?0]-

1)τ in P(L) for every reG. Accordingly, ^V'1 ίs in

Lemma 7. H\G, L*)^ B(L/k) -ίHl(G, P(L)) is exact.

Proof. If p is in H\G, L*), then θ4(p)=[Δ(p, L, G)] = [Δ(p, L, Φ0, G)],
so ^6»4(jδ)=l. Let KJ=[Δ(/, L, Φ, G)]e5(L/A) and 6»5([J])=^=1. Since
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9 P(L)), there is [P] in P(L) and <p(<r)=[P]-([P]-*Y for all
Since HomAf(P,P) is an Azumaya Λ-algebra with maximal commutative sub-

algebra L, by Proposition 3 Hom^(P, P) is L-isomorphic to Δ(g. L, φ'Φ0, G) with
some φf and gy as ^-algebra. From Proposition 5, we have φ'(σ )Φ0(σ) [P] =

[P] Φ0(σ) for all σGΞG, and so φ'(σ)=[P] ([P]-lY=φ(<r) for all <reG, i.e.
φ=φ'. We put Φ=φφ0=φ'φ0. By Proposition 4, there exists an element p

in Z2(G, Z,*) such the f=pg. Since p®p-* is in B\Gx G, (L®&L)*) (cf. [1],
Proposition A. 11), by Proposition 4, Δ((p®p~1)(/®p)(£®/), L®kL, Φ®Φ0,
GxG) and Δ((/® p)(£®7), L®kL, Φ®Φ0, GxG) are L^^L-isomorphic

as ^-algebra. On the other hand,

, Φ®Φ0, GxG)

, L, Φ, G)®feΔ(/, L, Φ0, G) - Δ(/, L, Φ, G)®,Δ(L, G) ,

and Δ((/®p)(£®/), L®ΛL, Φ®Φ0, GxG)

«Δ(£, L, Φ, G)®feΔ(p, L, Φ0, G)-Homfe(P, P)®ΛΔ(p, L, G) .

Accordingly, [^]=[Δ(/, L, Φ, G)]=[Δ(p, L, G)]=fl4(p).

(6). 06;#XG,P(L))-#3(G,L*);

Let<peZ\G,P(L)). We put Φ-9>Φ0 and Φ(o ) = [/σ] for each

One takes a family {/σ τ;cr, reG} of L-L-isomorphism /σ τ: Jσ®LJr~*Jσr
Put ω(σyτyΎ)=fσr^o(fσ^I)o(I®f^)-1ofσ^

1 for each σ, r, γeΞG. Since

ω(σ, T, 7) is a unit in HomjL(/στY,/(ΓTγ)=L, we have a function ω: Gx Gx G->
L*; (cr, T, γ) Λ/V~> ω(σ, T, γ). We shall show that ω is in Z3(G, L*) i.e. δ(ω)=l

where δ is coboundary operator. Since δ(ω)(cr, T, <y, 6) is a unit in L,

δ(ω)(σ , T, 7, £)=! for every σ, r, 7, 6 in G, if and only if for any maximal ideal

m of L, the image of δ(ω)(σ, r, 7, 6) in Lm equals to 1 for every σ, T, 7, 6 in G.

But, if L is local, then, from that Jσ is a free L-module, there is a map p of
GxGtoL* such that ω=δ(p). Therefore, δ(ω)—δ2(p)— 1, i.e. δ(ω)(σ,τ,7,6)=l
for every cr, r, 7, 6 in G. Accordingly ω is in Z3(G, L*). For Φ in ©, if one

takes another family {/£.§τ; σ, reG}, then there is a map p: GxG->L* such
that/£.τ=p(cr, τ) /σ τ for every cr, r^G. Then, it is easily computed that

ωV, r, 7) =/^γo(/'

- σ(p(στ, 7)) p(σ

= δ(p)(cr, T, 7) ω(σ, T, 7).

If φ'=φ^φ for some c 0̂ in ^(G, L*), then there is [P]<=P(L) such that

: (P®LJσ®LP*)
identify, then we

can consider that ω(<r, T, 7) is in Homz/(P®z//(rτY®z/P
:ί:, P®I//(rτY®jLP*).

Therefore, a element ω in H3(G, L*) is determined by an element φ in
/Γ(G, L*). We can define the map 0β: T/^G, P(L))-*H3(G, L*) by Θ6(φ)=ω,
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for φ<=Hl(G, P(L)).

Θ5 Θ6Lemma 8. B(L/k) -4 H\G, P(L)) -ί H\Gy L*) is exact.

Proof. For φ in IΓ(G, P(L)), we put Φ = φΦQ and Φ(σ)=[/σ] for

. Then it is easily seen that Θ6(φ)=l if and only if there is a family

{f<ry.J<rJτ®L-*J<rr\ i-L-ίsomorphism, σ, reG} such that {/σ>τ; σ, reG} is a

factor set related to Φ. Therefore Θ6(φ)= 1 if and only if there is Δ[(/, L, Φ, G)]

in B(L/k) such that 05([Δ(/, L, Φ, G)])=φ.

We have obtained the following seven terms exact sequence.

Theorem (Chase, Harrison and Rosenberg).

θ θ θ θ
(1) - > H\G, L*) — ±> P(k) — % P(L)G — i » H\G,

5 6B(L/k) — -+ H\G, P(L)) —^ H\

is exact.

From Remark 5 and Therorm, we have

Corollary 2. If LID k is a trivial Galois extension, then

θ θ
(1) - > H\G, L*) — ̂  P(A) — % P(L)G - »• (1) and

/Ί /Ί Λ

(1) — -» /ί2(G, L*) — ί> B(L/k) — % ^X

exact.
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