ON GENERALIZED CROSSED PRODUCT AND BRAUER GROUP

Teruo KANZAKI

(Received July 3, 1968)

For a commutative ring L wich is a Galois extension of a ring k with Galois group G, Chase, Harrison, and Rosenberg, in [5] and [6] gave a seven terms exact sequence about cohomology groups of G and Brauer group B(L/k) of Azumaya k-algebras split by L, by using the generalized Amiztur cohomology and spectral sequence. In this paper, we give a generalization of the concept of crossed product, and for a commutative Galois extension L of a ring k with Galois group G, we study the generalized crossed product of the commutative ring L and the group G, and concerning the gorup of isomorphism classes of finitely generated projective rank 1 L-modules. Finally, as an application to Brauer group, using the generalized crossed product, we shall derive immediatly the "seven terms exact sequence theorem".

In §1, we define the generalized crossed product $\Delta(f, \Lambda, \Phi, G)$ of a k-algebra Λ and a group G with factor set f related to Φ , where Φ is a group homomorphism of G to the group of isomorphism classes of invertible Λ - Λ -bimodule (see [4], p. 76), and $f = \{f_{\sigma,\tau}; \sigma, \tau \in G\}$ is a family of isomorphisms of modules satisfying some commutative diagrams. In §2, we suppose that L is a commutative Galois extension of a ring k with fimite Galois group G. Then we shall show that $\Delta(f, L, \Phi, G)$ is an Azumaya k-algebra with a maximal commutative subring L can be written by $\Delta(f, L, \Phi, G)$ for some Φ and f. In §3. using the results of §2, we derive the seven termes exact sequence:

$$(1) \to H^1(G, L^*) \to P(k) \to P(L)^G \to H^2(G, L^*) \to B(L/k) \to H^1(G, P(L))$$
$$\to H^3(G, L^*) .$$

We suppose every ring has identity element and module is unital.

1. Generalized crossed product. Let k be a commutative ring with identity, Λ a k-algebra with identity. A Λ - Λ -bimodule P is called invertible if P is a finitely generated projective and generator (i.e. completely faithful by means of [3]) left Λ -module and Hom_{Λ}($_{\Lambda}P$, $_{\Lambda}P$) $\approx \Lambda^{\circ}$, where for $a \in k$ and $x \in P$,

ax=xa. Let $Pic_k(\Lambda)$ be the group of isomorphism classes [P] of invertible Λ - Λ -bimodules P with law of composition induced by tensor product over $\Lambda: [P] \cdot [Q] = [P \otimes_{\Lambda} Q]$, then $[P]^{-1} = [P^*]$ where $P^* = \operatorname{Hom}_{\Lambda}(P, \Lambda)$. We define the generalized crossed Product $\Delta(f, \Lambda, \Phi, G)$ of a k-algebra Λ and a group G with factor set $f = \{f_{\sigma,\tau}: \sigma, \tau \in G\}$ as follows: For given group G and k-algebra Λ , let $\Phi: G \to Pic_k(\Lambda)$ be a group homomorphism. Put $\Phi(\sigma) = [J_{\sigma}]$ for $\sigma \in G$. If $f = \{f_{\sigma,\tau}: \sigma, \tau \in G\}$ which is a family of Λ - Λ -isomorphisms $f_{\sigma,\tau}: J_{\sigma} \otimes_{\Lambda} J_{\tau} \to J_{\sigma\tau}, \sigma, \tau \in G$ satisfies the following commutative diagrams:

$$J_{\sigma} \otimes_{\Lambda} J_{\tau} \otimes_{\Lambda} J_{\gamma} \xrightarrow{I \otimes f_{\tau,\gamma}} J_{\sigma} \otimes_{\Lambda} J_{\tau\gamma} \\ \downarrow^{f_{\sigma,\tau} \otimes I} \qquad \qquad \downarrow^{f_{\sigma\tau,\gamma}} J_{\sigma\tau\gamma} \\ J_{\sigma\tau} \otimes_{\Lambda} J_{\gamma} \xrightarrow{f_{\sigma\tau,\gamma}} J_{\sigma\tau\gamma}$$

for every $\sigma, \tau, \gamma \in G$, then we call f to be factor set related to Φ . Put $\Delta(f, \Lambda, \Phi, G) = \sum_{\sigma \in G} \bigoplus J_{\sigma}$ as Λ - Λ -bimodule. When the multiplication of elements in $\Delta(f, \Lambda, \Phi, G)$ is defined by $x \cdot y = f_{\sigma,\tau}(x \otimes y)$ for $x \in J_{\sigma}, y \in J_{\tau}$, we call $\Delta(f, \Lambda, \Phi, G)$ a generalized crossed product of Λ and G with factor set f related to Φ .

Proposition 1. Let G be a group and Λ a k-algebra. For a homomorphism $\Phi: G \rightarrow Pic_k(\Lambda)$ and a factor set $f = \{f_{\sigma,\tau}; \sigma, \tau \in G\}$ related to Φ , generalized crossed product $\Delta(f, \Lambda, \Phi, G)$ is an associative k-algebra with identity element, and $\Delta(f, \Lambda, \Phi, G)$ contains a subring isomorphic to Λ , i.e. if $\Phi(\sigma) = [J_{\sigma}]$ for $\sigma \in G$, $J_1 \approx \Lambda$ as k-algebra and $\Lambda - \Lambda$ -bimodule.

Proof. Let $\Phi(\sigma) = [J_{\sigma}], \sigma \in G$. Since $f_{1,1}: J_1 \otimes_{\Lambda} J_1 \to J_1$ is Λ - Λ -isomorphism, J_1 is a subring of $\Delta(f, \Lambda, \Phi, G)$. Since $\Phi(1) = [\Lambda] = [J_1], J_1 \approx \Lambda$ as Λ - Λ -bimodules. There exists u in J_1 such that $J_1 = \Lambda u = u\Lambda$ and $\lambda u = u\lambda$ for all $\lambda \in \Lambda$. Since $f_{1,1}(J_1 \otimes J_1) = J_1$, we can write $f_{1,1}(u \otimes u) = cu$ for some c in Λ , then c is a unit in the center of Λ . If we put $e = c^{-1}u$, then $f_{1,1}(e \otimes e) = e$, so the map $\Lambda \to J_1: \lambda \to \lambda e$ is a ring isomorphism. Furthermore, e is identity of $\Delta(f, \Lambda, \Phi, G)$. Because, for any $x \in J_{\sigma}, \sigma \in G$, there is y in J_{σ} such that $x = f_{1,\sigma}(e \otimes y)$, and $f_{1,\sigma}(e \otimes x) = f_{1,\sigma}(e \otimes f_{1,\sigma}(e \otimes y)) = f_{1,\sigma}(f_{1,1}(e \otimes e) \otimes y) = f_{1,\sigma}(e \otimes y) = x$. Similarly, we have $f_{\sigma,1}(x \otimes e) = x$ for every $x \in J_{\sigma}, \sigma \in G$. Therefore, e is identity element of $\Delta(f, \Lambda, \Phi, G)$.

Now, in the following, we may regard $\Lambda = J_1$ in $\Delta(f, \Lambda, \Phi, G)$.

REMARK 1. Let Λ be a k-algebra and G a group. Let $\Phi: G \to Pic_k(\Lambda)$ be a homomorphism, and let the image of Φ consists of [P] in $Pic_k(\Lambda)$ such that P is left Λ -free module. Then for any factor set f related to Φ , $\Delta(f, \Lambda, \Phi, G)$ coincides with an ordinary crossed product $\Delta(\rho, \Lambda, G)$ with a factor set ρ contained in $Z^{2}(G, \Lambda^{*})$, where Λ^{*} is the multiplicative group of unit in Λ .

REMARK 2. In Remark 1, in particular, let $\Phi(G)=(1)$, so $\Delta(f, \Lambda, \Phi, G)$ is an ordinary group ring of Λ and G with a factor set in $z^2(G, C^*)$, where C^* is the group of units in the center of Λ .

REMARK 3. Let $\Lambda \supset k$ be a central Galois extension with finite Galois group G (cf. [9]). Then there exists a homomorphism $\Phi: G \rightarrow Pic_k(k)$ and a factor set f related to Φ such that $\Delta(f, k, \Phi, G) \approx \Lambda$ as k-algebras (see [9]).

2. Generalized crossed product for a Galois extension

Let L be a commutative k-algebra with identity, $Aut_k(L)$ the group of all k-algebra automorphisms of L. Then we have the homomorphism $\Psi: Pic_k(L) \rightarrow Aut_k(L)$ defined by $\Psi([P]) = \sigma_P$ for $[P] \in Pic_k(L)$, where σ_P is defined by $\sigma_P(a)x = xa$ for all $a \in L$, $x \in P$ (cf. [4], p. 80). We put $Pic_L(L) = P(L)$. Then for $[P] \in P(L)$, P is regarded as new L-L-bimodule by new operation * defined by $a*x = \sigma^{-1}(a)x = x\sigma^{-1}(a)$ and x*a = xa (or a*x = ax, $x*a = x\sigma^{-1}(a) = \sigma^{-1}(a)x$) for all $a \in L$ and $x \in P$. We denote it by ${}_{\sigma}P_I$ (or ${}_{I}P_{\sigma}$). If $[P] \in P(L)$ and $\sigma \in Aut_k(L)$, then $[{}_{\sigma}P_I]$ is in $Pic_k(L)$ and $\Psi([{}_{\sigma}P_I]) = \sigma$. Since the map $\Phi_0: Aut_k(L) \rightarrow Pic_k(L)$ defined by $\Phi_0(\sigma) = [{}_{\sigma}L_I]$ is a homorphism and satisfies $\Psi \circ \Phi_0 = I_{Aut_k(L)}$, we have the following right split exact sequence;

$$(1) \to P(L) \to Pic_k(L) \to Aut_k(L) \to (1), \qquad (cf. [4], p. 80).$$

Now, we assume that $L \supset k$ is a Galois extension with finite Galois group G. Then $G \subset Aut_{k}(L)$. Since P(L) is an abelian and normal subgroup of $Pic_{k}(L)$, for each $\sigma \in G$, σ defines the automorphism of P(L) by $[P]^{\sigma} = [{}_{\sigma}L_{I}] \cdot [P] \cdot [{}_{\sigma}L_{I}]^{-1}$. If we put $P^{\sigma} = {}_{\sigma}L_I \otimes {}_{L}P \otimes {}_{L^{\sigma^{-1}}L_I}$, $[P^{\sigma}] = [P]^{\sigma}$ in P(L) for $\sigma \in G$. Let \otimes be the set of all homomorphisms $\Phi: G \to Pic_k(L)$ such that $\Psi \circ \Phi = I_G$. Since $\Phi_0 \in \mathfrak{G}$, each Φ in \mathfrak{G} determines a function φ of G into P(L) such that $\Phi(\sigma) = \varphi(\sigma) \cdot \Phi_0(\sigma)$ for all $\sigma \in G$. Using Φ and Φ_0 to be group homomorphisms, we can easily check that $\varphi(\sigma\tau) = \varphi(\sigma) \cdot \varphi(\tau)^{\sigma}$ for every $\sigma, \tau \in G$. This means that φ is contained in 1-cocycle group $Z^{1}(G, P(L))$. Conversely, for any φ in $Z^{1}(G, P(L))$, putting $\Phi = \varphi \Phi_0$, i.e. $\Phi(\sigma) = \varphi(\sigma) \cdot \Phi_0(\sigma)$ for all $\sigma \in G$, we see that Φ is a group homomorphism of G into $Pic_{\mathbf{k}}(L)$ and Φ is in \mathfrak{G} . Therefore, between \mathfrak{G} and $Z^{1}(G, P(L))$ there exists the one to one correspondence $\Phi = \varphi \Phi_{0} \leftrightarrow \varphi$. For $\Phi = \varphi \Phi_0$ and $\Phi' = \varphi' \Phi_0$ in \mathfrak{G} , we denote $(\varphi \cdot \varphi') \Phi_0$ by $\Phi \cdot \Phi'$. Then under this multiplication in \mathfrak{G} , \mathfrak{G} is isomorphic to $Z^1(G, P(L))$.

REMARK 4. For any factor set f related to Φ_0 , by Remark 1 $\Delta(f, L, \Phi_0, G)$ is an ordinary crossed product $\Delta(\rho, L, G)$ with a factor set ρ in $Z^2(G, L^*)$, i.e. $\Phi_0(\sigma) = [{}_{\sigma}L_I]$ and it has some L-free base $\{u_{\sigma}; \sigma \in G\}$ such that ${}_{\sigma}L_I = Lu_{\sigma}, \sigma(x)u_{\sigma}$ $= u_{\sigma}x$ for all $x \in L$ and $u_{\sigma}u_{\tau} = \rho(\sigma, \tau)u_{\sigma\tau}$.

Proposition 2. Let $L \supset k$ be a Galois extension with Galois group G. For any $\Phi \in \mathfrak{G}$ such that there is a fator set f rerated to $\Phi, \Delta(f, L, \Phi, G)$ is an Azumaya k-algebra (i.e. central separable), with maximal commutative subalgebra L.

Proof. We put $\Delta = \Delta(f, L, \Phi, G) = \sum_{\sigma \in \Theta} \oplus J_{\sigma}$, where $[J_{\sigma}] = \Phi(\sigma), \sigma \in G$. At first, we shall show that $L=J_1$ is a maximal commutative subring of $\Delta(f, L, \Phi, G)$. The commutor ring $V_{\Delta}(L)$ of L in Δ contains L. On the other hand, if z is in $V_{\Delta}(L)$, then z can be written as $z = \sum_{\sigma \in G} z_{\sigma}$ for some z_{σ} in J_{σ} , and so $\sum_{\sigma \in G} a z_{\sigma} = a z$ $=za = \sum_{\sigma \in \sigma} z_{\sigma}a = \sum_{\sigma \in \sigma} \sigma(a)z_{\sigma}$, for all $a \in L$. Therefore, we have $az_{\sigma} = \sigma(a)z_{\sigma}$ for every $a \in L$ and $\sigma \in G$. But, since $L \supset k$ is Galois extension, there exist a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n in L such that $\sum_{i=1}^n a_i \sigma(b_i) = \begin{cases} 1, \sigma = I \\ 0, \sigma \neq I \end{cases}$. Accordingly, $z_\sigma = \sum_i a_i b_i z_\sigma = \sum_i a_i a_i z_\sigma = \sum_i a_i a_i z_\sigma = \sum_i a_i a_i z_\sigma = \sum_i a_i a_i$ $\sum a_i \sigma(b_i) z_{\sigma} = 0$ for $\sigma \neq I$. Therefore, we have $z \in J_I = L$ and $V_{\Delta}(L) = L$. In other words, L is a maximal commutative subalgebra of $\Delta(f, L, \Phi, G)$. Secondly, we shall show that k is the center of $\Delta(f, L, \Phi, G)$. Since $V_{\Delta}(\Delta) \subset$ $V_{\Delta}(L) = L$, for any $a \in V_{\Delta}(\Delta)$, we have $ax = \sigma(a)x$ for every $x \in J_{\sigma}$ and every $\sigma \in G$. Since J_{σ} is faithful L-module, $a = \sigma(a)$ for every $\sigma \in G$, therefore $a \in L^G = k$. Accordingly, k is the center of Δ . Finally, we shall show that $\Delta(f, L, \Phi, G)$ is separable over k. Since Δ is a finitely generated projective k-module, by [7], Proposition 1.1 Δ is separable over k if and only if $\Delta \otimes_k k_m$ is separable over $k_{\rm m}$ for all maximal ideal m of k. Therefore, we may work with $\Delta(f_{\mathfrak{m}}, L_{\mathfrak{m}}, \Phi_{\mathfrak{m}}, G) = \Delta \otimes_{k} k_{\mathfrak{m}}$, i.e. we may assume that k is local, so L is semi-local. Then every finitely generated rank 1 projective L-module is free, so Φ coincides with Φ_0 . Therefore, $\Delta(f, L, \Phi_0, G)$ is an ordinary crossed product, hence by [1], Theorem A. 12, $\Delta(f, L, \Phi, G)$ is separable over k. This completes the proof.

Proposition 3. Let $L \supset k$ be a Galois extension with Calois group G, and let Λ be an Azumaya k-algebra containing L as a maximal commutative subalgebra. Then Λ is L-isomorphic to a generalized crossed product of L and G with some $\Phi \in \mathfrak{S}$ and some factor set f related to Φ , as k-algebra.

Proof. For each $\sigma \in G$, we put $J_{\sigma} =_{\sigma^{-1}} \Lambda_I^L = \{a \in \Lambda; \sigma(x)a = ax, \text{ for all } x \in L\}$, then, regarding Λ and $_{\sigma^{-1}}\Lambda_I$ as $L \otimes_k \Lambda^0$ -left module, $J_{\sigma} \approx \operatorname{Hom}_{L \otimes_k \Lambda^0}(\Lambda, _{\sigma^{-1}}\Lambda_I)$. Since Λ is a faithful $L \otimes_k \Lambda^0$ -left module and $L \otimes_k \Lambda^0$ is a separable k-algebra, it follows from [8], Theorem 1 that Λ is finitely generated projective generator as an $L \otimes_k \Lambda^0$ -left module, and $\operatorname{Hom}_{L \otimes_k \Lambda^0}(\Lambda, \Lambda) = L$. Accordingly, we have $J_{\sigma} \otimes_L \Lambda \approx \operatorname{Hom}_{L \otimes_k \Lambda^0}(\Lambda, _{\sigma^{-1}}\Lambda_I) \otimes_L \Lambda \approx_{\sigma^{-1}}\Lambda_I$ as left L- and right Λ -modules. Therefore, we obtain $[J_{\sigma}] \in P_{ick}(L)$ and $J_{\sigma}\Lambda = \Lambda$. Using the inclusion map $J_{\sigma} \to \Lambda$, we define the L-L-homomorphism $\theta: \sum_{\sigma \in G} \oplus J_{\sigma} \to \Lambda; \ \theta(\sum_{\sigma \in G} x_{\sigma}) = \sum x_{\sigma}$ in Λ , for $x_{\sigma} \in J_{\sigma}$. In order to show that θ is an isomorphism it suffices to show that for

every maximal ideal m of k, the localized map $\theta_{\mathrm{m}}: \sum \bigoplus (J_{\sigma})_{\mathrm{m}} \to \Lambda_{\mathrm{m}}$ is isomorphism. Therefore, we may suppose that k is a local ring, so L is a semi-local ring. Then J_{σ} is a free L-module of rank 1; there is u_{σ} in J_{σ} such that $J_{\sigma}=u_{\sigma}L=Lu_{\sigma}$. Since $\Lambda=u_{\sigma}\Lambda$, and $u_{\sigma}\Lambda$ is Λ -free, u_{σ} is a unit in Λ , and σ is extended to an inner automorphism induced by u_{σ} . Therefore, we obtain from [1], Theorem A. 13 that Λ is isomorphic to an ordinary crossed product $\Delta(\rho, \Lambda, G)=\sum_{\sigma\in\sigma}\oplus\Lambda u_{\sigma}$. Consequently, θ is an isomorphism. Since $J_{\sigma}\cdot J_{\tau}\subset J_{\sigma\tau}$ and for every maximal ideal m of k $(J_{\sigma}J_{\tau})_{\mathrm{m}}=(J_{\sigma})_{\mathrm{m}}(J_{\tau})_{\mathrm{m}}=(J_{\sigma\tau})_{\mathrm{m}}$, we obtain $J_{\sigma}\otimes_{L}J_{\tau}\approx J_{\sigma}J_{\tau}=J_{\sigma\tau}$. If we define $\Phi: G \to \operatorname{Pic}_{k}(L)$ by $\Phi(\sigma)=[J_{\sigma}]$ for each $\sigma\in G$, and $f_{\sigma,\tau}: J_{\sigma}\otimes_{L}J_{\tau} \to J_{\sigma\tau}$ by $f_{\sigma,\tau}(x\otimes y)=xy$ for each $\sigma, \tau\in G$, then Φ is in \mathfrak{G} and $f=\{f_{\sigma,\tau}; \sigma, \tau\in G\}$ is a factor set related to Φ , and we obtain that Λ and $\Delta(f, L, \Phi, G)$ are k-algebra isomorphic and L-isomorphic.

Proposition 4. Let $L \supset k$ be a Galois extension with Galois group G, and let Φ be an element in \mathfrak{G} . If $f = \{f_{\sigma,\tau}; \sigma, \tau \in G\}$ and $g = \{g_{\sigma,\tau}; \sigma, \tau \in G\}$ are factor sets related to Φ , then there is a cocycle ρ in $Z^2(G, L^*)$ such that $g = \rho f$, i.e. $g_{\sigma,\tau}(x \otimes y) = \rho(\sigma, \rho) \cdot f_{\sigma,\tau}(x \otimes y)$ for $x \otimes y \in J_{\sigma} \otimes_L J_{\tau}, \sigma, \tau \in G$, where L^* is a multiplicative group of units in L, and $\Phi(\sigma) = [J_{\sigma}]$ for $\sigma \in G$. Furthermore, $\Delta(f, L, \Phi, G)$ is L-isomorphic to $\Delta(\rho f, L, \Phi, G)$ as k-algebra if and only if ρ is in $B^2(G, L^*)$.

Proof. Let $\Phi(\sigma) = [J_{\sigma}]$, $\sigma \in G$. Since $f_{\sigma,\tau}$ and $g_{\sigma,\tau}$ are isomorphisms of $J_{\sigma} \otimes_L J_{\tau}$ to $J_{\sigma\tau}$ for $\sigma, \tau \in G$, $g_{\sigma,\tau} \circ f_{\tau,\sigma}^{-1}$ is an automorphism of $J_{\sigma\tau}$, so there exists a unit $\rho(\sigma, \tau)$ in $\operatorname{Hom}_L(J_{\sigma\tau}, J_{\sigma\tau}) = L$ such that $g_{\sigma,\tau}(x \otimes y) = \rho(\sigma, \tau) \cdot f_{\sigma,\tau}(x \otimes y)$ for every $x \otimes y \in J_{\sigma} \otimes_L J_{\tau}$. Since f and g are factor set related to Φ , we can check easily that ρ is in $Z^2(G, L^*)$. We write $g = \rho f$. If $h: \Delta(f, L, \Phi, G) \to \Delta(\rho f, L, \Phi, G)$ is a L-isomorphism as k-algebra, then $h(J_{\sigma}) = J_{\sigma}$ for each $\sigma \in G$. Because for any $x \in J_{\sigma}$, one can write $h(x) = \sum_{\tau \in \sigma} z_{\tau}$ for z_{τ} in J_{τ} , so

$$\sum_{ au\in \mathcal{G}} au(a)z_{ au}=\sum_{ au}z_{ au}a=h(x)a=h(\sigma(a)x)=\sigma(a)h(x)=\sum_{ au\in \mathcal{G}}\sigma(a)z_{ au}$$
 .

Therefore, $\tau(a)z_{\tau} = \sigma(a)z_{\tau}$ for all $a \in L$ and each $\tau \in G$. If we take a_1, a_2, \dots, a_n , b_1, b_2, \dots, b_n in L such that $\sum_i a_i \gamma(b_i) = \begin{cases} 1; \ \gamma = I \\ 0; \ \gamma \neq I, \end{cases} \gamma \in G$, then $z_{\tau} = \sum_i a_i b_i z_{\tau} = \sum_i \tau(a_i) \sigma(b_i) z_{\tau} = \tau(\sum_i a_i \tau^{-1} \sigma(b_i)) z_{\tau} = 0$ for $\tau \neq \sigma$. Thus we have $h(x) \in J_{\sigma}$. Therefore $h(J_{\sigma}) = J_{\sigma}$ and so, for each $\sigma \in G$, the isomorphism hdetermises the element d_{σ} in L^* such that $h(x) = d_{\sigma}x$ for all $x \in J_{\sigma}$. Since h is L-isomorphism, $d_I = 1$. Since h is ring-isomorphism, $h(f_{\sigma,\tau}(x \otimes y)) = d_{\sigma,\tau} \cdot f_{\sigma,\tau}(x \otimes y) = \rho(\sigma, \tau) \cdot f_{\sigma,\tau}(h(x), h(y)) = \rho(\sigma, \tau) \cdot d_{\sigma} \cdot \sigma(d_{\tau}) f_{\sigma,\tau}(x \otimes y)$ for all $x \otimes y$ $\in J_{\sigma} \otimes J_{\tau}$. Accordingly, $\rho(\sigma, \tau) = d_{\sigma\tau} \cdot d_{\sigma}^{-1} \cdot \sigma(d_{\tau})^{-1}$ for $\sigma, \tau \in G$, hence ρ is in $B^2(G, L^*)$. Conversely, if ρ is in $B^2(G, L^*)$, there exists $\{d_{\sigma}; \sigma \in G\}$ in L^* such that $\rho(\sigma, \tau) = d_{\sigma\tau} \cdot d_{\sigma}^{-1} \cdot \sigma(d_{\tau})^{-1}$ for $\sigma, \tau \in G$. If one take $d_I = 1$, the map

 $h: \Delta(f, L, \Phi, G) = \sum_{\sigma \in G} \bigoplus J_{\sigma} \to \Delta(\rho f, L, \Phi, G) = \sum_{\sigma \in G} \bigoplus J_{\sigma}$ defined by $h(x) = d_{\sigma}x$ for $x \in J_{\sigma}$ and $\sigma \in G$, is *L*-isomorphism as *k*-algebra.

Lemma 1. Let $L \supset k$ be a Galois extension with Galois group G, [P] an element of P(L). Then the following conditions are equivalent;

1) Hom_k(P, P) is L-isomorphic to $\Delta(L, G)$ as k-algebra, where $\Delta(L, G)$ means the ordinary crossed product with trivial factor set.

2) There is an element $[P_0]$ in P(k) such that $[P] = [P_0 \otimes_k L]$ in P(L).

Proof. 1) \rightarrow 2); Since *L* is a Galois extension of *k*, *L* is finitely generated projective generator as a $\Delta(L, G)$ -module, and $\operatorname{Hom}_{\Delta(L,G)}(L, L) = k$. Regarding *P* as $\Delta(L, G)$ -module, we have $P \approx \operatorname{Hom}_{\Delta(L,G)}(L, P) \otimes_{k} L$. Since *P* is a finitely generated projective *L*-module of rank 1, $P_0 = \operatorname{Hom}_{\Delta(L,G)}(L, P)$ is a finitely generated projective *k*-module of rank 1, so $[P_0] \in P(k)$ and $[P_0 \otimes_k L] = [P]$.

2) \rightarrow 1); If $[P_0] \in P(k)$ and $[P] = [P_0 \otimes_k L]$, then $\operatorname{Hom}_k(P, P) \approx \operatorname{Hom}_k(P_0 \otimes_k L, P_0 \otimes_k L) \approx \operatorname{Hom}_k(P_0, P_0) \otimes_k \operatorname{Hom}_k(L, L) \approx k \otimes_k \Delta(L, G) \approx \Delta(L, G)$ as *L*-modules and *k*-algebras.

REMRAK 5. Let $L \supset k$ be a trivial Galois extension with Galois group G, i.e. $L = \sum_{\sigma \in G} \bigoplus ke_{\sigma}, \sum_{\sigma} e_{\sigma} = 1, e_{\sigma} \cdot e_{\tau} = \begin{cases} e_{\sigma}; \sigma = \tau \\ 0; \sigma \neq \tau \end{cases}$ and $\sigma(e_1) = e_{\sigma}, ke_{\sigma} \approx k$ as k-algebra, for $\sigma \in G$. Then $P(L)^G = Im(P(k) \rightarrow P(L))$ where $P(k) \rightarrow P(L)$ is defined by $[P_0] \longrightarrow [P_0 \otimes_k L]$, and $P(L)^G = \{[P] \in P[L]; [P]^{\sigma} = [P] \text{ forall } \sigma \in G\}$.

Proof. Let $[P] \in P(L)^G$, so ${}_{\sigma}L_I \otimes {}_{L}P \approx P \otimes_{L_{\sigma}}L_I$ as *L*-*L*-bimodule, for all $\sigma \in G$. Since $L = \sum_{\sigma \in G} \oplus e_{\sigma}k$, we have $P = \sum_{\sigma \in G} \oplus e_{\sigma}P$. Then $e_{\sigma}P$ and $e_{\tau}P$ are *k*-isomorphic for every $\sigma, \tau \in G$. Because, from the *L*-*L*-isomorphism $h_{\sigma}: {}_{\sigma}L_I \otimes_L P = \sum_{\tau \in G} \oplus \sigma(e_{\tau})_{\sigma}L_I \otimes_L P \to P \otimes_{L_{\sigma}}L_I = \sum_{\tau \in G} \oplus e_{\tau}P \otimes_{L_{\sigma}}L_I$, we obtain the *L*-*L*-isomorphism $\sigma(e_{\tau})_{\sigma}L_I \otimes_L P = {}_{\sigma}L_I \otimes_L e_{\tau}P \to e_{\sigma\tau}P \otimes_{L_{\sigma}}L_I$, for each σ and τ in *G*. Since ${}_{\sigma}L_I \otimes_L e_{\tau}P$ and $e_{\tau}P$ are *k*-isomorphic, therefore $e_{\tau}P$ and $e_{\sigma\tau}P$ are *k*-isomorphic for every $\sigma, \tau \in G$. Since $[P] \in P(L), P = \sum_{\sigma \in G} \oplus e_{\sigma}P$ and $(e_1P)_{\mathfrak{m}} \approx (e_{\sigma}P)_{\mathfrak{m}}$ for all maximal ideal *m* of *k*, we obtain $[e_1P] \in P(k)$. Now, we shall show $L \otimes_k e_1 P \approx P$ as *L*-module. Let h_{σ}' be the *k*-isomorphism of $e_{\sigma}P$ to e_1P obtained above, for each $\sigma \in G$. We defined the map $h: P \to L \otimes_k e_1 P = \sum_{\sigma \in G} \oplus e_{\sigma} k \otimes_k e_1P$ by $h(x) = \sum_{\sigma \in G} e_{\sigma} \otimes h_{\sigma}'(e_{\sigma}x)$. Then $h(e_{\tau}x) = \sum_{\sigma \in G} e_{\sigma} \otimes h_{\sigma}'(e_{\sigma}e_{\tau}x) = e_{\tau} \otimes h_{\tau}'(e_{\tau}x) = e_{\tau} (\sum_{\sigma \in G} e_{\sigma} \otimes h_{\sigma}'(e_{\sigma}x)) = e_{\tau}h(x)$, therefore *h* is *L*-isomorphism. We obtain $[e_1P] \in P(k)$ and $[P] = [L \otimes_k e_1P]$.

Proposition 5. Let $L \supset k$ be a Galois extension with Galois group G. Let Φ be an element in \otimes such that there exists a factor set f related to Φ and there is

a finitely generated faithful projective k-module P which satisfies $\Delta(f, L, \Phi, G) \approx \text{Hom}_k(P, P)$ as k-algebras. Then, 1) [P] is in P(L), 2) we have $\Phi(\sigma) \cdot [P] = [P] \cdot \Phi_0(\sigma)$ for all $\sigma \in G$ i.e. $\Phi = \varphi \cdot \Phi_0$ and $\varphi(\sigma) = [P] \cdot ([P]^{-1})^{\sigma}$ for all $\sigma \in G$.

Proof. Since L is a maximal commutative subalgebra of $\Delta(f, L, \Phi, G)$, regarding P as L-module, $L = V_{\text{Hom}_k(P,P)}(L) = \text{Hom}_L(P, P)$. Since L is separable over k, P is a finitely generated projective L-module, so [P] is contained in P(L). We put $\Phi(\sigma) = [I_{\sigma}]$ for $\sigma \in G$. Then from the proof of Proposition 3 we obtain $J_{\sigma} = {}_{\sigma}^{-1}(\operatorname{Hom}_{k}(P, P))_{I}^{L} = \{f \in \operatorname{Hom}_{k}(P, P); \sigma(a)f(x) = f(ax) \text{ for all } f(x) = f(ax) \}$ $x \in P, a \in L$. We shall show the map θ ; $_{\sigma^{-1}}(\operatorname{Hom}_{k}(P, P))_{I} \otimes_{L} P \to P \otimes_{L} {}_{\sigma}L_{I}$ $=P\otimes Lu_{\sigma}$, defined by $\theta(f\otimes x)=f(x)\otimes u_{\sigma}$, is an L-L-isomorphism, where u_{σ} is a base of ${}_{\sigma}L_{I}$. Since $\theta(f \otimes xa) = f(xa) \otimes u_{\sigma} = f(ax) \otimes u_{\sigma} = \sigma(a)f(x) \otimes u_{\sigma} = f(x) \otimes \sigma(a)u_{\sigma}$ $=f(x)\otimes u_{\sigma}a$ and $\theta(af\otimes x)=af(x)\otimes u_{\sigma}$ for $a\in L$, $x\in P$, so θ is a L-L-homomorphism. In order to show that is θ isomorphism, it suffices to show that for every maximal ideal \mathfrak{m} of $k \, \theta_{\mathfrak{m}} : (_{\sigma^{-1}}(\operatorname{Hom}_{k}(P, P))_{I} \otimes_{L} P)_{\mathfrak{m}} \to (P \otimes_{L} \sigma L_{I})_{\mathfrak{m}}$ is an isomorphism. But, $L_{\mathfrak{m}} = L \otimes_{k} k_{\mathfrak{m}}$ is semi-local and $({}_{\sigma^{-1}}(\operatorname{Hom}_{k}(P, P))_{I})_{I} = L \otimes_{k} k_{\mathfrak{m}}$ $_{\sigma^{-1}}(\operatorname{Hom}_{k_{\mathfrak{m}}}(P_{\mathfrak{m}}, P_{\mathfrak{m}}))_{I^{\mathfrak{l}_{\mathfrak{m}}}}$ is free $L_{\mathfrak{m}}$ -module generated by a unit f in $\operatorname{Hom}_{k_{\mathfrak{m}}}(P_{\mathfrak{m}}, P_{\mathfrak{m}})$ $P_{\mathfrak{m}}$). Therefore $\theta_{\mathfrak{m}}$ is a homomorphism of $L_{\mathfrak{m}}f \otimes_{L_{\mathfrak{m}}} P_{\mathfrak{m}}$ to $P_{\mathfrak{m}} \otimes_{L_{\mathfrak{m}}} L_{\mathfrak{m}} u_{\sigma}$ defined by $\theta_{\mathfrak{m}}(f \otimes x) = f(x) \otimes u_{\sigma}$. Since f is an automorphism of $P_{\mathfrak{m}}$, we obtain that $\theta_{\mathfrak{m}}$ is isomorphism. Thus, we obtain $J_{\sigma} \otimes_L P \approx P \otimes_L {}_{\sigma} L_I$, so $\Phi(\sigma) \cdot [P] = [P] \cdot \Phi_0(\sigma)$, $\sigma \in G$.

Corollary 1. Let $L \supset k$ be a Galois extension with Galois group G, and [P] an elemant of P(L). Then $\operatorname{Hom}_k(P, P)$ is L-isomorphic to a generalized crossed product $\Delta(f, L, \Phi_0, G)$ of L and G with some factor set f related to Φ_0 as k-algebra, if and only if [P] is contained in $P(L)^G$.

Proof. If $\operatorname{Hom}_{k}(P, P) \approx \Delta(f, L, \Phi_{0}, G)$, then by Proposition 5, 2) we obtain $[P] = [P]^{\sigma}$ for all $\sigma \in G$, so $[P] \in P(L)^{G}$. Conversely, let $[P] \in P(L)^{G}$. Since $\operatorname{Hom}_{k}(P, P)$ is an Azumaya k-algebra with maximal commutative subalgebra L, $\operatorname{Hom}_{k}(P, P)$ is written by $\Delta(f, L, \Phi, G)$ for some Φ and f. Therefore, by Proposition 5, 2) we have $\Phi(\sigma) \cdot [P] = [P] \Phi_{0}(\sigma)$ and so $[P]^{\sigma} \Phi(\sigma) = [P] \Phi_{0}(\sigma)$. Accordingly $\Phi(\sigma) = \Phi_{0}(\sigma)$ for all $\sigma \in G$, i.e. $\Phi = \Phi_{0}$.

Proposition 6. Let $L \supset k$ be a Galois extension with Galois group G. For any $\Phi = \varphi \Phi_0 \in \mathfrak{S}$ with some factor set f related to Φ , $\Delta(f, L, \Phi, G)$ has an opposite k-algebra $\Delta(f, L, \Phi, G)^0 = \Delta(f^0, L, \Phi^0, G)$ where $\Phi^0 = \varphi^{-1} \Phi_0$ and f^0 is some factor set related to Φ^0 .

Proof. Put $\Phi(\sigma) = [J_{\sigma}], \varphi(\sigma) = [P_{\sigma}] \text{ and } \Phi^{0}(\sigma) = \varphi(\sigma)^{-1} \cdot \Phi_{0}(\sigma) = [P_{\sigma}^{*} \otimes_{L_{\sigma}} L_{I}]$ $= [J_{\sigma}'] \text{ for } \sigma \in G, \text{ where } P_{\sigma}^{*} = \text{Hom}_{L}(P_{\sigma}, L). \text{ Since } 1 = \varphi(1) = \varphi(\sigma\sigma^{-1}) = \varphi(\sigma) \cdot \varphi(\sigma^{-1})^{\sigma}, \text{ we have } [P_{\sigma}] = \varphi(\sigma) = (\varphi(\sigma^{-1})^{-1})^{\sigma} = [P_{\sigma}^{*}_{1}]^{\sigma}. \text{ Thus } P_{\sigma} \text{ and } (P_{\sigma}^{*}_{1})^{\sigma} = {}_{\sigma}L_{I} \otimes_{L} P_{\sigma}^{*}_{1} \otimes_{L_{\sigma}} - {}_{1}L_{I} \text{ are } L\text{-}L\text{-isomorphic. Let } h_{\sigma} : P_{\sigma} \to (P_{\sigma}^{*}_{1})^{\sigma} \text{ be the } L\text{-}L\text{-} \text{isomorphism, and let } g_{\sigma} : (P_{\sigma}^{*}_{1})^{\sigma} = Lu_{\sigma} \otimes_{L} P_{\sigma}^{*}_{1} \otimes_{L} Lu_{\sigma^{-1}} \to P_{\sigma}^{*}_{1} \text{ be a } k\text{-isomorphic}$

phism defined by $g_{\sigma}(u_{\sigma}\otimes x\otimes u_{\sigma^{-1}})=x$. Then $g_{\sigma}\circ h_{\sigma}$ is a k-isomorphism satisfying $g_{\sigma}\circ h_{\sigma}(ax)=\sigma^{-1}(a)g_{\sigma}\circ h_{\sigma}(x)$ for all $x\in P_{\sigma}$ and $a\in L$. For each $\sigma\in G$, we define the map $g: J_{\sigma}=P_{\sigma}\otimes_{L_{\sigma}}L_{I}\rightarrow J_{\sigma^{-1}}=P_{\sigma^{\pm 1}}\otimes_{L_{\sigma^{-1}}}L_{I}$ as follows: For $x\otimes au_{\sigma}\in P_{\sigma}\otimes_{L_{\sigma}}L_{I}=P_{\sigma}\otimes_{L}Lu_{\sigma}$, $g(x\otimes au_{\sigma})=g_{\sigma}\circ h_{\sigma}(x)\otimes \sigma^{-1}(a)u_{\sigma^{-1}}$. It is easily checked that g is well defined. Then the map g induces the k-isomorphism of $\sum_{\sigma\in\sigma}\oplus J_{\sigma}$ to $\sum_{\sigma\in\sigma}\oplus J_{\sigma}'$, and satisfies $g(x\otimes ya)=g(x\otimes \sigma(a)y)=g(\sigma(a)x\otimes y)=ag(x\otimes y)$ and $g(ax\otimes y)=g(x\otimes ay)=g(x\otimes y)a$ for all $x\otimes y\in P_{\sigma}\otimes_{L_{\sigma}}L_{I}=J_{\sigma}$ and $a\in L$. Now, we define the map $f_{\sigma,\tau}^{0}: J_{\sigma}'\otimes J_{\tau}'\rightarrow J_{\sigma\tau}'$ as follows:

$$f^{0}_{\sigma,\tau}(x'\otimes y') = g(f_{\tau^{-1}\sigma^{-1}}(g^{-1}(y')\otimes g^{-1}(x'))) \quad \text{for} \quad x'\otimes y' \in J_{\sigma}'\otimes J_{\tau}'.$$

Then $f_{\sigma,\tau}^0$ is *L*-*L*-isomorphism. Because, $f_{\sigma,\tau}^0(ax' \otimes y') = g(f_{\tau^{-1},\sigma^{-1}}(g^{-1}(y') \otimes g^{-1}(ax'))) = g(f_{\tau^{-1},\sigma^{-1}}(g^{-1}(y') \otimes g^{-1}(x')a)) = g(f_{\tau^{-1},\sigma^{-1}}(g^{-1}(y') \otimes g^{-1}(x'))a) = a \cdot g(f_{\tau^{-1},\sigma^{-1}}(g^{-1}(y') \otimes g^{-1}(x'))) = af_{\sigma,\tau}^0(x \otimes y)$, similarly, $f_{\sigma,\tau}^0(x' \otimes y'a) = f_{\sigma,\tau}^0(x' \otimes y')a$ for all $x' \otimes y' \in J_{\sigma}' \otimes J_{\tau}', a \in L$. Furthermore, $f^0 = \{f_{\sigma,\tau}^0; \sigma, \tau \in G\}$ is a factor set related to $\Phi^0 = \varphi^{-1} \Phi_0$;

$$\begin{split} f^{0}_{\sigma\tau,\gamma}(f^{0}_{\sigma,\tau}(x'\otimes y')\otimes z') &= g(f_{\gamma^{-1},(\sigma\tau)^{-1}}(g^{-1}(z')\otimes g^{-1}(f^{0}_{\sigma,\tau}(x'\otimes y'))) \\ &= g(f_{\gamma^{-1},\tau^{-1}\sigma^{-1}}(g^{-1}(z')\otimes f_{\tau^{-1},\sigma^{-1}}(g^{-1}(y')\otimes g^{-1}(x'))) \\ &= g(f_{\gamma^{-1}\tau^{-1},\sigma^{-1}}(f_{\gamma^{-1},\tau^{-1}}(g^{-1}(z)\otimes g^{-1}(y'))\otimes g^{-1}(x'))) \\ &= g(f_{(\tau\gamma)^{-1},\sigma^{-1}}(g^{-1}(f^{0}_{\tau,\gamma}(y'\otimes z'))\otimes g^{-1}(x'))) \\ &= f^{0}_{\sigma,\tau\gamma}(x'\otimes f^{0}_{\tau,\gamma}(y'\otimes z')), \quad \text{for} \quad x'\otimes y'\otimes z' \in J_{\sigma}'\otimes J_{\tau}'\otimes J_{\gamma}'. \end{split}$$

Therefore, Φ^0 and f^0 define a generalized crossed product $\Delta(f^0, L, \Phi^0, G) = \sum_{\sigma \in \mathcal{G}} \bigoplus J_{\sigma}'$ of L and G. Since $g(f_{\sigma,\tau}(x \otimes y)) = f_{\tau^{-1},\sigma^{-1}}^0(g(y) \otimes g(x))$, for $x \otimes y \in J_{\sigma} \otimes J_{\tau}$, g is an opposite k-algebraisomorphism of $\Delta(f, L, \Phi, G)$ to $\Delta(f^0, L, \Phi^0, G)$.

3. Application to Brauer group. The purpose of this section is to derive the seven terms exact sequence, using the results in §2. We define the maps θ_i in the sequence

 $H^{1}(G, L^{*}) \xrightarrow{\theta_{1}} P(k) \xrightarrow{\theta_{2}} P(L)^{G} \xrightarrow{\theta_{3}} H^{2}(G, L^{*}) \xrightarrow{\theta_{4}} B(L/k) \xrightarrow{\theta_{5}} H^{1}(G, P(L)) \xrightarrow{\theta_{6}} H^{3}(G, L^{*})$ in the following way: We suppose that L is a Galois extension of k with finite Galois group G.

(1) $\theta_1: H^1(G, L^*) \rightarrow P(k);$

Let $\rho \in Z^1(G, L^*)$. We define the new operation of element σ of G on L; for $\sigma \in G$, $x \in L$, $\sigma * x = \rho(\sigma) \cdot \sigma(x)$. Under this operation, we may regard L as $\Delta(L, G)$ -left module, then we denote L by ρL . We put $P_0 = \rho L^G = \{a \in L; \sigma * a = \rho(\sigma) \cdot \sigma(a) = a \text{ for all } \sigma \in G\} \approx \operatorname{Hom}_{\Delta(L, G)}(L, \rho L)$. Since $L \supset k$ is a Galois extension, L is finitely generated projective generator as a $\Delta(L, G)$ -module, so

we have ${}_{\rho}L \approx \operatorname{Hom}_{\Delta(L,G)}(L, {}_{\rho}L) \otimes_{k}L$. Since $L \supset k$ is a finitely generated projective k-module, $[P_{0}] = [{}_{\rho}L^{G}]$ is in P(k). We define the map θ_{1} by $\theta_{1}(\bar{\rho}) = [P_{0}] = [{}_{\rho}L^{G}]$ for $\bar{\rho} \in H^{1}(G, L^{*})$. It is well defined. Because, if $\rho' = \rho_{0}\rho$ for $\rho_{0} \in B^{1}(G, L^{*})$, then there is $\alpha \in L^{*}$ such that $\rho_{0}(\sigma) = \alpha^{-1} \cdot \sigma(\alpha)$ for all $\sigma \in G$. Then $P_{0}' = {}_{\rho'}L^{G} = \{x \in L; x = \alpha^{-1}\sigma(\alpha)\rho(\sigma)\sigma(x), \text{ for all } \sigma \in G\} = \alpha^{-1} \cdot {}_{\rho}L^{G}$. Thus $P_{0}' \approx P_{0}$ as k-module, therefore $[P_{0}'] = [P_{0}]$ in P(k).

Lemma 2. The map $\theta_1: H^1(G, L^*) \rightarrow P(k)$ is a monomorphism.

Proof. In order to show that θ_1 is a homomorphism, it suffices to show that for $\bar{\rho}_1$, $\bar{\rho}_2$ in $H^1(G, L^*)$, ${}_{\rho_1}L^G \otimes_{k\rho_2}L^G \approx_{\rho_1\rho_2}L^G$ as k-module. It is easily seen that ${}_{\rho_1}L^G \cdot {}_{\rho_2}L^G \subset {}_{\rho_1\rho_2}L^G$. We consider the map $\eta : {}_{\rho_1}L^G \otimes_{k\rho_2}L^G \to {}_{\rho_1\rho_2}L^G$ defined by $\eta(x \otimes y) = xy$ for $x \in {}_{\rho_1}L^G$, $y \in {}_{\rho_2}L^G$. Since ${}_{\rho_i}L^G \otimes_k L \approx_{\rho_i}L^G \cdot L = {}_{\rho_i}L$, for every maximal ideal m of k, the localization $({}_{\rho_1}L^G)_{\rm m}, ({}_{\rho_2}L^G)_{\rm m}$ and $({}_{\rho_1\rho_2}L^G)_{\rm m}$ are rank 1 $k_{\rm m}$ -free module and generated by units in $L_{\rm m}$. Therefore, $({}_{\rho_1}L^G)_{\rm m} = k_{\rm m}u_1$, $({}_{\rho_2}L^G)_{\rm m} = k_{\rm m}u_2$ and $({}_{\rho_1}L^G \cdot {}_{\rho_2}L^G)_{\rm m} = ({}_{\rho_1}L^G)_{\rm m} \cdot ({}_{\rho_2}L^G)_{\rm m} = k_{\rm m}u_1u_2 \subset ({}_{\rho_1\rho_2}L^G)_{\rm m} = k_{\rm m}u_3$. Since $u_3 = (u_3u_2^{-1}u_1^{-1})u_1u_2$ and $u_3u_2^{-1}u_1^{-1} \in L_{\rm m}^G = k_{\rm m}$, we have $({}_{\rho_1}L^G \cdot {}_{\rho_2}L^G)_{\rm m} = k_{\rm m}u_4$. Accordingly, η is a k-isomorphism, and so θ_1 is a homomorphism. Let $\bar{\rho} \in H^1(G, L^*)$ and $\theta_1(\bar{\rho}) = [{}_{\rho}L^G] = [k]$, i.e. ${}_{\rho}L^G = k \cdot u$ where u is a free base in ${}_{\rho}L^G$, and so u is a unit in L. Therefore, $u = \rho(\sigma) \cdot \sigma(u)$ for every $\sigma \in G$, i.e. $\rho(\sigma) = u \cdot \sigma(u)^{-1}$ so ρ is in $B^1(G, L^*)$. Accordingly, θ_1 is a monomorphism.

(2). $\theta_2: P(k) \rightarrow P(L)^G;$

We put $\theta_2([P_0]) = [L \otimes_k P_0]$ for $[P_0] \in P(k)$. Then θ_2 is a homorphism of P(k) to $P(L)^G$ by Lemma 1 and Corollary 1.

Lemma 3. $H^{1}(G, L^{*}) \xrightarrow{\theta_{1}} P(k) \xrightarrow{\theta_{2}} P(L)^{G}$ is exact.

Proof. For any $\bar{\rho}$ in $H^1(G, L^*)$, $\theta_2\theta_1(\bar{\rho})=\theta_2([{}_{\rho}L^G])=[{}_{\rho}L^G\otimes_k L]=[{}_{\rho}L]=[L]$ in P(L). Let $[P_0]$ be in P(k) and $[P_0\otimes_k L]=[L]$, i.e. there is an L-isomorphism $h: L \to P_0\otimes_k L$. Since $\operatorname{Hom}_k(P_0\otimes_k L, P_0\otimes_k L)\approx \operatorname{Hom}_k(L, L)=\Delta(L, G)=\sum_{\sigma\in G} \oplus Lu_{\sigma}$, we can regard $P\otimes_k L$ as a faithful $\Delta(L, G)$ -module by the isomorphism h. Then Lu_{σ} is described as $J_{\sigma}=\{g\in\operatorname{Hom}_k(P\otimes_k L, P\otimes_k L); g\cdot a=\sigma(a)g$, for all $a\in L\}$. The k-isomorphism $\bar{\sigma}=I\otimes\sigma: P_0\otimes_k L\to P_0\otimes_k L$ is a unit element in $\operatorname{Hom}_k(P_0\otimes_k L, P_0\otimes_k L)$ and is contained in J_{σ} for each $\sigma\in G$. Then, the map $\rho: G \to L^*$ defined by $\rho(\sigma)=d_{\sigma}$ is in $Z^1(G, L^*)$. Because, $d_{\sigma\tau}=\bar{\sigma\tau}\cdot u_{\sigma\tau}^{-1}=\bar{\sigma}\cdot \bar{\tau}u_{\sigma\tau}^{-1}=\bar{\sigma}u_{\sigma}^{-1}\sigma(d_{\tau})=d_{\sigma}\cdot\sigma(d_{\tau})$. It follows that $\theta_1(\bar{\rho})=[{}_{\rho}L^G]$, and ${}_{\rho}L^G=\{x\in L; x=\rho(\sigma)\cdot\sigma(x), \text{ for all } \sigma\in G\}=\{y\in P_0\otimes_k L; y=I\otimes\sigma(y) \text{ for all } \sigma\in G\}=(P_0\otimes_k L)^{I\times G}$. Since $L\supset k$ is a Galois extension, there is an element

c in L such that $\sum_{\sigma \in \mathcal{G}} \sigma(c) = 1$, therefore any element $y = \sum x_i \otimes a_i \in (P_0 \otimes L)^{I \times G}$,

 $y = \sum_{\sigma \in \mathcal{G}} y\sigma(c) = \sum_{\sigma \in \mathcal{G}} I \otimes \sigma(yc) = \sum_{\sigma} x_i \otimes \sum_{\sigma \in \mathcal{G}} \sigma(a_ic) = \sum_{\sigma} x_i \cdot \sum_{\sigma \in \mathcal{G}} \sigma(a_ic) \otimes 1, \text{ so } y \text{ is contained in } P_0 \otimes_k L^G = P_0 \otimes k = P_0. \text{ Accordingly, we have } \theta_1(\bar{\rho}) = [P_0].$ (3). $\theta_3 \colon P(L)^G \to H^2(G, L^*);$

Let $[P] \in P(L)^G$. By Corollary 1, there exists a factor set f related to Φ_0 , i.e. $f = \rho \in Z^2(G, L^*)$, such that $\operatorname{Hom}_k(P, P)$ is L-isomrphic to $\Delta(f, L, \Phi_0, G)$ $= \Delta(\rho, L, G)$ as k-algebra. We define the map $\theta_3: P(L)^G \to H^2(G, L^*)$ by $\theta_3([P]) = \overline{\rho}$ for $[P] \in P(L)^G$. Then θ_3 is a homomorphism. Because, for $[P], [P'] \in P(L)^G$, we have $\operatorname{Hom}_k(P, P) = \Delta(\rho, L, G) = \sum_{\sigma \in G} \oplus Lf_{\sigma}$ and $\operatorname{Hom}_k(P', P')$ $= \Delta(\rho', L, G) = \sum_{\sigma \in G} \oplus Lf_{\sigma}'$ where $\overline{\rho} = \theta_3([P]), \ \overline{\rho}' = \theta_3([P']),$ and $\{f_\sigma\}_{\sigma \in G}$ and $\{f_{\sigma}'\}_{\sigma \in G}$ are L-free basis in $\operatorname{Hom}_k(P, P)$ and $\operatorname{Hom}_k(P', P')$, repsectively. Then the k-isomorphism $f_{\sigma} \otimes f_{\sigma}': P \otimes_L P' \to P \otimes_L P'$ defined by $f_{\sigma} \otimes f_{\sigma}'(x \otimes y) =$ $f_{\sigma}(x) \otimes f_{\sigma}'(y)$ for $x \otimes y \in P \otimes_L P'$, (it is well defined), satisfies $\sigma(a) \cdot f_{\sigma} \otimes f_{\sigma}' =$ $f_{\sigma} \otimes f_{\sigma}' \cdot a$ for all a in L and $f_{\sigma} \otimes f_{\sigma}' \cdot f_{\tau} \otimes f_{\tau}' = \rho(\sigma, \tau) \cdot \rho'(\sigma, \tau) \cdot f_{\sigma\tau} \otimes f_{\sigma\tau}'$. Therefore, we can write $\operatorname{Hom}_k(P \otimes_L P', P \otimes_L P') = \Delta(\rho \cdot \rho', L, G) = \sum \oplus L f_{\sigma} \otimes f_{\sigma}'$.

Accordingly, $\theta_3([P] \cdot [P']) = \theta_3([P]) \cdot \theta_3([P']).$

Lemma 4. $P(k) \xrightarrow{\theta_2} P(L)^G \xrightarrow{\theta_3} H^2(G, L^*)$ is exact.

Proof. If $[P_0] \in P(k)$ then $\theta_2([P_0]) = [P_0 \otimes_k L]$ and $\operatorname{Hom}_k(P_0 \otimes_k L, P_0 \otimes_k L)$ $\approx \operatorname{Hom}_k(L, L) = \Delta(L, G)$ and so $\theta_3(\theta_2([P_0]) = 1$. Let $[P] \in P(L)^G$ and $\theta_3([P]) = 1$. so $\operatorname{Hom}_k(P, P) \approx \Delta(L, G)$. By Lemma 1, there is $[P_0]$ in P(k), and $P \approx P_0 \otimes_k L$, therefore $\theta_2([P_0]) = [P]$.

(4). $\theta_4: H^2(G, L^*) \rightarrow B(L/k);$

B(L/k) denotes the Brauer group of k-Azumaya algebras split by L. $\theta_4: H^2(G, L^*) \rightarrow B(L/k)$ is defined by $\theta_4(\bar{\rho}) = [\Delta(\rho, L, G)]$ in B(L/k) for $\bar{\rho} \in H^2(G, L^*)$, then θ_4 is a homomorphism by [1], Theorem A. 12.

Lemma 5. $P(L)^G \xrightarrow{\theta_3} H^2(G, L^*) \xrightarrow{\theta_4} B(L/k)$ is exact.

Proof. Let $[P] \in P(L)^G$ and $\operatorname{Hom}_k(P, P) \approx \Delta(\rho, L, G)$. Then $\theta_4 \theta_3([P]) = [\Delta(\rho, L, G)] = [\operatorname{Hom}_k(P, P)] = 1$ in B(L/k). On the other hand, if $\overline{\rho}$ is an element in $H^2(G, L^*)$ such tha $\theta_4(\overline{\rho}) = [\Delta(\rho, L, G)] = [k]$, then there is a finitely generated faithful projective k-module P such that $\Delta(\rho, L, G) \cong \operatorname{Hom}_k(P, P)$. By Proposition 5, $[P] \in P(L)$ and by Corollary 1 $[P] \in P(L)^G$, and so $\overline{\rho} = \theta_3([P])$.

(5). $\theta_5: B(L/k) \rightarrow H^1(G, P(L));$

For any $[A] \in B(L/k)$, there is an Azumaya k-algebra Λ in [A] such that Λ contains L as maximal commutative subalgebra (cf. [1], Theorem 5. 7). By Proposition 3, Λ is written by $\Delta(f, L, \Phi, G)$ for some Φ and f, and then $\Phi = \varphi \Phi_0$. for some φ in $Z^1(G, P(L))$. We put $\theta_{\mathfrak{s}}([A]) = \overline{\varphi}$. From the following lemma,

it is shown that $\theta_{\mathfrak{s}}$ defines the map $B(L/k) \rightarrow H^1(G, P(L))$.

Lemma 6. Let $\Phi = \varphi \Phi_0$ and $\Phi' = \varphi' \Phi_0$ be elements in \mathfrak{G} , and f and f' factor set related to Φ and Φ' , respectively. If $[\Delta(f, L, \Phi, G)] = [\Delta(f', L, \Phi', G)]$ in B(L/k), then $\varphi' \varphi^{-1}$ is in $B^1(G, P(L))$.

Proof. If $[\Delta(f, L, \Phi, G)] = [\Delta(f', L, \Phi', G)]$, then there is a finitely generated projective and faithful k-module P such that

$$\begin{aligned} \operatorname{Hom}_{\boldsymbol{k}}(P, P) &\approx \Delta(f', L, \Phi', G) \otimes_{\boldsymbol{k}} \Delta(f, L, \Phi, G)^{\circ} \\ &= \Delta(f, L, \Phi', G) \otimes_{\boldsymbol{k}} \Delta(f^{\circ}, L, \Phi^{\circ}, G) \\ &\approx \Delta(f' \otimes f^{\circ}, L \otimes_{\boldsymbol{k}} L, \Phi' \otimes \Phi^{\circ} G \times G) , \end{aligned}$$

where $\Phi'(\sigma) = [J_{\sigma}'], \Phi^0(\sigma) = [J_{\sigma}^{\circ}]$ and $\Phi' \otimes \Phi^0(\sigma \times \tau) = [J_{\sigma}' \otimes_k J_{\tau}^{\circ}]$ in $Pic_k(L \otimes_k L),$ and $(f' \otimes f^0)_{\sigma \times \tau, \sigma' \times \tau'} \approx f'_{\sigma, \tau'} \otimes f_{\tau, \tau'}$. Regarding P as $L \otimes_k L$ -module, by Proposition 5, $[P] \in P(L \otimes_k L)$ and $(\Phi(\sigma) \otimes \Phi^0(\tau)) \cdot [P] = [P] \cdot (\Phi_0(\sigma) \otimes \Phi_0(\tau))$ for $\sigma, \tau \in G$. Since $\Phi' = \varphi' \Phi_0$, $\Phi^0 = \varphi^{-1} \Phi_0$, we have $\varphi'(\sigma) \otimes \varphi^{-1}(\tau) = [P] \cdot ([P]^{-1})^{\sigma \times \tau}$ in $P(L \otimes_k L)$. In particular, if one put $\Phi = \Phi'$, then obtain similarly $\varphi'(\sigma)^{-1} \otimes \varphi'(\tau) = [Q] \cdot ([Q]^{-1})^{\sigma \times \tau}$ for some [Q] in $P(L \otimes_k L)$. From $\varphi'(\sigma) \otimes \varphi^{-1}(\tau)$ = $[P] \cdot ([P]^{-1})^{\sigma \times \tau}$ and $\varphi'^{-1}(\sigma) \otimes \varphi'(\tau) = [Q] \cdot ([Q]^{-1})^{\sigma \times \tau}$, we obtain $[L] \otimes \varphi'(\tau) \varphi(\tau)^{-1}$ $= [P \otimes_{L \otimes_{kL}} Q] \cdot ([P \otimes_{L \otimes_{kL}} Q]^{-1})^{\sigma \times \tau}. \quad \text{We put } [R] = [P \otimes_{L \otimes_{kL}} Q] \text{ and } [P_{\tau}] =$ $\varphi'\varphi^{-1}(\tau) = \varphi'(\tau) \cdot \varphi^{-1}(\tau)$, so we have $[L \otimes_k P_{\tau}] = [R] \cdot ([R]^{-1})^{\sigma \times \tau}$. If one takes $\tau = 1$, then from $\varphi' \varphi^{-1}(1) = [P_1] = [L]$, we have $[L \otimes_k L] = [R] \cdot ([R]^{-1})^{\sigma \times I}$ and so $[R] = [R]^{\sigma \times I}$ for all $\sigma \in G$. Regarding $L \otimes_k L$ as a Galois extension of L with Galois groop $G \times I$, it is known that $L \otimes_k L$ is a trivial Galois extension of L with Galois group $G \times I$. From Remark 5, there is an element $[R_0]$ in P(L)such that $[R] = [(L \otimes_k L) \otimes_L R_0] = [L \otimes_k R_0]$ in $P(L \otimes_k L)$. Therefore, $[L \otimes_k P_{\tau}]$ $= [L \otimes_{\mathbf{k}} R_0] \cdot ([L \otimes_{\mathbf{k}} R_0]^{-1})^{\sigma_{\times \tau}}$, and so it can be computed that $L \otimes_{\mathbf{k}} P_{\tau} \approx$ $L \otimes_{k} (R_{0} \otimes_{L_{\tau}} L_{1} \otimes_{L} R_{0}^{*} \otimes_{\tau^{-1}} L_{1})$ as $L \otimes_{k} L$ -module for every $\tau \in G$. Therefore, $L \otimes_{\mathbf{k}} L \otimes_{L} P_{\tau} \approx L \otimes_{\mathbf{k}} L \otimes_{L} (R_{0} \otimes_{L} R_{0}^{*\tau})$ as $L \otimes_{\mathbf{k}} L$ -moduoe. Since $L \otimes_{\mathbf{k}} L =$ $\sum_{\sigma \in \sigma} \oplus e_{\sigma}L$ is a trivial Galois extension of L, we have $\sum_{\sigma \in \sigma} \oplus e_{\sigma}L \otimes_{L}P_{\tau} \approx \sum_{\sigma \in \sigma} \oplus e_{\sigma}L$ $e_{\sigma}L \otimes_{L}(R_{0} \otimes_{L} R_{0}^{*\tau})$ as $L \otimes_{k}L = \sum e_{\sigma}L$ -modules, and so $e_{\sigma}L \otimes_{L} P_{\tau} \approx e_{\sigma}L \otimes_{L}$ $(R_0 \otimes_L R_0^{*\tau})$ as $L \otimes_k L$ -module for each $\sigma \in G$. On the other hand, $e_{\sigma} L \otimes_L P_{\tau}$ and P_{τ} are *L*-isomorphic, and $e_{\sigma}L \otimes_{L}(R_{0} \otimes_{L} R_{0}^{*\tau})$ and $R_{0} \otimes_{L} R_{0}^{*\tau}$ are so. Therefore, we have $P_{\tau} \approx R_0 \otimes_L R_0^{*\tau}$ as L-module for every $\tau \in G$, i.e. $[P_{\tau}] =$ $\varphi'\varphi^{-1}(\tau) = [R_0] \cdot ([R_0]^{-1})^{\tau}$ in P(L) for every $\tau \in G$. Accordingly, $\varphi'\varphi^{-1}$ is in $B^{1}(G, P(L)).$

Lemma 7. $H^2(G, L^*) \xrightarrow{\theta_4} B(L/k) \xrightarrow{\theta_5} H^1(G, P(L))$ is exact.

Proof. If $\bar{\rho}$ is in $H^2(G, L^*)$, then $\theta_4(\bar{\rho}) = [\Delta(\rho, L, G)] = [\Delta(\rho, L, \Phi_0, G)]$, so $\theta_{\bar{\rho}}\theta_4(\bar{\rho}) = 1$. Let $[A] = [\Delta(f, L, \Phi, G)] \in B(L/k)$ and $\theta_5([A]) = \bar{\rho} = 1$. Since

 $\varphi \in B^1(G, P(L))$, there is [P] in P(L) and $\varphi(\sigma) = [P] \cdot ([P]^{-1})^{\sigma}$ for all $\sigma \in G$. Since $\operatorname{Hom}_k(P, P)$ is an Azumaya k-algebra with maximal commutative subalgebra L, by Proposition 3 $\operatorname{Hom}_k(P, P)$ is L-isomorphic to $\Delta(g. L, \varphi'\Phi_0, G)$ with some φ' and g, as k-algebra. From Proposition 5, we have $\varphi'(\sigma)\Phi_0(\sigma) \cdot [P] =$ $[P] \cdot \Phi_0(\sigma)$ for all $\sigma \in G$, and so $\varphi'(\sigma) = [P] \cdot ([P]^{-1})^{\sigma} = \varphi(\sigma)$ for all $\sigma \in G$, i.e. $\varphi = \varphi'$. We put $\Phi = \varphi \Phi_0 = \varphi' \Phi_0$. By Proposition 4, there exists an element ρ in $Z^2(G, L^*)$ such the $f = \rho g$. Since $\rho \otimes \rho^{-1}$ is in $B^2(G \times G, (L \otimes_k L)^*)$ (cf. [1], Proposition A. 11), by Proposition 4, $\Delta((\rho \otimes \rho^{-1})(I \otimes \rho)(g \otimes I), L \otimes_k L, \Phi \otimes \Phi_0, G \times G)$ are $L \otimes_k L$ -isomorphic as k-algebra. On the other hand,

$$\Delta((\rho \otimes \rho^{-1})(I \otimes \rho)(g \otimes I), L \otimes_{k} L, \Phi \otimes \Phi_{0}, G \times G)$$

$$\approx \Delta(\rho g, L, \Phi, G) \otimes_{k} \Delta(I, L, \Phi_{0}, G) = \Delta(f, L, \Phi, G) \otimes_{k} \Delta(L, G),$$

and $\Delta((I \otimes \rho)(g \otimes I), L \otimes_{k} L, \Phi \otimes \Phi_{0}, G \times G)$

$$\approx \Delta(g, L, \Phi, G) \otimes_{k} \Delta(\rho, L, \Phi_{0}, G) = \operatorname{Hom}_{k}(P, P) \otimes_{k} \Delta(\rho, L, G).$$

Accordingly, $[A] = [\Delta(f, L, \Phi, G)] = [\Delta(\rho, L, G)] = \theta_4(\bar{\rho}).$

(6). θ_6 ; $H^1(G, P(L)) \rightarrow H^3(G, L^*)$;

Let $\varphi \in Z^1(G, P(L))$. We put $\Phi = \varphi \Phi_0$ and $\Phi(\sigma) = [J_\sigma]$ for each $\sigma \in G$. One takes a family $\{f_{\sigma,\tau}; \sigma, \tau \in G\}$ of *L*-*L*-isomorphism $f_{\sigma,\tau}: J_\sigma \otimes_L J_\tau \to J_{\sigma\tau}$. Put $\omega(\sigma, \tau, \gamma) = f_{\sigma\tau,\gamma} \circ (f_{\sigma,\tau} \otimes I) \circ (I \otimes f_{\tau,\gamma})^{-1} \circ f_{\sigma,\tau\gamma}^{-1}$ for each $\sigma, \tau, \gamma \in G$. Since $\omega(\sigma, \tau, \gamma)$ is a unit in $\operatorname{Hom}_L(J_{\sigma\tau\gamma}, J_{\sigma\tau\gamma}) = L$, we have a function $\omega: G \times G \times G \to L^*; (\sigma, \tau, \gamma) \rightsquigarrow \omega(\sigma, \tau, \gamma)$. We shall show that ω is in $Z^3(G, L^*)$ i.e. $\delta(\omega) = 1$ where δ is coboundary operator. Since $\delta(\omega)(\sigma, \tau, \gamma, \varepsilon)$ is a unit in *L*, $\delta(\omega)(\sigma, \tau, \gamma, \varepsilon) = 1$ for every $\sigma, \tau, \gamma, \varepsilon$ in *G*, if and only if for any maximal ideal m of *L*, the image of $\delta(\omega)(\sigma, \tau, \gamma, \varepsilon)$ in $L_{\mathfrak{m}}$ equals to 1 for every $\sigma, \tau, \gamma, \varepsilon$ in *G*. But, if *L* is local, then, from that J_σ is a free *L*-module, there is a map ρ of $G \times G$ to L^* such that $\omega = \delta(\rho)$. Therefore, $\delta(\omega) = \delta^2(\rho) = 1$, i.e. $\delta(\omega)(\sigma, \tau, \gamma, \varepsilon) = 1$ for every $\sigma, \tau, \gamma, \varepsilon$ in *G*. Accordingly ω is in $Z^3(G, L^*)$. For Φ in \mathfrak{G} , if one takes another family $\{f'_{\sigma,\tau}; \sigma, \tau \in G\}$, then there is a map $\rho: G \times G \to L^*$ such that $f'_{\sigma,\tau} = \rho(\sigma, \tau) \cdot f_{\sigma,\tau}$ for every $\sigma, \tau \in G$. Then. it is easily computed that

$$\begin{split} \omega'(\sigma,\tau,\gamma) &= f'_{\sigma\tau,\gamma} \circ (f'_{\sigma,\tau} \otimes I) \circ (I \otimes f'_{\tau,\gamma})^{-1} \circ f'_{\sigma,\tau\gamma}^{-1} \\ &= \sigma(\rho(\sigma\tau,\gamma)) \cdot \rho(\sigma\tau,\gamma)^{-1} \cdot \rho(\sigma,\tau\gamma) \cdot \rho(\sigma,\tau) \cdot f_{\sigma\tau,\gamma} \circ (f_{\sigma,\tau} \otimes I) \circ (I \otimes f_{\tau,\gamma})^{-1} \circ f_{\sigma,\tau\gamma}^{-1} \\ &= \delta(\rho)(\sigma,\tau,\gamma) \cdot \omega(\sigma,\tau,\gamma). \end{split}$$

If $\varphi' = \varphi_0 \cdot \varphi$ for some φ_0 in $B^1(G, L^*)$, then there is $[P] \in P(L)$ such that $\varphi' \Phi_0(\sigma) = [P] \cdot \Phi(\sigma) \cdot [P^*]$. If $f_{\sigma,\tau} : J_\sigma \otimes_L J_\tau \to J_{\sigma\tau}$ and $I \otimes f_{\sigma,\tau} \otimes I : (P \otimes_L J_\sigma \otimes_L P^*)$ $\otimes_L (P \otimes J_\tau \otimes P^*) = P \otimes_L J_\sigma \otimes_L J_\tau \otimes_L P^* \to P \otimes_L J_{\sigma\tau} \otimes_L P^*$ identify, then we can consider that $\omega(\sigma, \tau, \gamma)$ is in $\operatorname{Hom}_L(P \otimes_L J_{\sigma\tau\gamma} \otimes_L P^*, P \otimes_L J_{\sigma\tau\gamma} \otimes_L P^*)$. Therefore, a element $\overline{\omega}$ in $H^3(G, L^*)$ is determined by an element $\overline{\varphi}$ in $H^1(G, L^*)$. We can define the map $\theta_6 : H^1(G, P(L)) \to H^3(G, L^*)$ by $\theta_6(\overline{\varphi}) = \overline{\omega}$, for $\bar{\varphi} \in H^1(G, P(L))$.

Lemma 8. $B(L/k) \xrightarrow{\theta_5} H^1(G, P(L)) \xrightarrow{\theta_6} H^3(G, L^*)$ is exact.

Proof. For $\overline{\varphi}$ in $H^1(G, P(L))$, we put $\Phi = \varphi \Phi_0$ and $\Phi(\sigma) = [J_{\sigma}]$ for $\sigma \in G$. Then it is easily seen that $\theta_6(\overline{\varphi}) = 1$ if and only if there is a family $\{f_{\sigma,\tau}: J_{\sigma}J_{\tau} \otimes_L \to J_{\sigma\tau}; L\text{-}L\text{-}isomorphism}, \sigma, \tau \in G\}$ such that $\{f_{\sigma,\tau}; \sigma, \tau \in G\}$ is a factor set related to Φ . Therefore $\theta_6(\overline{\varphi}) = 1$ if and only if there is $\Delta[(f, L, \Phi, G)]$ in B(L/k) such that $\theta_5([\Delta(f, L, \Phi, G)]) = \overline{\varphi}$.

We have obtained the following seven terms exact sequence.

Theorem (Chase, Harrison and Rosenberg).

$$(1) \longrightarrow H^{1}(G, L^{*}) \xrightarrow{\theta_{1}} P(k) \xrightarrow{\theta_{2}} P(L)^{G} \xrightarrow{\theta_{3}} H^{2}(G, L^{*}) \xrightarrow{\theta_{4}} B(L/k) \xrightarrow{\theta_{5}} H^{1}(G, P(L)) \xrightarrow{\theta_{6}} H^{3}(G, L^{*})$$

is exact.

From Remark 5 and Therorm, we have

Corollary 2. If $L \supset k$ is a trivial Galois extension, then

$$(1) \longrightarrow H^{1}(G, L^{*}) \xrightarrow{\theta_{1}} P(k) \xrightarrow{\theta_{2}} P(L)^{G} \longrightarrow (1) \quad and$$

$$(1) \longrightarrow H^{2}(G, L^{*}) \xrightarrow{\theta_{4}} B(L/k) \xrightarrow{\theta_{5}} H^{1}(G, P(L)) \xrightarrow{\theta_{6}} H^{3}(G, L^{*})$$

are exact.

OSAKA CITY UNIVERSITY

References

- M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409.
- [2] G. Azumaya: On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150.
- [3] ——: Completely faithful modules and self injective rings, Nagoya Math. J. 27 (1966), 697-708.
- [4] H. Bass: Lectures on topics in algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.
- [5] S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of cummutative rings, Mem. Amer. Math. Soc. 52 (1965).
- [6] S.U. Chase and A. Rosenberg: Amitzur cohomology and the Brauer group, Mem. Amer. Math. Soc. 52 (1965).
- S. Endo and Y. Watanabe: On separable algebras over a commutative ring, Osaka J. Math. 4 (1967), 233-242.

T. Kanzaki

- [8] T. Kanzaki: On commutor ring and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103-115.
- [9] ——: On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309– 317,