ON GENERALIZED CROSSED PRODUCT AND BRAUER GROUP

Teruo KANZAKI

(Received July 3, 1968)

For a commutative ring L wich is a Galois extension of a ring k with Galois group G, Chase, Harrison, and Rosenberg, in [5] and [6] gave a seven terms exact sequence about cohomology groups of G and Brauer group $B(L / k)$ of Azumaya k-algebras split by L, by using the generalized Amiztur cohomology and spectral sequence. In this paper, we give a generalization of the concept of crossed product, and for a commutative Galois extension L of a ring k with Galois group G, we study the generalized crossed product of the commutative ring L and the group G, and concerning the gorup of isomorphism classes of finitely generated projective rank $1 L$-modules. Finally, as an application to Brauer group, using the generalized crossed product, we shall derive immediatly the "seven terms exact sequence theorem".

In $\S 1$, we define the generalized crossed product $\Delta(f, \Lambda, \Phi, G)$ of a k-algebra Λ and a group G with factor set f related to Φ, where Φ is a group homomorphism of G to the group of isomorphism classes of invertible Λ - Λ-bimodule (see [4], p. 76), and $f=\left\{f_{\sigma, \tau} ; \sigma, \tau \in G\right\}$ is a family of isomorphisms of modules satisfying some commutative diagrams. In §2, we suppose that L is a commutative Galois extension of a ring k with fimite Galois group G. Then we shall show that $\Delta(f, L, \Phi, G)$ is an Azumaya k-algebra with a maximal commutative subring L, and conversely, every Azumaya k-algebra with maximal commutative subring L can be written by $\Delta(f, L, \Phi, G)$ for some Φ and f. In §3. using the results of $\S 2$, we derive the seven termes exact sequence:

$$
\begin{aligned}
(1) & \rightarrow H^{1}\left(G, L^{*}\right) \rightarrow P(k) \rightarrow P(L)^{G} \rightarrow H^{2}\left(G, L^{*}\right) \rightarrow B(L / k) \rightarrow H^{1}(G, P(L)) \\
& \rightarrow H^{3}\left(G, L^{*}\right) .
\end{aligned}
$$

We suppose every ring has identity element and module is unital.

1. Generalized crossed product. Let k be a commutative ring with identity, Λ a k-algebra with identity. A Λ - Λ-bimodule P is called invertible if P is a finitely generated projective and generator (i.e. completely faithful by means of [3]) left Λ-module and $\operatorname{Hom}_{\Lambda}\left({ }_{\Lambda} P,{ }_{\Lambda} P\right) \approx \Lambda^{0}$, where for $a \in k$ and $x \in P$,
$a x=x a$. Let $\operatorname{Pic}_{k}(\Lambda)$ be the group of isomorphism classes [P] of invertible Λ - Λ-bimodules P with law of composition induced by tensor product over $\Lambda:[P] \cdot[Q]=\left[P \otimes_{\Lambda} Q\right]$, then $[P]^{-1}=\left[P^{*}\right]$ where $P^{*}=\operatorname{Hom}_{\Lambda}(P, \Lambda)$. We define the generalized crossed Product $\Delta(f, \Lambda, \Phi, G)$ of a k-algebra Λ and a group G with factor set $f=\left\{f_{\sigma, \tau}: \sigma, \tau \in G\right\}$ as follows: For given group G and k-algebra Λ, let $\Phi: G \rightarrow \operatorname{Pic}_{k}(\Lambda)$ be a group homomorphism. Put $\Phi(\sigma)=\left[J_{\sigma}\right]$ for $\sigma \in G$. If $f=\left\{f_{\sigma, \tau} ; \sigma, \tau \in G\right\}$ which is a family of Λ - Λ-isomorphisms $f_{\sigma, \tau}: J_{\sigma} \otimes_{\Lambda} J_{\tau} \rightarrow$ $J_{\sigma \tau}, \sigma, \tau \in G$ satisfies the following commutative diagrams:

$$
\begin{aligned}
J_{\sigma} \otimes_{\Lambda} J_{\tau} \otimes_{\Lambda} J_{\gamma} & \xrightarrow{I \otimes f_{\tau, \gamma}} J_{\sigma} \otimes_{\Lambda} J_{\tau \gamma} \\
\left.\right|_{f_{\sigma, \tau}} \otimes I & \xrightarrow{f_{\sigma \tau}} \\
J_{\sigma \tau} \otimes_{\Lambda} J_{\gamma} & \xrightarrow{f_{\sigma, \gamma \gamma}}
\end{aligned}
$$

for every $\sigma, \tau, \gamma \in G$, then we call f to be factor set related to Φ. Put $\Delta(f, \Lambda, \Phi, G)=\sum_{\sigma \in G} \oplus J_{\sigma}$ as Λ - Λ-bimodule. When the multiplication of elements in $\Delta(f, \Lambda, \Phi, G)$ is defined by $x \cdot y=f_{\sigma, \tau}(x \otimes y)$ for $x \in J_{\sigma}, y \in J_{\tau}$, we call $\Delta(f, \Lambda, \Phi, G)$ a generalized crossed product of Λ and G with factor set f related to Φ.

Proposition 1. Let G be a group and Λ a k-algebra. For a homomorphism $\Phi: G \rightarrow \operatorname{Pic}_{k}(\Lambda)$ and a factor set $f=\left\{f_{\sigma, \tau} ; \sigma, \tau \in G\right\}$ related to Φ, generalized crossed product $\Delta(f, \Lambda, \Phi, G)$ is an associative k-algebra with identity element, and $\Delta(f, \Lambda, \Phi, G)$ contains a subring isomorphic to Λ, i.e. if $\Phi(\sigma)=\left[J_{\sigma}\right]$ for $\sigma \in G$, $J_{1} \approx \Lambda$ as k-algebra and Λ - Λ-bimodule.

Proof. Let $\Phi(\sigma)=\left[J_{\sigma}\right], \sigma \in G$. Since $f_{1,1}: J_{1} \otimes_{\Lambda} J_{1} \rightarrow J_{1}$ is Λ - Λ-isomorphism, J_{1} is a subring of $\Delta(f, \Lambda, \Phi, G)$. Since $\Phi(1)=[\Lambda]=\left[J_{1}\right], J_{1} \approx \Lambda$ as Λ - Λ-bimodules. There exists u in J_{1} such that $J_{1}=\Lambda u=u \Lambda$ and $\lambda u=u \lambda$ for all $\lambda \in \Lambda$. Since $f_{1,1}\left(J_{1} \otimes J_{1}\right)=J_{1}$, we can write $f_{1,1}(u \otimes u)=c u$ for some c in Λ, then c is a unit in the center of Λ. If we put $e=c^{-1} u$, then $f_{1,1}(e \otimes e)=e$, so the map $\Lambda \rightarrow J_{1}: \lambda \rightarrow \lambda e$ is a ring isomorphism. Furthermore, e is identity of $\Delta(f, \Lambda, \Phi, G)$. Because, for any $x \in J_{\sigma}, \sigma \in G$, there is y in J_{σ} such that $x=f_{1, \sigma}(e \otimes y)$, and $f_{1, \sigma}(e \otimes x)=f_{1, \sigma}\left(e \otimes f_{1, \sigma}(e \otimes y)\right)=f_{1, \sigma}\left(f_{1,1}(e \otimes e) \otimes y\right)=f_{1, \sigma}(e \otimes y)=x$. Similarly, we have $f_{\sigma, 1}(x \otimes e)=x$ for every $x \in J_{\sigma}, \sigma \in G$. Therefore, e is identity element of $\Delta(f, \Lambda, \Phi, G)$.

Now, in the following, we may regard $\Lambda=J_{1}$ in $\Delta(f, \Lambda, \Phi, G)$.
Remark 1. Let Λ be a k-algebra and G a group. Let $\Phi: G \rightarrow \operatorname{Pic}_{k}(\Lambda)$ be a homomorphism, and let the image of Φ consists of $[P]$ in $\operatorname{Pic}_{k}(\Lambda)$ such that P is left Λ-free module. Then for any factor set f related to $\Phi, \Delta(f, \Lambda, \Phi, G)$ coincides with an ordinary crossed product $\Delta(\rho, \Lambda, G)$ with a factor set ρ
contained in $Z^{2}\left(G, \Lambda^{*}\right)$, where Λ^{*} is the multiplicative group of unit in Λ.
Remark 2. In Remark 1, in particular, let $\Phi(G)=(1)$, so $\Delta(f, \Lambda, \Phi, G)$ is an ordinary group ring of Λ and G with a factor set in $z^{2}\left(G, C^{*}\right)$, where C^{*} is the group of units in the center of Λ.

Remark 3. Let $\Lambda \supset k$ be a central Galois extension with finite Galois group G (cf. [9]). Then there exists a homomorphism $\Phi: G \rightarrow \operatorname{Pic}_{k}(k)$ and a factor set f related to Φ such that $\Delta(f, k, \Phi, G) \approx \Lambda$ as k-algebras (see [9]).

2. Generalized crossed product for a Galois extension

Let L be a commutative k-algebra with identity, $A u t_{k}(L)$ the group of all k-algebra automorphisms of L. Then we have the homomorphism $\Psi: \operatorname{Pic}_{k}(L)$ $\rightarrow A u t_{k}(L)$ defined by $\Psi([P])=\sigma_{P}$ for $[P] \in \operatorname{Pic}_{k}(L)$, where σ_{P} is defined by $\sigma_{P}(a) x=x a$ for all $a \in L, x \in P$ (cf. [4], p. 80). We put $\operatorname{Pic}_{L}(L)=P(L)$. Then for $[P] \in P(L), P$ is regarded as new L - L-bimodule by new operation $*$ defined by $a * x=\sigma^{-1}(a) x=x \sigma^{-1}(a)$ and $x * a=x a$ (or $\left.a * x=a x, x * a=x \sigma^{-1}(a)=\sigma^{-1}(a) x\right)$ for all $a \in L$ and $x \in P$. We denote it by ${ }_{\sigma} P_{I}$ (or ${ }_{I} P_{\sigma}$). If $[P] \in P(L)$ and $\sigma \in A u t_{k}(L)$, then $\left[{ }_{\sigma} P_{I}\right]$ is in $\operatorname{Pic}_{k}(L)$ and $\Psi\left(\left[{ }_{\sigma} P_{I}\right]\right)=\sigma$. Since the map $\Phi_{0}: A u t_{k}(L) \rightarrow \operatorname{Pic}_{k}(L)$ defined by $\Phi_{0}(\sigma)=\left[{ }_{\sigma} L_{I}\right]$ is a homorphism and satisfies $\Psi \circ \Phi_{0}=I_{A u t_{k}(L)}$, we have the following right split exact sequence;

$$
(1) \rightarrow P(L) \rightarrow \operatorname{Pic}_{k}(L) \rightarrow A u t_{k}(L) \rightarrow(1), \quad \text { (cf. [4], p. 80). }
$$

Now, we assume that $L \supset k$ is a Galois extension with finite Galois group G. Then $G \subset A u t_{k}(L)$. Since $P(L)$ is an abelian and normal subgroup of $\operatorname{Pic}_{k}(L)$, for each $\sigma \in G, \sigma$ defines the automorphism of $P(L)$ by $[P]^{\sigma}=\left[{ }_{\sigma} L_{I}\right] \cdot[P] \cdot\left[{ }_{\sigma} L_{I}\right]^{-1}$. If we put $P^{\sigma}={ }_{\sigma} L_{I} \otimes_{L} P \otimes_{L \sigma^{-1}} L_{I},\left[P^{\sigma}\right]=[P]^{\sigma}$ in $P(L)$ for $\sigma \in G$. Let $\mathbb{C S}^{5}$ be the set of all homomorphisms $\Phi: G \rightarrow \operatorname{Pic}_{k}(L)$ such that $\Psi \circ \Phi=I_{G}$. Since $\Phi_{0} \in \mathscr{B}$, each Φ in $\left(\mathscr{S}\right.$ determines a function φ of G into $P(L)$ such that $\Phi(\sigma)=\varphi(\sigma) \cdot \Phi_{0}(\sigma)$ for all $\sigma \in G$. Using Φ and Φ_{0} to be group homomorphisms, we can easily check that $\varphi(\sigma \tau)=\varphi(\sigma) \cdot \varphi(\tau)^{\sigma}$ for every $\sigma, \tau \in G$. This means that φ is contained in 1-cocycle group $Z^{1}(G, P(L))$. Conversely, for any φ in $Z^{1}(G, P(L))$, putting $\Phi=\varphi \Phi_{0}$, i.e. $\Phi(\sigma)=\varphi(\sigma) \cdot \Phi_{0}(\sigma)$ for all $\sigma \in G$, we see that Φ is a group homomorphism of G into $\operatorname{Pic}_{k}(L)$ and Φ is in (S). Therefore, between (SS and $Z^{1}(G, P(L))$ there exists the one to one correspondence $\Phi=\varphi \Phi_{0} \longleftrightarrow \varphi$. For $\Phi=\varphi \Phi_{0}$ and $\Phi^{\prime}=\varphi^{\prime} \Phi_{0}$ in \mathbb{E}, we denote $\left(\varphi \cdot \varphi^{\prime}\right) \Phi_{0}$ by $\Phi \cdot \Phi^{\prime}$. Then under this multiplication in $\mathbb{E S}$, \mathscr{S}^{5} is isomorphic to $Z^{1}(G, P(L))$.

Remark 4. For any factor set f related to Φ_{0}, by Remark $1 \Delta\left(f, L, \Phi_{0}, G\right)$ is an ordinary crossed product $\Delta(\rho, L, G)$ with a factor set ρ in $Z^{2}\left(G, L^{*}\right)$, i.e. $\Phi_{0}(\sigma)=\left[{ }_{\sigma} L_{I}\right]$ and it has some L-free base $\left\{u_{\sigma} ; \sigma \in G\right\}$ such that ${ }_{\sigma} L_{I}=L u_{\sigma}, \sigma(x) u_{\sigma}$ $=u_{\sigma} x$ for all $x \in L$ and $u_{\sigma} u_{\tau}=\rho(\sigma, \tau) u_{\sigma \tau}$.

Proposition 2. Let $L \supset k$ be a Galois extension with Galois group G. For any $\Phi \in \mathbb{G}$ such that there is a fator set f rerated to $\Phi, \Delta(f, L, \Phi, G)$ is an Azumaya k-algebra (i.e. central separable), with maximal commutative subalgebra L.

Proof. We put $\Delta=\Delta(f, L, \Phi, G)=\sum_{\sigma \in G} \oplus J_{\sigma}$, where $\left[J_{\sigma}\right]=\Phi(\sigma), \sigma \in G$. At first, we shallshow that $L=J_{1}$ is a maximal commutative subring of $\Delta(f, L, \Phi, G)$. The commutor ring $V_{\Delta}(L)$ of L in Δ contains L. On the other hand, if z is in $V_{\Delta}(L)$, then z can be written as $z=\sum_{\sigma \in G} z_{\sigma}$ for some z_{σ} in J_{σ}, and so $\sum_{\sigma \in G} a z_{\sigma}=a z$ $=z a=\sum_{\sigma \in \theta} z_{\sigma} a=\sum_{\sigma \in G} \sigma(a) z_{\sigma}$, for all $a \in L$. Therefore, we have $a z_{\sigma}=\sigma(a) z_{\sigma}$ for every $a \in L$ and $\sigma \in G$. But, since $L \supset k$ is Galois extension, there exist $a_{1}, a_{2}, \cdots, a_{n}$ and $b_{1}, b_{2}, \cdots, b_{n}$ in L such that $\sum_{i=1}^{n} a_{i} \sigma\left(b_{i}\right)=\left\{\begin{array}{l}1, \sigma=I \\ 0, \sigma \neq I\end{array} . \quad\right.$ Accordingly, $z_{\sigma}=\sum_{i} a_{i} b_{i} z_{\sigma}=$ $\sum_{i} a_{i} \sigma\left(b_{i}\right) z_{\sigma}=0$ for $\sigma \neq I$. Therefore, we have $z \in J_{I}=L$ and $V_{\Delta}(L)=L$. In other words, L is a maximal commutative subalgebra of $\Delta(f, L, \Phi, G)$. Secondly, we shall show that k is the center of $\Delta(f, L, \Phi, G)$. Since $V_{\Delta}(\Delta) \subset$ $V_{\Delta}(L)=L$, for any $a \in V_{\Delta}(\Delta)$, we have $a x=\sigma(a) x$ for every $x \in J_{\sigma}$ and every $\sigma \in G$. Since J_{σ} is faithful L-module, $a=\sigma(a)$ for every $\sigma \in G$, therefore $a \in L^{G}=k$. Accordingly, k is the center of Δ. Finally, we shall show that $\Delta(f, L, \Phi, G)$ is separable over k. Since Δ is a finitely generated projective k-module, by [7], Proposition 1.1Δ is separable over k if and only if $\Delta \otimes_{k} k_{\mathrm{m}}$ is separable over $k_{\mathfrak{m}}$ for all maximal ideal \mathfrak{m} of k. Therefore, we may work with $\Delta\left(f_{\mathfrak{m}}, L_{\mathfrak{m}}, \Phi_{\mathfrak{m}}, G\right)=\Delta \otimes_{k} k_{\mathfrak{m}}$, i.e. we may assume that k is local, so L is semi-local. Then every finitely generated rank 1 projective L-module is free, so Φ coincides with Φ_{0}. Therefore, $\Delta\left(f, L, \Phi_{0}, G\right)$ is an ordinary crossed product, hence by [1], Theorem A. 12, $\Delta(f, L, \Phi, G)$ is separable over k. This completes the proof.

Proposition 3. Let $L \supset k$ be a Galois extension with Calois group G, and let Λ be an Azumaya k-algebra containing L as a maximal commutative subalgebra. Then Λ is L-isomorphic to a generalized crossed product of L and G with some $\Phi \in(\$$ and some factor set frelated to Φ, as k-algebra.

Proof. For each $\sigma \in G$, we put $J_{\sigma}={ }_{\sigma^{-1}} \Lambda_{I}{ }^{L}=\{a \in \Lambda ; \sigma(x) a=a x$, for all $x \in L\}$,
 Since Λ is a faithful $L \otimes_{k} \Lambda^{0}$-left module and $L \otimes_{k} \Lambda^{0}$ is a separable k-algebra, it follows from [8], Theorem 1 that Λ is finitely generated projestive generator as an $L \otimes_{k} \Lambda^{0}$-left module, and $\operatorname{Hom}_{L \otimes_{k} \Lambda^{0}}(\Lambda, \Lambda)=L$. Accordingly, we have $J_{\sigma} \otimes_{L} \Lambda \approx \operatorname{Hom}_{L \otimes_{k} \Lambda^{0}}\left(\Lambda,{ }_{\sigma^{-1}} \Lambda_{I}\right) \otimes_{L} \Lambda \approx{ }_{\sigma^{-1}} \Lambda_{I}$ as left L - and right Λ-modules. Therefore, we obtain $\left[J_{\sigma}\right] \in P_{i c k}(L)$ and $J_{\sigma} \Lambda=\Lambda$. Using the inclusion map $J_{\sigma} \rightarrow \Lambda$, we define the L-L-homomorphism $\theta: \sum_{\sigma \in G} \oplus J_{\sigma} \rightarrow \Lambda ; \theta\left(\sum_{\sigma \in G} x_{\sigma}\right)=\sum x_{\sigma}$ in Λ, for $x_{\sigma} \in J_{\sigma}$. In order to show that θ is an isomorphism it suffices to show that for
every maximal ideal \mathfrak{m} of k, the localized map $\theta_{\mathfrak{m}}: \sum \oplus\left(J_{\sigma}\right)_{\mathfrak{m}} \rightarrow \Lambda_{\mathfrak{m}}$ is isomorphism. Therefore, we may suppose that k is a local ring, so L is a semi-local ring. Then J_{σ} is a free L-module of rank 1 ; there is u_{σ} in J_{σ} such that $J_{\sigma}=u_{\sigma} L=L u_{\sigma}$. Since $\Lambda=u_{\sigma} \Lambda$, and $u_{\sigma} \Lambda$ is Λ-free, u_{σ} is a unit in Λ, and σ is extended to an inner automorphism induced by u_{σ}. Therefore, we obtain from [1], Theorem A. 13 that Λ is isomorphic to an ordinary crossed product $\Delta(\rho, \Lambda, G)=\sum_{\sigma \in G} \oplus \Lambda u_{\sigma}$. Consequently, θ is an isomorphism. Since $J_{\sigma} \cdot J_{\tau} \subset J_{\sigma \tau}$ and for every maximal ideal \mathfrak{m} of $k\left(J_{\sigma} J_{\tau}\right)_{\mathfrak{m}}=\left(J_{\sigma}\right)_{\mathfrak{m}}\left(J_{\tau}\right)_{\mathfrak{m}}=\left(J_{\sigma \tau}\right)_{\mathfrak{m}}$, we obtain $J_{\sigma} \otimes_{L} J_{\tau} \approx J_{\sigma} J_{\tau}=J_{\sigma \tau}$. If we define $\Phi: G \rightarrow \operatorname{Pic}_{k}(L)$ by $\Phi(\sigma)=\left[J_{\sigma}\right]$ for each $\sigma \in G$, and $f_{\sigma, \tau}: J_{\sigma} \otimes_{L} J_{\tau} \rightarrow J_{\sigma \tau}$ by $f_{\sigma, \tau}(x \otimes y)=x y$ for each $\sigma, \tau \in G$, then Φ is in (S) and $f=\left\{f_{\sigma, \tau} ; \sigma, \tau \in G\right\}$ is a factor set related to Φ, and we obtain that Λ and $\Delta(f, L, \Phi, G)$ are k-algebra isomorphic and L-isomorphic.

Proposition 4. Let $L \supset k$ be a Galois extension with Galois group G, and let Φ be an element in \mathfrak{G}. If $f=\left\{f_{\sigma, \tau} ; \sigma, \tau \in G\right\}$ and $g=\left\{g_{\sigma, \tau} ; \sigma, \tau \in G\right\}$ are factor sets related to Φ, then there is a cocycle ρ in $Z^{2}\left(G, L^{*}\right)$ such that $g=\rho f$, i.e. $g_{\sigma, \tau}(x \otimes y)=\rho(\sigma, \rho) \cdot f_{\sigma, \tau}(x \otimes y)$ for $x \otimes y \in J_{\sigma} \otimes_{L} J_{\tau}, \sigma, \tau \in G$, where L^{*} is a multiplicative group of units in L, and $\Phi(\sigma)=\left[J_{\sigma}\right]$ for $\sigma \in G$. Furthermore, $\Delta(f, L, \Phi, G)$ is L-isomorphic to $\Delta(\rho f, L, \Phi, G)$ as k-algebra if and only if ρ is in $B^{2}\left(G, L^{*}\right)$.

Proof. Let $\Phi(\sigma)=\left[J_{\sigma}\right], \sigma \in G$. Since $f_{\sigma, \tau}$ and $g_{\sigma, \tau}$ are isomorphisms of $J_{\sigma} \otimes_{L} J_{\tau}$ to $J_{\sigma \tau}$ for $\sigma, \tau \in G, g_{\sigma, \tau^{\circ}} f_{\tau, \sigma}^{-1}$ is an automorphism of $J_{\sigma \tau}$, so there exists a unit $\rho(\sigma, \tau)$ in $\operatorname{Hom}_{L}\left(J_{\sigma \tau}, J_{\sigma \tau}\right)=L$ such that $g_{\sigma, \tau}(x \otimes y)=\rho(\sigma, \tau) \cdot f_{\sigma, \tau}(x \otimes y)$ for every $x \otimes y \in J_{\sigma} \otimes_{L} J_{\tau}$. Since f and g are factor set related to Φ, we can check easily that ρ is in $Z^{2}\left(G, L^{*}\right)$. We write $g=\rho f$. If $h: \Delta(f, L, \Phi, G) \rightarrow$ $\Delta(\rho f, L, \Phi, G)$ is a L-isomorphism as k-algebra, then $h\left(J_{\sigma}\right)=J_{\sigma}$ for each $\sigma \in G$. Because for any $x \in J_{\sigma}$, one can write $h(x)=\sum_{\tau \in G} z_{\tau}$ for z_{τ} in J_{τ}, so

$$
\sum_{\tau \in \mathcal{G}} \tau(a) z_{\tau}=\sum_{\tau} z_{\tau} a=h(x) a=h(\sigma(a) x)=\sigma(a) h(x)=\sum_{\tau \in G} \sigma(a) z_{\tau} .
$$

Therefore, $\tau(a) z_{\tau}=\sigma(a) z_{\tau}$ for all $a \in L$ and each $\tau \in G$. If we take $a_{1}, a_{2}, \cdots, a_{n}$, $b_{1}, b_{2}, \cdots, b_{n}$ in L such that $\sum_{i} a_{i} \gamma\left(b_{i}\right)=\left\{\begin{array}{l}1 ; \gamma=I \\ 0 ; \gamma \neq I,\end{array}, \gamma \in G\right.$, then $z_{\tau}=\sum_{i} a_{i} b_{i} z_{\tau}=$ $\sum_{i} \tau\left(a_{i}\right) \tau\left(b_{i}\right) z_{\tau}=\sum_{i} \tau\left(a_{i}\right) \sigma\left(b_{i}\right) z_{\tau}=\tau\left(\sum_{i} a_{i} \tau^{-1} \sigma\left(b_{i}\right)\right) z_{\tau}=0$ for $\tau \neq \sigma$. Thus we have $h(x) \in J_{\sigma}$. Therefore $h\left(J_{\sigma}\right)=J_{\sigma}$ and so, for each $\sigma \in G$, the isomorphism h determies the element d_{σ} in L^{*} such that $h(x)=d_{\sigma} x$ for all $x \in J_{\sigma}$. Since h is L-isomorphism, $d_{I}=1$. Since h is ring-isomorphism, $h\left(f_{\sigma, 7}(x \otimes y)\right)=$ $d_{\sigma, \tau} \cdot f_{\sigma, \tau}(x \otimes y)=\rho(\sigma, \tau) \cdot f_{\sigma, \tau}(h(x), h(y))=\rho(\sigma, \tau) \cdot d_{\sigma} \cdot \sigma\left(d_{\tau}\right) f_{\sigma, \tau}(x \otimes y)$ for all $x \otimes y$ $\in J_{\sigma} \otimes J_{\tau}$. Accordingly, $\rho(\sigma, \tau)=d_{\sigma \tau} \cdot d_{\sigma}^{-1} \cdot \sigma\left(d_{\tau}\right)^{-1}$ for $\sigma, \tau \in G$, hence ρ is in $B^{2}\left(G, L^{*}\right)$. Conversely, if ρ is in $B^{2}\left(G, L^{*}\right)$, there exists $\left\{d_{\sigma} ; \sigma \in G\right\}$ in L^{*} such that $\rho(\sigma, \tau)=d_{\sigma \tau} \cdot d_{\sigma}^{-1} \cdot \sigma\left(d_{\tau}\right)^{-1}$ for $\sigma, \tau \in G$. If one take $d_{I}=1$, the map
$h: \Delta(f, L, \Phi, G)=\sum_{\sigma \in G} \oplus J_{\sigma} \rightarrow \Delta(\rho f, L, \Phi, G)=\sum_{\sigma \in G} \oplus J_{\sigma}$ defined by $h(x)=d_{\sigma} x$ for $x \in J_{\sigma}$ and $\sigma \in G$, is L-isomorphism as k-algebra.

Lemma 1. Let $L \supset k$ be a Galois extension with Galois group $G,[P]$ an element of $P(L)$. Then the following conditions are equivalemt;

1) $\operatorname{Hom}_{k}(P, P)$ is L-isomorphic to $\Delta(L, G)$ as k-algebra, where $\Delta(L, G)$ means the ordinary crossed product with trivial factor set.
2) There is an element $\left[P_{0}\right]$ in $P(k)$ such that $[P]=\left[P_{0} \otimes_{k} L\right]$ in $P(L)$.

Proof. 1) $\rightarrow 2$); Since L is a Galois extension of k, L is finitely generated projective generator as a $\Delta(L, G)$-module, and $\operatorname{Hom}_{\Delta(L, G)}(L, L)=k$. Regarding P as $\Delta(L, G)$-module, we have $P \approx \operatorname{Hom}_{\Delta(L, G)}(L, P) \otimes_{k} L$. Since P is a finitely generated projective L-module of rank $1, P_{0}=\operatorname{Hom}_{\Delta(L, G)}(L, P)$ is a finitely generated projective k-module of rank 1 , so $\left[P_{0}\right] \in P(k)$ and $\left[P_{0} \otimes_{k} L\right]=[P]$.
2) \rightarrow 1); If $\left[P_{0}\right] \in P(k)$ and $[P]=\left[P_{0} \otimes_{k} L\right]$, then $\operatorname{Hom}_{k}(P, P) \approx \operatorname{Hom}_{k}$ $\left(P_{0} \otimes_{k} L, P_{0} \otimes_{k} L\right) \approx \operatorname{Hom}_{k}\left(P_{0}, P_{0}\right) \otimes_{k} \operatorname{Hom}_{k}(L, L) \approx k \otimes_{k} \Delta(L, G) \approx \Delta(L, G)$ as L-modules and k-algebras.

Remrak 5. Let $L \supset k$ be a trivial Galois extension with Galois group G, i.e. $L=\sum_{\sigma \in G} \oplus k e_{\sigma}, \sum_{\sigma} e_{\sigma}=1, e_{\sigma} \cdot e_{\tau}=\left\{\begin{array}{c}e_{\sigma} ; \sigma=\tau \\ 0 ; \sigma \neq \tau,\end{array}\right.$ and $\sigma\left(e_{1}\right)=e_{\sigma}, k e_{\sigma} \approx k$ as k-algebra, for $\sigma \in G$. Then $P(L)^{G}=\operatorname{Im}(P(k) \rightarrow P(L))$ where $P(k) \rightarrow P(L)$ is defined by $\left[P_{0}\right] \rightsquigarrow \rightarrow\left[P_{0} \otimes_{k} L\right]$, and $P(L)^{G}=\left\{[P] \in P[L] ;[P]^{\sigma}=[P]\right.$ forall $\left.\sigma \in G\right\}$.

Proof. Let $[P] \in P(L)^{G}$, so ${ }_{\sigma} L_{I} \otimes_{L} P \approx P \otimes_{L}{ }_{\sigma} L_{I}$ as L - L-bimodule, for all $\sigma \in G$. Since $L=\sum_{\sigma \in G} \oplus e_{\sigma} k$, we have $P=\sum_{\sigma \in G} \oplus e_{\sigma} P$. Then $e_{\sigma} P$ and $e_{\tau} P$ are k-isomorphic for every $\sigma, \tau \in G$. Because, from the L - L-isomorphism $h_{\sigma}:{ }_{\sigma} L_{I} \otimes_{L} P=\sum_{\tau \in G} \oplus \sigma\left(e_{\tau}\right)_{\sigma} L_{I} \otimes_{L} P \rightarrow P \otimes_{L}{ }_{\sigma} L_{I}=\sum_{\tau \in G} \oplus e_{\tau} P \otimes_{L}{ }_{\sigma} L_{I}$, we obtain the L-L-isomorphism $\sigma\left(e_{\tau}\right)_{\sigma} L_{I} \otimes_{L} P={ }_{\sigma} L_{I} \otimes_{L} e_{\tau} P \rightarrow e_{\sigma \tau} P \otimes_{L} L_{I}$, for each σ and τ in G. Since ${ }_{\sigma} L_{I} \otimes_{L} e_{\tau} P$ and $e_{\tau} P$ are k-isomorphic, and $e_{\sigma \tau} P$ and $e_{\sigma \tau} P \otimes_{L}{ }_{\sigma} L_{I}$ are k-isomorphic, therefore $e_{\tau} P$ and $e_{\sigma \tau} P$ are k-isomorphic for every $\sigma, \tau \in G$. Since $[P] \in P(L), P=\sum_{\sigma \in G} \oplus e_{\sigma} P$ and $\left(e_{1} P\right)_{\mathfrak{m}} \approx\left(e_{\sigma} P\right)_{\mathfrak{m}}$ for all maximal ideal \mathfrak{m} of k, we obtain $\left[e_{1} P\right] \in P(k)$. Now, we shall show $L \otimes_{k} e_{1} P \approx P$ as L-module. Let $h_{\sigma}{ }^{\prime}$ be the k-isomorphism of $e_{\sigma} P$ to $e_{1} P$ obtained above, for each $\sigma \in G$. We defined the map $h: P \rightarrow L \otimes_{k} e_{1} P=\sum_{\sigma \in G} \oplus e_{\sigma} k \otimes_{k} e_{1} P$ by $h(x)=\sum_{\sigma \in G} e_{\sigma} \otimes h_{\sigma}{ }^{\prime}\left(e_{\sigma} x\right)$. Then $h\left(e_{\tau} x\right)=\sum_{\sigma \in G} e_{\sigma} \otimes h_{\sigma}{ }^{\prime}\left(e_{\sigma} e_{\tau} x\right)=e_{\tau} \otimes h_{\tau}{ }^{\prime}\left(e_{\tau} x\right)=e_{\tau}\left(\sum_{\sigma \in G} e_{\sigma} \otimes h_{\sigma}{ }^{\prime}\left(e_{\sigma} x\right)\right)=e_{\tau} h(x)$, therefore h is L-isomorphism. We obtain $\left[e_{1} P\right] \in P(k)$ and $[P]=\left[L \otimes_{k} e_{1} P\right]$.

Proposition 5. Let $L \supset k$ be a Galois extension with Galois group G. Let Φ be an element in \mathbb{G} such that there exists a factor set f related to Φ and there is
a finitely generated faithful projective k-module P which satisfies $\Delta(f, L, \Phi, G) \approx$ $\operatorname{Hom}_{k}(P, P)$ as k-algebras. Then, 1) $[P]$ is in $\left.P(L), 2\right)$ we have $\Phi(\sigma) \cdot[P]$ $=[P] \cdot \Phi_{0}(\sigma)$ for all $\sigma \in G$ i.e. $\Phi=\varphi \cdot \Phi_{0}$ and $\varphi(\sigma)=[P] \cdot\left([P]^{-1}\right)^{\sigma}$ for all $\sigma \in G$.

Proof. Since L is a maximal commutative subalgebra of $\Delta(f, L, \Phi, G)$, regarding P as L-module, $L=V_{\operatorname{Hom}_{k}(P, P)}(L)=\operatorname{Hom}_{L}(P, P)$. Since L is separable over k, P is a finitely generated projective L-module, so $[P]$ is contained in $P(L)$. We put $\Phi(\sigma)=\left[J_{\sigma}\right]$ for $\sigma \in G$. Then from the proof of Proposition 3 we obtain $J_{\sigma}={ }_{\sigma^{-1}}\left(\operatorname{Hom}_{k}(P, P)\right)_{I}{ }^{L}=\left\{f \in \operatorname{Hom}_{k}(P, P) ; \sigma(a) f(x)=f(a x)\right.$ for all $x \in P, a \in L\}$. We shall show the map $\theta ;{ }_{\sigma}{ }^{-1}\left(\operatorname{Hom}_{k}(P, P)\right)_{I}^{L} \otimes_{L} P \rightarrow P \otimes_{L} L_{I}$ $=P \otimes L u_{\sigma}$, defined by $\theta(f \otimes x)=f(x) \otimes u_{\sigma}$, is an L-L-isomorphism, where u_{σ} is a base of ${ }_{\sigma} L_{I}$. Since $\theta(f \otimes x a)=f(x a) \otimes u_{\sigma}=f(a x) \otimes u_{\sigma}=\sigma(a) f(x) \otimes u_{\sigma}=f(x) \otimes \sigma(a) u_{\sigma}$ $=f(x) \otimes u_{\sigma} a$ and $\theta(a f \otimes x)=a f(x) \otimes u_{\sigma}$ for $a \in L, x \in P$, so θ is a L-L-homomorphism. In order to show that is θ isomorphism, it suffices to show that for every maximal ideal \mathfrak{m} of $k \theta_{\mathfrak{m}}:\left({ }_{\sigma^{-1}}\left(\operatorname{Hom}_{k}(P, P)\right)_{I}^{L} \otimes_{L} P\right)_{\mathfrak{m}} \rightarrow\left(P \otimes_{L}{ }_{\sigma} L_{I}\right)_{\mathfrak{m}}$ is an isomorphism. But, $L_{\mathfrak{m}}=L \otimes_{k} k_{\mathfrak{m}}$ is semi-local and ${\left(\sigma^{-1}\left(\operatorname{Hom}_{k}(P, P)\right)_{I}^{L}\right)_{\mathfrak{m}}=}=$ $\sigma^{-1}\left(\operatorname{Hom}_{k_{\mathfrak{m}}}\left(P_{\mathfrak{m}}, P_{\mathfrak{m}}\right)\right)_{I} L_{\mathfrak{m}}$ is free $L_{\mathfrak{m}}$-module generated by a unit f in $\operatorname{Hom}_{k_{\mathfrak{m}}}\left(P_{\mathfrak{m}}\right.$, $P_{\mathfrak{m}}$). Therefore $\theta_{\mathfrak{m}}$ is a homomorphism of $L_{\mathfrak{m}} f \otimes_{L_{\mathfrak{m}}} P_{\mathfrak{m}}$ to $P_{\mathfrak{m}} \otimes_{L_{\mathfrak{m}}} L_{\mathfrak{m}} u_{\sigma}$ defined by $\theta_{\mathfrak{m}}(f \otimes x)=f(x) \otimes u_{\sigma}$. Since f is an automorphism of $P_{\mathfrak{m}}$, we obtain that $\theta_{\mathfrak{m}}$ is isomorphism. Thus, we obtain $J_{\sigma} \otimes_{L} P \approx P \otimes_{L_{\sigma}} L_{I}$, so $\Phi(\sigma) \cdot[P]=[P] \cdot \Phi_{0}(\sigma)$, $\sigma \in G$.

Corollary 1. Let $L \supset k$ be a Galois extension with Galois group G, and $[P]$ an elemant of $P(L)$. Then $\operatorname{Hom}_{k}(P, P)$ is L-isomorphic to a generalized crossed product $\Delta\left(f, L, \Phi_{0}, G\right)$ of L and G with some factor set f related to Φ_{0} as k-algebra, if and only if $[P]$ is contained in $P(L)^{G}$.

Proof. If $\operatorname{Hom}_{k}(P, P) \approx \Delta\left(f, L, \Phi_{0}, G\right)$, then by Proposition 5, 2) we obtain $[P]=[P]^{\sigma}$ for all $\sigma \in G$, so $[P] \in P(L)^{G}$. Conversely, let $[P] \in P(L)^{G}$. Since $\operatorname{Hom}_{k}(P, P)$ is an Azumaya k-algebra with maximal commutative subalgebra L, $\operatorname{Hom}_{k}(P, P)$ is written by $\Delta(f, L, \Phi, G)$ for some Φ and f. Therefore, by Proposition 5, 2) we have $\Phi(\sigma) \cdot[P]=[P] \Phi_{0}(\sigma)$ and so $[P]^{\sigma} \Phi(\sigma)=[P] \Phi_{0}(\sigma)$. Accordingly $\Phi(\sigma)=\Phi_{0}(\sigma)$ for all $\sigma \in G$, i.e. $\Phi=\Phi_{0}$.

Proposition 6. Let $L \supset k$ be a Galois extension with Galois group G. For any $\Phi=\varphi \Phi_{0} \in \mathscr{S}$ with some factor set f related to $\Phi, \Delta(f, L, \Phi, G)$ has an opposite k-algebra $\Delta(f, L, \Phi, G)^{0}=\Delta\left(f^{0}, L, \Phi^{0}, G\right)$ where $\Phi^{0}=\varphi^{-1} \Phi_{0}$ and f^{0} is some factor set related to Φ^{0}.

Proof. Put $\Phi(\sigma)=\left[J_{\sigma}\right], \varphi(\sigma)=\left[P_{\sigma}\right]$ and $\Phi^{0}(\sigma)=\varphi(\sigma)^{-1} \cdot \Phi_{0}(\sigma)=\left[P_{\sigma} * \otimes_{L} L_{I}\right]$ $=\left[J_{\sigma}{ }^{\prime}\right]$ for $\sigma \in G$, where $P_{\sigma}{ }^{*}=\operatorname{Hom}_{L}\left(P_{\sigma}, L\right)$. Since $1=\varphi(1)=\varphi\left(\sigma \sigma^{-1}\right)=$ $\varphi(\sigma) \cdot \varphi\left(\sigma^{-1}\right)^{\sigma}$, we have $\left[P_{\sigma}\right]=\varphi(\sigma)=\left(\varphi\left(\sigma^{-1}\right)^{-1}\right)^{\sigma}=\left[P_{\sigma}{ }^{*}\right]^{\sigma}$. Thus P_{σ} and $\left(P_{\sigma}{ }^{*}\right)^{\sigma}=$ ${ }_{\sigma} L_{I} \otimes_{L} P_{\sigma}{ }_{1} \otimes_{L \sigma^{-1}} L_{I}$ are L - L-isomorphic. Let $h_{\sigma}: P_{\sigma} \rightarrow\left(P_{\sigma}{ }^{*}\right)^{\sigma}$ be the $L-L$ isomorphism, and let $g_{\sigma}:\left(P_{\sigma^{-1}}^{*}\right)^{\sigma}=L u_{\sigma} \otimes_{L} P_{\sigma^{-1}}^{*} \otimes_{L} L u_{\sigma^{-1}} \rightarrow P_{\sigma^{-1}}^{*}$ be a k-isomor-
phism defined by $g_{\sigma}\left(u_{\sigma} \otimes x \otimes u_{\sigma-1}\right)=x$. Then $g_{\sigma}{ }^{\circ} h_{\sigma}$ is a k-isomorphism satisfying $g_{\sigma} \circ h_{\sigma}(a x)=\sigma^{-1}(a) g_{\sigma} \circ h_{\sigma}(x)$ for all $x \in P_{\sigma}$ and $a \in L$. For each $\sigma \in G$, we define the map $g: J_{\sigma}=P_{\sigma} \otimes_{L} L_{I} \rightarrow J_{\sigma^{\prime}{ }_{1}}=P_{\sigma^{1}} *_{1} \otimes_{L^{-1}} L_{I}$ as follows: For $x \otimes a u_{\sigma} \in$ $P_{\sigma} \otimes_{L \sigma} L_{I}=P_{\sigma} \otimes_{L} L u_{\sigma}, g\left(x \otimes a u_{\sigma}\right)=g_{\sigma}{ }^{\circ} h_{\sigma}(x) \otimes \sigma^{-1}(a) u_{\sigma^{-1}}$. It is easily checked that g is well defined. Then the map g induces the k-isomorphism of $\sum_{\sigma \in G} \oplus J_{\sigma}$ to $\sum_{\sigma \in G} \oplus J_{\sigma}{ }^{\prime}$, and satisfies $g(x \otimes y a)=g(x \otimes \sigma(a) y)=g(\sigma(a) x \otimes y)=a g(x \otimes y)$ and $g(a x \otimes y)=g(x \otimes a y)=g(x \otimes y) a$ for all $x \otimes y \in P_{\sigma} \otimes_{L}{ }_{\sigma} L_{I}=J_{\sigma}$ and $a \in L$. Now, we define the map $f_{\sigma, \tau}^{0}: J_{\sigma}{ }^{\prime} \otimes J_{\tau}{ }^{\prime} \rightarrow J_{\sigma \tau}{ }^{\prime}$ as follows:

$$
f_{\sigma, \tau}^{0}\left(x^{\prime} \otimes y^{\prime}\right)=g\left(f_{\tau^{-1} \sigma^{-1}}\left(g^{-1}\left(y^{\prime}\right) \otimes g^{-1}\left(x^{\prime}\right)\right)\right) \quad \text { for } \quad x^{\prime} \otimes y^{\prime} \in J_{\sigma}^{\prime} \otimes J_{\tau}^{\prime}
$$

Then $f_{\sigma, \tau}^{0}$ is L-L-isomorphism. Because, $f_{\sigma, \tau}^{0}\left(a x^{\prime} \otimes y^{\prime}\right)=g\left(f_{\tau^{-1, \sigma^{-1}}}\left(g^{-1}\left(y^{\prime}\right) \otimes\right.\right.$ $\left.\left.g^{-1}\left(a x^{\prime}\right)\right)\right)=g\left(f_{\tau^{-1, \sigma^{-1}}}\left(g^{-1}\left(y^{\prime}\right) \otimes g^{-1}\left(x^{\prime}\right) a\right)\right)=g\left(f_{\tau^{-1, \sigma^{-1}}}\left(g^{-1}\left(y^{\prime}\right) \otimes g^{-1}\left(x^{\prime}\right)\right) a\right)=$ $a \cdot g\left(f_{\tau-1, \sigma^{-1}}\left(g^{-1}\left(y^{\prime}\right) \otimes g^{-1}\left(x^{\prime}\right)\right)\right)=a f_{\sigma, \tau}^{0}(x \otimes y)$, similarly, $f_{\sigma, \tau}^{0}\left(x^{\prime} \otimes y^{\prime} a\right)=f_{\sigma, \tau}^{0}\left(x^{\prime} \otimes y^{\prime}\right) a$ for all $x^{\prime} \otimes y^{\prime} \in J_{\sigma}{ }^{\prime} \otimes J_{\tau}{ }^{\prime}, a \in L$. Furthermore, $f^{0}=\left\{f_{\sigma, \tau}^{0} ; \sigma, \tau \in G\right\}$ is a factor set related to $\Phi^{0}=\varphi^{-1} \Phi_{0}$;

$$
\begin{aligned}
& f_{\sigma \tau, \gamma}^{0}\left(f_{\sigma, \tau}^{0}\left(x^{\prime} \otimes y^{\prime}\right) \otimes z^{\prime}\right)=g\left(f_{\gamma^{-1,(\sigma \tau)-1}}\left(g^{-1}\left(z^{\prime}\right) \otimes g^{-1}\left(f_{\sigma, \tau}^{0}\left(x^{\prime} \otimes y^{\prime}\right)\right)\right)\right. \\
& =g\left(f_{\gamma^{-1, \tau^{-1 \sigma^{-1}}}}\left(g^{-1}\left(z^{\prime}\right) \otimes f_{\tau^{-1}, \sigma^{-1}}\left(g^{-1}\left(y^{\prime}\right) \otimes g^{-1}\left(x^{\prime}\right)\right)\right)\right. \\
& =g\left(f_{\gamma-1 \tau^{-1, \sigma^{-1}}}\left(f_{\gamma-1, \tau^{-1}}\left(g^{-1}(z) \otimes g^{-1}\left(y^{\prime}\right)\right) \otimes g^{-1}\left(x^{\prime}\right)\right)\right) \\
& =g\left(f_{(\tau \gamma))^{-1}, \sigma^{-1}}\left(g^{-1}\left(f_{\tau, \gamma}^{0}\left(y^{\prime} \otimes z^{\prime}\right)\right) \otimes g^{-1}\left(x^{\prime}\right)\right)\right) \\
& =f_{\sigma, \gamma \gamma}^{0}\left(x^{\prime} \otimes f_{\tau, \gamma}^{0}\left(y^{\prime} \otimes z^{\prime}\right)\right), \quad \text { for } \quad x^{\prime} \otimes y^{\prime} \otimes z^{\prime} \in J_{\sigma}{ }^{\prime} \otimes J_{\tau}{ }^{\prime} \otimes J_{\gamma}{ }^{\prime} .
\end{aligned}
$$

Therefore, Φ^{0} and f^{0} define a generalized crossed product $\Delta\left(f^{0}, L, \Phi^{0}, G\right)=$ $\sum_{\sigma \in G} \oplus J_{\sigma}^{\prime}$ of L and G. Since $g\left(f_{\sigma, \tau}(x \otimes y)\right)=f_{\tau^{-1, \sigma^{-1}}}^{0}(g(y) \otimes g(x))$, for $x \otimes y \in J_{\sigma}$ $\otimes J_{\tau}, g$ is an opposite k-algebraisomorphism of $\Delta(f, L, \Phi, G)$ to $\Delta\left(f^{0}, L, \Phi^{0}, G\right)$.
3. Application to Brauer group. The purpose of this section is to derive the seven terms exact sequence, using the results in §2. We define the maps θ_{i} in the sequence
$H^{1}\left(G, L^{*}\right) \xrightarrow{\theta_{1}} P(k) \xrightarrow{\theta_{2}} P(L)^{G} \xrightarrow{\theta_{3}} H^{2}\left(G, L^{*}\right) \xrightarrow{\theta_{4}} B(L / k) \xrightarrow{\theta_{5}} H^{1}(G, P(L)) \xrightarrow{\theta_{6}} H^{3}\left(G, L^{*}\right)$
in the following way: We suppose that L is a Galois extension of k with finite Galois group G.
(1) $\theta_{1}: H^{1}\left(G, L^{*}\right) \rightarrow P(k)$;

Let $\rho \in Z^{1}\left(G, L^{*}\right)$. We define the new operation of element σ of G on L; for $\sigma \in G, x \in L, \sigma * x=\rho(\sigma) \cdot \sigma(x)$. Under this operation, we may regard L as $\Delta(L, G)$-left module, then we denote L by ${ }_{\rho} L$. We put $P_{0}={ }_{\rho} L^{G}=\{a \in L ; \sigma * a$ $=\rho(\sigma) \cdot \sigma(a)=a$ for all $\sigma \in G\} \approx \operatorname{Hom}_{\Delta(L, G)}\left(L,{ }_{\rho} L\right)$. Since $L \supset k$ is a Galois extension, L is finitely generated projective generator as a $\Delta(L, G)$-module, so
we have ${ }_{\rho} L \approx \operatorname{Hom}_{\Delta(L, G)}\left(L,{ }_{\rho} L\right) \otimes_{k} L$. Since $L \supset k$ is a finitely generated projective k-module, $\left[P_{0}\right]=\left[{ }_{\rho} L^{G}\right]$ is in $P(k)$. We define the map θ_{1} by $\theta_{1}(\bar{\rho})=$ $\left[P_{0}\right]=\left[{ }_{\rho} L^{G}\right]$ for $\bar{\rho} \in H^{1}\left(G, L^{*}\right)$. It is well defined. Because, if $\rho^{\prime}=\rho_{0} \rho$ for $\rho_{0} \in B^{1}\left(G, L^{*}\right)$, then there is $\alpha \in L^{*}$ such that $\rho_{0}(\sigma)=\alpha^{-1} \cdot \sigma(\alpha)$ for all $\sigma \in G$. Then $P_{0}{ }^{\prime}={ }_{\rho} L^{G}=\left\{x \in L ; x=\alpha^{-1} \sigma(\alpha) \rho(\sigma) \sigma(x)\right.$, for all $\left.\sigma \in G\right\}=\alpha^{-1} \cdot{ }_{\rho} L^{G}$. Thus $P_{0}{ }^{\prime} \approx P_{0}$ as k-module, therefore $\left[P_{0}{ }^{\prime}\right]=\left[P_{0}\right]$ in $P(k)$.

Lemma 2. The map $\theta_{1}: H^{1}\left(G, L^{*}\right) \rightarrow P(k)$ is a monomorphism.
Proof. In order to show that θ_{1} is a homomorphism, it suffices to show that for $\bar{\rho}_{1}, \bar{\rho}_{2}$ in $H^{1}\left(G, L^{*}\right), \rho_{\rho_{1}} L^{G} \otimes_{k \rho_{2}} L^{G} \approx_{\rho_{1} \rho_{2}} L^{G}$ as k-module. It is easily seen that ${ }_{\rho_{1}} L^{G} \cdot{ }_{\rho_{2}} L^{G} \subset_{\rho_{1} \rho_{2}} L^{G}$. We consider the map $\eta: \rho_{\rho_{1}} L^{G} \otimes_{k \rho_{2}} L^{G} \rightarrow_{\rho_{1} \rho_{2}} L^{G}$ defined by $\eta(x \otimes y)=x y$ for $x \in_{\rho_{1}} L^{G}, y \in_{\rho_{2}} L^{G}$. Since ${ }_{\rho_{i}} L^{G} \otimes_{k} L \approx_{\rho_{i}} L^{G} \cdot L={ }_{\rho_{i}} L$, for every maximal ideal \mathfrak{m} of k, the localization $\left({ }_{\rho_{1}} L^{G}\right)_{\mathfrak{m}},\left({ }_{\rho_{2}} L^{G}\right)_{\mathfrak{m}}$ and $\left(\rho_{\rho_{1} \rho_{2}} L^{G}\right)_{\mathfrak{m}}$ are rank 1 $k_{\mathfrak{n}}$-free module and generated by units in $L_{\mathfrak{m}}$. Therefore, $\left({ }_{\rho}^{1} L^{G}\right)_{\mathfrak{m}}=k_{\mathfrak{m}} u_{1}$, $\left(\rho_{2} L^{G}\right)_{\mathfrak{m}}=k_{\mathfrak{m}} u_{2} \quad$ and $\left(\rho_{1} L^{G}{ }_{\rho_{2}} L^{G}\right)_{\mathfrak{m}}=\left({ }_{\rho_{1}} L^{G}\right)_{\mathfrak{m}} \cdot\left(\rho_{2} L^{G}\right)_{\mathfrak{m}}=k_{\mathfrak{m}} u_{1} u_{2} \subset\left({ }_{\rho_{1} \rho_{2}} L^{G}\right)_{\mathfrak{m}}=k_{\mathfrak{m}} u_{3}$. Since $u_{3}=\left(u_{3} u_{2}^{-1} u_{1}^{-1}\right) u_{1} u_{2}$ and $u_{3} u_{2}^{-1} u_{1}^{-1} \in L_{\mathfrak{m}}{ }^{G}=k_{\mathfrak{m}}$, we have $\left(\rho_{1} L^{G} \cdot{ }_{\rho_{2}} L^{G}\right)_{\mathfrak{m}}=$ $k_{\mathfrak{m}} u_{1} u_{2}=k_{\mathfrak{m}} u_{3}=\left(\rho_{\rho_{1} \rho_{2}} L^{G}\right)_{\mathfrak{m}}$, so $\eta_{\mathfrak{m}}:_{\rho_{1}} L^{G}{ }_{\mathfrak{m}} \otimes_{\mathfrak{k}_{\mathfrak{m}} \rho_{2}} L^{G}{ }_{\mathfrak{m}} \rightarrow{ }_{\rho_{1} \rho_{2}} L^{G}{ }_{\mathfrak{m}}$ is a $k_{\mathfrak{m}}$-isomorphism. Accordingly, η is a k-isomorphism, and so θ_{1} is a homomorphism. Let $\bar{\rho} \in H^{1}\left(G, L^{*}\right)$ and $\theta_{1}(\bar{\rho})=\left[{ }_{\rho} L^{G}\right]=[k]$, i.e. ${ }_{\rho} L^{G}=k \cdot u$ where u is a free base in ${ }_{\rho} L^{G}$, and so u is a unit in L. Therefore, $u=\rho(\sigma) \cdot \sigma(u)$ for every $\sigma \in G$, i.e. $\rho(\sigma)=$ $u \cdot \sigma(u)^{-1}$ so ρ is in $B^{1}\left(G, L^{*}\right)$. Accordingly, θ_{1} is a monomorphism.
(2). $\quad \theta_{2}: P(k) \rightarrow P(L)^{G}$;

We put $\theta_{2}\left(\left[P_{0}\right]\right)=\left[L \otimes_{k} P_{0}\right]$ for $\left[P_{0}\right] \in P(k)$. Then θ_{2} is a homorphism of $P(k)$ to $P(L)^{G}$ by Lemma 1 and Corollary 1.

Lemma 3. $H^{1}\left(G, L^{*}\right) \xrightarrow{\theta_{1}} P(k) \xrightarrow{\theta_{2}} P(L)^{G}$ is exact.
Proof. For any $\bar{\rho}$ in $H^{1}\left(G, L^{*}\right), \theta_{2} \theta_{1}(\bar{\rho})=\theta_{2}\left(\left[{ }_{\rho} L^{G}\right]\right)=\left[{ }_{\rho} L^{G} \otimes_{k} L\right]=\left[{ }_{\rho} L\right]=[L]$ in $P(L)$. Let $\left[P_{0}\right]$ be in $P(k)$ and $\left[P_{0} \otimes_{k} L\right]=[L]$, i.e. there is an L-isomorphism $h: L \rightarrow P_{0} \otimes_{k} L$. Since $\operatorname{Hom}_{k}\left(P_{0} \otimes_{k} L, P_{0} \otimes_{k} L\right) \approx \operatorname{Hom}_{k}(L, L)=\Delta(L, G)=$ $\sum_{\sigma \in G} \oplus L u_{\sigma}$, we can regard $P \otimes_{k} L$ as a faithful $\Delta(L, G)$-module by the isomorphism h. Then $L u_{\sigma}$ is described as $J_{\sigma}=\left\{g \in \operatorname{Hom}_{k}\left(P \otimes_{k} L, P \otimes_{k} L\right) ; g \cdot a=\right.$ $\sigma(a) g$, for all $a \in L\}$. The k-isomorphism $\bar{\sigma}=I \otimes \sigma: P_{0} \otimes_{k} L \rightarrow P_{0} \otimes_{k} L$ is a unit element in $\operatorname{Hom}_{k}\left(P_{0} \otimes_{k} L, P_{0} \otimes_{k} L\right)$ and is contained in J_{σ} for each $\sigma \in G$. Therefore, there exists d_{σ} in L^{*} such that $\bar{\sigma}=d_{\sigma} u_{\sigma}$ for each $\sigma \in G$. Then, the map $\rho: G \rightarrow L^{*}$ defined by $\rho(\sigma)=d_{\sigma}$ is in $Z^{1}\left(G, L^{*}\right)$. Because, $d_{\sigma \tau}=\overline{\sigma \tau} \cdot u_{\sigma \tau}^{-1}=$ $\bar{\sigma} \cdot \bar{\tau} u_{\tau}^{-1} \cdot u_{\sigma}^{-1}=\bar{\sigma} \cdot d_{\tau} u_{\sigma}^{-1}=\bar{\sigma} u_{\sigma}^{-1} \sigma\left(d_{\tau}\right)=d_{\sigma} \cdot \sigma\left(d_{\tau}\right)$. It follows that $\theta_{1}(\bar{\rho})=\left[{ }_{\rho} L^{G}\right]$, and ${ }_{\rho} L^{G}=\{x \in L ; x=\rho(\sigma) \cdot \sigma(x)$, for all $\sigma \in G\} \approx\left\{y \in P_{0} \otimes_{k} L ; y=\rho(\sigma) \cdot u_{\sigma} y\right\}$ $=\left\{y \in P_{0} \otimes_{k} L ; y=\rho(\sigma) \cdot d_{\sigma}^{-1} \cdot \bar{\sigma}(y)\right.$, for all $\left.\sigma \in G\right\}=\left\{y \in P_{0} \otimes_{k} L ; y=I \otimes \sigma(y)\right.$ for all $\sigma \in G\}=\left(P_{0} \otimes_{k} L\right)^{I \times G}$. Since $L \supset k$ is a Galois extension, there is an element c in L such that $\sum_{\sigma \in G} \sigma(c)=1$, therefore any element $y=\sum x_{i} \otimes a_{i} \in\left(P_{0} \otimes L\right)^{I \times G}$,
$y=\sum_{\sigma \in G} y \sigma(c)=\sum_{\sigma \in G} I \otimes \sigma(y c)=\sum_{\sigma} x_{i} \otimes \sum_{\sigma \in G} \sigma\left(a_{i} c\right)=\sum_{\sigma} x_{i} \cdot \sum_{\sigma \in G} \sigma\left(a_{i} c\right) \otimes 1$, so y is contained in $P_{0} \otimes_{k} L^{G}=P_{0} \otimes k=P_{0} . \quad$ Accordingly, we have $\theta_{1}(\bar{\rho})=\left[P_{0}\right]$.
(3). $\theta_{3}: P(L)^{G} \rightarrow H^{2}\left(G, L^{*}\right)$;

Let $[P] \in P(L)^{G}$. By Corollary 1 , there exists a factor set f related to Φ_{0}, i.e. $f=\rho \in Z^{2}\left(G, L^{*}\right)$, such that $\operatorname{Hom}_{k}(P, P)$ is L-isomrphic to $\Delta\left(f, L, \Phi_{0}, G\right)$ $=\Delta(\rho, L, G)$ as k-algebra. We define the map $\theta_{3}: P(L)^{G} \rightarrow H^{2}\left(G, L^{*}\right)$ by $\theta_{3}([P])=\bar{\rho}$ for $[P] \in P(L)^{G}$. Then θ_{3} is a homomorphism. Because, for $[P],\left[P^{\prime}\right] \in P(L)^{G}$, we have $\operatorname{Hom}_{k}(P, P)=\Delta(\rho, L, G)=\sum_{\sigma \in G} \oplus L f_{\sigma}$ and $\operatorname{Hom}_{k}\left(P^{\prime}, P^{\prime}\right)$ $=\Delta\left(\rho^{\prime}, L, G\right)=\sum_{\sigma \in G} \oplus L f_{\sigma}{ }^{\prime} \quad$ where $\bar{\rho}=\theta_{3}([P]), \quad \bar{\rho}^{\prime}=\theta_{3}\left(\left[P^{\prime}\right]\right), \quad$ and $\left\{f_{\sigma}\right\}_{\sigma \in G} \quad$ and $\left\{f_{\sigma}{ }^{\prime}\right\}_{\sigma \in G}$ are L-free basis in $\operatorname{Hom}_{k}(P, P)$ and $\operatorname{Hom}_{k}\left(P^{\prime}, P^{\prime}\right)$, repsectively. Then the k-isomorphism $f_{\sigma} \otimes f_{\sigma}{ }^{\prime}: P \otimes_{L} P^{\prime} \rightarrow P \otimes_{L} P^{\prime}$ defined by $f_{\sigma} \otimes f_{\sigma}{ }^{\prime}(x \otimes y)=$ $f_{\sigma}(x) \otimes f_{\sigma}{ }^{\prime}(y)$ for $x \otimes y \in P \otimes{ }_{L} P^{\prime}$, (it is well defined), satisfies $\sigma(a) \cdot f_{\sigma} \otimes f_{\sigma}{ }^{\prime}=$ $f_{\sigma} \otimes f_{\sigma}{ }^{\prime} \cdot a$ for all a in L and $f_{\sigma} \otimes f_{\sigma}{ }^{\prime} \cdot f_{\tau} \otimes f_{\tau}{ }^{\prime}=\rho(\sigma, \tau) \cdot \rho^{\prime}(\sigma, \tau) \cdot f_{\sigma \tau} \otimes f_{\sigma \tau}{ }^{\prime}$. Therefore, we can write $\operatorname{Hom}_{k}\left(P \otimes_{L} P^{\prime}, P \otimes_{L} P^{\prime}\right)=\Delta\left(\rho \cdot \rho^{\prime}, L, G\right)=\sum \oplus L f_{\sigma} \otimes f_{\sigma}{ }^{\prime}$. Accordingly, $\theta_{3}\left([P] \cdot\left[P^{\prime}\right]\right)=\theta_{3}([P]) \cdot \theta_{3}\left(\left[P^{\prime}\right]\right)$.

Lemma 4. $P(k) \xrightarrow{\theta_{2}} P(L)^{G} \xrightarrow{\theta_{3}} H^{2}\left(G, L^{*}\right)$ is exact.
Proof. If $\left[P_{0}\right] \in P(k)$ then $\theta_{2}\left(\left[P_{0}\right]\right)=\left[P_{0} \otimes_{k} L\right]$ and $\operatorname{Hom}_{k}\left(P_{0} \otimes_{k} L, P_{0} \otimes_{k} L\right)$ $\approx \operatorname{Hom}_{k}(L, L)=\Delta(L, G)$ and so $\theta_{3}\left(\theta_{2}\left(\left[P_{0}\right]\right)=1\right.$. Let $[P] \in P(L)^{G}$ and $\theta_{3}([P])=1$. so $\operatorname{Hom}_{k}(P, P) \approx \Delta(L, G)$. By Lemma 1, there is $\left[P_{0}\right]$ in $P(k)$, and $P \approx P_{0} \otimes_{k} L$, therefore $\theta_{2}\left(\left[P_{0}\right]\right)=[P]$.
(4). $\quad \theta_{4}: H^{2}\left(G, L^{*}\right) \rightarrow B(L / k)$;
$B(L / k)$ denotes the Brauer group of k-Azumaya algebras split by L. $\theta_{4}: H^{2}\left(G, L^{*}\right) \rightarrow B(L / k)$ is defined by $\theta_{4}(\bar{\rho})=[\Delta(\rho, L, G)]$ in $B(L / k)$ for $\bar{\rho} \in H^{2}\left(G, L^{*}\right)$, then θ_{4} is a homomorphism by [1], Theorem A. 12.

Lemma 5. $P(L)^{G} \xrightarrow{\theta_{3}} H^{2}\left(G, L^{*}\right) \xrightarrow{\theta_{4}} B(L / k)$ is exact.
Proof. Let $[P] \in P(L)^{G}$ and $\operatorname{Hom}_{k}(P, P) \approx \Delta(\rho, L, G)$. Then $\theta_{4} \theta_{3}([P])=$ $[\Delta(\rho, L, G)]=\left[\operatorname{Hom}_{k}(P, P)\right]=1$ in $B(L / k)$. On the other hand, if $\bar{\rho}$ is an element in $H^{2}\left(G, L^{*}\right)$ such tha $\theta_{4}(\bar{\rho})=[\Delta(\rho, L, G)]=[k]$, then there is a finitely generated faithful projective k-module P such that $\Delta(\rho, L, G) \cong \operatorname{Hom}_{k}(P, P)$. By Proposition $5,[P] \in P(L)$ and by Corollary $1[P] \in P(L)^{G}$, and so $\bar{\rho}=\theta_{3}([P])$.
(5). $\quad \theta_{5}: B(L / k) \rightarrow H^{1}(G, P(L))$;

For any $[A] \in B(L / k)$, there is an Azumaya k-algebra Λ in $[A]$ such that Λ contains L as maximal commutative subalgebra (cf. [1], Theorem 5.7). By Proposition $3, \Lambda$ is written by $\Delta(f, L, \Phi, G)$ for some Φ and f, and then $\Phi=\varphi \Phi_{0}$. for some φ in $Z^{1}(G, P(L))$. We put $\theta_{5}([A])=\bar{\varphi}$. From the following lemma,
it is shown that θ_{5} defines the map $B(L / k) \rightarrow H^{1}(G, P(L))$.
Lemma 6. Let $\Phi=\varphi \Phi_{0}$ and $\Phi^{\prime}=\phi^{\prime} \Phi_{0}$ be elements in \mathfrak{G}, and f and f^{\prime} factor set related to Φ and Φ^{\prime}, respectively. If $[\Delta(f, L, \Phi, G)]=\left[\Delta\left(f^{\prime}, L, \Phi^{\prime}, G\right)\right]$ in $B(L / k)$, then $\varphi^{\prime} \varphi^{-1}$ is in $B^{1}(G, P(L))$.

Proof. If $[\Delta(f, L, \Phi, G)]=\left[\Delta\left(f^{\prime}, L, \Phi^{\prime}, G\right)\right]$, then there is a finitely generated projective and faithful k-module P such that

$$
\begin{aligned}
& \operatorname{Hom}_{k}(P, P) \approx \Delta\left(f^{\prime}, L, \Phi^{\prime}, G\right) \otimes_{k} \Delta(f, L, \Phi, G)^{0} \\
& \quad=\Delta\left(f, L, \Phi^{\prime}, G\right) \otimes_{k} \Delta\left(f^{0}, L, \Phi^{0}, G\right) \\
& \quad \approx \Delta\left(f^{\prime} \otimes f^{0}, L \otimes_{k} L, \Phi^{\prime} \otimes \Phi^{0} G \times G\right)
\end{aligned}
$$

where $\Phi^{\prime}(\sigma)=\left[J_{\sigma}{ }^{\prime}\right], \Phi^{0}(\sigma)=\left[J_{\sigma}{ }^{\circ}\right]$ and $\Phi^{\prime} \otimes \Phi^{0}(\sigma \times \tau)=\left[J_{\sigma}{ }^{\prime} \otimes_{k} J_{\tau}{ }^{0}\right]$ in $\operatorname{Pic}\left(L \otimes_{k} L\right)$, and $\left(f^{\prime} \otimes f^{0}\right)_{\sigma \times \tau, \sigma^{\prime} \times \tau^{\prime}} \approx f_{\sigma, \tau^{\prime}}^{\prime} \otimes f_{\tau, \tau^{\prime}}$. Regarding P as $L \otimes_{k} L$-module, by Proposition 5, $\quad[P] \in P\left(L \otimes_{k} L\right)$ and $\left(\Phi(\sigma) \otimes \Phi^{0}(\tau)\right) \cdot[P]=[P] \cdot\left(\Phi_{0}(\sigma) \otimes \Phi_{0}(\tau)\right)$ for $\sigma, \tau \in G$. Since $\Phi^{\prime}=\phi^{\prime} \Phi_{0}, \Phi^{0}=\phi^{-1} \Phi_{0}$, we have $\varphi^{\prime}(\sigma) \otimes \varphi^{-1}(\tau)=[P] \cdot\left([P]^{-1}\right)^{\sigma \times \tau}$ in $P\left(L \otimes_{k} L\right)$. In particular, if one put $\Phi=\Phi^{\prime}$, then obtain similarly $\varphi^{\prime}(\sigma)^{-1} \otimes \varphi^{\prime}(\tau)=[Q] \cdot\left([Q]^{-1}\right)^{\sigma \times \tau}$ for some $[Q]$ in $P\left(L \otimes_{k} L\right)$. From $\varphi^{\prime}(\sigma) \otimes \varphi^{-1}(\tau)$ $=[P] \cdot\left([P]^{-1}\right)^{\sigma \times \tau}$ and $\varphi^{\prime-1}(\sigma) \otimes \varphi^{\prime}(\tau)=[Q] \cdot\left([Q]^{-1}\right)^{\sigma \times \tau}$, we obtain $[L] \otimes \varphi^{\prime}(\tau) \varphi(\tau)^{-1}$ $=\left[P \otimes_{L \otimes_{k} L} Q\right] \cdot\left(\left[P \otimes_{L \otimes_{k} L} Q\right]^{-1}\right)^{\sigma \times \tau}$. We put $[R]=\left[P \otimes_{L \otimes_{k} L} Q\right]$ and $\left[P_{\tau}\right]=$ $\varphi^{\prime} \varphi^{-1}(\tau)=\varphi^{\prime}(\tau) \cdot \varphi^{-1}(\tau)$, so we have $\left[L \otimes_{k} P_{\tau}\right]=[R] \cdot\left([R]^{-1}\right)^{\sigma \times \tau}$. If one takes $\tau=1$, then from $\varphi^{\prime} \varphi^{-1}(1)=\left[P_{1}\right]=[L]$, we have $\left[L \otimes_{k} L\right]=[R] \cdot\left([R]^{-1}\right)^{\sigma \times I}$ and so $[R]=[R]^{\sigma \times I}$ for all $\sigma \in G$. Regarding $L \otimes_{k} L$ as a Galois extension of L with Galois groop $G \times I$, it is known that $L \otimes_{k} L$ is a trivlal Galois extension of L with Galois group $G \times I$. From Remark 5, there is an element [R_{0}] in $P(L)$ such that $[R]=\left[\left(L \otimes_{k} L\right) \otimes_{L} R_{0}\right]=\left[L \otimes_{k} R_{0}\right]$ in $P\left(L \otimes_{k} L\right)$. Therefore, $\left[L \otimes_{k} P_{\tau}\right]$ $=\left[L \otimes_{k} R_{0}\right] \cdot\left(\left[L \otimes_{k} R_{0}\right]^{-1}\right)^{\sigma \times \tau}$, and so it can be computed that $L \otimes_{k} P_{\tau} \approx$ $L \otimes_{k}\left(R_{0} \otimes_{L \tau} L_{1} \otimes_{L} R_{0}{ }^{*} \otimes_{\tau-1} L_{1}\right)$ as $L \otimes_{k} L$-module for every $\tau \in G$. Therefore, $L \otimes_{k} L \otimes_{L} P_{\tau} \approx L \otimes_{k} L \otimes_{L}\left(R_{0} \otimes_{L} R_{0}^{* \tau}\right)$ as $L \otimes_{k} L$-moduoe. Since $L \otimes_{k} L=$ $\sum_{\sigma \in G} \oplus e_{\sigma} L$ is a trivial Galois extension of L, we have $\sum_{\sigma \in G} \oplus e_{\sigma} L \otimes_{L} P_{\tau} \approx \sum_{\sigma \in G} \oplus$ $e_{\sigma} L \otimes_{L}\left(R_{0} \otimes_{L} R_{0}^{* \tau}\right)$ as $L \otimes_{k} L=\sum e_{\sigma} L$-modules, and so $e_{\sigma} L \otimes_{L} P_{\tau} \approx e_{\sigma} L \otimes_{L}$ ($R_{0} \otimes_{L} R_{0}^{* \tau}$) as $L \otimes_{k} L$-module for each $\sigma \in G$. On the other hand, $e_{\sigma} L \otimes_{L} P_{\tau}$ and P_{τ} are L-isomorphic, and $e_{\sigma} L \otimes_{L}\left(R_{0} \otimes_{L} R_{0}^{* \tau}\right)$ and $R_{0} \otimes_{L} R_{0}^{* \tau}$ are so. Therefore, we have $P_{\tau} \approx R_{0} \otimes_{L} R_{0}^{* \tau}$ as L-module for every $\tau \in G$, i.e. [$\left.P_{\tau}\right]=$ $\varphi^{\prime} \varphi^{-1}(\tau)=\left[R_{0}\right] \cdot\left(\left[R_{0}\right]^{-1}\right)^{\tau}$ in $P(L)$ for every $\tau \in G$. Accordingly, $\varphi^{\prime} \varphi^{-1}$ is in $B^{1}(G, P(L))$.

Lemma 7. $H^{2}\left(G, L^{*}\right) \xrightarrow{\theta_{4}} B(L / k) \xrightarrow{\theta_{5}} H^{1}(G, P(L))$ is exact.
Proof. If $\bar{\rho}$ is in $H^{2}\left(G, L^{*}\right)$, then $\theta_{4}(\bar{\rho})=[\Delta(\rho, L, G)]=\left[\Delta\left(\rho, L, \Phi_{0}, G\right)\right]$, so $\theta_{5} \theta_{4}(\bar{\rho})=1$. Let $[A]=[\Delta(f, L, \Phi, G)] \in B(L / k)$ and $\theta_{5}([A])=\bar{\rho}=1$. Since
$\varphi \in B^{1}(G, P(L))$, there is $[P]$ in $P(L)$ and $\varphi(\sigma)=[P] \cdot\left([P]^{-1}\right)^{\sigma}$ for all $\sigma \in G$. Since $\operatorname{Hom}_{k}(P, P)$ is an Azumaya k-algebra with maximal commutative subalgebra L, by Proposition $3 \operatorname{Hom}_{k}(P, P)$ is L-isomorphic to $\Delta\left(g . L, \varphi^{\prime} \Phi_{0}, G\right)$ with some ϕ^{\prime} and g, as k-algebra. From Proposition 5, we have $\varphi^{\prime}(\sigma) \Phi_{0}(\sigma) \cdot[P]=$ $[P] \cdot \Phi_{0}(\sigma)$ for all $\sigma \in G$, and so $\varphi^{\prime}(\sigma)=[P] \cdot\left([P]^{-1}\right)^{\sigma}=\varphi(\sigma)$ for all $\sigma \in G$, i.e. $\varphi=\varphi^{\prime}$. We put $\Phi=\varphi \Phi_{0}=\varphi^{\prime} \Phi_{0}$. By Proposition 4, there exists an element ρ in $Z^{2}\left(G, L^{*}\right)$ such the $f=\rho g$. Since $\rho \otimes \rho^{-1}$ is in $B^{2}\left(G \times G,\left(L \otimes_{k} L\right)^{*}\right)$ (cf. [1], Proposition A. 11), by Proposition 4, $\Delta\left(\left(\rho \otimes \rho^{-1}\right)(I \otimes \rho)(g \otimes I), L \otimes_{k} L, \Phi \otimes \Phi_{0}\right.$, $G \times G)$ and $\Delta\left((I \otimes \rho)(g \otimes I), L \otimes_{k} L, \Phi \otimes \Phi_{0}, G \times G\right)$ are $L \otimes_{k} L$-isomorphic as k-algebra. On the other hand,

$$
\begin{aligned}
& \quad \Delta\left(\left(\rho \otimes \rho^{-1}\right)(I \otimes \rho)(g \otimes I), L \otimes_{k} L, \Phi \otimes \Phi_{0}, G \times G\right) \\
& \approx \Delta(\rho g, L, \Phi, G) \otimes_{k} \Delta\left(I, L, \Phi_{0}, G\right)=\Delta(f, L, \Phi, G) \otimes_{k} \Delta(L, G), \\
& \text { and } \Delta\left((I \otimes \rho)(g \otimes I), L \otimes_{k} L, \Phi \otimes \Phi_{0}, G \times G\right) \\
& \approx \Delta(g, L, \Phi, G) \otimes_{k} \Delta\left(\rho, L, \Phi_{0}, G\right)=\operatorname{Hom}_{k}(P, P) \otimes_{k} \Delta(\rho, L, G) .
\end{aligned}
$$

Accordingly, $[A]=[\Delta(f, L, \Phi, G)]=[\Delta(\rho, L, G)]=\theta_{4}(\bar{\rho})$.
(6). $\quad \theta_{6} ; H^{1}(G, P(L)) \rightarrow H^{3}\left(G, L^{*}\right)$;

Let $\varphi \in Z^{1}(G, P(L))$. We put $\Phi=\varphi \Phi_{0}$ and $\Phi(\sigma)=\left[J_{\sigma}\right]$ for each $\sigma \in G$. One takes a family $\left\{f_{\sigma, \tau} ; \sigma, \tau \in G\right\}$ of L - L-isomorphism $f_{\sigma, \tau}: J_{\sigma} \otimes_{L} J_{\tau} \rightarrow J_{\sigma \tau}$. Put $\omega(\sigma, \tau, \gamma)=f_{\sigma \tau, \gamma} \circ\left(f_{\sigma, \tau} \otimes I\right) \circ\left(I \otimes f_{\tau, \gamma}\right)^{-1} \circ f_{\sigma, \tau \gamma}{ }^{-1}$ for each $\sigma, \tau, \gamma \in G$. Since $\omega(\sigma, \tau, \gamma)$ is a unit in $\operatorname{Hom}_{L}\left(J_{\sigma \tau \gamma}, J_{\sigma \tau \gamma}\right)=L$, we have a function $\omega: G \times G \times G \rightarrow$ $L^{*} ;(\sigma, \tau, \gamma) \longrightarrow \omega(\sigma, \tau, \gamma)$. We shall show that ω is in $Z^{3}\left(G, L^{*}\right)$ i.e. $\delta(\omega)=1$ where δ is coboundary operator. Since $\delta(\omega)(\sigma, \tau, \gamma, \varepsilon)$ is a unit in L, $\delta(\omega)(\sigma, \tau, \gamma, \varepsilon)=1$ for every $\sigma, \tau, \gamma, \varepsilon$ in G, if and only if for any maximal ideal \mathfrak{m} of L, the image of $\delta(\omega)(\sigma, \tau, \gamma, \varepsilon)$ in $L_{\mathfrak{m}}$ equals to 1 for every $\sigma, \tau, \gamma, \varepsilon$ in G. But, if L is local, then, from that J_{σ} is a free L-module, there is a map ρ of $G \times G$ to L^{*} such that $\omega=\delta(\rho)$. Therefore, $\delta(\omega)=\delta^{2}(\rho)=1$, i.e. $\delta(\omega)(\sigma, \tau, \gamma, \varepsilon)=1$ for every $\sigma, \tau, \gamma, \varepsilon$ in G. Accordingly ω is in $Z^{3}\left(G, L^{*}\right)$. For Φ in \mathfrak{G}, if one takes another family $\left\{f_{\sigma, \tau}^{\prime} ; \sigma, \tau \in G\right\}$, then there is a map $\rho: G \times G \rightarrow L^{*}$ such that $f_{\sigma, \tau}^{\prime}=\rho(\sigma, \tau) \cdot f_{\sigma, \tau}$ for every $\sigma, \tau \in G$. Then. it is easily computed that

$$
\begin{aligned}
& \omega^{\prime}(\sigma, \tau, \gamma)=f_{\sigma \tau, \gamma^{\circ}}^{\prime} \circ\left(f_{\sigma, \tau}^{\prime} \otimes I\right) \circ\left(I \otimes f_{\tau, \gamma}^{\prime}\right)^{-1} \circ f_{\sigma, \tau \gamma}^{\prime-1} \\
& \quad=\sigma(\rho(\sigma \tau, \gamma)) \cdot \rho(\sigma \tau, \gamma)^{-1} \cdot \rho(\sigma, \tau \gamma) \cdot \rho(\sigma, \tau) \cdot f_{\sigma \tau, \gamma} \circ\left(f_{\sigma, \tau} \otimes I\right) \circ\left(I \otimes f_{\tau, \gamma}\right)^{-1} \circ f_{\sigma, \tau \gamma}^{-1} \\
& \quad=\delta(\rho)(\sigma, \tau, \gamma) \cdot \omega(\sigma, \tau, \gamma)
\end{aligned}
$$

If $\varphi^{\prime}=\varphi_{0} \cdot \varphi$ for some φ_{0} in $B^{1}\left(G, L^{*}\right)$, then there is $[P] \in P(L)$ such that $\varphi^{\prime} \Phi_{0}(\sigma)=[P] \cdot \Phi(\sigma) \cdot\left[P^{*}\right]$. If $f_{\sigma, \tau}: J_{\sigma} \otimes_{L} J_{\tau} \rightarrow J_{\sigma \tau}$ and $I \otimes f_{\sigma, \tau} \otimes I:\left(P \otimes_{L} J_{\sigma} \otimes_{L} P^{*}\right)$ $\otimes_{L}\left(P \otimes J_{\tau} \otimes P^{*}\right)=P \otimes_{L} J_{\sigma} \otimes_{L} J_{\tau} \otimes_{L} P^{*} \rightarrow P \otimes_{L} J_{\sigma \tau} \otimes_{L} P^{*}$ identify, then we can consider that $\omega(\sigma, \tau, \gamma)$ is in $\operatorname{Hom}_{L}\left(P \otimes_{L} J_{\sigma \tau \gamma} \otimes_{L} P^{*}, P \otimes_{L} J_{\sigma \tau \gamma} \otimes_{L} P^{*}\right)$. Therefore, a element $\bar{\omega}$ in $H^{3}\left(G, L^{*}\right)$ is determined by an element $\overline{\mathcal{P}}$ in $H^{1}\left(G, L^{*}\right)$. We can define the map $\theta_{6}: H^{1}(G, P(L)) \rightarrow H^{3}\left(G, L^{*}\right)$ by $\theta_{6}(\overline{\mathcal{P}})=\bar{\omega}$,
for $\overline{\mathcal{P}} \in H^{1}(G, P(L))$.
Lemma 8. $B(L / k) \xrightarrow{\theta_{5}} H^{1}(G, P(L)) \xrightarrow{\theta_{6}} H^{3}\left(G, L^{*}\right)$ is exact.
Proof. For $\overline{\mathcal{\rho}}$ in $H^{1}(G, P(L))$, we put $\Phi=\varphi \Phi_{0}$ and $\Phi(\sigma)=\left[J_{\sigma}\right]$ for $\sigma \in G$. Then it is easily seen that $\theta_{6}(\overline{\mathcal{P}})=1$ if and only if there is a family $\left\{f_{\sigma, \tau}: J_{\sigma} J_{\tau} \otimes_{L} \rightarrow J_{\sigma \tau} ; L\right.$-L-isomorphism, $\left.\sigma, \tau \in G\right\}$ such that $\left\{f_{\sigma, \tau} ; \sigma, \tau \in G\right\}$ is a factor set related to Φ. Therefore $\theta_{6}(\overline{\mathcal{P}})=1$ if and only if there is $\Delta[(f, L, \Phi, G)]$ in $B(L / k)$ such that $\theta_{5}([\Delta(f, L, \Phi, G)])=\overline{\mathcal{P}}$.

We have obtained the following seven terms exact sequence.
Theorem (Chase, Harrison and Rosenberg).

$$
\begin{aligned}
&(1) \longrightarrow H^{1}\left(G, L^{*}\right) \\
& \\
& B(L / k) \xrightarrow{\theta_{5}} P(k) \xrightarrow{\theta_{2}} H^{1}(G, P(L)) \xrightarrow{\theta_{6}} H^{3}\left(G, L^{*}\right)
\end{aligned}
$$

is exact.
From Remark 5 and Therorm, we have
Corollary 2. If $L \supset k$ is a trivial Galois extension, then
$(1) \longrightarrow H^{1}\left(G, L^{*}\right) \xrightarrow{\theta_{1}} P(k) \xrightarrow{\theta_{2}} P(L)^{G} \longrightarrow(1)$ and
$(1) \longrightarrow H^{2}\left(G, L^{*}\right) \xrightarrow{\theta_{4}} B(L / k) \xrightarrow{\theta_{5}} H^{1}(G, P(L)) \xrightarrow{\theta_{6}} H^{3}\left(G, L^{*}\right)$
are exact.
Osaka City University

References

[1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
[2] G. Azumaya: On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150.
[3] ——: Completely faithful modules and self injective rings, Nagoya Math. J. 27 (1966), 697-708.
[4] H. Bass: Lectures on topics in algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.
[5] S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of cummutative rings, Mem. Amer. Math. Soc. 52 (1965).
[6] S.U. Chase and A. Rosenberg: Amitzur cohomology and the Brauer group, Mem. Amer. Math. Soc. 52 (1965).
[7] S. Endo and Y. Watanabe: On separable algebras over a commutative ring, Osaka J. Math. 4 (1967), 233-242.
[8] T. Kanzaki: On commutor ring and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103-115.
[9] -: On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309317.

