ON MULTIPLY TRANSITIVE GROUPS VII

Tuyosi OYAMA

(Received April 16, 1968)

1. Introduction

Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$, and let P be a Sylow 2 -subgroup of a stabilizer of four points in G. If $P=1$, then by a theorem of M. Hall [1. Theorem 5.8.1] G must be one of the following groups: S_{4}, S_{5}, A_{6}, A_{7} or M_{11}. From a recent result of H . Nagao [7] it follows that, if $P \neq 1$ is semiregular and leaves exactly four or five points fixed, then G must be one of the following groups: $S_{6}, S_{7}, A_{8}, A_{9}$ or M_{12}.

The purpose of this paper is to extend the result of H. Nagao. Namely we shall prove the following

Theorem. Let G be a 4-fold transitive group. If a Sylow 2-subgroup of a stabilizer of four points in G is semi-regular and not identity, then G must be S_{6}, $S_{7}, A_{8}, A_{9}, M_{12}$ or M_{23}.

Definition and Notation. A permutation x is called semi-regular if there is no point fixed by x. A permutation group H is called semi-regular if every nonidentity element of H is semi-regular on the points actually moved by H. For a permutation group G on Ω, let $G_{i j \ldots r}$ denote the stabilizer of the points i, j, \cdots, r in G. For a subset S of G we denote the normalizer (or centralizer) of S in G by $N_{G}(S)$ (or $C_{G}(S)$). Let $\alpha_{i}(x)$ denote the number of i-cycles of a permutation x. The totality of points left fixed by a set X of permutations is denoted by $I(X)$, and if a subset Δ of Ω is a fixed block of X, then the restriction of X on Δ is denoted by X^{Δ}.

2. Proof of the theorem

To prove the theorem we may assume that a stabilizer of four points in G fixes exactly four points (See [6]). In the proof of the theorem, we shall also make use of the fact [1. p. 80] that a 4 -fold transitive group of degree less than 35 is one of the known groups.

Let P be a Sylow 2-subgroup of G_{1234}. Then $|I(P)|$ is four, five, six, seven or eleven, and $N_{G}(P)^{I(P)}$ is $S_{4}, S_{5}, A_{6}, A_{7}$ or M_{11} (cf. [5]. Lemma 1). By the theorem of H . Nagao, we may treat only the last three cases.

Case I. $\quad|I(P)|=11, \quad N_{G}(P)^{I(P)}=M_{11}$.
Let a be a central involution of P, and suppose that P has an involution b different from a. Then a and b fix the same eleven points and generate a four group. Therefore we may assume that

$$
\begin{aligned}
& a=(1)(2) \cdots(11)(i j)(k l) \cdots \\
& b=(1)(2) \cdots(11)(i k)(j l) \cdots
\end{aligned}
$$

Then $\langle a, b\rangle$ normalizes $G_{i j k l}$ and hence it normalizes some Sylow 2-subgroup P^{\prime} of $G_{i j k l}$. Since $a^{I\left(P^{\prime}\right)}$ is an involution of M_{11}, it fixes three points. Now $I(a)$ $=I(b)=\{1,2, \cdots, 11\}$. Hence $b^{I\left(P^{\prime}\right)}$ fixes these three points and the four group $\langle a, b\rangle^{I\left(P^{\prime}\right)}$ is contained in a stabilizer of three points of M_{11}. But this is impossible, because a stabilizer of three points of M_{11} is a quaternion group.

Thus P has only one involution, and hence P must be a cyclic group or a generalized quaternion group [1. Theorem 12.5.2.]. By Theorem 1 in [8] P is not cyclic, and by the following unpublished result of H. Nagao we have a contradiction.

Lemma 1. (H. Nagao) Let G be a 4-fold transitive group, and $P \neq 1$ a Sylow 2-subgroup of G_{1234}. If P fixes eleven points, then P is not a generalized quaternion group.

Thus we have no group in this case.
Case II. $\quad|I(P)|=6$ or $7, \quad N_{G}(P)^{I(P)}=A_{6}$ or A_{7}.
In the proofs of the following series from i) to v) we assume that $N_{G}(P)^{I(P)}$ $=A_{6}$, and we need the following result [8. Theorem 2] that any involution of G fixes exactly six points. The proofs in the case $N_{G}(P)^{I(P)}=A_{7}$ are similar.
i) If an element a of G has a 4-cycle, then it's order is an odd multiply of 4 or 8 .

1) If a is of order 4, then $\alpha_{2}(a)=2$ and $\alpha_{1}(a)=2$. (When $N_{G}(P)^{I(P)}$ $=A_{7}, \alpha_{2}(a)=2$ and $\left.\alpha_{1}(a)=3\right)$.
2) If a is of order $4 t$ with t odd, then $\alpha_{2}(a)=2$ and $\alpha_{1}(a)=2$. (When $N_{G}(P)^{I(P)}=A_{7}, \alpha_{2}(a)=2$ and $\alpha_{1}(a)=0$ or 3$)$.
3) If a is of order $8 t$ with t odd, then $\alpha_{4}(a)=1$ and $\alpha_{2}(a)=1$.

Proof. 1) Let a be an element of order 4. Then we may assume that

$$
a=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \cdots
$$

Since a normalizes G_{1234}, a normalizes some Sylow 2-subgroup of G_{1234}. We may assume that a normalizes P. Since $N_{G}(P)^{I(P)}=A_{6}, a$ must be of the following form

$$
a=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)(56) \cdots,
$$

where $I(P)=\{1,2,3,4,5,6\}$. Since a^{2} is an involution and $\alpha_{1}\left(a^{2}\right)=6, \alpha_{1}(a)$ $=0.2$ or 4. If $\alpha_{1}(a)=0$, then $\alpha_{2}(a)=3$ and a is of the form

$$
a=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)\left(\begin{array}{l}
5
\end{array}\right)\left(i_{1} j_{1}\right)\left(i_{2} j_{2}\right) \cdots .
$$

From this form a normalizes some Sylow 2-subgroup P^{\prime} of $G_{56 i_{1} j_{1}}$ and $a^{I\left(P^{\prime}\right)}$ $=(56)\left(i_{1} j_{1}\right)\left(i_{2} j_{2}\right)$, which is contrary to $N_{G}\left(P^{\prime}\right)^{I\left(P^{\prime}\right)}=A_{6}$. Therefore $\alpha_{1}(a) \neq 0$. Since P is semi-regular, P is elementary abelian by Lemma 2 in [8]. Therefore $\alpha_{1}(a) \neq 4$. Hence we have that $\alpha_{1}(a)=2$ and consequently $\alpha_{2}(a)=2$.
2) Let a be of order $4 t$ with t odd, then $\alpha_{2}\left(a^{t}\right)=2$ and $\alpha_{1}\left(a^{t}\right)=2$. Therefore $\alpha_{2}(a)=2$ and $\alpha_{1}(a)=2$.
3) Let a be of order 8. Then from 1) $\alpha_{2}\left(a^{2}\right)=2$. Hence $\alpha_{4}(a)=1$. Thus we may assume that a is of the following form

$$
a=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \cdots .
$$

Then a normalizes some Sylow 2-subgroup of G_{1234}. We may assume that a normalizes P. Since $N_{G}(P)^{I(P)}=A_{6}, a$ must be of the following form

$$
a=(1234)(56) \cdots,
$$

where $I(P)=\{1,2,3,4,5,6\}$. Since $\alpha_{1}\left(a^{2}\right)=2, \alpha_{2}(a)=1$. This is also true for an element of order $8 t$ with t odd.

Since an element of order 8 has only one 4-cycle, G has no element of order 16.
ii) P is an elementary abelian group of order 16 .

Proof. By Lemma 2 in [8] P is elementary abelian. Therefore it suffices to prove that the order of P is 16 . Let $a=(12)(34) \cdots$ be an involution of G. Then a normalizes a Sylow 2 -subgroup of G_{1234}. We may assume that a normalizes P. Let $I(P)=\{1,2,3,4,5,6\}$. Since $a^{I(P)}$ must be an even permutation, a is of the following form

$$
a=(12)(34)(5)(6) \cdots
$$

Let a fixes the point 7 and let Δ be the P-orbit containing 7. Then a fixes at most four points of Δ and P is regular on Δ. Therefore by Lemma in [4] we have that the order of P is at most 16 .

Now let K be the kernel of the natural homomorphism $N_{G}(P) \rightarrow N_{G}(P)^{I(P)}$. Then $\quad K C_{G}(P) / C_{G}(P) \cong K / K \cap C_{G}(P), \quad$ and $\quad N_{G}(P) \unrhd K \cdot C_{G}(P) \unrhd K$. Since $N_{G}(P) / K=N_{G}(P)^{I(P)}, N_{G}(P) / K$ is a simple group. Therefore $N_{G}(P)=K \cdot C_{G}(P)$ or $\quad K \cdot C_{G}(P)=K$. Since $\quad G_{1234} \geq K \geq K \cap C_{G}(P) \geq P \quad$ and $\quad P \quad$ is a Sylow 2-subgroup of $G_{1234}, K / K \cap C_{G}(P)$ is of odd order. If $N_{G}(P)=K \cdot C_{G}(P)$, then
from $K C_{G}(P) / C_{G}(P) \cong K / K \cap C_{G}(P), N_{G}(P) / C_{G}(P)$ is of odd order. Hence any 2-element of $N_{G}(P)$ belongs to $C_{G}(P)$. On the other hand there is an element x of order four, which is of the following form

$$
x=\left(\begin{array}{l}
1 \\
2
\end{array} 34\right) \cdots .
$$

Then x normalizes G_{1234}, and hence we may assume that x normalizes P. From $N_{G}(P)^{I(P)}=A_{6}, x$ must be of the form

$$
x=(1234)(56) \cdots,
$$

where $I(P)=\{1,2,3,4,5,6\} . \quad$ By 1) of i) x fixes two points of $\Omega-I(P)$. Since P is semi-regular on $\Omega-I(P), x$ commutes with exactly two elements of P. But by Theorem 1 in [8] $|P|>2$. Therefore $x \notin C_{G}(P)$, which is a contradiction. Thus $K \cdot C_{G}(P)=K$.

Now $N_{G}(P) / C_{G}(P)$ is a subgroup of the automorphism group of P. From $N_{G}(P) / K \cong A_{6}$ and $K \geq C_{G}(P)$, the order of the automorphism group of P is not smaller than the order of A_{6}. Since P is elementary abelian and it's order is at most 16, the order of P must be 16 .

Next we also need a theorem of G. Frobenius (See [3]. Proposition 14.5), which will be stated here as Lemma 2.

Lemma 2. (G. Frobenius) Let $G \leq S_{n}$, then

$$
\sum_{x \in \xi}\binom{\alpha_{1}(x)}{\kappa}\binom{\alpha_{2}(x)}{\lambda} \cdots=\frac{m \cdot|G|}{1^{\kappa} \cdot \kappa!\cdot 2^{\lambda} \cdot \lambda!\cdots} .
$$

Here m is an integer obtained in the following way. Let $\Omega^{(t)}=\left\{\left(i_{1}, \cdots\right.\right.$, $\left.\left.i_{\kappa}, j_{1}, j_{1}{ }^{\prime}, \cdots, j_{\lambda}, j_{\lambda}{ }^{\prime}, \cdots\right)\right\}$ be a family of ordered sets consisting of $t(=\kappa+2 \lambda+\cdots)$ points of Ω such that there is at least one element x of G of the form

$$
x=\left(i_{1}\right) \cdots\left(i_{k}\right)\left(j_{1} j_{1}{ }^{\prime}\right) \cdots\left(j_{\lambda} j_{\lambda}{ }^{\prime}\right) \cdots
$$

When G is regarded as a permutation group on $\Omega^{(t)}$ by setting

$$
\left(a_{1}, \cdots, a_{t}\right)^{x}=\left(a_{1}^{x}, \cdots, a_{t}^{x}\right)
$$

for $x \in G$ and $\left(a_{1}, \cdots, a_{t}\right) \in \Omega^{(t)}, m$ is the number of G-orbits in $\Omega^{(t)}$.
iii) Let x be an involution of $N_{G}(P)-P$. Then any fixed point of an element $(\neq 1)$ of $\langle x, P\rangle^{\Omega-I(P)}$ is contained in exactly one orbit of P. The number of P-orbits in $\Omega-I(P)$ is odd.

Proof. Since the order of P is 16 , by Lemma in [4] x commutes with four elements of P. Since P is semi-regular and x fixes four points of $\Omega-I(P)$, these points must be contained in the same P-orbit, say Δ. Put $Q=\langle x, P\rangle$. The
order of Q is 32 and Q fixes Δ. For an element a of P if x commutes with a, then $x a$ is of order 2, and if not, then $x a$ is of order 4, since ($x a x$) a belongs to P and it is not the identity. Let $x a$ be of order 4 , then by 1) of i) $\alpha_{1}(x a)=2$ and $x a$ has no fixed point on $\Omega-I(P)$. Therefore

$$
\begin{aligned}
& \sum_{y \in Q} \alpha_{1}\left(y^{\Delta}\right)=\alpha_{1}\left(1^{\Delta}\right)+\sum_{y^{\prime}}^{\prime} \alpha_{1}\left(y^{\prime \Delta}\right) \\
& \quad=16+\sum_{y^{\prime}}^{\prime} \alpha_{1}\left(y^{\prime \Delta}\right)
\end{aligned}
$$

where y^{\prime} ranges over all involutions of $Q-P$. On the other hand from Lemma 2

$$
\sum_{y \in Q} \alpha_{1}\left(y^{\Delta}\right)=\left|Q^{\Delta}\right|=32
$$

Hence $\sum_{y^{\prime}}^{\prime} \alpha_{1}\left(y^{\prime \Delta}\right)=16$. Since $Q-P$ has four involutions and these involutions have four fixed points in $\Omega-I(P)$ respectively, these 16 points are all contained in Δ. Hence Q is semi-regular on $\Omega-\{I(P) \cup \Delta\}$, in which any Q-orbit contains exactly two P-orbits. Thus the number of P-orbits in $\Omega-I(P)$ is odd.
iv) G has an element of order 8 .

Proof. Let a be an element of order four and of the following form

$$
a=\left(\begin{array}{ll}
1 & 2
\end{array} 34\right) \cdots
$$

Then a normalizes a Sylow 2-subgroup of G_{1234}. We may assume that a normalizes P. From $N_{G}(P)^{I(P)}=A_{6}, a$ must be of the following form

$$
a=(1234)(56) \cdots,
$$

where $I(P)=\{1,2,3,4,5,6\}$. By 1) of i) a fixes two points of $\Omega-I(P)$, and these points are contained in a P-orbit, say Δ. Put $Q=\langle P, a\rangle$. Then the order of Q is 4.16 and Δ is a Q-orbit. Suppose that Q has no element of order 8. From iii) any fixed point of an element ($\neq 1$) of $\left\langle P, a^{2}\right\rangle^{\perp-I(P)}$ is contained in Δ. Let a^{\prime} be any element of $P a$ or $P a^{-1}$. Then a^{\prime} is of the following form

$$
(1234)(56) \cdots \text { or }(1432)(56) \cdots
$$

We assumed that Q has no element of order 8 . Hence a^{\prime} is of order 4, and a^{\prime} has exactly two fixed points. Since Q / P is a cyclic group of order $4, a^{\prime 2}$ belongs to $\left\langle P, a^{2}\right\rangle \quad$ Therefore a^{\prime} fixes two points of Δ.

From $Q=P+P a+P a^{2}+P a^{-1}$

$$
\begin{aligned}
& \sum_{x \in Q} \alpha_{1}\left(x^{\Delta}\right) \geqq \sum_{x \in P}^{\prime} \alpha_{1}\left(x^{\Delta}\right)+\sum_{x \in P a}^{\prime} \alpha_{1}\left(a^{\Delta}\right)+\sum_{x \in P a^{-1}}^{\prime} \alpha_{1}\left(x^{\Delta}\right) \\
& \quad=16+2 \cdot 16+2 \cdot 16=5 \cdot 16 .
\end{aligned}
$$

On the other hand by Lemma 2

$$
\sum_{x \in Q} \alpha_{1}\left(x^{\Delta}\right)=|Q|=4 \cdot 16
$$

which is a contradiction. Thus Q has an element of order 8 .
Since G is 4 -fold transitive, by Lemma 2

$$
\sum_{x \in G} \alpha_{4}(x)=\frac{1}{4} g
$$

and

$$
\sum_{x \in G} \alpha_{2}(x) \cdot \alpha_{4}(x)=\frac{m \cdot g}{2 \cdot 4}
$$

where $g=|G|$. From i) if $\alpha_{4}(x) \neq 0$, then $\alpha_{4}(x) \cdot \alpha_{2}(x)=2 \cdot \alpha_{4}(x)$ or $\alpha_{4}(x)$. Since there is an element of order 8 , from i) we have

$$
\sum_{x \in G} \alpha_{4}(x)<\sum_{x \in G} \alpha_{2}(x) \cdot \alpha_{4}(x)<2 \cdot \sum_{x \in G} \alpha_{4}(x)
$$

and hence $1<\frac{m}{2}<2$. Thus $m=3$, and

$$
\sum_{x \in G} \alpha_{2}(x) \cdot \alpha_{4}(x)=\frac{3}{8} g
$$

From two equations above, we obtain

$$
\begin{aligned}
& \sum_{y}^{\prime} \alpha_{4}(y)+\sum_{y^{\prime}}^{\prime} \alpha_{4}\left(y^{\prime}\right)=\frac{1}{4} g, \\
& \sum_{y}^{\prime} 2 \cdot \alpha_{4}(y)+\sum_{y^{\prime}}^{\prime} \alpha_{4}\left(y^{\prime}\right)=\frac{3}{8} g,
\end{aligned}
$$

where y and y^{\prime} range over all elements of order $4 t$ and $8 t$ (t : odd) respectively. Hence

$$
\sum_{y}^{\prime} \alpha_{4}(y)=\frac{1}{8} g .
$$

On the other hand

$$
\sum_{x \in G}\binom{\alpha_{2}(x)}{2} \cdot \alpha_{4}(x)=\frac{m^{\prime} \cdot g}{2^{2} \cdot 2 \cdot 4} .
$$

Since an element of order $8 t$ with t odd has only one 2 -cycle, and an element of order $4 t$ with t odd has two 2 -cycles,

$$
\sum_{x \in G}\binom{\alpha_{2}(x)}{2} \cdot \alpha_{4}(x)=\sum_{y}^{\prime} \alpha_{4}(y)=\frac{1}{8} g
$$

Therefore

$$
\frac{m^{\prime} \cdot g}{2^{2} \cdot 2 \cdot 4}=\frac{1}{8} g
$$

hence

$$
m^{\prime}=4
$$

From the remark of Lemma 2, G has four orbits on $\Omega^{(8)}=\left\{\left(i_{1}, i_{2}, j_{1}, j_{2}, k_{1}, k_{2}, k_{3}, k_{4}\right)\right.$ $\mid x=\left(i_{1} i_{2}\right)\left(j_{1} j_{2}\right)\left(k_{1} k_{2} k_{3} k_{4}\right) \cdots \in G, x$ is of order 4\}. Since G is 4 -fold transitive on $\Omega, G_{1234}=H$ has four orbits on $\Omega^{(4)}=\left\{\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \mid a=(12)(34)\left(k_{1} k_{2} k_{3} k_{4}\right) \ldots\right.$ $\in G, a$ is of order 4$\}$.

When H is regarded as a permutation group on $\Omega^{(4)}$, we denote it by H^{*}.
If $\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \in \Omega^{(4)}$, then there is an element a of G of the form

$$
a=(12)(34)\left(k_{1} k_{2} k_{3} k_{4}\right) \cdots .
$$

Since $a^{-1}=(12)(34)\left(k_{1} k_{4} k_{3} k_{2}\right) \cdots \in G$, we have eight points $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$, $\left(k_{2}, k_{3}, k_{4}, k_{1}\right),\left(k_{3}, k_{4}, k_{1}, k_{2}\right),\left(k_{4}, k_{1}, k_{2}, k_{3}\right),\left(k_{1}, k_{4}, k_{3}, k_{2}\right),\left(k_{4}, k_{3}, k_{2}, k_{1}\right),\left(k_{3}, k_{2}, k_{1}, k_{4}\right)$ and ($k_{2}, k_{1}, k_{4}, k_{3}$) of $\Omega^{(4)}$.
v) Let $\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \in \Omega^{(4)}$. Then $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)^{H *}$ and $\left(k_{2}, k_{3}, k_{4}, k_{1}\right)^{H^{*}}$ are the different H^{*}-orbits.

Proof. Since any 2-element of H is of order 2, H has no element as follows:

$$
\binom{k_{1} k_{2} k_{3} k_{4} \cdots}{k_{2} k_{3} k_{4} k_{1} \cdots}=\left(k_{1} k_{2} k_{3} k_{4}\right) \cdots .
$$

Therefore $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)^{H^{*}} \neq\left(k_{2}, k_{3}, k_{4}, k_{1}\right)^{H^{*}}$.
From now on we treat two cases $N_{G}(P)^{I(P)}=A_{6}$ and A_{7} separately. For the proofs in these cases the result that the number of H^{*}-orbits is four is important.

$$
\text { A) } \quad N_{G}(P)^{I(P)}=A_{6} .
$$

Let $I(P)=\{1,2,3,4,5,6\}$. and $G_{1234}=H$. Then the points 5 and 6 are contained in H-orbits of odd length. Put $5^{H}=\Delta_{1}$ and $6^{H}=\Delta_{2}$.

Suppose that $\Delta_{1}=\Delta_{2}$. Since P-orbits in $\Omega-I(P)$ are of even length, the length of Δ_{1} is even, which is a contradiction. Therefore $\Delta_{1} \neq \Delta_{2}$. Furthermore the other H-orbits in $\Omega-I(H)$ are all of even lengths.

From $N_{G}(P)^{I(P)}=A_{6}$ there is an element x of the following form

$$
x=(12)(3)(4)(56) \cdots
$$

Since $x \in N_{G}(H), \Delta_{1}^{x}=\Delta_{2}$. Hence $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|$. Suppose that H-orbits in $\Omega-I(H)$ are Δ_{1} and. Δ_{2}. From iii) the number of P-orbitis in $\Omega-I(P)$ is odd,
and all P-orbits in $\Omega-I(P)$ are of the same length. Hence $\left|\Delta_{1}\right| \neq\left|\Delta_{2}\right|$, which is a contradiction. Therefore H has at least three orbits in $\Omega-I(H)$.

If $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|=1$, then $|I(H)|=6$, contradicting the assumption that $|I(H)|=4$. Therefore $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|>1$.

Let $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ be a point of $\Omega^{(4)}$. Then there is an element

$$
a=(12)(34)\left(k_{1} k_{2} k_{3} k_{4}\right) \cdots
$$

in G. We may assume that $a \in N_{G}(P)$ and a is of the form

$$
a=(12)(34)(5)(6)\left(k_{1} k_{2} k_{3} k_{4}\right) \cdots .
$$

By the assumption a is of order four, and from 1) of i) any point in $\Omega-\{1,2, \cdots, 6\}$ appears in some 4 -cycle of a. Since $\Delta_{1}{ }^{a}=\Delta_{1}$ and $\Delta_{2}{ }^{a}=\Delta_{2}$, we may assume that $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\} \subset \Delta_{1}$ and $\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\} \subset \Delta_{2}$, where $a=\left(i_{1} i_{2} i_{3} i_{4}\right)\left(j_{1} j_{2} j_{3} j_{4}\right) \cdots$. Then from v) $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)^{H^{*}},\left(i_{2}, i_{3}, i_{4}, i_{1}\right)^{H^{*}},\left(j_{1}, j_{2}, j_{3}, j_{4}\right)^{H^{*}}$ and $\left(j_{2}, j_{3}, j_{4}, j_{1}\right)^{H^{*}}$ are all different H^{*}-orbits. Thus we have four H^{*}-orbits. But H has at least three orbits in $\Omega-I(H)$. Hence there is a 4 -cycle $\left(l_{1} l_{2} l_{3} l_{4}\right)$ of a such that $\left\{l_{1}, l_{2}, l_{3}, l_{4}\right\} \nsubseteq \Delta_{1} \cup \Delta_{2}$. Therefore $\left(l_{1}, l_{2}, l_{3}, l_{4}\right)^{H^{*}}$ is the different H^{*}-orbit from these four H^{*}-orbits. Hence we have five H^{*}-orbits, which is a contradiction.

Thus we have no group in this case.
B) $\quad N_{G}(P)^{I(P)}=A_{7}$.

Let $I(P)=\{1,2,3,4,5,6,7\}$ and $H=G_{1234}$. Then from $N_{G}(P)^{I(P)}=A_{7}$, there is an element

$$
x=(1)(2)(3)(4)(567) \cdots .
$$

Since $x \in H$, three points 5,6 and 7 belong to the same H-orbit, say Δ_{1}. Then Δ_{1} is the only H-orbit in $\Omega-I(H)$ of odd length. If H has only one orbit in $\Omega-I(H)$, namely, H is transitive on $\Omega-I(H)$, then a stabilizer of one point in G satisfies the assumption of Case II. A), which is a contradiction. Therefore H has at least two orbits, say Δ_{1} and Δ_{2}, in $\Omega-I(H)$.

Suppose that $\left|\Delta_{1}\right|>3$. Let $\left(k_{1}, k_{2}, k_{4}, k_{3}\right) \in \Omega^{(4)}$. Then there is an element

$$
a=(12)(34)\left(k_{1} k_{2} k_{3} k_{4}\right) \cdots
$$

of G. By the assumption a is of order four, and from 1) of i) the cycles of a are all 4 -cycles except two 2 -cycles and three 1 -cycles. Since $a \in N_{G}(H), \Delta_{2}{ }^{a}$ is an H-orbit. Assume that $\Delta_{2}{ }^{a} \neq \Delta_{2}$. Since the length of Δ_{2} is even, $\Delta_{2}{ }^{a} \neq \Delta_{1}$. We may assume that $k_{1} \in \Delta_{2}$, and hence $k_{2} \notin \Delta_{1} \cup \Delta_{2}$. Then we shall show that $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)^{H^{*}},\left(k_{2}, k_{3}, k_{4}, k_{1}\right)^{H^{*}},\left(k_{1}, k_{4}, k_{3}, k_{2}\right)^{H^{*}}$ and $\left(k_{4}, k_{3}, k_{2}, k_{1}\right)^{H^{*}}$ are all different H^{*}-orbits. From v) $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)^{H^{*}} \neq\left(k_{2}, k_{3}, k_{4}, k_{1}\right)^{H^{*}}$ and $\left(k_{1}, k_{4}, k_{3}, k_{2}\right)^{H^{*}}$ $\neq\left(k_{4}, k_{3}, k_{2}, k_{1}\right)^{H^{*}}$.

If $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)^{H^{*}}=\left(k_{1}, k_{4}, k_{3}, k_{2}\right)^{H^{*}}$, then H has a following element

$$
x=\binom{k_{1} k_{2} k_{3} k_{4} \cdots}{k_{1} k_{4} k_{3} k_{2} \cdots}=\left(k_{1}\right)\left(k_{3}\right)\left(k_{2} k_{4}\right) \cdots .
$$

Since the order of x is even, there is a Sylow 2-subgroup of H fixing the point k_{1}. By the conjugacy of Sylow 2-subgroups of H, k_{1} must be contained in Δ_{1}, which is a contradiction. Therefore $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)^{H^{*}} \neq\left(k_{1}, k_{4}, k_{3}, k_{2}\right)^{H^{*}}$. In the same way $\left(k_{2}, k_{3}, k_{4}, k_{1}\right)^{H^{*}} \neq\left(k_{4}, k_{3}, k_{2}, k_{1}\right)^{H^{*}}$.

If $\left(k_{2}, k_{3}, k_{4}, k_{1}\right)^{H^{*}}=\left(k_{1}, k_{4}, k_{3}, k_{2}\right)^{H^{*}}$, then H has a following element

$$
\binom{k_{2} k_{3} k_{4} k_{1} \cdots}{k_{1} k_{4} k_{3} k_{2} \cdots}=\left(k_{1} k_{2}\right)\left(k_{3} k_{4}\right) \cdots
$$

But this is impossible, for $k_{1} \in \Delta_{2}$ and $k_{2} \notin \Delta_{2}$. Therefore $\left(k_{2}, k_{3}, k_{4}, k_{1}\right)^{H^{*}}$ $\neq\left(k_{1}, k_{4}, k_{3}, k_{2}\right)^{H^{*}}$.

Since $a^{2}=(1)(2)(3)(4)\left(k_{1} k_{3}\right)\left(k_{2} k_{4}\right) \cdots$ belongs to H and $\left(k_{4}, k_{3}, k_{2}, k_{1}\right)^{a 2}$ $=\left(k_{2}, k_{1}, k_{4}, k_{3}\right),\left(k_{4}, k_{3}, k_{2}, k_{1}\right)^{H^{*}}=\left(k_{2}, k_{1}, k_{4}, k_{3}\right)^{H^{*}}$. Therefore in the same way $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)^{H^{*}} \neq\left(k_{2}, k_{1}, k_{4}, k_{3}\right)^{H^{*}}=\left(k_{4}, k_{3}, k_{2}, k_{1}\right)^{H^{*}}$.

Thus we have four H^{*}-orbits. On the other hand since $\left|\Delta_{1}\right|>3$ and $\Delta_{1}{ }^{a}=\Delta_{1}$, there is a 4 -cycle of a, say $\left(j_{1} j_{2} j_{3} j_{4}\right)$, such that $\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\} \subset \Delta_{1}$. Then $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)^{H^{*}}$ is different from these four H^{*}-orbits. Thus we have five H^{*} orbits which is a contradiction. Therefore $\Delta_{2}{ }^{a}=\Delta_{2}$.

If H has an orbit different from Δ_{1} and Δ_{2} in $\Omega-I(H)$, then as proved above a fixes these three orbits respectively. By v) H^{*} has at least six orbits, which is a contradiction. Thefore H-orbits in $\Omega-I(H)$ are Δ_{1} and Δ_{2}.

Now we shall show that $\left|\Delta_{1}\right|>3$ leads to a contradiction. Since $\Delta_{1}{ }^{a}=\Delta_{1}$ and $\Delta_{2}{ }^{a}=\Delta_{2}$, we may assume that $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\} \subset \Delta_{1}$ and $\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\} \subset \Delta_{2}$, where $a=(12)(34)\left(i_{1} i_{2} i_{3} i_{4}\right)\left(j_{1} j_{2} j_{3} j_{4}\right) \cdots$. Since $\Delta_{1} \neq \Delta_{2}$, by v) $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)^{H^{*}},\left(i_{2}, i_{3}, i_{4}\right.$, $\left.i_{1}\right)^{H^{*}},\left(j_{1}, j_{2}, j_{3}, j_{4}\right)^{H^{*}}$ and $\left(j_{2}, j_{3}, j_{4}, j_{1}\right)^{H^{*}}$ are all different. We shall show that $\left(i_{1}, i_{4}, i_{3}, i_{2}\right)^{H^{*}}$ is different from these four H^{*}-orbits. From $\Delta_{1} \neq \Delta_{2},\left(i_{1}, i_{4}, i_{3}, i_{2}\right)^{H^{*}}$ $\neq\left(j_{1}, j_{2}, j_{3}, j_{4}\right)^{H^{*}}$ and $\left(j_{2}, j_{3}, j_{4}, j_{1}\right)^{H^{*}}$. If $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)^{H^{*}}=\left(i_{1}, i_{4}, i_{3}, i_{2}\right)^{H^{*}}$, then H has a following element

$$
x=\binom{i_{1} i_{2} i_{3} i_{4} \cdots}{i_{1} i_{4} i_{3} i_{2} \cdots}=\left(i_{1}\right)\left(i_{3}\right)\left(i_{2} i_{4}\right) \cdots .
$$

Since x is of order even, there is a Sylow 2 -subgroup of H fixing $1,2,3,4 i_{1}$ and i_{3}. Thus any Sylow 2-subgroup of $H_{i_{1} i_{3}}$ is a Sylow 2-subgroup of H. On the other hand $a^{2}=(1)(2)(3)(4)\left(i_{1} i_{3}\right)\left(i_{2} i_{4}\right) \cdots$ normalizes $H_{i_{1} i_{3}}$. Hence a^{2} normalizes a Sylow 2-subgroup P^{\prime} of $H_{i_{1} i_{2}}$, and $a^{I\left(P^{\prime}\right)}=(1)(2)(3)(4)\left(i_{1} i_{\mathrm{s}}\right) \cdots$, contrary to $N_{G}\left(P^{\prime}\right)^{I\left(P^{\prime}\right)}=A_{7}$. Thus $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)^{H^{*}} \neq\left(i_{1}, i_{4}, i_{3}, i_{2}\right)^{H^{*}}$. If $\left(i_{2}, i_{3}, i_{4}, i_{1}\right)^{H^{*}}=\left(i_{1}, i_{4}\right.$, $\left.i_{3}, i_{2}\right)^{H^{*}}$, then H has a following element

$$
h=\binom{i_{2} i_{3} i_{4} i_{1} \cdots}{i_{1} i_{4} i_{3} i_{2} \cdots}=\left(i_{1} i_{2}\right)\left(i_{3} i_{4}\right) \cdots .
$$

Then

$$
a h=(12)(34)\left(i_{1}\right)\left(i_{3}\right)\left(i_{2} i_{4}\right) \cdots
$$

Since $\alpha_{2}(a h) \geqq 3$, from 1) $a h$ is of order $2 t$ with t odd. Put $b=(a h)^{t}$. Then b normalizes a Sylow 2-subgroup $P^{\prime \prime}$ of H. Since Δ_{2} contains an odd number of $P^{\prime \prime}$ orbits, from iii) the four points of $I(b)$ are contained in Δ_{2} and the three points i_{1}, i_{3} and some one of $I(b)$ are contained in Δ_{1}. Since $b \in N_{G}\left(P^{\prime \prime}\right), I\left(P^{\prime \prime}\right)$ $\supset\left\{1,2,3,4, i_{1}, i_{3}\right\}$. Therefore $a^{2}=(1)(2)(3)(4)\left(i_{1} i_{3}\right) \cdots$ normalizes a Sylow 2-subgroup of $H_{i_{1} i_{3}}$, which is also a Sylow 2-subgroup $P^{\prime \prime \prime}$ of H. Thus $\left(a^{2}\right)^{I\left(P^{\prime \prime \prime \prime}\right)}$ $=(1)(2)(3)(4)\left(i_{1} i_{3}\right) \cdots$, which contradicts the assumption $N_{G}\left(P^{\prime \prime \prime}\right)^{I\left(P^{\prime \prime \prime}\right)}=A_{7}$. Therefore $\left(i_{2}, i_{3}, i_{4}, i_{1}\right)^{H^{*}} \neq\left(i_{1}, i_{4}, i_{3}, i_{2}\right)^{H^{*}}$.

Thus H^{*} has at least five orbits, which is a contradiction. Therefore $\left|\Delta_{1}\right|=3$.

In the proof of Case II of [5. Theorem 2] we needed only the following condition: The number of the fixed points of an involution is seven, and every Sylow 2-subgroup of H fixes the same points. Therefore in the same way we have that G is M_{23}.

Yamaguchi University

References

[1] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
[2] H. Wielandt: Finite Permutation Groups, Academic Press, New York, 1964.
[3] H. Nagao: Multiply Transitive Groups, California Institute of Technology, California, 1967.
[4] H. Nagao: On multiply transitive groups I, Nagoya Math. J. 27 (1966), 15-19.
[5] H. Nagao and T. Oyama: On multiply transitive groups II, Osaka J. Math. 2 (1965), 129-136.
[6] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
[7] H. Nagao: On multiply transitive groups V, J. Algebra. 9 (1968), 240-248.
[8] R. Noda and T. Oyama: On multiply transitive groups VI, to appear in J. Algebra.

