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Introduction. The notion of a separable algebra over a commutative
ring was introduced in Auslander-Goldman [2], which coincides with that of a
maximally central algebra in Azumaya [3] for a central algebra over a local
ring. 'The basic properties of separable algebras were shown in [2] and [3].

The purpose of this paper is to define the reduced trace and norm of a
central separable algebra over a commutative ring and to prove that a separable
algebra over a commutative ring is a symmetric algebra.

Let A be a central separable algebra over a commutative ring R and let
S be a commutative R-algebra such that .S (;&Ag Homg(P, P) for some finitely

generated, faithful, projective S-module P. 'Then S is called, according to [2],
a splitting ring of A, and especially, if RC.S, it is called a proper splitting ring
of A. It was proved in [2] that a central separable algebra over a Noetherian
local ring R has a proper splitting ring which is a Galois extension of R. How-
ever, for a general commutative ring R, it is an open problem whether any central
separable R-algebra has a proper (Galois) splitting ring. Therefore, our
method, which will be used to defining the reduced trace and norm of a central
separable R-algebra, is different from the usual one in the classical case (cf.
[4D)-

In §1 we shall show that a separable algebra over a general commuta-
tive ring is extended from a separable algebra over a Noetherian commuta-
tive ring, and, in § 2, we shall prove that, in case R is a commutative ring included
in a semi-local ring, a central separable R-algebra has a proper splitting ring.

§ 3 is devoted to defining the reduced trace of a central separable R-algebra
A. If A has a proper splitting ring, we can define the reduced characteristic
polynomial, trace and norm of A by using the characteristic polynomial, trace
and norm of a projective module in [7], and we shall also show that there exist
the analogous relations to the classical case between these and the characteristic
polynomial, trace and norm of an R-algebra A. In the general case, we define
the reduced trace of A, by using the above-mentioned result in § 1.

* This work was supported by the Matsunaga Science Foundation.
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An algebra A over a commutative ring R, which is a finitely generated,
faithful, projective R-module, is called, according to [6], a symmetric R-algebra,
if Homg(A, R) is A®-isomorphic to A. In the classical theory, it is well known
that any semi-simple algebra over a field is symmetric. However, for a general
commutative ring R, it is an open problem whether a semi-simple R-algebra is
symmetric or not.

In §4 we shall prove, as a partial answer to this, that a separable algebra
over a commutative ring is symmetric. This includes the results in Miiller
[10] and DeMeyer [5].

Throughout this paper a ring means a ring with a unit element, and a (semi-)
local ring means a commutative (semi-) local ring which is not always Noetheri-
an.

1. Basic results

First we shall prove, as a generalization of (4.5) and (4.7) in [2],

Proposition 1.1. Let A be an algebra over a (not always Noetherian)
commutative ring R, which is a finitely generated R-module. Then the following
conditions are equivalent:

(1) A is a separable R-algebra.

(2) For any maximal ideal m of R, Am is a separable Rm—algebra.

(3) For any maximal ideal m of R, A/mA is a separable R/m-algebra.

Proof. The implications (1)=+(2)=(3) are obvious.
(2)=>(1): We have w.dimyc A=sup w.dimp¢, Am where m runs over all

m
maximal ideals of R. If each Am is Rm-separable, then we have w.dimp¢, Am=0
and so w.dimyeA=0. As A is A°-finitely presented, this shows that A is A°-
projective.
(3)=(2): Without loss of generality we may assume that R is a local
ring w1th a maximal ideal m. Now suppose that A/mA is R/m-separable.
Let R be the Henselization of R and put A= R®A Then we have R/mlé—R/m

and A/mA— A/mA. Since Ris R- -faithfully ﬂat, we have w.dimyc A=w.dim3e
A and so A is A‘-projective if and only if Ais A"—projective. Hence we may
further assume that R is Henselian. Then, for the projective A°/mA°-module
A/mA, there is a finitely generated projective A°-module P such that f: P/mP =
A/mA as A°-modules. Since R is local and P, A® are A°-projective, there exist
A‘-epimorphisms f: P—A, which induces f on P/mP, and g: A°—>P such that
fog is the natural epimorphism of A° onto A. The homomorphism fog is R-split
and so fis also R-split. From this it follows directly that f is an isomorphism.
Thus A is A°-projective, which completes our proof.

It is remarked that, by (1.1), we can omit the assumption that R is Noetheri-
an from almost all of results in [2].
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The following proposition will play an important part in § 3.

Proposition 1.2. Let A be a separable R-algebra, which is a finitely gene-
rated, faithful, projective R-module. Then there exist a Noetherian subring R’
of R and a separable R'-subalgebra A’ of A, which is a finitely generated, faithful,
projective R'-module, such that A=R(§A’ .

Proof. Let {\,=1, A;, -, A,} be a set of generators of A over R. Let F
be a free R-module with a basis {«,, u,, ***, #,;}, and define the R-epimorphism
f: F—A by putting f(u;)=x; for each 7. Since A is R-projective, we have an R-

homomorphism g: A—F such that fogzlA(. Now we put g()x,-):f__,‘ Tijliy Tij

€R. Let R, be the prime ring of R and R, the polynomial ring over R generated

by {r;;}. 'Then the module generated by A\,, Ay, :**, A, over R, is R,-projective.

As A is R-separable, defining the A°-epimorphism @: A°—A by putting (A;®
R

A)=A;;, there is a A°-homomorphism ¢: A—A° such that p¢p=1. Put
PN)= 2] sis(A;QNY), $i;xER and A N;=21t;;60g, t;;ER.  Furthermore let
ok R k

. R’ be the polynomial ring over R, generated by {r;,}, {s:;z} and {t;}, and denote
by A’ the module over R’ generated by Ay, Ay, **, A;. Then R’ is Noetherian,
and A’ is an R’-algebra which is a finitely generated, faithful, projective R'-
module, as R’ includes all of {r;;} and {¢;;,}. If we define a A’*-epimorphism
@’: A'*—A’ by putting ¢’(7\,~§)7x‘})=7\,~7\j and we put ¢'(A;)=2 s;ik(hjghk) for

ik
any 1, then, from the fact that A is R-finitely generated projective, we see easily
that ¢’ is the well-defined A’*~homomorphism of A’ into A’® such that ¢’o¢/=1,s.
Therefore A’ is a separable R'-algebra. Let « be the R-algebra epimorphism of
R®QA’ onto A which is defined by a(r@\;)=r\;, for any r&R. Let m be a
R R’

maximal ideal of R and put p’=mNR’. Then we have (RQA Ym=Rm Q A’y
R R\

and so « induces naturally an Rm-algebra epimorphism am: Rm @ A'y— Am.
Ry

Since A’y is R'py-free, am must be an isomorphism. From this it follows im-

mediately that « is an isomorphism. Thus our proof is completed.

2. Central separable algebras with proper splitting rings

Let A be a central separable R-algebra and S a commutative R-algebra.

If there exists a finitely generated faithful projective S-module P such that

S®A=Homg(P, P) as S-algebras, then S is called, according to [2], the splitting
R

ring of A. Especially, when S2R, S is called the proper splitting ring of A.
First we give, as a slight generalization of [2], (6.3),

Proposition 2.1. Let R be a local ring with a maximal ideal m and A a
central separable R-algebra. Then A has a proper splittting ring S which is a
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separable R-algebra and a finitely generated free R-module. Especially, if R is
Henselian, then we can choose as S a local ring with a maximal ideal mS.

Proof. By using (1.1) and the Henselization instead of the completion, this
can be proved along the same line as in [2], (6.3).

For a central separable algebra over a general commutative ring R, we can
not assure the existence of the proper splitting ring which is R-separable and R-
finitely generated, projective. In this section, we shall consider only the existence
of proper splitting rings. However, we could not prove the existence of a proper
splitting ring for a central separable algebra over a general coefficient ring.

Proposition 2.2. Let R be a commutative ring which is contained in a
semi-local ring. Then any central separable R-algebra has a proper splitting ring.
Especially, this assumption for R is satisfied by a Noetherian ring or an integral
domain.

Proof. It suffices to prove this proposition in case R is itself a semi-local
ring. Let R be a semi-local ring with maximal ideals m,, m,, ---; m, and put

RI=Rm1@Rm2@"'®Rm,. Then RgRl and R’@AZAml@AmZEB'“EBAm,.

Accordingly to (2.1), there exists a proper splitting ring S; of Am, for any . If
we put S=S8,PS,---PS,, then we have RCR'C.S and S is a proper splitting
ring of A, as is required.

As another case, which is not included in (2.2), we have

Proposition 2.3. Let R be a commutative ring with the total quotient ring
K such that any prime ideal of K is maximal. Then any central separable R-
algebra has a proper splitting ring.

Proof. We may assume R=K. If we denote by 1 the nil radical of R, then
R/n is, by our assumption, a regular ring (in the Neumann’s sense). Therefore
we may further assume that A is a finitely generated free R-module. Let {«,, u,,

.-+, #,} be an R-basis of A with u,=1, and put u,-ujzfj Tiiule, 1ij ER. Let R,
k=1

be the prime ring of R, and put R'=R[{r;;,}] and Q'={r{u,+ -+ riu,|riER’}.
Then £ is a central R'-algebra with an R’-basis {u,, -+, #,}, and we have RQQ’
R/

=A. Furthermore let R be the integral closure of R’ in R. Since R/n is

regular, any non-zero divisor of K is a unit in R, and therefore the total quotient

ring K of R can be regarded as a subring of R. From the fact that R is integral

over R’, we see that the total quotient ring K’ of R’ is included in R. Since R’

is Noetherian and K/nNK is regular, K'/nK’ is Artinian, and so K’ is itself

Artinian. If we put A'=K'®Q’, then R"QA’'=A and, as K’ is Artinian, we
R’ K/

can easily see that A is a central separable K'-algebra. According to (2.1), there
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exists a proper splitting ring F of A’ which is a finitely generated projective K'-
module. Now put S=FQ®R. Then S2F, R and SQA=SQRRIA'=FR
K/ R R K/ K/

RRYA'=(FRQR)YQFQA’'. Consequently, S is a proper splitting ring of A,
<4 K/ F ):<4

which completes our proof.

3. The trace and norm of a central separable algebra

1. Let R be a commutative ring and P a finitely generated projective R-
module. First suppose that P has (constant) rank z#. Then there exists a
commutative ring S D R such that S®P is a free S-module of rank n. Let {u,,

R

<+, u,} be a S-basis of SQP. If feHomy (P, P), then f can be regarded as an
R

element of Homg(S ®P S ®P) and we can put f(u,-)=2 u;s§; for some s € S.

Now put Pcp(f: X)— |59 —X 08,71, Te(f)=traces (s{7) and Np(f)=s{;| where

X denotes an indeterminate. It can easily be shown by using the localization at
any maximal ideal of R that Pcp(f, X)ER[X] and Tp(f), Np(f)ER and that
these are determined without depending on S and {u,, ---, u,}. If P has not
constant rank, there is, by [7], § 2, a unique decomposition R=R,P DR, such
that any R; ®P has rank »; over R; where n,<<n,---<n,, and we have Hompg(P,

P)= Z EBHomR‘(R ®P R; ®P) Let f be an element of Homg(P, P) and f;
the z-th component off Then we put Pcp(f: X)= Z] DPcgep(fi: X), Te(f)=
Z @TR,®P( f:) and Np(f)= 7_, D Ng,ep(f;) and we call them the characteristic

polynomlal, trace and norm of f. It can be easily shown that our definitions
coincide with those in [7].

If A is an R-algebra which is a finitely generated projective R-module, then we
use Pcy/r(f: X), Tasr(f) and Np/p(f) instead of Pc,(f: X)), T,(f) and N,(f).

2. Now we shall define the reduced characteristic polynomial, trace and
norm for a central separable algebra with a proper splitting ring.

Let A be a central separable R-algebra with a proper splitting ring S. Then
there exists a S-algebra isomorphism #kg: S (RgA% Homg(P®, P) for some

finitely generated projective S-module P,

Proposition 3.1 For any element \ of A, Pcpo(hs(N): X) is a polynomial
of R[X] which does not depend on S, P> and hs.

Proof. First suppose that R is a local ring. Then A is a projective R-
module of constant rank, and so P is also a projective S-module of constant
rank. By replacing S by any extension ring S’ of it and by replacing ks by
1®hs, Pcp(hs(X): X) is invariant, and therefore we may further assume that

S
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P js S-free. Then ks induces a S-algebra isomorphism ks: S QA =<M,(S)
R

such that Pcpw(hs(\): X)=|XE,—ks(\)|. On the other hand, according to

(2.1), there exists a proper splitting semi-olcal ring T" of A which is R-free. For

T we can define, similarly, &7, P and k. Since T is R-free, we have RQR=
R

SQRNRQT in SQT, and so we may suppose that there is a commutative ring
R R R

U containing both Sand 7'and SN T=Rin U. Now the algebra isomorphisms
ks: S@A=M,(S) and kr: T ®A=M,(T) can, naturally, be extended to the U-
R R

algebra isomorphisms k¥, k¥: U®A=M,(U). Then k¥ck# is an U-algebra
R

automorphism of M,,(U) and it induces an Un-algebra automorphism of M,,(Um)

for any maximal ideal of U. As Un is a local ring, it is inner, and so we have

| XE,—kE(A\*)|=| XE,—kF(\*)| in Unm[X] for any A¥*€UQA. Hence we
R

have Pcpw(hs(N\): X)=|XE,—ks(\)|=|XE,—kE(\)|=|XE,—kE(\)|=
Pcperx(hr(A): X) in U[X]. However, as Pcpw(hs(N): X)eS[X] and
Pcperd(hr(N): X)e T [X], we obtain Pcpwo(hs(A): X )=Pcpm(hr(N): X)ER[X]=
S[X]INT[X]. Thus Pcpw(hs(A): X) is a polynomial of R[X]. Itis obvious
from the above proof that this does not depend on S, P*® and ks, which com-
pletes our proof for a local ring R.

Let R be a general commutative ring and m a maximal ideal of R. Denote
by Am the residue of A in Am and by ks, the Sm-algebra isomorphism: Sm}@l\mg

m

Homg,(Psy, P) induced by hs. Further let [Pcp(hs(N): X)]n be the residue
of Pcpex(hs(A): X]) in Sm[X]. Then we see [Pcpe(hs(N): X)]m=Pcp$>(hsm(km):
X). Since, by the preceding argument for a local ring, Pcp, (ks (A): X)E Rm[X],
we have also [Pcp(hs(V): X)) ERm[X]. Consequently we obtain Pcpes)(hs(X):
X)eR[X]. Itis also evident in this case that Pcpe(hs(A): X) does not depend
on S, P and Ag.

Now we denote Pcpo(hs(N): X) by Perd /(M : X)) and we call it the reduced
characteristic polynomial of . Furthermore, if we put Trd y/g(A)=Tpw(hs(X))
and Nrd,/z(A)=Npw(hs(\)), then they are elements of R which do not depend
on S, P and hs and we call them the reduced trace and norm of A, respectively.

From our definitions it follows immediately

Proposition 3.2. For any A\, \,, \,EA and any r &R, we have

TrdA/R(Krl‘)\'z) = TrdA/R()\'l) + TrdA/R(xz) ’
Trdp/r(rA) = r Trdy/r(V)
TrdA/RO\uxz) = TrdA/R(xle) ’
Nrdp/r(AM2) = Nrdp/e(My) Nrdp/e(2e)

Especially, if A has rank u* over R, then we have



SEPARABLE ALGEBRAS OVER A COMMUTATIVE RING 239

Nrdp/r(rh) = 7" Nrd p/e(A)

From this proposition, it follows that Trd,/r is an R-homorphism of A into
R and Nrd,/; is a semi-group homomorphism of A into R as the multiplicative
semi-groups.

For any maximal ideal m of R, let [Prd,/z(A: X)]m be the residue of
Prd,/p(A: X) in (R/m)[X] and denote by Am the residue of A in A/mA. Now
we can show [Prd,/z(A: X)Jm=Prd s /pa/r/m(Pm: X). In fact, it suffices to prove
this in case R is a Henselian local ring with a maximal ideal m. However, in this
case, there is, by (2.1), a proper splitting local ring S of A such that mSis a
maximal ideal of S and S is a finitely generated free R-module. Then S/mS
becomes the splitting field of the classical central separable R/m-algebra A/mA,
from which our result follows immediately. Accordingly, Trd,,, and Nrd /g
induce, naturally, Trd,/ya/rmm a0d Nrdu/ma/e/m, respectively, which coincide
with those in the classical sense. By summarizing these, we obtain

Proposition 3.3. For any maximal ideal m of R, the residue of Prd,/p in
(R/m)[X] coincides with Prd,ya/rm- Especially, the residues of Trd,r and
Nrd /g in R/m coincide with Trd sy n/r/m and N1d pjma/rim» Tespectively.

3. Here we shall determine the relations between the trace (norm) and
reduced trace (reduced norm) of a central separable algebra, which are given in
the same form as in the classical one (cf. [4]).

Assume that A is a projective R-module of the constant rank m. Then we
may suppose S @AQM”(S), where m=n’. From our definitions, it follows

directly that Trd,/g(1)=n, T,r(X)=nTrdyr(A) and N,e(N)=[Nrd,(\)]"

In the general case, let R=R,@---PR, be the unique decomposition of R such

that R;®QA has rank m; over R; where m,<<m,<<---<<m,. 'Then we can put
R

m;=n5 for any i. Let ¢; be a unit element of R; and \; the i-th component of .
Then we obtain

Proposition 3.4. Trdg,er,(e;)=mne; for each i,

Tase() = Trdy(1) Trdy/e(h) = 211 Trdeoae(0)
Nye(h) = 33 [Nrdrgaym M

The following result will be used in § 4.

Proposition 3.5. Trd, is an R-epimorphism of A onto R.

Proof. By the remark after (3.2), it suffices to prove that Trd,/,, is an
epimorphism. By virtue of the classical result, for any maximal ideal m of R,
Trds/ma/r/m is an epimorphism of A/mA onto R/m. According to (2.3), then,
Trd/r must be an epimorphism of A onto R,
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Corollary 3.6. The complete image T y;x(A) of T y/x is a principal ideal of R
generated by Trd e (1). Especially, A is strongly separable if and only if Trd /e
(1) és a unit of R.

Proof. This is an immediate consequence of (3.4) and (3.5).

4. Asis remarked in § 2, we could not succeed in proving the existence of a
proper splitting ring for a central separable algebra in the general case. Hence
we can not define the reduced characteristic polynomial for a central separable
algebra in the case where we can not show the existence of a proper splitting ring.
However we can define, by using (1.2), the reduced trace for any central separable
R-algebra A. In fact, by virtue of (1.2), there exist a Noetherian subring R’
of R and a central separable R’-algebra A’ such that A=R§A'. Since A’

has a proper splitting ring by (2.2), there exists, according to 2, the reduced

trace Trd,//z7: A'—=R’. Now we define the reduced trace Trd,r: A—R, by

putting Trd,/p(r@N\)==r Trdy/,z’(\’) for anyr&Rand forany N’ A’. Itcanbe
R

easily shown that, for any maximal ideal m of R, the Rm-homomorphism
(Trdp/k)m: Am—Rm, which is induced on Am by Trd,r, coincides with the
reduced trace Trd, /g, of Am defined by using the proper splitting ring of Am.
Especially, if A has a proper splitting ring, Trd,, coincides with that defined
in 2. Furthermore we can also prove (3.2)~(3.6) in this case.

4. The symmetricity of a separable algebra

Let A be an R-algebra, which is a finitely generated, faithful, projective R-
module. We shall consider A*=Homg(A, R) as a left A°-module through the
operations (A f)(p)=f(pX), (f + M)(p)=f(Ap) where f EA*, X, uEA. Following
[6], we call A a Frobenius R-algebra if A* is isomorphic to A as left (or
equivalently right) A-modules, and, furthermore, is called a symmetric R-algebra
if A* is A°-isomorphic to A. From our definitions it follows that any symmetric
R-algebra is Frobenius.

We begin with

Lemma 4.1. Let S be a symmetric, commutative R-algebra and A a sym-
metric S-algebra. Then A is a symmetric R-algebra.

Proof. By our assumptions we have A==Homg (A, S) as two-sided A-modules
and S =Homg(S, R) as S-modules. So we obtain Homg(A, S)=Homg(A,
Hompg(S, R))=Homz(A®S, R)=Homg(A, R) as two-sided A-modules. This

8

shows that A is a symmetric R-algebra.

It is well known, in the classical theory, that a semi-simple algebra over a
field is symmetric. However, for any commutative ring R, it is an open question
whether a semi-simple R-algebra is symmetric or not,
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Now we give, as a partial answer to this question,

Theorem 4.2. A separable R-algebra A, which is a finitely generated,
faithful, projective R-module, is a symmetric R-algebra.

Proof. Let C be the center of A. According to [2] (2.1), A is a finitely
generated projective C-module. By our assumption, A is R-finitely generated
projective, and so C is also a finitely generated projective R-module, as C'isa C-
direct summand of A. Since, by [2], A.4, a commutative separable R-algebra,
which is a finitely generated, faithful, projective R-module, is symmetric, C must
be a symmetric R-algebra. Therefore, by (4.1), it suffices to prove our theorem
in case R=C.

Let A be a central separable R-algebra and denote by Trd,,r the reduced
trace of A, defined in §3. Then Trd,, is a symmetric R-homomorphism of
A into R: ie.,, we have Trd,,rs(Au)=Trd,r(u\) for any A\, pEA. Hence,
putting ®(A\)(u)=Trd,r(Ap) for any A, uEA, ® is a A°~homomorphism of A
into A*. By (3.3), for any maximal ideal m of R, Trd,/r induces naturally the
reduced trace Trd,jma/r/m in the classical sense on A/mA, and therefore ®
induces, naturally, the A°/mA°-homomorphism ®m: A/mA—A¥/mA*=(A/mA¥*)
such that ®u(X)(72)="Trd sy a/r/m(AE) for any X, z& A/mA. From the classical
result it follows that ®m is a A°/mA°-isomorphism. As both A and A* are
finitely generated projective R-modules, we can easily see from this that @ itself
is an isomorphism of A onto A*. This completes our proof.

We remark that (4.2) was known in some special cases (cf. [2], [5] and [10]).

Finally we give, as an additional remark,

Proposition 4.3. Let A be a central R-algebra which is a finitely generated
projective R-module. Then the following statements are equivalent:

(1) A is a separable R-algebra.

(2) The R-module AJ[A, A] is isomorphic to R, and, for any maximal ideal m
of R, A/mA is a semi-simple R|m-algebra.

Here we denote by [A, A] the R-module generated by all elements of A in the
form ap—pn, N, pEA.

Proof. (1)=(2): Suppose that A is a separable R-algebra. 'Then the second
assertion of (2) follows from [2], (1.6) and so it suffices to prove A/[A, A]=R.
Let Trd,,r be the reduced trace of A. Then Trd,/, is a symmetric R-epimor-
phism of A onto R, and therefore, putting Ker Trd,,z=XK, we have an R-exact
sequence:

Trd
0>K—>A —% R0

and KD[A, A]. Hence we have only to show K=[A, A]. As is shown in §3,
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Trd,,r induces naturally the reduced trace Trd,/ya/rm of A/mA for any
maximal ideal m of R, and we have Ker Trdmurm=K/mK. However, it is
well known, in the classical theory, that the kernel of the reduced trace of a
central separable R/m-algebra A/mA coincides with [A/mA, A/mA]. Conse-
quently we must have K/mK=[A/mA, A/mA] for any maximal ideal m of R.
From this we easily see K=[A, A], as K is R-finitely generated. Thus the
implication (1)= (2) is proved. (2)=>(1). Conversely suppose (2). By (1.1) it
suffices to prove that A/mA has R/m as its center. By our assumption we have
an R-exact sequence:

[0 4
0->[A, A]>A —> R—0.

This induces an R/m-exact sequence:

0 [A, AJjm[A, A] > A/mA —2> R/mR—0.

and so we have [A, A]/m[A, Al=[A/mA, A/mA]. Therefere we have
AmA=[A/mA, A/mA]JPR/m. On the other hand, since A/mA is R/m-semi-
simple, A/mA is separable over its center C, and then we have A/mA=<[A/mA,
A/mA]PC. As C2R/m, we see from these that C coincides with R'm. This
completes our proof.
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