ON SEPARABLE ALGEBRAS OVER A COMMUTATIVE RING*

SHIZUO ENDO AND YUTAKA WATANABE

(Received August 19, 1967)

Introduction. The notion of a separable algebra over a commutative ring was introduced in Auslander-Goldman [2], which coincides with that of a maximally central algebra in Azumaya [3] for a central algebra over a local ring. The basic properties of separable algebras were shown in [2] and [3].

The purpose of this paper is to define the reduced trace and norm of a central separable algebra over a commutative ring and to prove that a separable algebra over a commutative ring is a symmetric algebra.

Let Λ be a central separable algebra over a commutative ring R and let S be a commutative R-algebra such that $S \underset{R}{\otimes} \Lambda \cong \operatorname{Hom}_{S}(P, P)$ for some finitely generated, faithful, projective S-module P. Then S is called, according to [2], a splitting ring of Λ , and especially, if $R \subseteq S$, it is called a proper splitting ring of Λ . It was proved in [2] that a central separable algebra over a Noetherian local ring R has a proper splitting ring which is a Galois extension of R. However, for a general commutative ring R, it is an open problem whether any central separable R-algebra has a proper (Galois) splitting ring. Therefore, our method, which will be used to defining the reduced trace and norm of a central separable R-algebra, is different from the usual one in the classical case (cf. [4]).

In § 1 we shall show that a separable algebra over a general commutative ring is extended from a separable algebra over a Noetherian commutative ring, and, in § 2, we shall prove that, in case R is a commutative ring included in a semi-local ring, a central separable R-algebra has a proper splitting ring.

§ 3 is devoted to defining the reduced trace of a central separable R-algebra Λ . If Λ has a proper splitting ring, we can define the reduced characteristic polynomial, trace and norm of Λ by using the characteristic polynomial, trace and norm of a projective module in [7], and we shall also show that there exist the analogous relations to the classical case between these and the characteristic polynomial, trace and norm of an R-algebra Λ . In the general case, we define the reduced trace of Λ , by using the above-mentioned result in § 1.

^{*} This work was supported by the Matsunaga Science Foundation.

An algebra Λ over a commutative ring R, which is a finitely generated, faithful, projective R-module, is called, according to [6], a symmetric R-algebra, if $\operatorname{Hom}_R(\Lambda, R)$ is Λ^e -isomorphic to Λ . In the classical theory, it is well known that any semi-simple algebra over a field is symmetric. However, for a general commutative ring R, it is an open problem whether a semi-simple R-algebra is symmetric or not.

In § 4 we shall prove, as a partial answer to this, that a separable algebra over a commutative ring is symmetric. This includes the results in Müller [10] and DeMeyer [5].

Throughout this paper a ring means a ring with a unit element, and a (semi-) local ring means a commutative (semi-) local ring which is not always Noetherian.

1. Basic results

First we shall prove, as a generalization of (4.5) and (4.7) in [2],

Proposition 1.1. Let Λ be an algebra over a (not always Noetherian) commutative ring R, which is a finitely generated R-module. Then the following conditions are equivalent:

- (1) Λ is a separable R-algebra.
- (2) For any maximal ideal m of R, Λ_m is a separable R_m -algebra.
- (3) For any maximal ideal m of R, $\Lambda/m\Lambda$ is a separable R/m-algebra.

Proof. The implications $(1)\Rightarrow(2)\Rightarrow(3)$ are obvious.

- (2) \Rightarrow (1): We have w.dim $_{\Lambda^e}$ $\Lambda = \sup_{\mathfrak{m}}$ w.dim $_{\Lambda^e_{\mathfrak{m}}}$ $\Lambda_{\mathfrak{m}}$ where \mathfrak{m} runs over all maximal ideals of R. If each $\Lambda_{\mathfrak{m}}$ is $R_{\mathfrak{m}}$ -separable, then we have w.dim $_{\Lambda^e_{\mathfrak{m}}}$ $\Lambda_{\mathfrak{m}} = 0$ and so w.dim $_{\Lambda^e}\Lambda = 0$. As Λ is Λ^e -finitely presented, this shows that Λ is Λ^e -projective.
- (3) \Rightarrow (2): Without loss of generality we may assume that R is a local ring with a maximal ideal m. Now suppose that $\Lambda/m\Lambda$ is R/m-separable. Let \hat{R} be the Henselization of R and put $\hat{\Lambda} = \hat{R} \otimes \Lambda$. Then we have $\hat{R}/m\hat{R} = R/m$ and $\hat{\Lambda}/m\hat{\Lambda} = \Lambda/m\Lambda$. Since \hat{R} is R-faithfully flat, we have w.dim $_{\Lambda^e}$ $\Lambda =$ w.dim $_{\Lambda^e}$ $\hat{\Lambda}$ and so Λ is Λ^e -projective if and only if $\hat{\Lambda}$ is $\hat{\Lambda}^e$ -projective. Hence we may further assume that R is Henselian. Then, for the projective $\Lambda^e/m\Lambda^e$ -module $\Lambda/m\Lambda$, there is a finitely generated projective Λ^e -module P such that $f: P/mP \cong \Lambda/m\Lambda$ as Λ^e -modules. Since R is local and P, Λ^e are Λ^e -projective, there exist Λ^e -epimorphisms $f: P \to \Lambda$, which induces f on P/mP, and $g: \Lambda^e \to P$ such that $f \circ g$ is the natural epimorphism of Λ^e onto Λ . The homomorphism $f \circ g$ is R-split and so f is also R-split. From this it follows directly that f is an isomorphism. Thus Λ is Λ^e -projective, which completes our proof.

It is remarked that, by (1.1), we can omit the assumption that R is Noetherian from almost all of results in [2].

The following proposition will play an important part in § 3.

Proposition 1.2. Let Λ be a separable R-algebra, which is a finitely generated, faithful, projective R-module. Then there exist a Noetherian subring R' of R and a separable R'-subalgebra Λ' of Λ , which is a finitely generated, faithful, projective R'-module, such that $\Lambda = R \bigotimes \Lambda'$.

Proof. Let $\{\lambda_0 = 1, \lambda_1, \dots, \lambda_t\}$ be a set of generators of Λ over R. Let Fbe a free R-module with a basis $\{u_0, u_1, \dots, u_t\}$, and define the R-epimorphism $f: F \to \Lambda$ by putting $f(u_i) = \lambda_i$ for each i. Since Λ is R-projective, we have an Rhomomorphism $g: \Lambda \to F$ such that $f \circ g = 1_{\Lambda}$. Now we put $g(\lambda_i) = \sum_{i=1}^{r} r_{ij}u_j$, r_{ij} $\in R$. Let R_0 be the prime ring of R and R_1 the polynomial ring over R generated by $\{r_{ij}\}$. Then the module generated by λ_0 , λ_1 , ..., λ_t over R_1 is R_1 -projective. As Λ is R-separable, defining the Λ^e -epimorphism $\varphi \colon \Lambda^e \to \Lambda$ by putting $\varphi(\lambda_i \otimes \Lambda)$ λ_j^0)= $\lambda_i\lambda_j$, there is a Λ^e -homomorphism $\psi: \Lambda \to \Lambda^e$ such that $\varphi \psi = 1$. Put $\psi(\lambda_i) = \sum_{i,k} s_{ijk}(\lambda_j \underset{R}{\otimes} \lambda_k^0)$, $s_{ijk} \in R$ and $\lambda_i\lambda_j = \sum_k t_{ijk}\lambda_k$, $t_{ijk} \in R$. Furthermore let R' be the polynomial ring over R_0 generated by $\{r_{ij}\}, \{s_{ijk}\}$ and $\{t_{ijk}\}$, and denote by Λ' the module over R' generated by $\lambda_0, \lambda_1, \dots, \lambda_t$. Then R' is Noetherian, and Λ' is an R'-algebra which is a finitely generated, faithful, projective R'module, as R' includes all of $\{r_{ij}\}$ and $\{t_{ijk}\}$. If we define a Λ'^e -epimorphism $\varphi': \Lambda'^e \to \Lambda'$ by putting $\varphi'(\lambda_i \underset{R'}{\otimes} \lambda_j^0) = \lambda_i \lambda_j$ and we put $\psi'(\lambda_i) = \sum_{ik} s_{ijk}(\lambda_j \underset{R'}{\otimes} \lambda_k)$ for any i, then, from the fact that Λ is R-finitely generated projective, we see easily that ψ' is the well-defined Λ'^e -homomorphism of Λ' into Λ'^e such that $\varphi' \circ \psi' = 1_{\Lambda'}$. Therefore Λ' is a separable R'-algebra. Let α be the R-algebra epimorphism of $R \otimes \Lambda'$ onto Λ which is defined by $\alpha(r \otimes \lambda_i) = r \lambda_i$, for any $r \in R$. Let m be a maximal ideal of R and put $\mathfrak{p}'=\mathfrak{m}\cap R'$. Then we have $(R\underset{R'}{\otimes}\Lambda')_{\mathfrak{m}}=R_{\mathfrak{m}}\underset{R'\mathfrak{p}'}{\otimes}\Lambda'_{\mathfrak{p}'}$ and so α induces naturally an $R_{\mathfrak{m}}$ -algebra epimorphism $\alpha_{\mathfrak{m}}\colon R_{\mathfrak{m}}\underset{R'\mathfrak{p}'}{\otimes}\Lambda'_{\mathfrak{p}'}\to\Lambda_{\mathfrak{m}}$. Since $\Lambda'_{\mathfrak{p}'}$ is $R'_{\mathfrak{p}'}$ -free, $\alpha_{\mathfrak{m}}$ must be an isomorphism. From this it follows immediately that α is an isomorphism. Thus our proof is completed.

2. Central separable algebras with proper splitting rings

Let Λ be a central separable R-algebra and S a commutative R-algebra. If there exists a finitely generated faithful projective S-module P such that $S \underset{R}{\otimes} \Lambda \cong \operatorname{Hom}_S(P, P)$ as S-algebras, then S is called, according to [2], the *splitting ring* of Λ . Especially, when $S \supseteq R$, S is called the *proper splitting ring* of Λ . First we give, as a slight generalization of [2], (6.3),

Proposition 2.1. Let R be a local ring with a maximal ideal m and Λ a central separable R-algebra. Then Λ has a proper splitting ring S which is a

separable R-algebra and a finitely generated free R-module. Especially, if R is Henselian, then we can choose as S a local ring with a maximal ideal $\mathfrak{m}S$.

Proof. By using (1.1) and the Henselization instead of the completion, this can be proved along the same line as in [2], (6.3).

For a central separable algebra over a general commutative ring R, we can not assure the existence of the proper splitting ring which is R-separable and R-finitely generated, projective. In this section, we shall consider only the existence of proper splitting rings. However, we could not prove the existence of a proper splitting ring for a central separable algebra over a general coefficient ring.

Proposition 2.2. Let R be a commutative ring which is contained in a semi-local ring. Then any central separable R-algebra has a proper splitting ring. Especially, this assumption for R is satisfied by a Noetherian ring or an integral domain.

Proof. It suffices to prove this proposition in case R is itself a semi-local ring. Let R be a semi-local ring with maximal ideals \mathfrak{m}_1 , \mathfrak{m}_2 , \cdots , \mathfrak{m}_t and put $R'=R_{\mathfrak{m}_1}\oplus R_{\mathfrak{m}_2}\oplus \cdots \oplus R_{\mathfrak{m}_t}$. Then $R\subseteq R'$ and $R'\underset{R}{\otimes} \Lambda=\Lambda_{\mathfrak{m}_1}\oplus \Lambda_{\mathfrak{m}_2}\oplus \cdots \oplus \Lambda_{\mathfrak{m}_t}$. Accordingly to (2.1), there exists a proper splitting ring S_i of $\Lambda_{\mathfrak{m}_i}$ for any i. If we put $S=S_1\oplus S_2\cdots \oplus S_t$, then we have $R\subseteq R'\subseteq S$ and S is a proper splitting ring of Λ , as is required.

As another case, which is not included in (2.2), we have

Proposition 2.3. Let R be a commutative ring with the total quotient ring K such that any prime ideal of K is maximal. Then any central separable R-algebra has a proper splitting ring.

Proof. We may assume R=K. If we denote by n the nil radical of R, then R/n is, by our assumption, a regular ring (in the Neumann's sense). Therefore we may further assume that Λ is a finitely generated free R-module. Let $\{u_1, u_2, \dots, u_t\}$ be an R-basis of Λ with $u_1=1$, and put $u_iu_j=\sum\limits_{k=1}^t r_{ijk}u_k$, $r_{ijk}\in R$. Let R_0 be the prime ring of R, and put $R'=R_0[\{r_{ijk}\}]$ and $\Omega'=\{r'_1u_1+\dots+r'_tu_t|r'_t\in R'\}$. Then Ω' is a central R'-algebra with an R'-basis $\{u_1,\dots,u_t\}$, and we have $R \otimes \Omega' = \Lambda$. Furthermore let R be the integral closure of R' in R. Since R/n is regular, any non-zero divisor of R is a unit in R, and therefore the total quotient ring R of R can be regarded as a subring of R. From the fact that R is integral over R', we see that the total quotient ring R' of R' is included in R. Since R' is Noetherian and $R/n \cap R$ is regular, R'/n R' is Artinian, and so R' is itself Artinian. If we put $R'=R'\otimes R'$, then $R'\otimes R'=R$ and, as R' is Artinian, we can easily see that R is a central separable R'-algebra. According to (2.1), there

exists a proper splitting ring F of Λ' which is a finitely generated projective K'-module. Now put $S=F\underset{K'}{\otimes}R$. Then $S\supseteq F$, R and $S\underset{R}{\otimes}\Lambda=S\underset{R}{\otimes}R\underset{K'}{\otimes}\Lambda'=F\underset{K'}{\otimes}$, $R\underset{K'}{\otimes}\Lambda'=(F\underset{K'}{\otimes}R)\underset{K'}{\otimes}F\underset{K'}{\otimes}\Lambda'$. Consequently, S is a proper splitting ring of Λ , which completes our proof.

3. The trace and norm of a central separable algebra

Let R be a commutative ring and P a finitely generated projective Rmodule. First suppose that P has (constant) rank n. Then there exists a commutative ring $S \supseteq R$ such that $S \otimes P$ is a free S-module of rank n. Let $\{u_1, \dots, u_n\}$ \dots , u_n } be a S-basis of $S \otimes P$. If $f \in \text{Hom}_R(P, P)$, then f can be regarded as an element of $\operatorname{Hom}_{S}(S \underset{R}{\otimes} P, S \underset{R}{\otimes} P)$, and we can put $f(u_{j}) = \sum_{i=1}^{n} u_{i} s_{ij}^{(r)}$ for some $s_{ij}^{(r)} \in S$. Now put $Pc_P(f: X) = |s_{ij}^{(f)} - X\delta_{ij}|$, $T_P(f) = traces(s_{ij}^{(f)})$ and $N_P(f) = |s_{ij}^{(f)}|$ where X denotes an indeterminate. It can easily be shown by using the localization at any maximal ideal of R that $Pc_P(f, X) \in R[X]$ and $T_P(f)$, $N_P(f) \in R$ and that these are determined without depending on S and $\{u_1, \dots, u_n\}$. If P has not constant rank, there is, by [7], § 2, a unique decomposition $R=R_1 \oplus \cdots \oplus R_t$ such that any $R_i \otimes P$ has rank n_i over R_i where $n_1 < n_2 \cdots < n_t$, and we have $\operatorname{Hom}_R(P, n_1) = n_1 < n_2 \cdots < n_t$ $P) = \sum_{i=1}^{t} \bigoplus \operatorname{Hom}_{R_i}(R_i \otimes P, R_i \otimes P)$. Let f be an element of $\operatorname{Hom}_R(P, P)$ and f_i the *i*-th component of f. Then we put $Pc_P(f:X) = \sum_{i=1}^r \bigoplus Pc_{R_i \otimes P}(f_i:X)$, $T_P(f) =$ $\sum_{i=1}^{t} \oplus T_{R_i \otimes P}(f_i)$ and $N_P(f) = \sum_{i=1}^{t} \oplus N_{R_i \otimes P}(f_i)$ and we call them the characteristic polynomial, trace and norm of f. It can be easily shown that our definitions coincide with those in [7].

If Λ is an R-algebra which is a finitely generated projective R-module, then we use $\operatorname{Pc}_{\Lambda/R}(f:X)$, $\operatorname{T}_{\Lambda/R}(f)$ and $\operatorname{N}_{\Lambda/R}(f)$ instead of $\operatorname{Pc}_{\Lambda}(f:X)$, $\operatorname{T}_{\Lambda}(f)$ and $\operatorname{N}_{\Lambda}(f)$.

2. Now we shall define the reduced characteristic polynomial, trace and norm for a central separable algebra with a proper splitting ring.

Let Λ be a central separable R-algebra with a proper splitting ring S. Then there exists a S-algebra isomorphism $h_S \colon S \underset{R}{\otimes} \Lambda \cong \operatorname{Hom}_S(P^{(S)}, P^{(S)})$ for some finitely generated projective S-module $P^{(S)}$.

Proposition 3.1 For any element λ of Λ , $\operatorname{Pc}_{P^{(S)}}(h_S(\lambda): X)$ is a polynomial of R[X] which does not depend on S, $P^{(S)}$ and h_S .

Proof. First suppose that R is a local ring. Then Λ is a projective R-module of constant rank, and so $P^{(S)}$ is also a projective S-module of constant rank. By replacing S by any extension ring S' of it and by replacing h_S by $1 \otimes h_S$, $\operatorname{Pc}_{P^{(S)}}(h_S(\lambda): X)$ is invariant, and therefore we may further assume that

Then h_S induces a S-algebra isomorphism $h_S: S \otimes \Lambda \cong M_n(S)$ $P^{(S)}$ is S-free. such that $Pc_{P}(S)(h_{S}(\lambda)): X = |XE_{n}-k_{S}(\lambda)|$. On the other hand, according to (2.1), there exists a proper splitting semi-olcal ring T of Λ which is R-free. For T we can define, similarly, h_T , $P^{(T)}$ and k_T . Since T is R-free, we have $R \otimes R =$ $S \underset{R}{\otimes} R \cap R \underset{R}{\otimes} T$ in $S \underset{R}{\otimes} T$, and so we may suppose that there is a commutative ring U containing both S and T and $S \cap T = R$ in U. Now the algebra isomorphisms $k_S \colon S \underset{\mathbb{R}}{\otimes} \Lambda \cong M_n(S)$ and $k_T \colon T \underset{\mathbb{R}}{\otimes} \Lambda \cong M_n(T)$ can, naturally, be extended to the Ualgebra isomorphisms k_S^* , k_T^* : $U \otimes \Lambda \cong M_n(U)$. Then $k_S^* \circ k_T^*$ is an U-algebra automorphism of $M_n(U)$ and it induces an U_m -algebra automorphism of $M_n(U_m)$ for any maximal ideal of U. As U_m is a local ring, it is inner, and so we have $|XE_n - k_S^*(\lambda^*)| = |XE_n - k_T^*(\lambda^*)|$ in $U_{\mathfrak{m}}[X]$ for any $\lambda^* \in U \otimes \Lambda$. $Pc_{P^{(S)}}(h_S(\lambda): X) = |XE_n - k_S(\lambda)| = |XE_n - k_S^*(\lambda)| = |XE_n - k_T^*(\lambda)| = |XE_n - k_T^*(\lambda)| = |XE_n - k_S^*(\lambda)| =$ $\operatorname{Pc}_{P^{(T)}}(h_T(\lambda): X)$ in U[X]. However, as $\operatorname{Pc}_{P^{(S)}}(h_S(\lambda): X) \in S[X]$ and $\operatorname{Pc}_{P}(T)(h_{T}(\lambda): X) \in T[X]$, we obtain $\operatorname{Pc}_{P}(S)(h_{S}(\lambda): X) = \operatorname{Pc}_{P}(T)(h_{T}(\lambda): X) \in R[X] =$ $S[X] \cap T[X]$. Thus $Pc_{P(S)}(h_{S}(\lambda); X)$ is a polynomial of R[X]. It is obvious from the above proof that this does not depend on S, $P^{(S)}$ and h_S , which completes our proof for a local ring R.

Let R be a general commutative ring and \mathfrak{m} a maximal ideal of R. Denote by $\lambda_{\mathfrak{m}}$ the residue of λ in $\Lambda_{\mathfrak{m}}$ and by $h_{S_{\mathfrak{m}}}$ the $S_{\mathfrak{m}}$ -algebra isomorphism: $S_{\mathfrak{m}} \underset{R_{\mathfrak{m}}}{\otimes} \Lambda_{\mathfrak{m}} \cong \operatorname{Hom}_{S_{\mathfrak{m}}}(P_{\mathfrak{m}}^{(s)}, P_{\mathfrak{m}}^{(s)})$ induced by h_{S} . Further let $[\operatorname{Pc}_{P^{(S)}}(h_{S}(\lambda): X)]_{\mathfrak{m}}$ be the residue of $\operatorname{Pc}_{P^{(S)}}(h_{S}(\lambda): X]$ in $S_{\mathfrak{m}}[X]$. Then we see $[\operatorname{Pc}_{P^{(S)}}(h_{S}(\lambda): X)]_{\mathfrak{m}} = \operatorname{Pc}_{P_{\mathfrak{m}}^{(s)}}(h_{S_{\mathfrak{m}}}(\lambda_{\mathfrak{m}}): X)$. Since, by the preceding argument for a local ring, $\operatorname{Pc}_{P_{\mathfrak{m}}}(h_{S_{\mathfrak{m}}}(\lambda): X) \in R_{\mathfrak{m}}[X]$, we have also $[\operatorname{Pc}_{P^{(S)}}(h_{S}(\lambda): X)]_{\mathfrak{m}} \in R_{\mathfrak{m}}[X]$. Consequently we obtain $\operatorname{Pc}_{P^{(S)}}(h_{S}(\lambda): X) \in R[X]$. It is also evident in this case that $\operatorname{Pc}_{P^{(S)}}(h_{S}(\lambda): X)$ does not depend on S, $P^{(S)}$ and h_{S} .

Now we denote $\operatorname{Pc}_{P^{(S)}}(h_{S}(\lambda):X)$ by $\operatorname{Pcrd}_{\Lambda/R}(\lambda:X)$ and we call it the reduced characteristic polynomial of λ . Furthermore, if we put $\operatorname{Trd}_{\Lambda/R}(\lambda) = \operatorname{T}_{P^{(S)}}(h_{S}(\lambda))$ and $\operatorname{Nrd}_{\Lambda/R}(\lambda) = \operatorname{N}_{P^{(S)}}(h_{S}(\lambda))$, then they are elements of R which do not depend on S, $P^{(S)}$ and h_{S} and we call them the reduced trace and norm of λ , respectively.

From our definitions it follows immediately

Proposition 3.2. For any λ , λ_1 , $\lambda_2 \in \Lambda$ and any $r \in R$, we have

$$\begin{split} \operatorname{Trd}_{\Lambda/R}(\lambda_1 + \lambda_2) &= \operatorname{Trd}_{\Lambda/R}(\lambda_1) + \operatorname{Trd}_{\Lambda/R}(\lambda_2), \\ \operatorname{Trd}_{\Lambda/R}(r\lambda) &= r \operatorname{Trd}_{\Lambda/R}(\lambda), \\ \operatorname{Trd}_{\Lambda/R}(\lambda_1\lambda_2) &= \operatorname{Trd}_{\Lambda/R}(\lambda_2\lambda_1), \\ \operatorname{Nrd}_{\Lambda/R}(\lambda_1\lambda_2) &= \operatorname{Nrd}_{\Lambda/R}(\lambda_1) \operatorname{Nrd}_{\Lambda/R}(\lambda_2) \end{split}$$

Especially, if Λ has rank n^2 over R, then we have

$$\operatorname{Nrd}_{\Lambda/R}(r\lambda) = r^n \operatorname{Nrd}_{\Lambda/R}(\lambda)$$

From this proposition, it follows that $\operatorname{Trd}_{\Lambda/R}$ is an R-homorphism of Λ into R and $\operatorname{Nrd}_{\Lambda/R}$ is a semi-group homomorphism of Λ into R as the multiplicative semi-groups.

For any maximal ideal m of R, let $\overline{[\Pr d_{\Lambda/R}(\lambda \colon X)]_{\mathfrak{m}}}$ be the residue of $\Pr d_{\Lambda/R}(\lambda \colon X)$ in $(R/\mathfrak{m})[X]$ and denote by $\overline{\lambda}_{\mathfrak{m}}$ the residue of Λ in $\Lambda/\mathfrak{m}\Lambda$. Now we can show $\overline{[\Pr d_{\Lambda/R}(\lambda \colon X)]_{\mathfrak{m}}} = \Pr d_{\Lambda/\mathfrak{m}\Lambda/R/\mathfrak{m}}(\overline{\lambda}_{\mathfrak{m}} \colon X)$. In fact, it suffices to prove this in case R is a Henselian local ring with a maximal ideal m. However, in this case, there is, by (2.1), a proper splitting local ring S of Λ such that $\mathfrak{m}S$ is a maximal ideal of S and S is a finitely generated free R-module. Then $S/\mathfrak{m}S$ becomes the splitting field of the classical central separable R/\mathfrak{m} -algebra $\Lambda/\mathfrak{m}\Lambda$, from which our result follows immediately. Accordingly, $\Pr d_{\Lambda/R}$ and $\Pr d_{\Lambda/R}$ induce, naturally, $\Pr d_{\Lambda/\mathfrak{m}\Lambda/R/\mathfrak{m}}$ and $\Pr d_{\Lambda/\mathfrak{m}\Lambda/R/\mathfrak{m}}$, respectively, which coincide with those in the classical sense. By summarizing these, we obtain

Proposition 3.3. For any maximal ideal m of R, the residue of $\operatorname{Prd}_{\Lambda/R}$ in (R/m)[X] coincides with $\operatorname{Prd}_{\Lambda/m\Lambda/R/m}$. Especially, the residues of $\operatorname{Trd}_{\Lambda/R}$ and $\operatorname{Nrd}_{\Lambda/R}$ in R/m coincide with $\operatorname{Trd}_{\Lambda/m\Lambda/R/m}$ and $\operatorname{Nrd}_{\Lambda/m\Lambda/R/m}$, respectively.

3. Here we shall determine the relations between the trace (norm) and reduced trace (reduced norm) of a central separable algebra, which are given in the same form as in the classical one (cf. [4]).

Assume that Λ is a projective R-module of the constant rank m. Then we may suppose $S \underset{R}{\otimes} \Lambda \cong M_n(S)$, where $m = n^2$. From our definitions, it follows directly that $\operatorname{Trd}_{\Lambda/R}(1) = n$, $\operatorname{T}_{\Lambda/R}(\lambda) = n \operatorname{Trd}_{\Lambda/R}(\lambda)$ and $\operatorname{N}_{\Lambda/R}(\lambda) = [\operatorname{Nrd}_{\Lambda/R}(\lambda)]^n$. In the general case, let $R = R_1 \oplus \cdots \oplus R_t$ be the unique decomposition of R such that $R_i \underset{R}{\otimes} \Lambda$ has rank m_i over R_i where $m_1 < m_2 < \cdots < m_t$. Then we can put $m_i = n_i^2$ for any i. Let e_i be a unit element of R_i and λ_i the i-th component of λ . Then we obtain

Proposition 3.4. $\operatorname{Trd}_{R_i \otimes \Lambda/R_i}(e_i) = n_i e_i$ for each i,

$$\begin{split} \mathbf{T}_{\Lambda/R}(\lambda) &= \mathrm{Trd}_{\Lambda/R}(1) \, \mathrm{Trd}_{\Lambda/R}(\lambda) = \sum_{i=1}^t n_i \, \mathrm{Trd}_{R_i \otimes \Lambda/R_i}(\lambda_i) \\ \mathbf{N}_{\Lambda/R}(\lambda) &= \sum_{i=1}^t \left[\mathrm{Nrd}_{R \otimes \Lambda_i/R_i}(\lambda_i) \right]^{n_i} \end{split}$$

The following result will be used in § 4.

Proposition 3.5. Trd_{Λ/R} is an R-epimorphism of Λ onto R.

Proof. By the remark after (3.2), it suffices to prove that $\operatorname{Trd}_{\Lambda/R}$ is an epimorphism. By virtue of the classical result, for any maximal ideal m of R, $\operatorname{Trd}_{\Lambda/\mathfrak{m}\Lambda/R/\mathfrak{m}}$ is an epimorphism of $\Lambda/\mathfrak{m}\Lambda$ onto R/\mathfrak{m} . According to (2.3), then, $\operatorname{Trd}_{\Lambda/R}$ must be an epimorphism of Λ onto R,

Corollary 3.6. The complete image $T_{\Lambda/R}(\Lambda)$ of $T_{\Lambda/R}$ is a principal ideal of R generated by $\operatorname{Trd}_{\Lambda/R}(1)$. Especially, Λ is strongly separable if and only if $\operatorname{Trd}_{\Lambda/R}(1)$ is a unit of R.

Proof. This is an immediate consequence of (3.4) and (3.5).

4. As is remarked in § 2, we could not succeed in proving the existence of a proper splitting ring for a central separable algebra in the general case. Hence we can not define the reduced characteristic polynomial for a central separable algebra in the case where we can not show the existence of a proper splitting ring. However we can define, by using (1.2), the reduced trace for any central separable R-algebra Λ . In fact, by virtue of (1.2), there exist a Noetherian subring R' of R and a central separable R'-algebra Λ' such that $\Lambda = R \bigotimes_{R'} \Lambda'$. Since Λ' has a proper splitting ring by (2.2), there exists, according to 2, the reduced trace $\operatorname{Trd}_{\Lambda'/R'}: \Lambda' \to R'$. Now we define the reduced trace $\operatorname{Trd}_{\Lambda/R}: \Lambda \to R$, by putting $\operatorname{Trd}_{\Lambda/R}(r \bigotimes_{R} \lambda') = r \operatorname{Trd}_{\Lambda'/R'}(\lambda')$ for any $r \in R$ and for any $\lambda' \in \Lambda'$. It can be easily shown that, for any maximal ideal m of R, the R_m -homomorphism $(\operatorname{Trd}_{\Lambda/R})_m: \Lambda_m \to R_m$, which is induced on Λ_m by $\operatorname{Trd}_{\Lambda/R}$, coincides with the reduced trace $\operatorname{Trd}_{\Lambda_m/R_m}$ of Λ_m defined by using the proper splitting ring of Λ_m . Especially, if Λ has a proper splitting ring, $\operatorname{Trd}_{\Lambda/R}$ coincides with that defined in 2. Furthermore we can also prove (3.2) \sim (3.6) in this case.

4. The symmetricity of a separable algebra

Let Λ be an R-algebra, which is a finitely generated, faithful, projective R-module. We shall consider $\Lambda^* = \operatorname{Hom}_R(\Lambda, R)$ as a left Λ^e -module through the operations $(\lambda \cdot f)(\mu) = f(\mu \lambda)$, $(f \cdot \lambda)(\mu) = f(\lambda \mu)$ where $f \in \Lambda^*$, λ , $\mu \in \Lambda$. Following [6], we call Λ a Frobenius R-algebra if Λ^* is isomorphic to Λ as left (or equivalently right) Λ -modules, and, furthermore, is called a symmetric R-algebra if Λ^* is Λ^e -isomorphic to Λ . From our definitions it follows that any symmetric R-algebra is Frobenius.

We begin with

Lemma 4.1. Let S be a symmetric, commutative R-algebra and Λ a symmetric S-algebra. Then Λ is a symmetric R-algebra.

Proof. By our assumptions we have $\Lambda \cong \operatorname{Hom}_S(\Lambda, S)$ as two-sided Λ -modules and $S \cong \operatorname{Hom}_R(S, R)$ as S-modules. So we obtain $\operatorname{Hom}_S(\Lambda, S) \cong \operatorname{Hom}_S(\Lambda, H) \cong \operatorname{Hom}_R(\Lambda \otimes S, R) \cong \operatorname{Hom}_R(\Lambda, R)$ as two-sided Λ -modules. This shows that Λ is a symmetric R-algebra.

It is well known, in the classical theory, that a semi-simple algebra over a field is symmetric. However, for any commutative ring R, it is an open question whether a semi-simple R-algebra is symmetric or not,

Now we give, as a partial answer to this question,

Theorem 4.2. A separable R-algebra Λ , which is a finitely generated, faithful, projective R-module, is a symmetric R-algebra.

Proof. Let C be the center of Λ . According to [2] (2.1), Λ is a finitely generated projective C-module. By our assumption, Λ is R-finitely generated projective, and so C is also a finitely generated projective R-module, as C is a C-direct summand of Λ . Since, by [2], A.4, a commutative separable R-algebra, which is a finitely generated, faithful, projective R-module, is symmetric, C must be a symmetric R-algebra. Therefore, by (4.1), it suffices to prove our theorem in case R = C.

Let Λ be a central separable R-algebra and denote by $\operatorname{Trd}_{\Lambda/R}$ the reduced trace of Λ , defined in § 3. Then $\operatorname{Trd}_{\Lambda/R}$ is a symmetric R-homomorphism of Λ into R: i.e., we have $\operatorname{Trd}_{\Lambda/R}(\lambda\mu) = \operatorname{Trd}_{\Lambda/R}(\mu\lambda)$ for any λ , $\mu \in \Lambda$. Hence, putting $\Phi(\lambda)(\mu) = \operatorname{Trd}_{\Lambda/R}(\lambda\mu)$ for any λ , $\mu \in \Lambda$, Φ is a Λ^e -homomorphism of Λ into Λ^* . By (3.3), for any maximal ideal m of R, $\operatorname{Trd}_{\Lambda/R}$ induces naturally the reduced trace $\operatorname{Trd}_{\Lambda/m\Lambda/R/m}$ in the classical sense on $\Lambda/m\Lambda$, and therefore Φ induces, naturally, the $\Lambda^e/m\Lambda^e$ -homomorphism $\overline{\Phi}_m: \Lambda/m\Lambda \to \Lambda^*/m\Lambda^* \cong (\Lambda/m\Lambda^*)$ such that $\overline{\Phi}_m(\overline{\lambda})(\overline{\mu}) = \operatorname{Trd}_{\Lambda/m\Lambda/R/m}(\overline{\lambda}\overline{\mu})$ for any $\overline{\lambda}$, $\overline{\mu} \in \Lambda/m\Lambda$. From the classical result it follows that $\overline{\Phi}_m$ is a $\Lambda^e/m\Lambda^e$ -isomorphism. As both Λ and Λ^* are finitely generated projective R-modules, we can easily see from this that Φ itself is an isomorphism of Λ onto Λ^* . This completes our proof.

We remark that (4.2) was known in some special cases (cf. [2], [5] and [10]). Finally we give, as an additional remark,

Proposition 4.3. Let Λ be a central R-algebra which is a finitely generated projective R-module. Then the following statements are equivalent:

- (1) Λ is a separable R-algebra.
- (2) The R-module $\Lambda/[\Lambda, \Lambda]$ is isomorphic to R, and, for any maximal ideal m of R, $\Lambda/m\Lambda$ is a semi-simple R/m-algebra.

Here we denote by $[\Lambda, \Lambda]$ the R-module generated by all elements of Λ in the form $\lambda \mu - \mu \lambda$, λ , $\mu \in \Lambda$.

Proof. (1) \Rightarrow (2): Suppose that Λ is a separable R-algebra. Then the second assertion of (2) follows from [2], (1.6) and so it suffices to prove $\Lambda/[\Lambda, \Lambda] \cong R$. Let $\mathrm{Trd}_{\Lambda/R}$ be the reduced trace of Λ . Then $\mathrm{Trd}_{\Lambda/R}$ is a symmetric R-epimorphism of Λ onto R, and therefore, putting Ker $\mathrm{Trd}_{\Lambda/R} = K$, we have an R-exact sequence:

$$0 \to K \to \Lambda \xrightarrow{\operatorname{Trd}_{\Lambda/R}} R \to 0$$

and $K \supseteq [\Lambda, \Lambda]$. Hence we have only to show $K = [\Lambda, \Lambda]$. As is shown in § 3,

Trd_{Λ/R} induces naturally the reduced trace Trd_{$\Lambda/m\Lambda/R/m$} of $\Lambda/m\Lambda$ for any maximal ideal m of R, and we have Ker Trd_{$\Lambda/m\Lambda/R/m$}=K/mK. However, it is well known, in the classical theory, that the kernel of the reduced trace of a central separable R/m-algebra $\Lambda/m\Lambda$ coincides with $[\Lambda/m\Lambda, \Lambda/m\Lambda]$. Consequently we must have $K/mK=[\Lambda/m\Lambda, \Lambda/m\Lambda]$ for any maximal ideal m of R. From this we easily see $K=[\Lambda, \Lambda]$, as K is R-finitely generated. Thus the implication $(1)\Rightarrow (2)$ is proved. $(2)\Rightarrow (1)$. Conversely suppose (2). By (1.1) it suffices to prove that $\Lambda/m\Lambda$ has R/m as its center. By our assumption we have an R-exact sequence:

$$0 \to [\Lambda, \Lambda] \to \Lambda \xrightarrow{\alpha} R \to 0$$
.

This induces an R/m-exact sequence:

$$0 \to [\Lambda, \, \Lambda]/\mathfrak{m}[\Lambda, \, \Lambda] \to \Lambda/\mathfrak{m}\Lambda \xrightarrow{\overline{\alpha}} R/\mathfrak{m}R \to 0 \; .$$

and so we have $[\Lambda, \Lambda]/\mathfrak{m}[\Lambda, \Lambda] \cong [\Lambda/\mathfrak{m}\Lambda, \Lambda/\mathfrak{m}\Lambda]$. Therefore we have $\Lambda/\mathfrak{m}\Lambda \cong [\Lambda/\mathfrak{m}\Lambda, \Lambda/\mathfrak{m}\Lambda] \oplus R/\mathfrak{m}$. On the other hand, since $\Lambda/\mathfrak{m}\Lambda$ is R/\mathfrak{m} -semisimple, $\Lambda/\mathfrak{m}\Lambda$ is separable over its center \overline{C} , and then we have $\Lambda/\mathfrak{m}\Lambda \cong [\Lambda/\mathfrak{m}\Lambda, \Lambda/\mathfrak{m}\Lambda] \oplus \overline{C}$. As $\overline{C} \supseteq R/\mathfrak{m}$, we see from these that \overline{C} coincides with R/\mathfrak{m} . This completes our proof.

TOKYO UNIVERSITY OF EDUCATION

References

- [1] M. Auslander and D.A. Buchsbaum: On ramification theory in Noetherian rings, Amer. J. Math. 81 (1959), 749-765.
- [2] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- [3] G. Azumaya: On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150.
- [4] N. Bourbaki: Algèbre, Chap. 8, Hermann, Paris, 1958.
- [5] F.R. DeMeyer: The trace map and separable algebras, Osaka J. Math. 3 (1966),7-11
- [6] S. Eilenberg and T. Nakayama: On the dimension of modules and algebras, II, Nagoya Math. J. 9 (1955), 1-16
- [7] O. Goldman: Determinants in projective modules, Nagoya Math. J. 18 (1961), 27-36.
- [8] A. Hattori: Semisimple algebras over a commutative ring, J. Math. Soc. Japan 15 (1963), 404-419.
- [9] T. Kanzaki: Special type of separable algebras over a commutative ring, Proc. Japan Acad. 40 (1964), 781-786.
- [10] B. Müller: Quasi-Frobenius-Erweiterungen, II, Math. Z. 88 (1965), 380-409.
- [11] M. Nagata: Local Rings, Interscience, 1962,