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Abstract

Given a log smooth log schem¥ over SpecC, in this article we analyze and
compare different filtrations defined on the log de Rham cemply, associated to
X. We mainly refer to the articles of Ogus ([23]), Danilov (f1]shida ([16]). In
this context, we analyze two filtrations auf: the decreasing Ogus filtratiob®,
which is a sort of extension of the Deligne weight filtratisf to log smooth log
schemes oveBpecdC, and an increasing filtration, which we call the Ishida fiiva
and denote by, defined by using the Ishida compléx, of X. Moreover, we have
the Danilov de Rham compleR (log D) with logarithmic poles alon@® = X — X,
(Xiiv being the trivial locus for the log structure of), endowed with an increasing
weight filtration (the Danilov weight filtrationV.). Then we prove that the Danilov
de Rham complex2(log D) coincides with the log de Rham compleX, and the
Ishida filtration I. (which is a globalization of the Danilov weight filtration.)
coincides with the opposite Ogus filtratidrr.

Introduction and motivations

Given an algebraic variet¥, even singular over the complex field, Deligne de-
scribed the mixed Hodge structure of it by using a smooth hgpeeringr.: X. — X
of X ([3, §8.2]), and by applying the theory he had developed in [2],atheterm X;
of the hyper-resolution. By descent theory, he showed tihatntixed Hodge structure
on X2 comes from the Hodge structure of ealf". Indeed, for evenj, he consid-
ered an open immersion of; into a proper smooth schem¥ over Spe, whose
complementX; — X; is a normal crossing divisob; (by [9]), and analyzed the Hodge
and weight filtrations on each de Rham complex with logarithpoles Q'7i (log Dy).
Then, the mixed Hodge structure ¢ (X", C) is related to the Hodge structures on
H- (X", C) = H* (X, 3, (log Dy ), for eachi.

A similar approach was used by Du Bois ([4]). He introducedategory Gis(X),
which can be seen as a “filtered version” of the Herrera-Lisla@ category ([8]): the
objects of Gis(X) are filtered complexes, and the morphisms @g-linear maps of
complexes, which are compatible with the filtration. Workiim this filtered category,
Du Bois proved that a part of the mixed Hodge structure (ngmtee Hodge filtra-
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tion in cohomology) of a singular varietX over SpedC can be described by using
a complex, o , which belongs to the derived category##X). This complex is also

constructed t through the use of a proper smooth hyper-cayeti: X, — X, by taking
the classical de Rham compleéy of each X, and defmmgg>< as the direct image
R7..Q%,. The filtration on’ comes from the natural Hodge filtratidh defined on
each complex2y, . In the same direction, Guillen, Puerta, Aznar, Gainzaistudhe
construction of a particular kind of proper (smooth) hypewveringsX. — X of a sin-
gular variety X, called the cubic hyper-resolutions of. these are characterized by a
control on the dimension of each terk) ([7]).

Another approach to this problem could consist in the tamadf characterizing
the mixed Hodge structure of an algebraic singular sch&nenly in terms of its own
structural geometry, without introducing resolutions ofgsilarities or hyper-coverings
of X; one can analyze a particular setting of algebraic schereedpwed with a
“richer” structure, which can furnish more informationsoab the singularities of the
scheme. In this direction, in more recent years, the notibscbheme and the prop-
erties of schemes have been generalized by the introduofidogarithmic geometry.
Briefly, a logarithmic schem is a classical scheme, endowed with a further structure
which consists of a sheaf of commutative monoldg on the etale (or Zariski) site
Xet (Or Xzg) of X, together with a monoid homomorphisat My — Oy, satisfying
a certain condition (Definition 1.1). Therefore, logarifkngeometry can be thought
as an extension of the classical theory of algebraic schen@assical examples of
logarithmic schemes are a smooth variety with log structure induced by a normal
crossing divisorD, which is exactly the case analized by Deligne in [2]. Anotime
teresting example comes from the toroidal geometry; indeedingular toric variety
X, endowed with log structure induced by the complemenof the torus ([16], [22])
is a good example of log scheme. Indeed, we have a strict ctionebetween log
schemes ove€ and toroidal embeddings or semi-toroidal varieties, as a@vsin [5].
In the previous two cases, the logarithmic de Rham compigXiog D), which is a
locally free Ox-module, plays a central role in the construction of the o&a func-
torial mixed Hodge structure on the cohomology groupy X — D, C), n € N. Later,
Steenbrink ([24], [25], [26]) described his limit mixed Hga structure of a projec-
tive family of manifolds with semi-stable reduction by meaof log theory. These are
only simple examples of logarithmic structures, but the fofmalism and language of
logarithmic schemes was introduced by J.M. Fontaine, Lsidpand K. Kato ([19]).
They presented a general formulation of logarithmic strieg, not only in character-
istic zero. Successively, the theory of logarithmic schemmas developed by F. Kato
[17], [18], C. Nakayama [21], L. lllusie [12], [13], O. Hyodd 0], K. Kato [11], [20],
A. Ogus [23], and others. In this “log” setting, a singulahsme X over SpedC, if
endowed with a particular structure, can be regarded as d8ihan the logarithmic
sense, i.e. log smooth in the category of log schemes.
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The most important fact here, is that, for a log schexyet is possible to define
a meaningful de Rham complex with “formal” log poles, whidle aletermined by the
monoid sheafMy. Indeed, when a log scheme¢ satisfies the condition of beinlpg
smoothor ideally log smooth(see the notion of idealized log schemesg§ih4) over
the base scheme, then its log de Rham complex is formed biyidoee Ox-modules.
Therefore, we are able to describe this log complex, eveneifhave no information
about the classical de Rham compl&} associated to the possibly singular scheme
X. In this sense, the theory of log schemes was also develapedder to furnish a
singular varietyX with a “natural de Rham complex”.

Therefore, in this present work we analyze and compare tBsilgle filtrations de-
fined on the log de Rham complex, associated to a log smooth log scheXeover
SpecC. We mainly refer to the articles of Ogus ([23]), Danilov (fllshida ([16]). In
this context, we first briefly recall the main definitions amations about log schemes
and idealized log scheme§lj. Then, we start to consider the decreasing Ogus filtra-
tion L* on wy (Definition 2.1). We prove that the opposite Ogus filtratibn® coin-
cides with the Deligne weight filtratioW, in the case of a smooth schemx with
log structure given by a normal crossing divisor (Lemma .2Perefore,L * extends
the Deligne weight filtration to the case of a log smooth lobesne whose underlying
scheme is not smooth ovétr.

Then, given a log smooth log scheme over SpedC, if Xy, denotes the trivial
locus for the log structure an® = X — Xgjy, we recall the definition of the Danilov
de Rham complex2y(log D) with logarithmic poles alongD (Definition 2.9), and
we prove that this complex coincides with the log de Rham dermpy (Proposi-
tion 2.10). Then, by using the definition of Ishida compf@y associated to the toroi-
dal embedding Xuiv, X), we introduce an increasing filtratioll on w3, which we call
the Ishida filtration (Definition 2.7). So, by using local ddptions, we show that this
filtration is a sort of globalization of a particular weighltrétion 1A, on Q3 (log D) =
wy, introduced by Danilov ([1,§15.6]) in the toric case. Finally, we prove thé&t
coincides with the opposite Ogus filtratidn™ (Lemma 2.11 and Proposition 2.12).
We conclude by describing the graded terms of the Ogus fidtrefor log smooth log
schemes whose underlying schemes are proper and quasiksmbo this case, the
(Deligne) mixed Hodge structure ofy;, (the trivial locus for the log structure oK)
can be calculated by using the bifiltered log de Rham compl&xf(*‘, F*) (F* being
the Hodge filtration).

I would like to thank L. lllusie for his precious comments arfdr the
several illuminating discussions that | had with him when dswat the University of
Paris-Sud Orsay. | also would like to thank B. Chiarellottw his suggestions and
remarks.
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1. The language of log schemes

In this first section we briefly recall the definitions and ma@sults about loga-
rithmic schemes which will be useful in the following. We ube Zariski or the etale
topology.

1.1. General notions.

DEFINITION 1.1. Let X be a scheme. A pre-log structure on it is a sheaf of
monoids My on X, together with a monoid homomorphisim My — Ox (where Oy
is considered as a multiplicative monoid). The pre-log atrte Mx, «) is said to be
a log structure ife induces an isomorphism af 1(0%) onto O%. In this case we
identify o ~1(0%) with O%, and suppos& to be a submonoid oM. A log scheme
X is a scheme endowed with a log structure.

We denote the log schem¢, endowed with the log structurl by (X, M), or simply

by X. The trivial structure on a schen (denoted bytriv) is the log structure equal
to Oy — Ox. The inclusion functor from the category of log structuresa scheme

X into the category of the pre-log structures #nhas a left adjoint which sends a
pre-log structure I, «) into (M?,&?), where M2 =: 05 @4-103) M, anda? =1 incd a,
with inc the inclusion ofO% inside Ox. This log structure 1%, «?) is called the log
structure associated to the pre-log structuvk ¢). A morphism f: (X, M) — (Y, N)

is a morphism of log schemes if is a morphism of underlying schemes and there is
a morphism of sheaves of monoids f N — M such that the diagram

FIN——um

|

f(Oy) ——Ox

is commutative. Therefore, the log schemes form a categteypted byLSch, and
the functor from the category of schem8sh to LSch, which sends a scheme into
itself endowed with the trivial structure, is fully faitifuThe categoryL.Sch hasfinite
inverse limits([19, (1.6)]).

DEFINITION 1.2. Let f: (X, M) — (Y, N) be a morphism of log schemes (with
a: M — Oy, B: N — Oy). The pre-log structure oY defined by the fiber prod-
uct Oy x1,0, fxM and the homomorphism int®y induced by the projection, is a
log structure onY, which is called the direct image oM, «), and which is denoted
by (f.M, f.«). The log structure orX associated to the pre-log structure defined by
f~IN and the composed homomorphishT'N — f 10Oy — Ox is called the inverse
image of (N, B8), and it is denoted by f(*N, f*p).
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We have this identification
Hom((N, B), (.M, f.a)) = Hom((f*N, f*B), (M, «))

DEFINITION 1.3. A morphismf: X — Y of log schemes is called strict iff
f*My — My is an isomorphism.

Every morphism of log scheme$: X — Y uniquely factorizes intoX Lx 5 Y,
wherei is the identity on the underlying schemes, ahds strict.

DErINITION 1.4. A monoidP is said to be integral iff the canonical morphism
P — P9 is injective. It is equivalent to say tha&® satisfies the following condition:
for any p, g, x € P such thatxp = xq, then p =qg. Moreover, a monoidP is said to
be saturated iff it is integral and, for eaghe P, p € P iff there exists an integer
n > 1 such thatp" € P.

DerINITION 1.5. A log structureM is called integral (resp. saturated)M is a
sheaf of integral (resp. saturated) monoids.

1.2. Charts. The notion of chart is introduced by K. Kato in [19, Defini-
tion 2.9]: it gives a (local) model for the logarithmic sttuce.

DEFINITION 1.6. Let X be a log scheme, an® be a monoid. A strict mor-
phismc: X — SpecZ[P] is said to be a chart oK (relative to the monoidP).

The datum of a chart ofX, M) is equivalent to the datum of an homomorphi§in —
M, where Px is the constant sheaf of monoids ofi of value P, inducing an iso-

morphism Px — Ox)? = (M 5 Ox). Therefore, the log structure oX is equal to
the inverse image of the canonical log structére— Z[P].

If ¢: U — X is an etale map, wherd is a log scheme endowed with the log
structureay: My — Oy induced byM, then a chart oiX overU is a chart of J,My).

DEFINITION 1.7. A log structureM on a schemeX is said to be quasi-coherent
(resp. coherent) if, etale locally oK, there exists a chart oK relative to a monoid
(resp. finitely generated monoid). Moreover,M is called fine (resp. fs) if it is coher-
ent and integral (resp. coherent and saturated) (Definitid). We say a log scheme
X is fine (resp. fs) if it is endowed with a fine (resp. fs) log stue.

We denote withLSch’ (resp.LSch®) the category of fine (resp. fine and saturated) log
schemes ovet.. They are full subcategories &fSch.
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DEFINITION 1.8. Letf: X — Y be a morphism of log schemes, and letP —
Q be a monoid morphism. Then a chart dbf(relative tou) is a commutative diagram

X ——Spec Z[ Q]

_fl b

Y —— Spec Z[ P]
with a, b two charts.

Proposition 1.9 ([12, Corollaire 3.11]). Let f: X — Y be a morphism of fine
(resp fs) log schemesand let x be a geometric point of. XThen there exists an etale
neighbourhood of xand a chart of f relative to a monoid morphism B — Q, with
P, Q fine monoidsand PP, Q% without torsion(resp with P, Q toric monoid$.

1.3. Log smooth log schemes and differentials.

DEFINITION 1.10. A morphism of log schemas (X, M) < (Y, N) is called a
closed immersion (resp. an exact closed immersion) if thgetiping map of schemes
is a closed immersion, andN — M is surjective (resp. is an isomorphism).

The notions of smoothness and etaleness are extended to ategoky LSch
(119, (3.3).

DEFINITION 1.11. A morphismf: (X,M) — (Y,N) of fine log schemes is called
log smooth (resp. log etale) if its underlying morphism isdlly of finite presentation,
and, for any commutative diagram of fine log schemes

(To, Lo) —— (X, M)
i f
(T,L)——(¥,N)
with i an exact closed immersion, afg defined inT by an ideall such thatl 2 = (0),

there exists, etale locally on (resp. there exists globally oh) an uniqueg: (T,L) —
(X, M) such thatpi =g and f¢ =h.

We have a characterization of log smoothness (resp. logeress) ([19, Theo-
rem (3.5)]), which is the following

Theorem 1.12. Let f: (X, M) — (Y, N) be a morphism of fine log schemesd
let Y — SpecZ[Q] be a chart of Y relative to QThen the following conditions are
equivalent
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(1) f is log smooth
(2) Etale locally on X there exists a char{Px — M, Qy — N, u: Q — P} of f,
extending the chart of Ysuch that
(x) the kernel and the torsion part of the cokerriedsp the kernel and the co-
kerne) of Q% — P9 are finite groups of orders invertible on;X
(»*) the induced morphism X> Y xgpeczjq) SPecZ[P] is etale
(We note that we can replace the etalenes$xi), by the smoothnessvithout chang-
ing the conclusions

REMARK 1.13. We recall that, wheri: (X, M) — (Y, N) is a morphism of fine
log schemes such thdt*N = M, then f is log smooth (resp. log etale) iff the under-
lying morphism of schemes is smooth (resp. etale) ([19, &sibpn (3.8)]).

Let f: X — Y be a morphism of log schemes, where M — Ox, g: N — Oy are
the two log structures.

DEFINITION 1.14. Ther-moduIeQ§</Y(Iog M/N), which we simply denote by
wy v, is the quotient(Q2} v ® (Ox ®z M%)) /H, where;, y is the classical sheaf of
relative 1-differential forms, andd is the Ox-submodule generated by the local sec-
tions of the following forms:

(1) da(m),0)— (0,x(Mm) ® m), with m € M;

(2) (0,1® m), with me Im{f "IN — M}.

The class of (0, ® m), for me M, in wi/Y, is usually denoted by dlog. Let now
oYy =1 \P oy, for each 0< p < dimy X: we get a complexvy, of f~1Oy-
modules in the natural way.

In the categorySch of classical schemes, the property for a mapX — Y of being
smooth implies tha§2§</Y is locally free Ox-module. Similarly, in the category of log
schemes, we have the following

Proposition 1.15 ([19, Proposition (3.10)]). Let f: (X, M) — (Y, N) be a log
smooth morphism of fine log schemeBhen theOx-module wy  is locally free of
finite type

1.4. Idealized log schemes.The notion of log schemes was generalized even
further by Ogus in [23]. He introduced the notion of ideatizeg scheme, which con-
sists on a log scheme together with a fixed sheaf of ideals efldg structure. We
recall some facts about this theory which will be useful foe following. Concerning
the theory of commutative monoids, we refer to [20], [5].
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DEFINITION 1.16. LetP be a commutative monoid. A subsktof a monoid P
is said to be an ideal oP if Pl c |I. Moreover, an ideap of P is called a prime
ideal if its complementP \ p in P is a submonoid ofP.

DEeFINITION 1.17. LetP be a monoid. A faceg= of P is a subset ofP which
is the complement of a prime idegl of P, i.e. it is a submonoid ofP whose com-
plement is an ideal oP. Therefore, we can regard a prime ideal of a monBidchs
the complement of a face d®.

Let now (X, M) be a log scheme ovef and letg: P — M be a fine chart foM. If |
(resp.F) is an ideal (resp. a face) d?, let i (resp.F) denote the sheaf associated to
the presheaf which is equal to the idealM{U) generated by the image of(resp.F)

in M(U), for every open set) of X. Theni (resp.F) is a sheaf of ideals (resp. faces)
in the sheaf of monoid# ([23, §2]).

DEFINITION 1.18 ([23, Definition 2.8]). An idealized log scheme is a log
scheme X, M) together with a sheaf of idealsx € M such thate: M — Ox sends
Kx to {0} € Ox. A morphism f: (X, M) — (Y, N) of idealized log schemes is a
morphism of log schemes such that the maptN — M sendsf ~1(Ky) into Ky.

We say thatf is ideally strict if Ky is generated by the image df Ky — M,

f is log strict if the natural magf *N — M is an isomorphism and is strict if both
of these conditions are satisfied.

We denote by X, Kx) the idealized log schemeX( M) with the sheaf of ideald<.
We denote bylLSch the category of idealized log schemes.

REMARK 1.19. The category of log scheméssch is a full subcategory of
ILSch, via the fully faithful functor K, M) — (X, @), where @ is the empty sheaf
of ideals inM.

DEFINITION 1.20 ([23,52]). A log thickening of idealized log schemes is a
strict closed immersion: T’ < T defined by a nil idealy C Or. We say that the
thickening is nilpotent if the ideal? is.

If f: X — Y is a morphism of idealized log schemes, then a thickening e/
is a diagram

with i a log thickening.
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REMARK 1.21. Ifi: T" < T is a log thickening, sinceMt = M1 /O% is iso-
morphic to My, there is a natural bijection between the idealsMa and the ideals
in M. If g: T — X is such thatgoi =¢/, then @*Kx)t = (" Kx)7'.

DEFINITION 1.22 ([23,82]). A morphism f: X — Y of idealized log schemes
is ideally log smooth if, for every log thickening as in Defioh 1.20, locally onT,
there exists a mag: T — X such thatgoi =g and f og=h.

We can give the notions of ideally log unramified and ideatlg ktale morphisms of
idealized log schemes using the lifting properties withpess to strict nilpotent log
thickenings, as in Definition 1.22. Let noW: X — Y be an ideally log smooth map
of fine idealized log schemes. We recall the etale local ptigseof f (Theorem 1.24).
To this aim, we need the following

DEerFINITION 1.23 ([23, Definition 2.9]). A chart for an idealized log some
(X,Kx) is a morphism P, K) — (Myx, Kx), where P is the constant sheaf of monoids
on X of value P, K is an ideal ofP, the mapP — My is a chart (Definition 1.6), and
the induced magK — Kx is an isomorphism (withK the sheaf of ideals associated
to K).

Theorem 1.24 ([23, Theorem 2.23]). Let f: X — Y be an ideally log smooth
map of fine idealized log schemeéa/e suppose to have a chart (Q,J) — (My, Ky).
Then etale locally on X we can extend’ to a chart for f

X ——Sp

|

Y—)SQ,]

where 0: Q — P, and $,, Sq; are the idealized log schemeSpecC[P — 1],
SpecC[Q — J], with canonical log structures P> C[P — 1], and Q — C[Q — J],
respectively This chart satisfies the following properties

1. The mapd? is injective and the torsion part of P9%°/Q%) has invertible order
in Ox.

2. The map h X — Y xg,, Sp,1, induced from the above diagrans etale and strict
([23, Theorem2.23]).

ExampLE 1.25 ([23, Example 2.17]). We consider now the following ecasf
(X,a: Mx — Oy) is a fine log scheme anH is a coherent sheaf of ideals My,
let Xk be the closed subscheme defined df)k)Ox, with the induced log structure.
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Then the map of idealized log schemes

1 (Xk, J7K) = (X, 2x)
is ideally etale.

We consider Example 1.25 in the case of a fine mor@iavith P* = 0, and the log
schemeSy = SpecC[P], with log structure P — C[P], which is log smooth over
SpedC. We take the closed log subschefieof S defined by the ideaP* = P — {0},
which is equal to the log scheme Sp€fP]/P*), endowed with log structurd® —
C[P]/P*, where the magP — C sends every element &* to 0. Then the map of
idealized log schemes

Ep, PT) = (S0, @)

is ideally log etale. Therefore, taking the composition n{gp, P*) — (Sp,9) —
(SpecC, @), we can conclude that the idealized log scherag, P*) is ideally log
smooth over Spe€, even if it is not log smooth over Spétin the category.Sch.

Now, if we consider an ideally log smooth log scheMever Spe€, etale locally
onY, we can writef: Y — SpecC as a composite map

Y = Xy <> X — SpecC

where X is a log smooh log scheme over Sggeand Xk < X is a closed immersion
defined by a coherent sheaf of idedsof the log structure onX. So, an etale local
model forY is given by Spe€[P — 1] = SpecC[P]/I C[P]), with P a toric monoid
and| an ideal of P, endowed with the log structure — C[P]/I C[P] which sendsl
to {0}. In this etale local modelX is represented by Spé&f P] and its log structure
a: My - Ox by P — C[P].

We also have another equivalent characterization of igéad) smooth log schemes
over SpecC, which is the following

DEFINITION 1.26 ([14, Definition (1.5)]). LetX be a log scheme over Spég
with fs log structureM. Then, X is ideally log smooth over Spe€ if, etale locally
on X, there exist a toric monoid®, and an ideall of P, a schemelJ over C, and
etale morphismg: U — X, ¥: U — Spec C[P]/(l)), whereU is endowed with the
log structurep*M, SpecC[P]/(l)) is endowed with the log structure — C[P]/(l),
which sendd to {0}, andp*M coincides with the log structure associated”e~> Oy .

2. Ogus, Danilov and Ishida weight filtrations

From now on, let Spe€ be endowed with the trivial log structure. L&t be
a log scheme ovefC, endowed with an fs log structur®. We suppose thaX is
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log smooth overC, and its underlying scheme is proper. Xf is also smooth in the
classical sense ovet, then the log structure is given by a normal crossing divisor
Y, and the increasing Deligne weight filtratiofl,, on the complexvy, is defined as
follows ([2, (3.1.5)]),

Wik =0, if i <0; Wl =l Ao, if0<i<j; Waol=w,ifi>]j.

When the underlying scheme &f is not smooth ovelC, we consider another fil-
tration on the log de Rham complex, and we prove that thisaeslioW. when X is
smooth in the classical sense. To this aim, we recall the itlefirof the decreasing fil-
tration L*, introduced by Ogus ([23, Definition 1.2]) on the log de Rhaomplex ..

DEFINITION 2.1 ([23, Definition 1.2]). In the previous notations, lEtC M be
a sheaf of faces oM. Let Li(F)wi( be the subsheaf of abelian groups generated by
the local sections of the form(m)dlogmy A - - - Adlogmj, wherem, my,...,mj € M
and there exisk e N, f € F with km+ f — (m; +.--+m;) € M, using the additive
notation inM (wherea: M — Ox is the log structure orKX).

We write L1(F)w) for L*i(F)w) and L* for L*(©%). In particular, (%) = Liwk,
for eachj. We note thatL‘(F)wi( is a subgroup otoi( which is stable under multi-
plication by sections 0©%. In [23, Proof. of Lemma 2.15] Ogus proved that it is also
stable under multiplication by any section 6¥x, i.e. it is an Ox-submodule. More-
over, for F = 0%, L‘a)i( is quasi-coherent, for eadh | ([23, Lemma 2.15, 3]).

We can seel* as an extension of the weight filtration to the case of a génera
log smooth log scheme ovef (for example, to the case of complex toric varieties
endowed with canonical log structure). Indeed, we provefdfiewing

Proposition 2.2. Let X be a smooth scheme ov@r with log structure given by
a normal crossing divisor Y Then the opposite Ogus filtratiol. ™ on w} reduces to
the Deligne weight filtration \W

Proof. SinceX is smooth over SpeC, we can choose a local system of coor-
dinates{xy, ..., Xy} for it (n = dim X). We can suppose that the normal crossing di-
visor Y is given by the local equation; - --- - X = 0. Then,{dlogxy,...,dlogx,
dX+1,...,dx,} is a local basis fow}. Moreover, the log structur& is locally rep-
resented byN", and the log structure: M — Oy is locally given byN" — C[xq,. . .,
Xn]: & — X, whereg are the elements of the canonical basistNdf Now, each el-
ementm of N' is equal tom = kje; + --- + kg, for kj > 0, for eachj. So, let
o = a(m)dlogm; A --- A dlogm; an element ofL‘a)ﬁ(, wherem, my, ..., mj € N',
ie.m=ae+---+ae, andms = kg€ +- - - +ks&, for each 1< s < j (where all
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the coefficients are ilN). The conditionkm — (m; +---+m;) € N' is equal to

K(aper +---+ag) —[(kuer+---+kae)+- -+ (kyer+- - - +kig)]

oo () ore o [ia - () Jo e

i.e. the coefficients are- 0. Since—(zit:1 ky) < 0, it follows then, ora; > 0, or, if

a =0, then all the termg;;, ..., k; must be equal to 0 too (because all of them are
> 0). In the first case, the terrmf1 dlogx; = xfl’ldxl compares in the expression of
the elementw, and it is a classical differential; in the second case dlogoes not
compare inw. The same arguments hold fag,...,a. We can conclude that each
local section ofL'w) = L'~ is equal to

g-x&..... x dloges A - - - Adloges Adloges,, - - - Adloges,
=g-x&t..... x2'de, A--- Ade Adloge,, - Adloge

with k > 1, andg € O%. Finally, since each local section &¥;_jw} is of the type

h-xg& .. .- xS dloges, A- - -ndloge; Adloges,, - - - Adloges;, with h € Ox, ky,....k > 1,
it is easy to see that ~0~)w} coincides withW; ;w). O

The Ogus filtrationL*(F) on w} admits a local graded description. Indeed, since
is log smooth overC, it is etale locally equal to Speég[P], with P a toric monoid.
We consider theP-gradedZ-algebraC[P] = @pep C e(p), with e: P — C[P]. We
recall that the sheabi( is etale locally represented by(jc[,,] = C[P] ®z /\j pepP 23,
§3]. This has a natural structure ofR-gradedC[P]-module; its component in degree
p is justC e(p) ®z ! P.

For eachp € P, let L, A\! P be aZ-submodule of\! P%. Let us suppose that
this is such that, forp > g, L, A\' P® < Ly A P%. Ogus calls such a collection
of submodules aP -filtration of /\j P9. Under these assumptions, it is easy to see
that the image ofP ,.p C &(p) ®z (Lp/\j P9) inside C[P] ®, A! P% is a P-graded
C[P]-submodule. We consider the following-filtration,

DEFINITION 2.3 ([23, Definition 3.2]). LetF be a face ofP. For eachp € P,
let Lip(F)/\J P9 be the subgroup of\' P9 generated by all the elements of the form
dlog p; A - - - Adlog pj, such thatpy, ..., p; € P and there exisk e N, f € F, such
thatkp+ f — (py+---+pj) € P.

In the previous definition, we can také = {0} and considerL‘p({O})/\j Po:  the
condition becomekp — (p1 +---+ p) € P. Let us denote byL‘(F)a)fC[P] the P-
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gradedC[ P]-submodule which is the image &b ,.» Ce(p) ®z (L‘p(F)/\j P9) inside
C[P] ®z /\j P9. Then, we have the following

Lemma 2.4 ([23, Lemma 3.3]). If F is the sheaf of faces on XSped[P] cor-
responding to the face F of ,Rhen the quasi-coherent sheaf on X assoc;iated to the
C[P]-submodule L(F)wyp Of wyp is equal to L (F)wk. In particular, L'w) is the

sheaf on X associated to' (l{O})a)(g:[P].

By using the filtrationL* on the log de Rham complex, Ogus proved the following two
results,

Proposition 2.5 ([23, Theorem 5.6]). There are natural isomorphisms in the fil-
tered derived category of sheaves oA™X

(@%an L*) = (Us@}yan, T) = (RU,Cyan, T)

where U= Xy := {X € X such that M = O%x} is the trivial locus for the log structure
M on X, u: U = Xyy = X is the corresponding open immersjand T is equal to
the Deligne canonical filtratiorr-. ([2, (1.4.6)]).

Proposition 2.6 ([23, Theorem 1.4]). In the previous notationsthere exists a
natural isomorphism

H*(X, %) = H*(X*",C)

By Proposition 2.2, we can say that the previous Propostiextended the theory of
Deligne ([2, Proposition (3.1.8)]) to a log smooth log scleewhose underlying scheme
is not smooth overC.

Now, in [5] we have analyzed the connections between theomadf ideally log
smooth log schemes (resp. log smooth log schemes) overGSpea that of filtered
semi-toroidal variety (resp. toroidal embeddings) in tlease of [16, Definition 5.2].
In this direction, by using Definition 1.26, we have provedttthe underlying scheme
of a log smooth log scheme (resp. an ideally log smooth logmwe) over Spe€ is
in fact a toroidal embedding (resp. a filtered semi-toroidatfiety) over Spe€ ([5,
Propositions 5.12 and 5.13]). In particular, X is log smooth over Speg, it can
be shown that the pail) = Xy, X) is a toroidal embedding in the sense of [22, I,
Definition 1] or [16, Definition 5.2].

Then, we can consider the complég< introduced by Ishida in [16]; this is one of
the most important tools in toric geometry, because its oalogy is connected with
the cohomological groups of the constant sh€abn the singular analytic spac€®”.
We refer to [16,56] for the definition offZ'X and to [6, Definition 1.3] for the equiv-
alent construction of it in the logarithmic setting, as a @mplex ofw}. Moreover,
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let V = Xgmooth= X — Sing X be the open subscheme which is the smooth locus (in
the classical sense) of, and letv: V < X be the corresponding open immersion.
Ishida proved that there exists an isomorphism of compldeweens2;, and v,
([16, Proposition 3.11]). Therefore, since the constnrcdf the Ishida complex is too
long to explain, in this article we prefer to use this comgami theorem and identify
<5 with v,

By using the Ishida comlefZ'x, we now introduce another filtration amny.

DEFINITION 2.7. Under the previous notations, we define the followingréas-
ing filtration on w}, denoted byl.,

1) liwk=0,ifi <0 liwk=Q Ao, fO<i<j liwk=wk ifi=>].

We call it the Ishida filtration.

In the case of a smooth schemeé over SpedC, with log structure given by a
normal crossing divisolY, the Ishida complex coincides with the classical de Rham
complex Q5 (beingV = X), and|. coincides with the Deligne weight filtratiow,.

A local description of the graded terms for the filtratibhwas given by Danilov
(see the filtrationW, given in [1, §15.6] in the toric case). Indeed, given a toroidal
pair (X, D) (with D a divisor insideX), he defined ([1, 15.2]) a de Rham complex
with logarithmic poles along a divisdD, €% (logD), endowed with a particular weight
filtration, which we call the Danilov weight filtration and nlete here byW. (to dis-
tinguish it from the Deligne weight filtratioW,).

When X is a log smooth log scheme over Sggcwe can define the log de Rham
complexwy of X and also the Danilov de Rham compl&X (log D) associated to the
toroidal pair X, D), whereD = X — Xiy. So, we now show that the Danilov complex
Q% (log D) is in fact isomorphic to the log de Rham comple}, and the filtration
I., which etale locally coincides with the Danilov weight fdtion V., is equal to the
opposite Ogus filtratiorl .

To this aim, we first note that, sincX is log smooth overC, then by [20,
Proposition (8.3)] it is log regular in the sense of Kato [Zfinition (2.1)]. There-
fore, by [20, Theorem (4.1)] its underlying scheme is CoMaeaulay and normal,
so codink(X —V) > 2. We always have an inclusidd c V. Let Dy be the divisor
DNV. Then,

Lemma 2.8. In the previous notationsDy is a smooth divisor inside V

Proof. SinceX is Cohen-Macaulay, namely regular in codimensiori, thenV
is an open subscheme of codimensiorl inside X. This means that, for each point
x € V, dimOxx < 1, and then, by definition of log regularity [20, Definition.12,
(2)], Myx/O%x = N or My/O%, = {1}. Therefore, the log structur#, restricted to
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the smooth locus/, is etale locally given by the monoitf, and this exactly means
that V N D is a smooth divisor insidé&/. U

DErINITION 2.9 ([1,§15.2]). In the previous notations, for each integerO <
p < dim¢ X, the sheafszf((log D) is defined as

Q5 (log D) := v,(22Y (log D))

This is called the sheaf of germs gi-differentials on X with logarithmic poles
along D. The differential mapd®: Q& (log D) — Q% *(log D) is induced from that
of 2f(log Dy), for every p.

Now, we analyze the local structure of the sheaﬁéjs and QQ(Iog D), for every p.
The etale local models for both of them are given by Danildy, (Propositions 4.3
and 15.5]), using the toric geometry. We briefly recall thesml descriptions.

Let o be ann-dimensional cone iH ®; R, where H is an n-dimensional lat-
tice; we suppose generatesHg. Let A=C[o N H]. For each facer of o, Danilov
defines the following subspac&é of H ®; C. If 7 is of codimension 1, theW, =
(t + (-1)) ® C; in general,V; := (), Vs, whered ranges over the faces of of
codimension 1 which contain. Let V = Hp ®g C. Danilov introduces the following
H-graded A-module

@) Qi = @ 2

heoNH

where he sets, for eadie o N H, QR(h) = AP(Mg.heo Vo) - X" ([1, §15.4)).

Let now | be a set of codimension 1 faces®f For each fac® < o, codimg =1,
Danilov setsVy(log) := Vg, if 6 ¢ |, and Vy(log) :=V, if 6 € |. Then, he introduces
he following H-graded A-module

®) Qi(log) = € QR(log)(h)

heoNH

where he sets, for eade o N H, QR(Iog)(h) = AP(Ng:nes Ve(l0g)) - X" ([1, §15.4]).

In [1, Propositions 4.3 and 15.5], Danilov proves that, etédcally on X =
SpecCl[o N H], if D =, X, the sheaves ofdyx-modules 2§ and ©§(log D)
are the sheaves associated to memodulesszﬁ and Q,’i(log) respectively.

Proposition 2.10. In the previous contextthe complexi(log D), defined by
Daniloy, is isomorphic to the log de Rham comple.

Proof. We have a global map of complexey — v.(2},(log Dy)) =: Q%(log D).
Moreover, etale locally orX, the local models fow} and Q2§ (logD) coincide. Indeed,
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let C[P] ®z AP P% be the local model fow. Then, in the local description (3) of
Szj"((log D), we can takeH = P9, A= C[P], o to be the cone generated I8 inside
H ®zR, and| contains all the codimension 1 facesef Then, for eacth € P9 =H,
it is easy to see thakh(log)(h) is isomorphic toCe(h)®z AP P% (e: P — C[P]). [

Let now P — M be a local chart for the log structutd on X, where P is a toric
monoid. ThenX is etale locally equal to Spek, where A = C[P]. Working etale lo-
cally on X, Danilov defined a weight filtratiomV, as aH-graded filtration or2}(log)

0 c Wo2k(log) c Wil (log) € - - - ¢ W; @k (log) = @1 (log)

where QjA(Iog) is the local description (3) for the shea’li((log D). On the h-
homogeneous component, this is given by

With(log)(h) = 25 (h) A 2% (log)(h)

with QL’k(h) the h-homogeneous component of themoduleQL’k, h e H. Therefore,
from (2) and (3),WkSZL(Iog) = QL"‘ A QKA(Iog). Moreover, by [1, Proposition 4.3],
the Ishida shea‘fzi< is isomorphic to the shea@ZL associated to theé\-module Ssz
described above. So, the Ishida filtratibn etale locally coincides withV, and we
can say thatl, is a sort of globalization of the Danilov weight filtration.

We have now two filtrationd., L* on w}, which we want to compare. To this
aim, we first prove the following result, which gives us arempretation of the Ishida
complex in terms of the Ogus filtration.

Lemma 2.11. In the previous notationsthe Ishida comple>€2'x is isomorphic
to Eow;(.

Proof. We first construct a global map: L% — Q3 =v.Q,. The construction
of it is equivalent to that of a mag"*: v*an);( — Qy, by adjunction. We note that,
on the smooth opel of X, the log structure is given by the smooth dividoy = DN
V (Lemma 2.8), and so*L %3 = Lo(v*wy) = L%y, = @ (because, by Lemma 2.2,
I:Ow;, =Wowy, = QY < wy). Therefore, the map® is exactly the identity map.

Now, we want to prove that the adjoint map’ of ¥* is etale locally an iso-
morphism. So, we can suppose thét= SpecC[P], with P a toric monoid, where
the log structureM on X is the canonical one: P — C[P].

We have to compare thg[ P]—submoduleﬂow;( = Im{@peP(Ce(p)@)Z L{)/\j P —
C[P]®z/\' PP} of wlp, with the C[P]-module L;p) = B pep Ce(p) @2 N\ PPo(p)],
where p(p) =7 N p* is a face of the coner, with 7V the cone generated by. We
note that, for eactp € P, if (p,F) is the face ofP generated by and F, then Lip(F)

is just the image of the natural mafy (p, F)®® A!™' P® — A! P%. In our case,
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i =j and F = {0}, so Lb({0}) is the image of the mag\’(p)% — A! P%, which is
equal to/\j(p)gp. Therefore, for eaclp € P, the image ofCe(p) ® L{,({O}) /\j pop
inside Ce(p) ® /\j P9 is just Ce(p) ® /\j(p)gp. On the other hand, we considér
e(p)® \! P9[p(p)] and we note that, for each € P, PN (ptNx)t = P®N (p)9P =
(p)%, if penmt, and P% N {0}t = PP, if peint(zV). So, if we consider the global
image IM@,.p Ce(p) @z LL Al P C[P] @z A\ P9}, we see that it coincides
with the C[P]-module &)p,;. O

Proposition 2.12. In the previous notationsthe filtration |. coincides with the
opposite Ogus filtratior.—".

Proof. LetP — M be a local chart for the log structure oft Then X is etale
locally equal to Spe€[P], and the Ishida shea(fzi( is represented bfZ(JC[P]. We have

just seen thatVi2) (logD) = &) “Awk = Ikw) and, by Lemma 2.110 %) = &L %
By definition, [ %wl ™ = Li-kwl™*, andwk = L%, so, from [23, Lemma 2.15, 2], the
exterior multiplication takes an element Ini %! ™ ® L%¥ into Li*wl = [*wl.
Moreover, it is easy to see that each element itfw) belongs toLi*w) * A L.
Therefore, we can conclude that we have an identificationgferyk, j,

k/\wg‘(:Ika)i( U

I:_ka)g< = Lj_ka);k AL = I:Oa)i_

Danilov conjectured that, in the case wh&nhis a complete toroidal variety over
SpedC, the mixed Hodge structure of*(X — D, C) is induced by the bifiltered com-
plex Q% (log D), F*, W.), where F* is the Hodge filtration on the Danilov de Rham
complex, defined byFPQ5 (log D) := Q’fp(log D). This structure is also computed
by Steenbrink for a complet® -manifold X and a divisorD with V-normal cross-
ing ([25, Definition (1.16)]): he proved that, in this caske tDanilov weight filtration
induces the Deligne weight filtration of the Hodge structore H*(X — D, C) ([25,
Theorem (1.12), Lemma (1.19)]).

Therefore, in the log smooth case, by Proposition 2.12, weooajecture that the
mixed Hodge structure ohRl*(Xyiy,C) is induced by the bifiltered compler,F‘,I:”).
This conjecture is true for particular log smooth log schemeer Spe&, which are
generalizations of smooth schemes with normal crossingats, as we discuss in the
following.

2.1. The Ogus filtration in the quasi-smooth case. Let X be a log smooth log
scheme over Spét. We suppose that the underlying schemeXois proper and quasi-
smooth ([1, Definition 14.1]), namely all the local models fb are associated with
simplicial cones. Moreover, we suppose that the diviBorconsists of quasi-smooth
componentsDy, .. ., Dy, those intersect quasi-transversally. An example can wengi
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by the proper schemé which is the projectivization of the affine coné¢ = V(xy —
2%) C A%. This is a singular scheme with a toric singularity at thegioriO. Locally
at O, it is the toric variety associated to the cone= (a;, @) C R? generated by
a = (1,2) anda, = (1, 0), i.e. X = X, = SpedC[o¥ N P9] = SpecC[P], where P is
the toric monoid associated t®, and oV is the dual cone of, which is generated
by m; = (0, 1) andm, = (2,—1) in R2. The log structure or€ is given, locally at the
origin, by «: P — C[P].

From [1, §15.7] and by Proposition 2.12, for such kind of log smooth $ogemes,
we have an explicit description for the graded terms of theiOfiltration G{ a)g(,
which is the following

1%

(4) G

@ QDilﬁ---ﬂDik

0<i,...,ik<N

—

where Qlj)i_lkﬂ"'nDik are the { —k)-differential forms of the Ishida complex on the semi-
toroidal varietiesD;, N---N D;, (which are normal closed subvarieties B). In other
words, if we denote byDy the normalization of the union of all the intersectiog N
---N Dy, ie. Dy = @i1<---<ik Di,N---NDj, and my: Dk — X, then

(5) G ) = m $2h, [—K]

Lemma 2.13. The spectral sequence of the hyper-cohomology of the éltere
complexGr'E wy, with the induced Hodge filtratigrdegenerates at the ;Herms

Proof. The Hodge filtratiorF* on % induces the bete filtration on @tox and
the spectral sequence of LEGDX can be deduced from the spectral sequence

(6) EP = HY(Dy, @5, ) = HP"(Dy, C)

and, sinceDy is a also a proper quasi-smooth toric variety, by [1, Theofegh®], the
spectral sequence (6) degenerates atBEh¢erms. ]

Now, Danilov showed that there exists the following spéctequence
EP9 = HI(X, Q% (log D)) = HP*(X — D, C)

(see [1, Theorem 15.9]). Moreover, he noted that, in the egrasioth case, the above
sequence degenerates at fgeterms and converges to the Hodge filtration ldA(X —
D, C); so, his weight filtration/V, on €3 (log D) induces the Deligne weight filtration
W, of the Hodge structure oil"(X — D, C), n > 0.

Then, in the logarithmic context, for a log smooth log scheKeover SpedC,
whose underlying scheme satisfies the previous assumptipnsising the Danilov’s
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results and Proposition 2.12, we can describe the (Deligngg¢d Hodge structure of
H*(Xuiv, C) by using the bifiltered log de Rham complexi( F*, L™).
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