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1. Introduction

The stable classification of closed connected topologiespectively smooth four-
manifolds (with orientation or spin structure) via bordigheory is a very nice result
in topology of manifolds, and can be found in [11] and [23].rélstably means that
one allows additional connected sums with copiesSéfx S? on both sides. In [19]
the closed oriented 4-manifolds with finitely presentabl@damental groupr were
classified modulo connected sum with simply connected didseanifolds. More pre-
cisely, the stable equivalence classes of these manifoleldigective to the quotient
Hi(B7;Z)/(Autm), via the mapM — f.[M], where [M] e Hy(M) is the fundamen-
tal class, andf M — Bw is the classifying map for the universal covering &f
(see [19, Theorem 1]). The proof of this theorem is based aneséacts concern-
ing the cobordism group$24(M), Q4(B7), and Q4 (see for example [7] and [28]).
Recently, this result has been extended to the non-orientdse in [18] at least for
abelian fundamental groups.

The aim of the present paper is to study the stable classificatf closed
connected oriented spin smooth 4-manifolds by using tegles of Kervaire-Milnor
surgery, as explained for example in [4], [5], [6], and [20hen we reproduce a nice
result of Kurazono and Matumoto [19] for such manifolds unttee assumption that
the fundamental group is finitely presentable and has vemgjskecond and third ho-
mology with Z-coefficients.

Let M, (resp.M3P™ be the set of closed connected oriented smooth (resp. spin)
4-manifolds with finitely presentable fundamental growpwhich are considered up
to (resp. spin) stable equivalence. We say that two marsfald M, (resp. MSP™
are (resp.spin stably equivalentif they become diffeomorphic (resp. spin preserv-
ing diffeomorphic) after taking connected sums with copiésS? x S? and S? x S?

(resp.S? x S?) on both sides. The first result of the paper is the following
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Theorem A. There are bijective maps
c: Qu(Bm)/(AutT), — M,
and

SPn: Q3P"(B ) /(Aut ), — MEP,
The inverse maps are given by sendifigf} € M, and {M}5P" € MEP™ 1o
{(M, f)} € Qu(B7)/(Autn), and {(M,on. )} € Q5P"(B7)/(AutT)., respectively.
Here o) denotes the spin structure o, and f: M — Bm is the classifying map.

The statement for the map was proved in [19], while that fer tiapcSP™ fol-
lows from the results given in the next section. Then we camsicer the Hurewicz
homomorphisms

' Qu(Bm) — Ha(Bm;7Z)
and
pSPN: Q3PY(Br) — Ha(Br;7Z)

defined by the correspondence¥,(f —) f.[M] and (M, oy, f) — f[M], respec-
tively. By [11] and [19] the map: is surjective with kernel isomorphic té& and gen-
erated byCP2. So there is a decomposition

Qu(BT) = Qu @ Qu(BT) ¥ Z & Ha(BT,7)

where S~24(B7r) > Hu(Bw;Z) is the cokernel of the monomorphism 4 — Q4(Bm),
and the isomorphisnf2, = Z is given by the signature. 183 we will prove that if
Ho(Bw;Z5) = H3(Bw;Z,) = 0, then the map.SP" is surjective with kernel isomorphic
to 16Z and generated by the Kummer surfaké. The last result permits to obtain
a stable decomposition theorem analogous to that proved9hfpr the class of spin
smooth 4-manifolds whose fundamental group satisfies tlwweabomological condi-
tions. For this, we say that two closed connected orientdéd smooth 4-manifolds
are spin weakly stably equivalerit they become spin preserving diffeomorphic after
taking connected sums with copies of the Kummer surf&éeand S? x S?. Then the
second result, we will prove, is the following

Theorem B. Let « be a finitely presentable group which has vanishing sec-
ond and third homology witl¥,-coefficients. Then the spin weak stable equivalence
classes of closed connected oriented spin smabthanifolds M with fundamental
group w one-to-one correspond with the elementsH{Br;Z)/(Autr), via the map
(M, ou, f) — f[M], whereoy is the spin structure orM, and f: M — Br is the
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classifying map. In particularif f.[M] = 0, then M is spin weakly stably equivalent
to the boundary of the regular neighborhood of an embeddett flacomplex realiz-
ing =, in 5-space.

For the proof we treat with the spin cobordism gro@§pi”(3w). For the defi-
nition of spin cobordism groups we refer to [7] and [28]. Arsmtructurecy, on a
manifold M is best thought of as a choice of trivialization bé ttangent bundle af/
over the 2-skeleton [27].

The following corollary is related with some papers congegnthe homotopy
type and the stable classification of closed 4-manifolds$ viliee fundamental group
(see [2], [3], [13], [15], [16] and [17]).

Corollary. Let M be a closed connected oriented spin smabthanifold whose
fundamental groupri(M) is a free productGy * --- * G, such that Ho(BG;;Z) =
H3(BG;;7Z)=0for anyi =1,..., p. Then M# K*#k(S? x S?) is spin preserving dif-
feomorphic to a connected sui#- - - #M, of closed connected oriented spin smooth
4-manifolds M; withmi(M;) = G; for some non-negative integets ahkd . The decom-
position is spin stably unique.

2. The map cSPn

In this section we prove Theorem A for the class of closed eoted spin smooth
4-manifolds with finitely presentable fundamental groupWe use only simple tech-
nigues of Kervaire-Milnor surgery (see for example [4],,[H], and [20]).

Lemma 1. If r is finitely presentedany elements in Q3""(Br) gives a closed
oriented spin smootl-manifold (N, o) with 71(N) = 7 and a mapg: N — Br
such thatg induces an isomorphism en and [(N, oy, g)] = w in Q3""(B7).

Proof. The proof goes in the same way as that of Lemma 5 of \\@]. have
only to keep the spin structures as in [4], [5], [6] and [20]e Wan arrange thaf
induces an epimorphism omy, by redefiningM to be B x S®) and redefiningf
(we continue to use the same notation). It is easy to seefthatends in the desired
way as does the spin structure, also denetgd(see for example [6, Proposition 4.2]).
Now perform surgery on embedded circles inmt  which represtements of the
kernel of f, to get a new spin 4-manifoldM, oy) (see [25, Lemma 5]). Indeed;,
extends to a spin structurey on the surgery manifoldv . Since is finitely pre-
sented, it is possible, by a finite humber of surgeries, t@ioba closed oriented spin
smooth 4-manifold ¥, o) and a mapg N — Bm which induces an isomorphism
on 1. Furthermore, we have §(, on, g)] = w in pr'”(Bw) sincek B! x S®) represents
the trivial class inQ3”"(B). 0O
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Corollary 2. If the pairs (M, oy, f) and (N, o, g) represent the same element
of pr'”(Bw) such that the induced maps an are isomorphi¢ then there exist a com-
pact oriented smooth cobordis@, F) and a spin structurery, on W extending those
on oW = M U (—N) such that both inclusiona/ ¢ W and N C W induce isomor-
phisms onmy.

Lemma 3. Let (W,ow, F) be a compact oriented smooth spin cobordism be-
tween (M, oy, f) and (N, on, g) such that both inclusiongy ¢ W and N ¢ W
induce isomorphisms om;. Then M#k(S? x S?) is spin preserving diffeomorphic to
N#h(S? x S?) for some non-negative integeks and

Proof. We can simplify the handle decomposition f relatieeM so that
it has only 2-handles and 3-handles as in the usual proof afbsrdism theorem in
higher dimension. Then the feet of 2-handles are isotopithéotrivial one because it
should represent the zero elementsin by the assumption. So the middle level man-
ifold is a connected sum oM and some copiesSéfx S? since the cobordism is
spin. By thinking from the other direction, it is also spineperving diffeomorphic to
a connected sum oV and some copiesSéfx S2. O

These results together imply that the map™" is bijective, as claimed.

3. Spin cobordism group

Let (M, oy) be a closed connected oriented spin smooth 4-manifold firike
presentable fundamental group Then we have a may M — Bz from M to the
classifying spaceBw. The map is unique up to homotopy if we fix the induced iso-
morphism onw. The map determines the oriented spin cobordism cla&s ¢, f)]
in Q5P"(B7). On the other hand, any elementof Q3""(B~) gives a closed connected
oriented spin smooth 4-manifoldV( o) and a mapg N — Bm with g.: m(N) — 7
(see Lemma 1 irg2). The manifoldsM andV  will be shown to be spin weakly sta-
bly equivalent providedH,(B;Z,) = Hs(Bw;Z,) = 0. For this we need some results
which describe the properties of the Hurewicz homomorphisity’.

Lemma 4. Let X be aCW-complex such that,(X; Z,) = Ha(X;Z) = 0. Then
the map

pSP: QFPM(X) — Ha(X; Z),
defined by

pSP(M, ou, £)]= fu[M],
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is surjective andKer ;,SP" > Q3P Moreover the restriction ofuSP™ on

~Spin _ Spin Spin

Q7 (X) = Ker(524 (X) — (*))
is an isomorphism.

Proof. The Atiyah-Hirzebruch spectral sequence
2 . . oSpi Spin
ES o Hy (X, 2.P™) = Q8(X)

has vanishingt? terms forp 45 < 4 except for3 , and EZ . In fact, recall thate;”"

is Z, Za, Zp, 0, andZ for n =0, 1, 2, 3, 4 (see [26]), and hend#} ; = H3(X; QdPn),
E$,= Hy(X; QSpln) and E? ; = Hy(X; Q?p'“) vanish (under our hypothesis). In general,
EN, = Jpq/Ip-14+1, where

Jog = |m(Q§Eiqn(X(1’)’ X(p—l)) SDIH(X))

Thus Eg5 is the image of the split monomorphisf@sPn(x) — Szfpi”(x) whose coker-
nel is EgG C Ha(X; Z). By dimensional reasoning
d.E  —E

P.q p—rgtr—1

and by comparing with the spectral sequence mﬁ‘:g‘(*), it follows that every ele-
ment in E3 , and EZ, is a permanent cycle. So we ha¥$ = E2, = Hy(X;Z) and
ESS, = E2, ¥ Ho(X;Z) = 7= Q""(x). Then we get the exact sequence

0 —— E3,~Q""(x) —— QP(X) —— EZ,¥ Hy(X;Z) — O.

The map pSPM: Q3P"(X) — H,(X;Z) induces a map from the spectral sequence
for @SPN(x) to the spectral sequence fdi,.,(X;Z) and coincides with the map

Ptq
QP(X) — E2, % Hy(X;Z) of the sequence above far = 4. Finally, we note that
the kernel of this map i£2, = 2;"" = Z, which is generated by the Kummer sur-
face K*. O

Corollary 5. If Ha(B7;Zy) = Ha(Bm;Zy) = 0, then the map

SN Q3P (Br) — Hy(Br;7Z)

is an epimorphismand Ker ;SPin = Q3P"

there is a decomposition

is generated by the Kummer surface. Then

QFP"(Br) = Q5PN g QSP"(B) 167 & Ha(BT,Z)
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where ﬁfpi”(Bw) > Hu(Bw;Z) denotes the cokernel of the split monomorphism
;Spin. Qipin N prin(BW),
and the isomorphisn®2;”" = 167 is given by the signature.

As a consequence of Corollary 5, we get the following useésults first proved
in [5, Theorem 5.2] and [6, Proposition 5.1], respectively.

Corollary 6. If Hy(Bw;Zz) = Hs(BT;Zz) = 0, then an oriented spin cobordism
class[(M, oy, f)] is zero in pr'”(Bw) if and only if the signature of\f vanishes
and f.[M] =0 in Hy(Bw;Z).

Corollary 7. Suppose thaty(Br; Z,) = Ha(Br; Z,) = 0. ThenQ5P"(Br) is triv-
ial if and only if Hy(B7;Z) = 0.

Now we are going to prove Theorem B. Letbe a finitely presented group which
has vanishing second and third homology withcoefficients. A closed connected ori-
ented spin 4-manifold M, o)) with fundamental groupr carries a classifying map
f:M — Bm. The triple M, oy, f) determines an oriented spin cobordism class
(M, ou. )] in QP"(Br), and an elementSP[(M, oy, f)] = f.[M] in Hy(BT;Z).

Of course, spin weakly stably equivalent 4-manifolds detee the same element of
Hy(Bm;Z)/(Aut ).. Conversely, take any element &f(Bw;Z). Then it gives an el-
ement of

QP"(Br) = Ker(@3""(Bm) — Q7"(+))

by Corollary 5. It comes from a closed connected spin smoethadifold (V, oy)

with m(N) = 7 and a mapg ‘N — Brm by Lemma 1. Let ¢, oy, f) be another
triple with 71(M) = = and a mapf M — Br such thatf.[M] = g.[N]. Then for

somel/ andn we have

[(M# K, oy, )] = [(N#mK*, oy, )]

in Q5P"(Bx) by Corollary 5, and the fact tha®$P"(x) is generated by the Kummer
surfacek* (Here f/ and g’ are maps sending* 's to one point). Therefore the man-
ifolds M and N are spin weakly stably equivalent by CorollaryaBd Lemma 3, i.e.
M# Kk (S? x S?) is spin preserving diffeomorphic toy »n#K “#h (S? x S?) for somel ,
m, h andk .

4. Some applications

(1). If = is a free group of rankp , theBr ~ \/, S, so we get in particular
H;(B;Zy) = 0 for i = 2, 3, andHa(Bm;Z) = 0. Thus we haveQ$""(Br) = 16Z,
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and the isomorphism is given by the signature. Theorem A igapthat if M is a
closed connected oriented spin 4-manifold with signatwe andri(M) = =, then
M is spin stably homeomorphic top#SY x S®) (see [2], [3], [13], and [15]). Theo-
rem B says that a closed connected oriented spin 4-mankbldith w(M) = 7 be-
comes homeomorphic top#SY x S°) after taking connected sums with copies Kt
and S? x S2. We recall that there exists a closed oriented topologiealaifold with
fundamental grouf? which is not the connected sum 8f x S® with a simply con-
nected 4-manifold (see [12]).

(2). Let 7 be a group with a presentation of deficiency one which is amnsion
of Z by a finitely generated normal subgroup. It was shown in [h} the canonical
2-complex corresponding to that presentation is aspHetiescer has geometric di-
mension at most 2. Furthermore, the Euler characteristiBmofvanishes. Suppose that
Hi(Bw;Z) = 7, (examples are given binot like groupsi.e., groups having abelian-
ization Z and deficiency one). Sincg(B7) = O, it follows that H; Bw;Z;) = 0 for

i =2, 3, andHa(Bm;Z) = 0. Thus we obtair3""(B7) = 16Z, as before. We recall
that an algebraic characterization of certain 4-manifdicled exact manifolds with
infinite cyclic first homology was given in nice recent papefsKawauchi (see [16]
and [17]).

3).If # ¥ Z, ® Z where p is a prime numberp > 2, then Hs(Bm;Z)

Z,. Since Autr identifies all the non-zero elements dfs(Bw;Z), we get that
Hy(B7;7Z)/(Aut), is isomorphic toZ, (see [19]). Further, we havé#l; Bf;Z,) = 0
for i =2, 3, henceQ""(Br) = 16Z® Z,. Let Y* be the boundary of a regular neigh-
bourhood of an embedded finite 2-complEX realizing = in the standard 5-space. The
induced homomorphisnt,(Y;Z) — H4(Bm;Z) is trivial since it factorizes through
Hy(X;Z) = 0. Thus [ ] goes to zero iH,(Bw;Z)/(Autr). = Z,. Of course,Y* is
spin and has trivial signature since it embeds smoothlRinLet £, be the product
L(p,1) xS, whereL fp, 1) is the usual lens space. Th&h),[ ] goes to a noritelda
ement of Hy(B7; Z). Theorem B says that any closed connected oriented spimtimo
4-manifold M becomes spin stably equivalent to eithgr  YOr

(4). If = is a cyclic groupZ, of odd order, thenH; gm;Z;) = 0 fori = 2, 3, and
Hy(Bm;7Z) = 0, henceQ”"(Br) ~ 16Z. Let £, be the closed spin 4-manifold ob-
tained fromX, by kiling the generator d C 71(X,) = Z, & Z. By Theorem B
any closed connected oriented spin 4-manifafd witf{M) =~ Z, becomes diffeo-
morphic to 51, after stabilization with copies ok* and S? x S? (compare with The-
orem 2.5 of [11]). Further examples of smooth 4-manifoldshwgyclic fundamental
groups were constructed in [8] by using the knot surgery ttooson.

(5). Let 7 be the fundamental group of a closed aspherical 4-maniffldvhich is a
rational homology 4-sphere. The existence of such a mahifals proved for example
in [24]. If further Hy(Bm;Z,) = 0, then the conditiony(Bx) = 2 implies that the Betti
numbersg; vanish (mod 2) fori = 1, 3, hencés(B;Z;) = 0. Of course, we also
have Hy(B7;Z) = Z, henceHy(B;Z)/(Aut 7). is isomorphic to eitheZ or Z/{+1}
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(see [19]). Finally, we obtail3""(Br) =~ 16Z & Z.
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