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1. Introduction

We will show that every Kleinian group on the Bers boundary ofthe Teichmüller
space is an algebraic limit of a sequence of Schottky groups.This claim has already
proved by Otal [26], but our argument is completely different from that of Otal. In
this paper, we extend the action of the mapping class group ona Bers slice to that
on a wider class of Kleinian groups. We obtain a sufficient condition for the action of
the mapping class group to be continuous at a given point and show that the orbit of
every maximal cusp is dense in the Bers boundary.

Here, we explain the fundamental idea of extending the action of the mapping
class group. Let be an oriented compact surface possibly with boundary∂ , and
let ( ) be the Teichmüller space of complete hyperbolic structures on the interior of

with finite area. Let ( ) be the space of conjugacy classes [ρ ] of representa-
tions ρ : π1( )→ ⊂ PSL2(C) of π1( ) which map each component of the boundary
∂ to parabolic elements. The subspace ( ) of ( ) consisting of discrete faith-
ful representations whose images are quasi-Fuchsian groups is naturally identified with
a product of Teichmüller spaces ( )× ( )̄, where ¯ denotes with its orientation
reversed. We denote the canonical homeomorphism by

: ( )× ( )̄→ ( )

The mapping class group Mod( ) of naturally acts on ( ) and ()̄ and hence on
the Bers slice = ({ } × ( )̄) by

( ¯) 7→ ( σ ¯)

for ( ¯) ∈ ( ) × ( )̄ and σ ∈ Mod( ). A crucial observation is that the represen-
tation ( σ ¯) has another description as follows;

( σ ¯) = (σ−1 ¯) ◦ σ∗−1

whereσ∗ is the group isomorphism ofπ1( ) induced byσ. The right-hand side of the
above equation suggests us a possibility to define the actionof Mod( ) even when¯
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is pinched or degenerated. From this point of view, we extendthe action of Mod( )
on the Bers slice to that on the subset of ( ), which is called the extended
Bers slicefor . A representation [ρ ] is an element of by definition if is a
function group with an invariant component0( ) of the region of discontinuity ( )
which is covering ∈ ( ). We remark that the extended Bers slice contains the
closure ¯ of the Bers slice and that the restriction of the action to¯ coincides
with the action defined by Bers in [4].

The set∂ = ¯ − is called theBers boundary. Bers [4] obtained a sufficient
condition for the action of Mod( ) to be continuous at a give point in ∂ . On the
other hand, it is known by that the action of Mod( ) on∂ is not always continuous
(see Kerckhoff-Thurston [13]). In Section 3, we extend the Bers’ result and obtain a
sufficient condition for the action to be continuous at a given point in :

Corollary 3.2. Let [ρ ] be an element of such that all components of
( )/ except for = 0( )/ have no moduli of deformation. ThenMod( ) acts

continuously at[ρ ].

It is known by McMullen [24] that the set of maximal cusps is dense in ∂ .
Moreover, one can see that the set of maximal cusps in∂ decomposes into finitely
many orbits under the action of Mod( ). In Section 5, we will show that eachorbit is
dense in∂ :

Theorem 5.5. For any maximal cusp in∂ , its orbit under the action of
Mod( ) is dense in∂ .

Suppose that is a closed surface of genus≥ 2. Now let be the subset of
consisting of Schottky groups. In Section 6, we combine Corollary 3.2 (continuity

at maximal cusps) and Theorem 5.5 (orbit density for maximalcusps) to obtain the
following theorem:

Theorem 6.1. Suppose that is a closed surface of genus≥ 2. The set of ac-
cumulation points of contains the Bers boundary∂ .

REMARK. Gallo [10] has proved the claim of Theorem 6.1 for the case of
genus 2. More generally, Otal [26] has already proved the claim of Theorem 6.1 for
the case of any genus≥ 2 by using hyperbolic Dehn surgery theorem. In our proof,
we will make use of Thurston’s compactness theorem [28] instead of hyperbolic Dehn
surgery theorem.

This paper is organized as follows: In Section 2, we give a definition of an ex-
tended Bers slice on which we shall define the action of the mapping class group.
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In Section 3, we obtain a sufficient condition for the action of Mod( ) to be continu-
ous at a point (Corollary 3.2). In Section 5, we show that the orbit of every max-
imal cusp is dense in the Bers boundary∂ (Theorem 5.5). In Section 6, we prove
our main theorem (Theorem 6.1) as a consequence of the preceding sections. In Sec-
tions 5 and 6, one of the crucial tools is Thurston’s compactness theorem [28], which
will be introduced in Section 4. In Section 7, we collect someproperties of the set of
Schottky groups which can be easily seen.

ACKNOWLEDGEMENTS. The author would like to express his gratitude to Hiroshige
Shiga for his useful suggestions. He also appreciates the referee’s valuable comments
on the previous manuscript of this paper.

2. Preliminaries

2.1. Teichmüller spaces and Kleinian groups. Let be a compact oriented
surface of negative Euler characteristic possibly with boundary ∂ . The Teichmüller
space ( ) of is the set of equivalence classes of pairs ( ); where is a com-
plete hyperbolic Riemann surface of finite area and : int( )→ is an orientation
preserving homeomorphism from the interior of . Two pairs (1 1) and ( 2 2) are
said to be equivalent if there is a conformal map :1 → 2 such that ◦ 1 is iso-
topic to 2. The equivalence class of ( ) is simply denoted by .

The mapping class groupMod( ) is the group consisting of isotopy classes of ori-
entation preserving homeomorphisms of . The natural actionof σ ∈ Mod( ) on ( )
is given by

σ( ) = ( ◦ σ−1 )

We also consider theTeichmüller space ( )̄ of ,̄ where ¯ denotes with its
orientation reversed. Then we have a canonical isomorphismι : ( ) → ( )̄ defined
by ( : → ) 7→ ( ¯: ¯→ ¯), where ¯ is the reflection of . The action ofσ ∈
Mod( ) = Mod( )̄ on ( )̄ is given byσ( ¯ )̄ = ( ¯ ◦ σ−1 ¯), so thatσ ◦ ι = ι ◦ σ is
satisfied.

A Kleinian group is a discrete subgroup of PSL2(C), which acts on the hy-
perbolic spaceH3 as isometries, and on the sphere at infinity2∞ = Ĉ as confor-
mal automorphisms. The limit set of in̂C is denoted by ( ) and its complement
Ĉ − ( ), which is called the region of discontinuity of , is denoted by ( ). A
Kleinian group is called afunction groupif its region of discontinuity ( ) has an
invariant component. If a function group has exactly two invariant components, it is
called aquasi-Fuchsian group; otherwise, it has a unique invariant component.

2.2. Projective structures. For a given ∈ ( ), let be a Fuchsian group
acting on the unit disc ={ ∈ Ĉ : | | < 1} such that = / . A bounded holo-
morphic quadratic differentialon for is a holomorphic functionϕ on satis-
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fying ϕ ◦ γ(γ′)2 = ϕ for any γ ∈ and ||ϕ||∞ <∞, where ||ϕ||∞ is the hyperbolic
sup-norm ofϕ defined by

||ϕ||∞ = sup
∈

(1− | |2)2|ϕ( )|

We let 2( ) denote the set of bounded holomorphic quadratic differentials on for
. Then 2( ) is a finite dimensional complex Banach space.

The developing mapfor ϕ ∈ 2( ) is a meromorphic local homeomorphism

ϕ : → Ĉ

whose Schwarzian derivative (ϕ) is equal toϕ. We always assume that the devel-
oping map ϕ is normalized by the conditionsϕ(0) = 0, ′

ϕ(0) = 1 and ′′
ϕ (0) = 0.

Associated to the developing mapϕ, there is a group homomorphism

ρϕ : → PSL2(C)

satisfying ϕ ◦ γ = ρϕ(γ) ◦ ϕ for all γ ∈ . This group homomorphismρϕ is said
to be theholonomy representationfor ϕ. We call the pair (ϕ ρϕ) the (normalized)
projective structurefor ϕ ∈ 2( ). Then there is a bijective correspondence between
the set of normalized projective structures and2( ).

We denote byˆ ( ) the subset of 2( ) consisting of elementsϕ ∈ 2( )
whose developing mapsϕ are covering maps onto their images. For an elementϕ of
ˆ ( ), the holonomy image =ρϕ( ) of is a function group (possibly with tor-
sion) and ϕ( ) is an invariant component of , which is denoted by0( ) (see [14]
and [16] for more information). Moreover, we consider a subset ( ) of ˆ ( ) as
follows. An elementϕ of ˆ ( ) is contained in ( ) by definition if the devel-
oping map ϕ : → ϕ( ) = 0( ) ⊂ Ĉ descends to a conformal isomorphism

= / → ϕ( )/ρϕ( ) = 0( )/ where is the holonomy imageρϕ( )
of . In summary,

ˆ ( ) = {ϕ ∈ 2( ) | ϕ : → ϕ( ) ⊂ Ĉ is a covering map}
( ) = {ϕ ∈ ˆ ( ) | = / ∼= ϕ( )/ρϕ( )}

If is maximal (i.e. there are no Fuchsian groups which properly contain ) ( )
coincides with ˆ ( ). Note that is maximal for almost every ∈ ( ). On the
other hand, in [18], one can find examples of elements ofˆ ( ) but not of ( )
for some . Forϕ ∈ ( ), = ρϕ( ) may have an elliptic element whose fixed
points are not contained in the invariant component0( ) = ϕ( ).

2.3. Extended Bers slices. A sequence of representationsρ : π1( )→ PSL2(C)
is said to convergesalgebraically to a representationρ : π1( ) → PSL2(C) if ρ ( )→
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ρ( ) in PSL2(C) for all ∈ π1( ). The conjugacy class of a representationρ : π1( )→
PSL2(C) with ρ(π1( )) = is denoted by [ρ ] or simply by [ρ]. Let ( ) denote the
space of conjugacy classes [ρ] of irreducible representationsρ : π1( )→ PSL2(C) such
that ρ(γ) is parabolic for everyγ ∈ π1(∂ ). The space ( ) is a complex manifold
endowed with the topology of algebraic convergence.

It is known by Kra [15] that the map

hol : 2( )→ ( )

defined byϕ 7→ [ρϕ] is a holomorphic embedding, where [ρϕ] is the conjugacy class
of the representationρϕ : π1( ) ∼= → PSL2(C). (Here and hereafter, we frequently
identify a representation ofπ1( ) with a representation of .) For any ∈ ( ), we
define subsetŝ and of ( ) by

ˆ = hol( ˆ ( ))

= hol( ( ))

We call theextended Bers slice, on which we will define an action of the mapping
class group.

The Bers slice is the subset of consisting of faithful representations whose
images are quasi-Fuchsian groups. It is known by Bers [3] that the Bers slice
can be identified with the Teichmüller space ( ), and that it is relatively compact in

( ). The set∂ = ¯ − is called theBers boundary, where ¯ is the closure
of in ( ). Moreover, we denote bŷ the subset of consisting of faithful
representations. It is conjectured that¯ = ˆ in Bers [3].

The following are the sets which we want to consider in this paper:

⊂ ¯ ⊆ ˆ ⊂ ⊂ ˆ

EXAMPLE. In the case that is a closed surface, a typical example of an element
of − ˆ is a Schottky group. A Kleinian group is aSchottky groupif is
torsion-free and if its Kleinian manifold = (H3 ∪ ( ))/ is homeomorphic to a
handlebody of genus . Let be a Schottky group which uniformizes , that is

= ( )/ = ∂ , then the representationρ : π1( ) ∼= π1(∂ ) → ∼= π1( )
induced by the inclusion map∂ → is an element of but not of̂ .

Lemma 2.1. For any ∈ ( ), is a compact subset of ( ).

Proof. To show that = hol( ( )) is compact, it is enough to see that ( )
is closed and bounded subset of2( ). Since it is known by Kra and Maskit [18]
that ˆ ( ) is a closed and bounded subset of2( ), we only have to show that

( ) is closed. Letϕ ∈ ( ) be a sequence converging toϕ ∈ ˆ ( ). Let and
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be the developing maps corresponding toϕ andϕ, respectively. Then converges
to locally uniformly on . Suppose that the map :→ ( )/ρ( ) induced by

: → ( ) is not injective. Then there are two points ,∈ ( 6= ) such that
( ) = ( ), and hence there are lifts ˜ , ∈̃ of and such that ( ˜ ) = ( ˜).

Since ( ˜)→ ( ˜ ) and ( ˜)→ ( ˜ ), the hyperbolic distances between ( ˜)
and ( ˜) in ( ) tend to 0 as → ∞. On the other hand, sinceϕ ∈ ( ),
the maps : → ( )/ρ ( ) induced by : → ( ) are conformal isomor-
phisms. Hence the hyperbolic distance between and on is equal to the hyper-
bolic distance between ( ) and ( ) on ( )/ρ ( ) which are less or equal to

. This contradicts to 6= .

2.4. Quasiconformal deformations. For a given Kleinian group with ( )6=
∅, a measurable functionµ on Ĉ is called aBeltrami differentialfor if

µ( ( )) ′( ) = µ( ) ′( )

holds for a.e. ∈ Ĉ and for all ∈ . The space of all Beltrami differentialsµ
for whose essential sup-norm satisfying||µ||∞ < 1 is denoted by Belt( )1. For a

-invariant open set ⊂ ( ), we denote by Belt( )1 the subset of Belt( )1

consisting of all elements with support in . Forµ ∈ Belt( )1, there is a unique
quasiconformal homeomorphism

µ : Ĉ→ Ĉ

satisfying ( µ)¯/( µ) = µ (a.e.) and fixing 0, 1 and∞. Two elementsµ, ν ∈
Belt( )1 are equivalent(denoted byµ ∼ ν) if µ and ν induce the same group
isomorphism; that is, µ ◦ ◦ ( µ)−1 = ν ◦ ◦ ( ν)−1 for all ∈ .

In the lest of this subsection, we restrict our attention to the following situation:
For a given ∈ ( ), let [ρ ] be an element of and let : → 0( ) be the
developing map inducing the holonomy representationρ : π1( ) ∼= → .

We denote by ([ρ]) the space of quasi-conformal deformations of [ρ] = [ρ ]
induced by elements of Belt( )1. That is, [ρ′] ∈ ( ) is an element of ([ρ]) if
ρ′(γ) = µ ◦ ρ(γ) ◦ ( µ)−1 is satisfied for allγ ∈ π1( ) for someµ ∈ Belt( )1. This
space ([ρ]) is identified with the quotient space Belt( )1/ ∼. Moreover, we denote
by 0([ρ]) the space of quasi-conformal deformations of [ρ] = [ρ ] induced by
elements of Belt( 0( ))1, that is 0([ρ]) = Belt( 0( ))1/ ∼.

Now let consider the case thatρ is the identity representation id:π1( ) ∼= →
induced by the identity map id : → = 0( ). Then ( ) has exactly two

component = 0( ) and ∗ = { ∈ Ĉ : | | > 1}. The space of quasiconfor-
mal deformations ([id]) of [id] is said to be thequasi-Fuchsian spaceand denoted
by ( ). On the other hand, the quotient space 0([id]) = Belt( )1/ ∼ can
be identified with the Teichmüller space ( )∼= ( ). Similarly, the quotient space
Belt( ∗)1/ ∼ can be identified with the Teichmüller space (¯) ∼= ( )̄, where
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¯ = ∗/ is the reflection of . It is the well known fact (cf. Bers [2]) that the
map

Belt( )× Belt( ∗)→ Belt( )

defined by (µ ν) 7→ µ + ν descends to the canonical homeomorphism

: ( )× ( )̄→ ( )

We remark that the Bers slice defined in Subsection 2.3 is equal to ({ }× ( )̄).
Recall that the holonomy representationρ : π1( ) ∼= → is induced by the

developing map : → 0( ). For µ ∈ Belt( 0( ))1, the pull-back ∗µ of µ by
is defined by

∗µ( ) = µ ◦ ( )
′( )
′( )

Since descends to an isomorphism/ → 0( )/ , the map

∗ : Belt( 0( ))1→ Belt( )1

defined by µ 7→ ∗µ is an isomorphism. This is the reason why we can de-
fine the action on but cannot on̂ . We denote the inverse (∗)−1 of ∗ by

∗ : Belt( )1 → Belt( 0( ))1. Then, it was shown by Maskit [21] (see also
Kra [17]) that the map ∗ : Belt( )1 → Belt( 0( ))1 descends to an un-
branched covering map

∗ : ( )→ 0([ρ])

with ∗( ) = [ρ]. We use the notation

qc([ρ] ) = ∗( )

for any ∈ ( ). Then the representation qc([ρ] ) ∈ 0([ρ]) can be regarded
as the quasiconformal deformation of [ρ] corresponding to the quasiconformal defor-
mation of in ( ). Note that qc([ρ] ) = [ρ] and that qc([ρ] ) ∈ for all
∈ ( ).

2.5. The action of the mapping class group. Now we define the action of
Mod( ) on by

σ([ρ]) = qc([ρ] σ−1 ) ◦ σ−1
∗

for [ρ] ∈ and σ ∈ Mod( ), whereσ∗ is the group isomorphism ofπ1( ) induced
by σ. Since [ρ′] ◦σ−1

∗ ∈ σ for any [ρ′] ∈ and ∈ ( ), one can see thatσ([ρ])
also contained in .
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( )= ({ } × ( )̄)

0([ρ]) = ( ( ) × { ¯})

( σ ¯) = qc([ρ] σ−1 ) ◦ σ−1
∗

(σ−1 ) = qc([ρ] σ−1 )

( ¯) = [ρ]

Fig. 1. The action of the mapping class group

Let take [ρ] ∈ and σ ∈ Mod( ) and put [ρ′] = σ([ρ]). Then kerρ′ = σ∗(kerρ)
is satisfied. Therefore, if kerρ 6= σ∗(kerρ), σ([ρ]) is not a quasiconformal deformation
of [ρ] and henceσ([ρ]) is not contained in the connected component of containing
[ρ].

Here we explain that the action of Mod( ) on the Bers slice (⊂ ) de-
fined above coincides with the action on the Teichmüller space ( )̄ under the iden-
tification = ( )̄ (see Fig. 1). The mapping class group Mod( ) acts on =

({ } × ( )̄) by ( ¯) 7→ ( σ ¯) for ( ¯) ∈ and σ ∈ Mod( ). Now
we put [ρ] = ( ¯) and are going to show that ( σ ¯) = σ([ρ]). By definition,
σ([ρ]) = qc([ρ] σ−1 ) ◦ σ−1

∗ = (σ−1 ¯) ◦ σ−1
∗ . Since (σ σ ) = ( ) ◦ σ−1

∗

holds for any ( ¯) ∈ ( ) × ( )̄, one obtain the desired equation (¯) =
(σ−1 ¯) ◦ σ−1

∗ .

3. Continuity of the action of the mapping class group

In this section, we obtain a sufficient condition for [ρ] ∈ so that the action
of Mod( ) at [ρ] is continuous. The same result, where is replaced byˆ , was
obtained by Bers [4].

We first show the continuity for the change of base points.

Proposition 3.1. Let [ρ ] be an element of such that all components of
( )/ except for = 0( )/ have no moduli of deformation. Then the follow-

ing holds: If [ρ ] → [ρ] in then qc([ρ ] ) → qc([ρ] ) in for all ∈ ( ).
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Proof. Letϕ andϕ be elements in ( ) such that hol(ϕ ) = [ρ ] and hol(ϕ) =
[ρ], respectively. Since ( ) is compact and the map hol:2( ) → ( ) is in-
jective, ϕ → ϕ in ( ). Let ( ρ ) and ( ρ) be normalized projective struc-
tures for ϕ and ϕ, respectively. Then converges to locally uniformly on .
Let µ ∈ Belt( )1 be a representative of ∈ ( ) = Belt( )1/ ∼. We may
assume thatµ is continuous function on . Put ˆµ = ( )∗µ ∈ Belt( 0( ))1

and µ̂ = ∗µ ∈ Belt( 0( ))1, where = ρ (π1( )) and = ρ(π1( )). Since
{ µ̂ } fix 0, 1 and∞ and their dilatations are uniformly bounded, it has a subse-
quence (which we denote by the same symbol){ µ̂ } converging uniformly to some
quasiconformal homeomorphism∞ of Ĉ. Since the representatives of qc([ρ ] ) are
induced by µ̂ ◦ , {qc([ρ ] )} converges algebraically to the conjugacy class of
the representation induced by∞ ◦ . Therefore, we have only to show that∞ and

µ̂ induce the same group isomorphism from into PSL2(C).
Since injectivity radii (with respect to the Poincaré metric on ) of are uni-

formly bounded below (see [18, Lemma 5.1]), for any∈ 0( ), there exist an open
neighborhood of and suitable branches of the inverse maps−1 and −1 on
such that −1 converges to −1 uniformly on . Hence one can see that ˆµ con-
verges to ˆµ locally uniformly on 0( ). Therefore, µ̂ ◦ ( µ̂)−1 converges to a con-
formal map ∞ ◦ ( µ̂)−1 locally uniformly on µ̂( 0( )), and hence, the Beltrami
coefficient of ∞ is equal to ˆµ almost everywhere on 0( ). Since there is no essen-
tial deformation on ( )− 0( ) by assumption and on ( ) by Sullivan’s rigidity
theorem [27], ∞ and µ̂ induce the same group isomorphism.

Corollary 3.2. Let [ρ ] be an element of such that all components of
( )/ except for = 0( )/ have no moduli of deformation. Then the action

of Mod( ) is continuous at[ρ]; that is, if [ρ ] → [ρ] in then σ([ρ ]) → σ([ρ]) for
all σ ∈ Mod( ).

Proof. By Proposition 3.1, qc([ρ ] σ−1 ) → qc([ρ] σ−1 ) for all σ ∈ Mod( ).
Therefore, σ([ρ ]) = qc([ρ ] σ−1 ) ◦ σ∗−1 converges algebraically toσ([ρ]) =
qc([ρ] σ−1 ) ◦ σ∗−1.

REMARK. In [13], Kerckhoff and Thurston showed that there is a Bers slice
and a point [ρ] ∈ ∂ at which the action of Mod( ) is not continuous.

4. Thurston’s compactness theorem

In this section, we introduce Thurston’s compactness theorem [28], which will
play an important role in the following sections.

Let be a compact 3-manifold with boundary∂ . A non-trivial closed curveγ
on ∂ is said to becompressibleif it is null homotopic in ; otherwise it isincom-
pressible. A proper map : ( ∂ ) → ( ∂ ) of an annulus into is said to
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be essentialif ∗ : π1( ) → π1( ) is an injection and is not homotopic (as a map
of pairs) to a map into∂ .

DEFINITION. Let be a compact 3-manifold with boundary∂ . Let λ be a sys-
tem of non-trivial, mutually disjoint, homotopically distinct simple closed curves on
∂ . Then a pair ( λ) is doubly incompressibleif
(1) every compressible simple closed curve on∂ intersectsλ at least three times,
(2) there are no essential annuli with boundary in∂ − λ, and
(3) every maximal abelian subgroup ofπ1(∂ − λ) is mapped to a maximal abelian
subgroup ofπ1( ).

Let be as above. In addition, we assume that the interior of admits a hy-
perbolic structure. We denote by ( ) the space of conjugacy classes [ρ ] of
discrete faithful representationsρ : π1( ) → ⊂ PSL2(C). The space ( ) is
equipped with the algebraic topology. Letγ be an incompressible closed curve on∂ .
For [ρ ] ∈ ( ), lengthρ(γ) denotes the length of the geodesic representative of
γ in the hyperbolic manifoldH3/ if ρ(γ) is loxodromic and lengthρ(γ) = 0 if ρ(γ)
is parabolic. For a positive constant> 0, we denote by ( λ ) the set of el-
ements [ρ ] ∈ ( ) such that lengthρ(λ) ≤ , where lengthρ(λ) is the total sum
of the lengths of all components ofλ.

Now we can state Thurston’s compactness theorem:

Theorem 4.1 (Thurston [28]). Let be a compact3-manifold with boundary
∂ whose interiorint( ) admits a hyperbolic structure. If( λ) is doubly incom-
pressible, then ( λ ) is compact for all > 0.

Let be an oriented compact surface possibly with boundary∂ . A curve system
λ = {α } =1 on is calledhomotopically independentif it has the following proper-
ties: (1) eachα is a simple closed curve on andα ∩α = ∅ for 6= , (2) eachα
is non-trivial and not freely homotopic to a component of∂ , and (3)α is not freely
homotopic toα if 6= . A homotopically independent curve systemλ = {α } =1 on

is maximal if it divides into pairs of pants. (If is a closed surface of genus
with open discs removed, then = 3− 3 + .) A pair (λ λ′) of maximal curve
systems on is said to bebinding if they have no curves in common and if each
component of − (λ ∪ λ′) is a simply connected domain or an annulus containing a
component of∂ in its boundary after realizingλ and λ′ by geodesics for a hyper-
bolic structure on .

The following lemma is discussed in a more general setting inOhshika [25].

Lemma 4.2. Let be an oriented compact surface possibly with boundary∂ .
Let (λ′ λ′′) be a pair of maximal curve systems which binds . For this pair, we de-
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fine a maximal curve systemλ on ∂( × ), where is the closed interval[0 1], as

λ = (λ′ × {0})∪ (λ′′ × {1})∪
(
∂ ×

{
1
2

})

Then ( × λ) is doubly incompressible.

Proof. We only consider the case∂ 6= ∅, since the proof of the case∂ = ∅ is
easier. If∂ 6= ∅, then × is homeomorphic to a handlebody of some genus .
We identify × with via this homeomorphism. We first check the condition (1)
in the definition of double incompressibility. Letγ be a compressible simple closed
curve on∂ . Since × {0} and × {1} contain no compressible curves,γ must
intersect a component of∂ ×{1/2}. If (γ λ) ≤ 2 (here (· ·) denotes the geometric
intersection number), one can easily see that there exists acomponentδ of ∂ ×{1/2}
and a component of∂ − ((λ′×{0})∪ (λ′′×{1})) homeomorphic to a four-time-
punctured sphere such thatγ ∪ δ ⊂ and (γ δ) = 2. Let α and β be components
of ∂ such thatα, β and γ bound a pair of pants . Then, after choosing suitable
orientations ofα, β andγ, we have [γ] = [α]+[β] in 1(∂ Z), where [γ] is the ho-
mology class ofγ and so on. Since (λ′ λ′′) binds , 〈[α] [β]〉 are rank 2 free abelian
subgroup of 1(∂ Z) which is mapped into 1( Z) injectively. This contradicts
the assumption thatγ is null homotopic and hence null homologous.

Now we check the condition (2). Suppose that there exists an essential annulus
: ( ∂ )→ ( ∂ ) with boundary in∂ − λ. Let γ and γ′ be the components

of the image of∂ in ∂ . Since (γ ∪ γ′) ∩ (∂ × {1/2}) = ∅, γ and γ′ may be
assumed to be contained in (×{0})∪ ( ×{1}). Let : × → be the canonical
retraction. Then (γ) is homotopic to (γ′) in . Since (λ′ λ′′) binds , bothγ and
γ′ are contained in × {0} or × {1}. Now the retraction above gives a homotopy
between and a map into∂ . This is a contradiction.

Finally, we check the condition (3). Since all non-trivial abelian subgroups of
π1(∂ − λ) or π1( ) are isomorphic toZ, we have only to show that all primi-
tive elements ofπ1(∂ − λ) are also primitive inπ1( ). This follows from the fact
that is homotopically equivalent to by the retraction.

5. Orbit density for maximal cusps

Let [ρ] ∈ ˆ . The accidental parabolic locusof [ρ] is a homotopically inde-
pendent curve systemλ = {α } on such thatρ(α ) is (the conjugacy class of) a
parabolic element of =ρ(π1( )) for every , and no simple closed curve which
is not homotopic to a component ofλ has this property. For [ρ] ∈ ˆ , its acciden-
tal parabolic locus is uniquely determined up to homotopy. An element [ρ] ∈ ˆ is
called amaximal cuspif its accidental parabolic locus is maximal. It is a well known
fact that every maximal cusp is contained in∂ and that, for any maximal curve
systemλ on , there exists a unique maximal cusp whose accidental parabolic locus
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is λ (see Abikoff [1] and Maskit [20]).
For a simple closed curveα on , let α ∈ Mod( ) denote the Dehn twist once

aroundα.

Proposition 5.1. Let (λ′ λ′′) be a binding pair of maximal curve systems on
. Let [ρ] ∈ ∂ be a maximal cusp whose accidental parabolic locus isλ′′. Put
σ = α1 ◦ · · · ◦ α ∈ Mod( ), whereλ′ = {α } =1. Then the sequence{σ ([ρ])} ∈Z

converges to the maximal cusp[ρ∞] ∈ ∂ whose accidental parabolic locus isλ′ as
| | → ∞.

In the proof of Proposition 5.1, we will make use of the following two lemmas;
the first one is due to Canary [6] and the second one is a well known technical lemma.

Lemma 5.2 (Canary [6]). Given > 0, there exists a constant > 0 such that
if is a non-elementary, torsion-free Kleinian group such that every incompressible
closed geodesic on = ( )/ has hyperbolic length at least , then for any closed
curve γ on ,

length (γ) ≤ · length (γ)

where length (γ) and length (γ) are hyperbolic lengths of geodesic representatives of
γ in = H3/ and in , respectively.

Lemma 5.3. Let 2 be a rank2 free group and let{χ : 2 → PSL2(C)} be a
sequence of discrete faithful representations which converges algebraically toχ∞. If a
sequence{χ′ = ψ ·χ ·ψ−1} also converges algebraically toχ′∞ for a sequence{ψ }
in PSL2(C), thenψ converges to some elementψ∞ in PSL2(C).

Proof of Proposition 5.1. Our argument is almost parallel tothat of Kerckhoff
and Thurston [13] (see also [5]).

Since is compact, the sequence{[ρ ] = σ ([ρ])} ∈Z has a convergent subse-
quence. We also denote this subsequence by the same symbol. In fact, in the follow-
ing argument, we can see that any convergent subsequence of{[ρ ]} ∈Z converges to a
unique maximal cusp [ρ∞], and hence{[ρ ]} ∈Z converges without passing to a sub-
sequence.

On the other hand, we shall show that the sequence{[ρ̄ ] = qc([ρ] σ− )} ∈Z

also has a convergent subsequence. Recall that (× ) is the space of conjugacy
classes of discrete faithful representationsχ : π1( × ) → PSL2(C). We denote by

∂ ( × ) the set of representations [χ] ∈ ( × ) such thatχ( ) are parabolic for
all ∈ π1(∂ × ). Then we can regard ∂ ( × ) as a subset of the representation
space ( ). Now we have a sequence{[ρ̄ ]} ∈Z in ∂ ( × ) ⊂ ( ). Let λ be the
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maximal curve system on∂( × ) defined by

λ = (λ′ × {0})∪ (λ′′ × {1})∪
(
∂ ×

{
1
2

})

Then ( × λ) is doubly incompressible by Lemma 4.2. We can see that the sequence
{[ρ̄ ]} ∈Z is contained in ( × λ ) for some > 0 since we have

lengthρ̄ (λ′′ × {1}) = length̄ρ

(
∂ ×

{
1
2

})
= 0

and

lengthρ̄ (λ′ × {0}) ≤ · lengthσ− (λ′ × {0}) = · length (λ′ × {0})

from Lemma 5.2. Since (× λ ) is a compact subset in (× ) by Theo-
rem 4.1, we have a convergent subsequence of{[ρ̄ ]} ∈Z in ( × ) and hence in

∂ ( × ) ⊂ ( ). Again, we denote this subsequence by the same symbol.
Take representativesρ of [ρ ] = σ ([ρ]) so that the sequence{ρ } converges to

a representationρ∞. Since [ρ ] = σ ([ρ]) = qc([ρ] σ− ) ◦ σ−∗ = [ρ̄ ] ◦ σ−∗ , we
may assume that ¯ρ = ρ ◦ σ∗. In addition, there are elementsψ ∈ PSL2(C) such that
the sequence{ψ · ρ̄ · ψ −1} converges to a representation ¯ρ∞, since{[ρ̄ ]} ∈Z is a
convergent sequence.

Now let α be a component ofλ′. We are going to show thatρ∞(α) is a parabolic
element. Let be a component of− λ′ containingα in its boundary andα′( 6= α)
be a component ofλ′ or a component of∂ contained in the boundary of . Choose
a base point in and regardπ1( ) = π1( ). By abuse of notation,α and α′ also
denote the elements ofπ1( ) freely homotopic toα and α′ respectively. Moreover,
we assume that (the representatives of)α, α′ ∈ π1( ) contained in . Note that
〈α1 α2〉 is a rank 2 free subgroup ofπ1( ). Since ¯ρ (α) = ρ ◦ σ∗(α) = ρ (α) and
ρ̄ (α′) = ρ ◦ σ∗(α′) = ρ (α′), the elementsψ ∈ PSL2(C) may be taken to be the
identity by Lemma 5.3.

One can find non-trivial elementsγ1, γ2 ∈ π1( ) which satisfy the following
conditions (see Fig. 2): (1)γ intersectsα twice in the opposite direction for = 1 2,
(2) γ does not intersect any other components ofλ′ for = 1 2, and (3)〈γ1 γ2〉 is
a rank 2 free subgroup ofπ1( ).

Then we have

{
ρ̄ (γ1) = ρ (α ) · ρ (γ1) · ρ (α− )
ρ̄ (γ2) = ρ (α ) · ρ (γ2) · ρ (α− )

Since both the sequences{ρ } and {ρ̄ } are convergent sequence, Lemma 5.3 again
implies thatρ (α ) converges to an element ˆα in PSL2(C). Sinceρ (α) commutes with
ρ (α ) for all , ρ∞(α) commutes with ˆα. If the abelian subgroup〈ρ∞(α) α̂〉 were
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α

γ1

γ2

γ1

γ2

α

Fig. 2. γ1 and γ2

isomorphic toZ, then ρ∞(α ) = α̂ for some integers and , and thusρ (α − ) →
id. This contradicts the fact that [ρ ] are discrete faithful representations (cf. Jørgensen
[12, Lemma 2]). Therefore we conclude that〈ρ∞(α) α̂〉 is isomorphic toZ ⊕ Z, and
hence it is a rank 2 parabolic subgroup in PSL2(C). In particular,ρ∞(α) is parabolic.
The same argument works well for all components ofλ′. Therefore we can conclude
that [ρ∞] is a maximal cusp whose accidental parabolic locus isλ′.

Lemma 5.4. For any two maximal curve systemsλ = {α } =1 and λ′ = {β } =1

on , there exists a maximal curve systemν = {γ } =1 such that the pairs(λ ν) and
(ν λ′) are binding .

Proof. There exists a simple closed curveδ on such that (δ α ) > 0 for all
(see [8]). Putσ = α1 ◦ · · · ◦ α . If (β λ) = 0 thenβ = α for some and

hence (β σ (δ)) > 0 for all . If (β λ) > 0 then (β α ) > 0 for some . In this
case, (β σ (δ)) > 0 for all but finitely many . Therefore, for sufficiently large,
(β σ (δ)) > 0 holds for all . Fix such and letγ1 = σ (δ). Choose simple closed

curvesγ2 . . . γ so thatν = {γ } =1 is a maximal curve system. Thisν satisfies the
desired condition.

It was shown by McMullen [24] that the set of maximal cusps is dense in∂ .
Since the number of ways to decompose into pairs of pants up tothe action of
Mod( ) is finite, the set of maximal cusps in∂ decomposes into finitely many or-
bits under the action of Mod( ). The next theorem shows thateach orbit is dense in
∂ .

Theorem 5.5. For any maximal cusp[ρ] ∈ ∂ , its orbit {σ([ρ])}σ∈Mod( ) under
the action ofMod( ) is dense in∂ .

Proof. Since the set of maximal cusps is dense in∂ , we have only to
show that, for arbitrary fixed two maximal cusps [ρ] and [ρ′] in ∂ , the orbit
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{σ([ρ])}σ∈Mod( ) of [ρ] contains a sequence converging to [ρ′]. Let λ and λ′ be ac-
cidental parabolic loci for [ρ] and [ρ′], respectively. Then we can find a maximal
curve systemν = {γ } =1 such that both the pairs (λ ν) and (ν λ′) are binding
(Lemma 5.4). Putσ = γ1 ◦· · ·◦ γ and τ = β1◦· · ·◦ β , whereλ′ = {β } =1. Then
σ ([ρ]) converges to a maximal cusp [ρ′′] ∈ ∂ whose accidental parabolic locus is
ν by Proposition 5.1. Similarlyτ ([ρ′′]) converges to [ρ′]. Since the action of Mod( )
is continuous at maximal cusps (Corollary 3.2), we can find a desired sequence by a
diagonal argument.

6. Orbits of Schottky groups and Bers boundary

In this section, we assume that is a closed surface of genus≥ 2. We denote by
the set of [ρ ] ∈ such that is a Schottky group. The aim of this section is

to prove the following theorem.

Theorem 6.1. Let be a closed surface of genus≥ 2. For any ∈ ( ), the
set of accumulation points of contains the boundary∂ of the Bers slice .

REMARK. It is known by Gallo [9] that there is an accumulation point of
which is not contained in∂ . This fact can be seen also from a slight modification
of the proof of the above theorem.

In the proof of Theorem 6.1, we need the following lemma whichgive a sufficient
condition for an element [ρ] ∈ to be contained in∂ .

Lemma 6.2. Let be a compact surface of hyperbolic type possibly with bound-
ary. Let ∈ ( ), [ρ] ∈ and λ = {α } be a maximal curve system on . If
ρ(α ) are parabolic for all , then [ρ] is the maximal cusp in∂ whose accidental
parabolic locus isλ.

Proof. We have only to show that [ρ] is a faithful representation. Suppose that
ρ : π1( ) → is not faithful. Then the covering map :0( ) → = 0( )/
is not universal, where 0( ) is the unique invariant component of . Then, by the
planarity theorem (see [22], X.A.4), there exist a non-trivial simple closed curveδ on

and a simple closed curvẽδ on 0( ) such that | δ̃ : δ̃ → δ is a finite-sheeted
covering map; say -sheeted. Let∈ be a generator for the stabilizer ofδ̃ in .
Since λ(⊂ ) is maximal andδ is not parallel to a component ofλ, it follows that
δ must intersect some component ofλ, say α1. We may assume that the number of
intersection points ofδ and α1 is equal to (δ α1). Let α̃1 be a connected component
of −1(α1) on 0( ) which intersectsδ̃. Let be a parabolic element which is con-
jugate toρ(α1) in and stabilizing ˜α1. By adjoining the fixed point of to ˜α1, we
obtain a simple closed curve, which dividesĈ into two domains. Let be one of the
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two domains such that satisfies ∩ ( ) = ∅ if > 1. Let η1 be a connected
component of ∩ δ̃ and β be the arc in ˜α1 which connects the end points ofη1. Let
δ̃1 = η1 ∪ β and let δ̃2 be the closed curvẽδ with η1, (η1) . . . −1(η1) replaced by
β, (β) . . . −1(β). Then, for = 1, 2,δ̃ projects to a simple closed curveδ on
such that | δ̃ : δ̃ → δ is a finite-sheeted covering map. Moreover, note that (δ λ)
is strictly less than (δ λ) for = 1, 2. Sinceδ is non-trivial andδ = δ1 · δ2, either δ1

or δ2 are non-trivial. After a finite number of steps as above, we obtain a non-trivial
simple closed curveδ′ such that (δ′ λ) = 0 and that, for a connected componentδ̃′

of −1(δ′), | δ̃′ : δ̃′ → δ′ is a finite-sheeted covering map. This is a contradiction.

Proof of Theorem 6.1. Let be a closed surface of genus≥ 2. Let [ρ ] be
an element of . We claim that there exists an elementσ ∈ Mod( ) such that the
sequence{σ ([ρ])} ∈Z converges to some maximal cusp [ρ∞] ∈ ∂ as | | → ∞.
If it has been shown, the similar argument in Theorem 5.5 reveals that the claim of
the theorem holds: In fact, for any element [ρ′] ∈ ∂ , there exists a sequence{τ }
in Mod( ) such thatτ ([ρ∞]) converges to [ρ′] by Theorem 5.5. Since the action of
Mod( ) is continuous at maximal cusps (Corollary 3.2), we canfind a sequence in
which converges to [ρ′] by a diagonal argument.

Now we will show that there exists an elementσ ∈ Mod( ) such that the se-
quence{σ ([ρ])} ∈Z converges to some maximal cusp [ρ∞] ∈ ∂ as | | → ∞.
(Most of the following argument is similar to that of the proof of Proposition 5.1.)
Note that the Kleinian manifold = (H3 ∪ ( ))/ is homeomorphic to a handle-
body of genus whose boundary∂ is homeomorphic to . Under the iden-
tification = π1( ), we have a proper embedding : ( )→ ( ) where

maps the conjugacy class ofχ : π1( ) → PSL2(C) to the conjugacy class of
χ ◦ ρ : π1( ) → = π1( ) → PSL2(C). By identifying ( ) with its image

( ( )), we regard ( ) as a subset of ( ).
Let be a compact oriented surface with boundary∂ such that × is

homeomorphic to . (For example, let be a closed disk with opendisk re-
moved.) We can find a pair (λ′ λ′′) of maximal curve systems on which binds

(cf. Lemma 5.4). Using this pair, we define a maximal curve system λ on =
∂( × ) = ∂ , as

λ = (λ′ × {0})∪ (λ′′ × {1})∪
(
∂ ×

{
1
2

})

Then ( λ) is doubly incompressible by Lemma 4.2 and hence (λ ) is
compact by Theorem 4.1. Putσ = α1 ◦ · · · ◦ α ∈ Mod( ), whereλ = {α } =1. Now
we consider the sequence{[ρ̄ ] = qc([ρ] σ− )} ∈Z in ( ) ⊂ ( ). Then we can
see that the sequence{[ρ̄ ]} ∈Z is contained in a compact set ( λ ) ⊂ ( )
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for some > 0 since we have

lengthρ̄ (λ) ≤ · lengthσ− (λ) = · length (λ)

from Lemma 5.2 for some > 0. Therefore the sequence{[ρ̄ ]} ∈Z has a convergent
subsequence.

On the other hand, since is compact,{[ρ ] = σ ([ρ])} ∈Z also has a con-
vergent subsequence. Take representativesρ of [ρ ] = σ ([ρ]) so that the sequence
{ρ } converges to a representationρ∞. Since [ρ ] = [ ρ̄ ] ◦ σ−∗ , we may assume that
ρ̄ = ρ ◦ σ∗. In addition, there are elementsψ ∈ PSL2(C) such that the sequence
{ψ · ρ̄ · ψ −1} converges to a representation ¯ρ∞.

For any componentα of λ, we claim thatρ∞(α) is a parabolic element. But this
can be seen from the same argument in the proof of Proposition5.1. Therefore, we
leave the proof to the reader.

Sinceρ∞(α) are parabolic for any componentα of λ, we can conclude that [ρ∞]
is a maximal cusp in∂ whose accidental parabolic locus isλ by Lemma 6.2.

7. Some property of the set of Schottky groups

Let be a closed surface of genus≥ 2. In this section, we collect some property
of which can be easily seen. For a representationρ of π1( ) onto a Kleinian group

, we denote by its Kleinian manifold (H3 ∪ ( ))/ .

Lemma 7.1. The mapping class groupMod( ) acts on transitively; that is,
= {σ([ρ])}σ∈Mod( ) for any [ρ] ∈ .

Proof. Let [ρ1 1] and [ρ2 2] be arbitrary two elements of . Then there
exists a homeomorphism 1 → 2 such that the restriction of this map to the
boundaries is a quasiconformal map0( 1)/ 1→ 0( 2)/ 2. Now one can see that
[ρ2] = σ([ρ1]), where σ ∈ Mod( ) is the isotopy class of a homeomorphism of in-
duced by the quasiconformal map.

A Kleinian group is calledgeometrically finiteif it has a finite sided convex fun-
damental polyhedron inH3.

Lemma 7.2 (Hejhal [11], Matsuzaki [23]). Each element[ρ] ∈ is an isolated
point in . On the other hand, if a torsion-free, geometrically finite element[ρ] ∈
is isolated in , then [ρ] ∈ .

Proof. The first statement is due to Hejhal [11], who showed that any element
[ρ ] ∈ ˆ such that is a Schottky group is isolated inˆ . Conversely, let take
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an element [ρ] ∈ which is isolated in . Since the same argument of Lemma 2.1
reveals that ˆ − is closed, [ρ] is also isolated in ˆ . It was shown by Mat-
suzaki ([23, Theorem 3]) that, if a torsion-free, geometrically finite element [ρ] ∈ ˆ

is isolated in ˆ , then [ρ] is a Schottky group. Thus, the second statement is proved.

REMARK. In Matsuzaki [23], obtained is a necessary and sufficient condition for a
(not necessarily torsion-free) geometrically finite element of ˆ to be isolated inˆ .

For [ρ] ∈ , the following lemma gives a characterization of the elements of
Mod( ) which stabilize [ρ].

Lemma 7.3. Let [ρ ] ∈ and σ ∈ Mod( ). Then the following are equiva-
lent:
(1) σ([ρ]) = [ρ],
(2) σ∗(kerρ) = kerρ, and
(3) σ can be extended to a homeomorphism of the Kleinian manifold, whereσ is
regarded as a homeomorphism of= ∂ .

Proof. (1) ⇒ (2) and (3) ⇒ (2) are trivial. (2) ⇒ (1) can be seen from
Matsuzaki [23, Theorem 2] and Lemma 7.2. We will show that (2)⇒ (3). Let ( ρ)
be the projective structure corresponding to [ρ]. We may assume thatσ : → is a
quasiconformal map. Let ˜σ : → be a lift of σ : → . If σ∗(kerρ) = kerρ, then
σ̃ descends to a quasiconformal map ˆσ : ( ) → ( ), because the covering group

: → ( ) is kerρ. Since =ρ(π1( )) is geometrically finite and ( ) = ( ),
Marden’s isomorphism theorem [19] implies that ˆσ can be extended to a -compatible
quasiconformal automorphism of̂C. This quasiconformal map can be extended to a

-compatible homeomorphism ofH3∪Ĉ, which descends to a homeomorphism of
(cf. [7]).
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