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1. Introduction

We will show that every Kleinian group on the Bers boundarnytte Teichmuller
space is an algebraic limit of a sequence of Schottky grotlipis claim has already
proved by Otal [26], but our argument is completely diffarérom that of Otal. In
this paper, we extend the action of the mapping class group &ers slice to that
on a wider class of Kleinian groups. We obtain a sufficientditton for the action of
the mapping class group to be continuous at a given point hod shat the orbit of
every maximal cusp is dense in the Bers boundary.

Here, we explain the fundamental idea of extending the actib the mapping
class group. LetS be an oriented compact surface possibly bdtundaryds, and
let T(S) be the Teichmuller space of complete hyperbolic cdtrees on the interior of
S with finite area. LetR § ) be the space of conjugacy classe&] of representa-
tions p: m1(S) — G C PSLy(C) of m1(S) which map each component of the boundary
0S8 to parabolic elements. The subspa@e# S ( )R ( ) consisting sérdie faith-
ful representations whose images are quasi-Fuchsian grisupaturally identified with
a product of Teichmuller spaces S (><)T(§), where S denotesS with its orientation
reversed. We denote the canonical homeomorphism by

Q: T(S) x T(S) — QF(S).

The mapping class group Masi( ) 6f naturally acts Br§ () and) gnd hence on
the Bers sliceBy =0 {X} x T(S)) by

0(X,Y) — Q(X, oY)

for (X,Y) € T(S) x T(S) and o € Mod(S). A crucial observation is that the represen-
tation Q (X, oY) has another description as follows;

0(X,0Y)=Q(c*X,Y) oo, %,

whereo. is the group isomorphism of1(S) induced byo. The right-hand side of the
above equation suggests us a possibility to define the acfidviod(S) even wheny
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is pinched or degenerated. From this point of view, we extdred action of Mod§ )

on the Bers sliceBy to that on the subset RIS ( ), which is calledektended
Bers slicefor X. A representation/, G] is an element ofCx by definition ilG is a
function group with an invariant componef(G) of the region of discontinuity2 ¢ )
which is coveringX € T(S). We remark that the extended Bers sliCg contains the
closure By of the Bers sliceBy and that the restriction of the actionBtp coincides
with the action defined by Bers in [4].

The setdBy = By — By is called theBers boundaryBers [4] obtained a sufficient
condition for the action of Mod{ ) to be continuous at a givanpan dBx. On the
other hand, it is known by that the action of M&d( ) 6By is not always continuous
(see Kerckhoff-Thurston [13]). In Section 3, we extend therdB result and obtain a
sufficient condition for the action to be continuous at a giy®int in Cx :

Corollary 3.2. Let [p, G] be an element ofCy such that all components of
Q(G)/G except forX = Qo(G)/G have no moduli of deformation. Théviod(S) acts
continuously afp, G].

It is known by McMullen [24] that the set of maximal cusps isnde in 0Bx.
Moreover, one can see that the set of maximal cusp$Br decomposes into finitely
many orbits under the action of Ma$i( ). In Section 5, we wilbshthat each orbit is
dense indBy:

Theorem 5.5. For any maximal cusp indBy, its orbit under the action of
Mod(S) is dense in0By.

Suppose thaS is a closed surface of gegus 2. Now let Sx be the subset of
Cx consisting of Schottky groups. In Section 6, we combine Qamp 3.2 (continuity
at maximal cusps) and Theorem 5.5 (orbit density for maxicedps) to obtain the
following theorem:

Theorem 6.1. Suppose thaS is a closed surface of genu®. The set of ac-
cumulation points ofSx contains the Bers bounda®y.

RemaArk. Gallo [10] has proved the claim of Theorem 6.1 for the case of
genus 2. More generally, Otal [26] has already proved thenclaf Theorem 6.1 for
the case of any genus 2 by using hyperbolic Dehn surgery theorem. In our proof,
we will make use of Thurston’s compactness theorem [28katstof hyperbolic Dehn
surgery theorem.

This paper is organized as follows: In Section 2, we give andifn of an ex-
tended Bers slic&y on which we shall define the action of thepingpclass group.



ScHOTTKY GROUPS AND BERS BOUNDARY 641

In Section 3, we obtain a sufficient condition for the actidnMnd(S) to be continu-
ous at a poiniCy (Corollary 3.2). In Section 5, we show that theitmf every max-
imal cusp is dense in the Bers bound@Bx (Theorem 5.5). In Section 6, we prove
our main theorem (Theorem 6.1) as a consequence of the jprgcselctions. In Sec-
tions 5 and 6, one of the crucial tools is Thurston’s compegdntheorem [28], which
will be introduced in Section 4. In Section 7, we collect sopneperties of the set of
Schottky groupsSxy which can be easily seen.

AcknowLEDGEMENTS — The author would like to express his gratitude to Hiroshige
Shiga for his useful suggestions. He also appreciates fleeees valuable comments
on the previous manuscript of this paper.

2. Preliminaries

2.1. Teichmuller spaces and Kleinian groups. Let S be a compact oriented
surface of negative Euler characteristic possibly with rmtary 0S. The Teichmuller
spaceT(S) of § is the set of equivalence classes of paifsX ); whEre isma-c
plete hyperbolic Riemann surface of finite area ghd :SintG)X is an orientation
preserving homeomorphism from the interiorf . Two paifs, §1) and (f2, X») are
said to be equivalent if there is a conformal mapXi: — X, such thatg o f; is iso-
topic to f». The equivalence class off,(X ) is simply denoted Yy

The mapping class grouplod(S) is the group consisting of isotopy classes of ori-
entation preserving homeomorphisms $f . The natural aafon € Mod(S) on T (S)
is given by

o(f, X)=(f oo™ L X).

We also consider thd@eichmiller spacel'(S) of S, where S denotesS with its
orientation reversed. Then we have a canonical isomorphisf(S) — T(§) defined
by (f: 5 — X) — (f: S — X), whereX is the reflection ofX . The action of €
Mod(S) = |\/|0d(§) on T(§) is given bya(f, X_) = (]70 o1, )?), so thatcor =100 is
satisfied.

A Kleinian group G is a discrete subgroup of BC), which acts on the hy-
perbolic spaceH® as isometries, and on the sphere at infinftg, = C as confor-
mal automorphisms. The limit set @ i@ is denoted byA ¢ ) and its complement
C-— A(G), which is called the region of discontinuity @ , is dendbtby Q(G). A
Kleinian groupG is called dunction groupif its region of discontinuity ¢ ) has an
invariant component. If a function groug  has exactly twoaii@nt components, it is
called aquasi-Fuchsian groupotherwise, it has a unique invariant component.

2.2. Projective structures. For a givenX € T(S), let 'y be a Fuchsian group
acting on the unit disA 4z € C: |z] < 1} such thatX =A/I'x. A bounded holo-
morphic quadratic differentiabn A for I'y is a holomorphic functiornp on A satis-
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fying p o y(7/)? = ¢ for any v € Ty and||¢||« < oo, where||¢||« is the hyperbolic
sup-norm ofp defined by

llelloo = SUHL = [2[2)?|p(2)].
ZEA

We let By(I'x) denote the set of bounded holomorphic quadratic diffknon A for
I'x. Then By(I'x) is a finite dimensional complex Banach space.
The developing magor ¢ € By(I'x) is a meromorphic local homeomorphism

fw:A—>é

whose Schwarzian derivativgé ff) is equal top. We always assume that the devel-
oping map f,, is normalized by the conditiong,(0) = 0, f/(0) = 1 and f7(0) = 0.
Associated to the developing mafy, there is a group homomorphism

satisfying f, o v = p,(7) o f, for all v € I'y. This group homomorphism,, is said

to be theholonomy representatiofior ¢. We call the pair f,, p,) the (ormalized
projective structurefor ¢ € By(I'x). Then there is a bijective correspondence between
the set of normalized projective structures aBg(I'x).

We denote byC(T'x) the subset ofB,(I'y) consisting of elements € By(T'x)
whose developing mapg, are covering maps onto their images. For an elemenf
@(FX), the holonomy image5s ,(I'x) of 'y is a function group (possibly with tor-
sion) andf,(A) is an invariant component @& , which is denoted Qy(G) (see [14]
and [16] for more information). Moreover, we consider a sih&([x) of C(I'x) as
follows. An elementy of C(T'x) is contained inC [x ) by definition if the devel-
oping map f,: A — f,(A) = Qo(G) C C descends to a conformal isomorphism
X = A/Tx — f,(A)/p,(Tx) = 2(G)/G where G is the holonomy imagg,(I'x)
of I'x. In summary,

C(Tx) = {¢ € BoTx) | fo: A — f,(A) c Cis a covering map,
C(x) = {p € C(Tx) | X = A/Tx = f,(A)/p,(Tx)}.

If Txis maximal (i.e. there are no Fuchsian groups which prigpsontainT'y ) C Cx )
coincides withC(T'y). Note thatI'y is maximal for almost ever¥ € T(S). On the
other hand, in [18], one can find examples of element< (fx) but not of C Cx)
for someT'x . Forp € C(T'x), G = p,(I'x) may have an elliptic element whose fixed
points are not contained in the invariant compon®s(G) = f,,(A).

2.3. Extended Bers slices. A sequence of representatiops: 71(S) — PSLy(C)
is said to convergealgebraically to a representatiop: m1(S) — PSLy(C) if p.(g) —
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p(g) in PSLy(C) for all g € w1(S). The conjugacy class of a representatianr(S) —
PSLy(C) with p(71(S)) = G is denoted by 4, G] or simply by [o]. Let R(S) denote the
space of conjugacy classes] pof irreducible representations: m1(S) — PSLy(C) such
that p() is parabolic for everyy € 71(9S). The spaceR § ) is a complex manifold
endowed with the topology of algebraic convergence.

It is known by Kra [15] that the map

hol: Bo(T'x) — R(S)

defined byy — [p,] is a holomorphic embedding, wherg.] is the conjugacy class
of the representatiop, : 71(S) ¥ I'y — PSLy(C). (Here and hereafter, we frequently
identify a representation afi(S) with a representation of'y .) For any € T(S), we
define subset€'y andCx of R (§) by

Cx = hol(C(T'x)),
Cx = hol(C(Ty)).

We call Cx theextended Bers sliceon which we will define an action of the mapping
class group.

The Bers slice By is the subset o€y consisting of faithful representations seho
images are quasi-Fuchsian groups. It is known by Bers [3] the Bers sliceBy
can be identified with the Teichmuller spaZeS ( ), and thas italatively compact in
R(S). The setdBx = Bx — By is called theBers boundarywhere By is the closure
of Bx in R(S). Moreover, we denote by?;x the subset ofCy consisting of faithful
representations. It is conjectured tha¢ = By in Bers [3].

The following are the sets which we want to consider in thipgra

By C By C By C Cyx C Cx.

ExampLE. In the case thaf is a closed surface, a typical example ofeaneat
of Cx — Bx is a Schottky group. A Kleinian grou is &chottky groupif G is
torsion-free and if its Kleinian manifol&vg =H® U Q(G))/G is homeomorphic to a
handlebodyH, of genug . Let be a Schottky group which unifoesii¥ , that is
X = Q(G)/G = ONg, then the representatiop: 71(S) = 71(ONg) — G = m1(Ng)
induced by the inclusion mapNs <— Ng is an element oCx but not oBy.

Lemma 2.1. For any X € T(S), Cx is a compact subset at(S).

Proof. To show thaCx = hof{ I{x )) is compact, it is enough to ses ()
is closed and bounded subset Bf(I'x). Since it is known by Kra and Maskit [18]
that C(T'y) is a closed and bounded subset Bf(T'y), we only have to show that
C(T'x) is closed. Letp, € C(T'x) be a sequence converging ¢goc C(T'y). Let f, and
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f be the developing maps correspondinggpand ¢, respectively. Theryf, converges
to f locally uniformly on A . Suppose that the mgp X:— f(A)/p(I'x) induced by
f: A — f(A) is not injective. Then there are two points y,c X(x # y) such that
g(x) = g(y), and hence there are lifts 3, € A of x andy such thatf A7) =f (7).
Since f, ) — f(X) and f, ') — f(¥), the hyperbolic distanced, betweefh x (7)
and f, ¢) in f, @A) tend to 0 ast — oo. On the other hand, since, € C(I'x),
the mapsg, X — f.(A)/p,(Tx) induced byf, :A — f,(A) are conformal isomor-
phisms. Hence the hyperbolic distance between wand Xon sl ¢égube hyper-
bolic distance betweeg, x( ) angl, y ( ) ofi A(/px(I'x) which are less or equal to
d,. This contradicts tor # y. ]

2.4. Quasiconformal deformations. For a given Kleinian grougs  witl2 (@ #
(), a measurable function on C is called aBeltrami differentialfor G if

1(8(2)g'(z) = u(2)g’ (z)

holds for a.e.z € C and for all g € G. The space of all Beltrami differentials

for G whose essential sup-norm satisfyifig||~ < 1 is denoted by Beltf ;) For a
G-invariant open set/ C Q(G), we denote by Beltg, U 1) the subset of Belf ;)

consisting of all elements with support #f . Fare Belt(G, U);, there is a unique
guasiconformal homeomorphism

w,:C—C

satisfying w,)z/(w,). = u (a.e) and fixing 0, 1 andw. Two elementsy, v €
Belt(G, U); are equivalent(denoted byu ~ v) if w, andw, induce the same group
isomorphism; that isw, o g o (w,) ' =w, ogo(w,) ! forall g € G.

In the lest of this subsection, we restrict our attentiontte following situation:
For a givenX € T(S), let [p, G] be an element oCx and lef A — Qo(G) be the
developing map inducing the holonomy representagonri(S) ¥ 'y — G.

We denote byQC (§]) the space of quasi-conformal deformations pf ¥ [p, G]
induced by elements of Beli(1.) That is, p'] € R(S) is an element ofQC () if
') = w0 p(v) o (w,)" ! is satisfied for ally € m1(S) for someyu € Belt(G):,. This
spaceQC (p]) is identified with the quotient space Beli(;/)~. Moreover, we denote
by QCo([p]) the space of quasi-conformal deformations of E [p, G] induced by
elements of BeltG, Q0(G))1, that is QCo([p]) = Belt(G, Qo(G))1/ ~.

Now let consider the case thatis the identity representation idv(S) = I'y —
'y induced by the identity map idA — A = Qo(T'x). ThenQ Cx ) has exactly two
componentA =Qu(I'y) and A* = {z € C : |z| > 1}. The space of quasiconfor-
mal deformationsQC ([id]) of [id] is said to be thguasi-Fuchsian spacand denoted
by QF(S). On the other hand, the quotient spa@€y([id]) = Belt(T'y, A)1/ ~ can
be identified with the Teichmuller spac® X (3 T(S). Similarly, the quotient space
Belt(Tx, A*);/ ~ can be identified with the Teichmuller spad‘e)?)(i“ T(§), where
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X = A*/Tx is the reflection ofX . It is the well known fact (cf. Bers [2])aththe
map

Belt('x, A) x Belt(l'x, A*) — Belt(l'x)
defined by [, v) — u + v descends to the canonical homeomorphism
Q: T(S) x T(S) — QF(S).

We remark that the Bers slicBy  defined in Subsection 2.3 islequ@({X} x T(S)).

Recall that the holonomy representatipn1(S) = I'y — G is induced by the
developing mapf A — Q0(G). For 1 € Belt(G, 0(G))1, the pull-back f* . of u by
f is defined by

f'(@)
f'@

Since f descends to an isomorphigwiT'y — Qo(G)/G, the map

fru@) =po f(2)

1 Belt(G, Q0(G))1 — Belt('x, A);

defined by — f*u is an isomorphism. This is the reason why we can de-
fine the action onCy but cannot o@ix. We denote the inverseft)! of f* by

fe: Belt(Tx, A)y — Belt(G, 20(G))1. Then, it was shown by Maskit [21] (see also
Kra [17]) that the mapf.: Belt(l'x, A)y — Belt(G, Q0(G))1 descends to an un-
branched covering map

S T(8) — QCo([p])

with f.(X) = [p]. We use the notation

ac([e]. Y) = £(Y)

for any Y € T(S). Then the representation qg[[Y) € QCo([p]) can be regarded
as the quasiconformal deformation qf] [corresponding to the quasiconformal defor-
mationY of X inT (§). Note that qcfll, X) = [p] and that gc(p], Y) € Cy for all

Y € T(S).

2.5. The action of the mapping class group. Now we define the action of

Mod(S) on Cx by

o([p]) = ac(lpl. o *X) 0 0t

for [p] € Cx and o € Mod(S), whereo, is the group isomorphism of1(S) induced
by o. Since p'loo; ! € C,y for any [p'] € Cy andY € T(S), one can see that([p])
also contained irCx .
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Fig. 1. The action of the mapping class group

Let take p] € Cx and o € Mod(S) and put p’'] = o([p]). Then ke’ = o, (kerp)
is satisfied. Therefore, if ker# o.(kerp), o([p]) is not a quasiconformal deformation
of [p] and hences([p]) is not contained in the connected componentCgf containing
(o]

Here we explain that the action of Mafl( ) on the Bers sliBg C (x) de-
fined above coincides with the action on the Teichmullercepa(§) under the iden-
tification By = T(S) (see Fig. 1). The mapping class group M®&d( ) acts Bn
o({X} x T(S)) by o(X,Y) — O(X, oY) for Q(X,Y) e Bx and o € Mod(S). Now
we put [p] = Q(X,Y) and are going to show thad X( aY) = o([p]). By def|n|t|on
o(lp) = ac(lp]. o071 X) 00t = Q07 1X, Y)oo Ll SinceQ ¢X,0Y)= Q(X,Y) oo,
holds for any &,Y) € T(S) x T(S), one obtain the desired equatiap X (Y)
0@ X, Y)oo L.

3. Continuity of the action of the mapping class group

In this section, we obtain a sufficient condition fg#] [ Cx so that the action
of Mod(S) at [p] is continuous. The same result, whefg is replacedBRy was
obtained by Bers [4].

We first show the continuity for the change of base points.

Proposition 3.1. Let [p, G] be an element oCx such that all components of
Q(G)/G except forX = Qo(G)/G have no moduli of deformation. Then the follow-
ing holds If [p,] — [p] in Cx thenqc([p.], ¥) — ac([p], Y) in Cy for all Y € T(S).
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Proof. Lety, andy be elements irC I{x ) such that hg)() = [p,] and hol) =
[p], respectively. SinceC I{x ) is compact and the map WJ(I"'x) — R(S) is in-
jective, v, — ¢ in C(Tx). Let (f,, p.) @and (f, p) be normalized projective struc-
tures for ¢, and ¢, respectively. Thenf, converges t6  locally uniformly an
Let u € Belt(T'x, A); be a representative df € T(S) = Belt(Tx, A);/ ~. We may
assume thap is continuous function omA . Put, = (fu).p € Belt(G,, Qo(Gn))1
and ;7 = fou € Belt(G, Qo(G))1, where G, =p,(71(S)) and G = p(m1(S)). Since
{wp,} fix 0, 1 and oo and their dilatations are uniformly bounded, it has a subse-
quence (which we denote by the same symHad), } converging uniformly to some
quasiconformal homeomorphism,, of C. Since the representatives of qg(, ¥) are
induced byw;, o f,, {ac([p.], Y)} converges algebraically to the conjugacy class of
the representation induced hw,, o f. Therefore, we have only to show that,, and
w; induce the same group isomorphism fr&&n  into R&L).

Since injectivity radii (with respect to the Poincaré nweton A) of f, are uni-
formly bounded below (see [18, Lemma 5.1]), for ang Q0(G), there exist an open
neighborhood of; and suitable branches of the inverse nfaps and =% on U
such thatf, ! converges tof ! uniformly on U. Hence one can see that ¢on-
verges top"locally uniformly on Qo(G). Therefore,w;, o (wz)~! converges to a con-
formal map ws o (w;)~1 locally uniformly on w;(20(G)), and hence, the Beltrami
coefficient ofw., is equal toy”almost everywhere of®(G). Since there is no essen-
tial deformation onQ2 G )} Q20(G) by assumption and oA G( ) by Sullivan’s rigidity
theorem [27],w., andw; induce the same group isomorphism. ]

Corollary 3.2. Let [p, G] be an element ofCx such that all components of
Q(G)/G except forX = Qo(G)/G have no moduli of deformation. Then the action
of Mod(S) is continuous afp]; that is if [p,] — [p] In Cx thenao([p.]) — o([p]) for
all o € Mod(S).

Proof. By Proposition 3.1, qgg}], c~*X) — qc([p], c~1X) for all & € Mod(S).
Therefore, o([p,]) = ac([pa], 07 1X) o 0.~ converges algebraically te([p]) =
qc([p], c71X) 00, L. O

Remark. In [13], Kerckhoff and Thurston showed that there is a BdiesBx
and a point p] € 9By at which the action of Mod{ ) is not continuous.

4. Thurston’s compactness theorem

In this section, we introduce Thurston's compactness #raof28], which will
play an important role in the following sections.

Let M be a compact 3-manifold with boundaty/. A non-trivial closed curvey
on oM is said to becompressibléf it is null homotopic in M ; otherwise it igncom-
pressible A proper mapf : 4, JA) — (M,OM) of an annulusA intoM is said to
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be essentialif f.: m1(A) — w1(M) is an injection andf is not homotopic (as a map
of pairs) to a map int@M.

DeriniTioN.  Let M be a compact 3-manifold with boundatyW. Let \ be a sys-
tem of non-trivial, mutually disjoint, homotopically digtt simple closed curves on
OM. Then a pair ¢, \) is doubly incompressibléf
(1) every compressible simple closed curve @V intersects)\ at least three times,
(2) there are no essential annuli with boundaryi®¥ — X\, and
(3) every maximal abelian subgroup of(0M — )\) is mapped to a maximal abelian
subgroup ofry(M).

Let M be as above. In addition, we assume that the interioMof mitada hy-
perbolic structure. We denote byH M( ) the space of conjugaagses 4, G] of
discrete faithful representations. m1(M) — G C PSLy(C). The spaceAH M ) is
equipped with the algebraic topology. Letbe an incompressible closed curve oM.
For [p, G] € AH(M), length,(7) denotes the length of the geodesic representative of
7 in the hyperbolic manifoldH3/G if p(v) is loxodromic and lengtf(~) = 0 if p(v)
is parabolic. For a positive constakt > 0, we denote byAH M, )\, K) the set of el-
ements p, G] € AH(M) such that lengtf(\) < K, where lengt)(}) is the total sum
of the lengths of all components of

Now we can state Thurston’s compactness theorem:

Theorem 4.1 (Thurston [28]). Let M be a compacB-manifold with boundary
OM whose interiorint(M) admits a hyperbolic structure. IfM, \) is doubly incom-
pressible then AH(M, A, K) is compact for allK > 0.

Let S be an oriented compact surface possibly with boundestyA curve system
A = {a;}¥; on § is calledhomotopically independerit it has the following proper-
ties: (1) eachy; is a simple closed curve off andNca; =0 fori # j, (2) eachq;
is non-trivial and not freely homotopic to a componenta, and (3)«; is not freely
homotopic toc; if i # j. A homotopically independent curve systexr= {aj}?’zl on
S is maximalif it divides S into pairs of pants. (IfS is a closed surface ofnge g
with n open discs removed, theN %3 3 +n.) A pair (\, \') of maximal curve
systems onS is said to bieinding S if they have no curves in common and if each
component ofS — (AU )\’) is a simply connected domain or an annulus containing a
component ofdS in its boundary after realizings and \' by geodesics for a hyper-
bolic structure onS .

The following lemma is discussed in a more general settin@lishika [25].

Lemma 4.2. Let S be an oriented compact surface possibly with boundasy
Let (N, \) be a pair of maximal curve systems which birffls . For this ,pag de-
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fine a maximal curve systeton 9(S x I), where I is the closed intervdD, 1], as

1

A=\ x {0Hhu ' x {1Hu (85 X {E})

Then(S x I, )\) is doubly incompressible.

Proof. We only consider the ca$ks # (), since the proof of the cas@S =0 is
easier. If0S # 0, then S x I is homeomorphic to a handlebody,  of some gepus
We identify S x I with H, via this homeomorphism. We first check the condition (1)
in the definition of double incompressibility. Let be a compressible simple closed
curve on9dH,. Since S x {0} and S x {1} contain no compressible curves, must
intersect a component a@fS x {1/2}. If i(v, \) < 2 (herei (, -) denotes the geometric
intersection number), one can easily see that there existsn@onent of 95 x {1/2}
and a componenW  adH, — ((\' x {0})U (A x {1})) homeomorphic to a four-time-
punctured sphere such thatu § ¢ W andi ¢, d) = 2. Let & and 5 be components
of OW such thate, 8 and~y bound a pair of pant§” . Then, after choosing suitable
orientations ofc, § and~, we have §] = [a]+[5] in Hi(0H,, Z), where f] is the ho-
mology class ofy and so on. Since)(, \”) binds S, ([a],[3]) are rank2 free abelian
subgroup ofH1(0H,, Z) which is mapped intaH1(H,, Z) injectively. This contradicts
the assumption that is null homotopic and hence null homologous.

Now we check the condition (2). Suppose that there existsssengial annulus
f: (A, 0A) — (Hy, OH,) with boundary in0H, — A. Let v and~’ be the components
of the image ofdA in dH,. Since ¢ U~+') N (0S x {1/2}) = 0, v and ' may be
assumed to be contained i§ ¥ {0})U (S x {1}). Let p: S x I — § be the canonical
retraction. Thenp ) is homotopic top 4’) in S. Since ¢, \’) binds S, bothy and
~ are contained inS x {0} or S x {1}. Now the retraction above gives a homotopy
betweenf and a map intOH,. This is a contradiction.

Finally, we check the condition (3). Since all non-trividbedian subgroups of
m1(0H, — X) or m1(H,) are isomorphic toZ, we have only to show that all primi-
tive elements ofr1(0H, — \) are also primitive inm1(H,). This follows from the fact
that H, is homotopically equivalent t§ by the retraction. U

5. Orbit density for maximal cusps

Let [p] € By. The accidental parabolic locuf [p] is a homotopically inde-
pendent curve system = {«a;} on S such thatp(e;) is (the conjugacy class of) a
parabolic element oG  =p(w1(S)) for every j, and no simple closed curve which
is not homotopic to a component of has this property. Forpg] € By, its acciden-
tal parabolic locus is uniquely determined up to homotopy. élement j] € By is
called amaximal cuspif its accidental parabolic locus is maximal. It is a well kvro
fact that every maximal cusp is contained @By and that, for any maximal curve
system\ on §, there exists a unique maximal cusp whose accidentabglizdocus
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is A (see Abikoff [1] and Maskit [20]).
For a simple closed curva on S, let D, € Mod(S) denote the Dehn twist once
arounda.

Proposition 5.1. Let (), \’) be a binding pair of maximal curve systems on
S. Let [p] € OBx be a maximal cusp whose accidental parabolic locus\fs Put
0 = Doy 0+ 0 Dy, € Mod(S), where ) = {a;};. Then the sequenclr”([p]) }rez
converges to the maximal cu$p.,] € 9Bx whose accidental parabolic locus ¥ as

In the proof of Proposition 5.1, we will make use of the follogy two lemmas;
the first one is due to Canary [6] and the second one is a wellvkrtechnical lemma.

Lemma 5.2 (Canary [6]). Given A > 0, there exists a constarR > 0 such that
if G is a non-elementarytorsion-free Kleinian group such that every incompressibl
closed geodesic ol = Q(G)/G has hyperbolic length at least, then for any closed
curvey on I,

lengthy ) < R - length; 6),

wherelengthy ¢) andlengthg, ¢) are hyperbolic lengths of geodesic representatives of
v in N =H3/G and in , respectively.

Lemma 5.3. Let F, be a rank2 free group and let{x,: F» — PSLy(C)} be a
sequence of discrete faithful representations which agesealgebraically toy... If a
sequencex’ =, -xn -1, 1} also converges algebraically tg’_ for a sequenceg,}
in PSLy(C), then, converges to some element, in PSLy(C).

Proof of Proposition 5.1.  Our argument is almost paralleltitat of Kerckhoff
and Thurston [13] (see also [5]).

Since Cx is compact, the sequenfl,] = o"([p]) }.cz has a convergent subse-
guence. We also denote this subsequence by the same symbatt,| in the follow-
ing argument, we can see that any convergent subsequer¢g,df.cz converges to a
unique maximal cusppl.], and hence{[p,]}.cz converges without passing to a sub-
sequence.

On the other hand, we shall show that the sequefigg] = qc([p], o "X)}nez
also has a convergent subsequence. Recall AtfatS x [) is the space of conjugacy
classes of discrete faithful representatiopsmi(S x I) — PSLy(C). We denote by
AHys(Sx1I) the set of representationg][€ AH(SxI) such thaty(g) are parabolic for
all g € m1(0S x I). Then we can regard Hys(S x I) as a subset of the representation
spaceR § ). Now we have a sequend@,]}.cz in AHps(S xI) C R(S). Let X be the
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maximal curve system oa(S x I) defined by

A=V x {0 U x (1)U (as y {%})

Then S x I, \) is doubly incompressible by Lemma 4.2. We can see that theesee
{[pn]}nez is contained iNAH § x I, \, K) for someK > 0 since we have

1
length; (A" x {1}) = length;, (85 . {E}) -0
and

length; (A" x {0}) < R -length, _.x(\ x {0}) = R - length, (\" x {0})

from Lemma 5.2. SinceAH S(x I, A\, K) is a compact subset idH S(x I) by Theo-
rem 4.1, we have a convergent subsequencg[of]}.cz in AH(S x I) and hence in
AHys(S x I) C R(S). Again, we denote this subsequence by the same symbol.

Take representatives, of [p,] = o"([p]) so that the sequencgp,} converges to
a representation... Since p,] = o"([p]) = qc([p]l, c7"X) o 6" = [pa] 0 ", we
may assume that, = p, o o”. In addition, there are elements, € PSL;(C) such that
the sequenced, - pn - ¥, -} converges to a representatipn,, since {[p,] }rez is a
convergent sequence.

Now let o be a component of’. We are going to show that,.(«) is a parabolic
element. LetT be a component 6f— )\’ containinga in its boundary andy/'(# «)
be a component oA’ or a component obS contained in the boundary & . Choose
a base pointc i’ and regareh(S) = m1(S, x). By abuse of notationg and o’ also
denote the elements afi(S, x) freely homotopic toar and o’ respectively. Moreover,
we assume that (the representatives @f)a’ € w1(S, x) contained in7 . Note that
(a1, ap) is a rank 2 free subgroup ofy(S, x). Since p,(«) = p, o o”(a) = pu(c) and
pu() = py o o™ () = pu(d), the elements), € PSL(C) may be taken to be the
identity by Lemma 5.3.

One can find non-trivial elementg;, v2 € mi(S, x) which satisfy the following
conditions (see Fig. 2): (1); intersectsa twice in the opposite direction fof =1 2,
(2) ~; does not intersect any other components\offor j = 1, 2, and (3)(y1, v2) is
a rank2 free subgroup ofy(S, x).

Then we have

{ Pn(71) = pa(@) - pu(72) - pu(™),
Pn(72) = pu(@™) - pa(72) - pu(™").

Since both the sequencdg,} and {p,} are convergent sequence, Lemma 5.3 again
implies thatp, (o) converges to an elementifi PSLy(C). Sincep,(«) commutes with
pu(™) for all n, po () commutes witha” If the abelian subgrougp..(«), &) were
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Fig. 2. v and~;

isomorphic toZ, then po.(a*) = & for some integerk and , and thys(a'—*) —

id. This contradicts the fact thap,[] are discrete faithful representations (cf. Jgargensen
[12, Lemma 2]). Therefore we conclude thagt. (), &) is isomorphic toZ @ Z, and
hence it is a rank2 parabolic subgroup in B&L). In particular, p~(a) is parabolic.
The same argument works well for all components)\af Therefore we can conclude
that [po] is @ maximal cusp whose accidental parabolic locug’is ]

Lemma 5.4. For any two maximal curve systems= {a;}L; and X' = {3;};
on S, there exists a maximal curve systen¥ {v; ?’:1 such that the pairg)\, v) and
(v, X') are binding S .

Proof. There exists a simple closed cutveon S such thati {, «;) > 0 for all
J (see [8]). Putoc = D, o---0 Dg,. If i(3;,\) = 0 theng; = a; for somei and
hencei (;, 0"(6)) > 0 for all n. If i(3;, \) > 0 theni (3;, ;) > O for somei . In this
case,i (;,0"(8)) > 0 for all but finitely manyn . Therefore, for sufficiently large
i(Bj,0"(6)) > 0 holds for all j . Fix suchw and let; = ¢"(5). Choose simple closed
curvesy,, ..., yy S0 thatv = {yj}j?’zl is @ maximal curve system. This satisfies the
desired condition. O

It was shown by McMullen [24] that the set of maximal cusps ésk in0By.
Since the number of ways to decompoSe into pairs of pants ughdoaction of
Mod(S) is finite, the set of maximal cusps mBy decomposes into finitely many or-
bits under the action of Mod( ). The next theorem shows #wath orbit is dense in

Theorem 5.5. For any maximal cusfip] € OBy, its orbit {o([p]) } »emod(s) Under
the action ofMod(S) is dense in0By.

Proof. Since the set of maximal cusps is densediBy, we have only to
show that, for arbitrary fixed two maximal cuspg] [and [/] in OBy, the orbit
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{o([p]) }remod(s) Of [p] contains a sequence converging @][ Let A and X' be ac-
cidental parabolic loci for 4] and [p’], respectively. Then we can find a maximal
curve systemy = {7,-}?’:1 such that both the pairs\(v) and §, \’) are binding$
(Lemma 5.4). Put = D,,0---0D,, andr = Dg,0---0Dgs,, where\' = {3;}'L,. Then
o"([p]) converges to a maximal cusp']] € 9By whose accidental parabolic locus is
v by Proposition 5.1. Similarly~"([p"']) converges to §']. Since the action of Mod{ )
is continuous at maximal cusps (Corollary 3.2), we can findesirdd sequence by a
diagonal argument. ]

6. Orbits of Schottky groups and Bers boundary

In this section, we assume th&t is a closed surface of gen2isWe denote by
Sx the set of p, G] € Cx such thatG is a Schottky group. The aim of this section is
to prove the following theorem.

Theorem 6.1. Let S be a closed surface of genas2. For any X € T(S), the
set of accumulation points &y  contains the boundaBy of the Bers sliceBx .

RemArk. It is known by Gallo [9] that there is an accumulation poirit $x
which is not contained irWByx. This fact can be seen also from a slight modification
of the proof of the above theorem.

In the proof of Theorem 6.1, we need the following lemma whidre a sufficient
condition for an elementg] € Cx to be contained irdBy.

Lemma 6.2. Let S be a compact surface of hyperbolic type possibly withndeu
ary. Let X € T(S), [p] € Cx and A = {«;} be a maximal curve system ah . If
p(a;) are parabolic for all j, then[p] is the maximal cusp if®Bx whose accidental
parabolic locus is\.

Proof. We have only to show thap][is a faithful representation. Suppose that
p: m1(8) — G is not faithful. Then the covering map o(G) — X = Qo(G)/G
is not universal, where&2y(G) is the unique invariant component ¢f . Then, by the
planarity theorem (see [22], X.A.4), there exist a nonifisimple closed curvé on
X and a simple closed curvé on Qo(G) such thatp | 5.6 — & is a finite-sheeted
covering map; say -sheeted. Lgte G be a generator for the stabilizer ofin G.
Since \(C X) is maximal andd is not parallel to a component of, it follows that
0 must intersect some component ®f say ;. We may assume that the number of
intersection points of and «; is equal toi §, o). Let &1 be a connected component
of p~*(a1) on Qo(G) which intersects). Let 1 be a parabolic element which is con-
jugate top(aq) in G and stabilizingai. By adjoining the fixed point ofi  toxg, we
obtain a simple closed curve, which dividésinto two domains. LetD be one of the
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two domains such thaD satisfiegd N g(D) = (0 if k > 1. Let n; be a connected
component ofD N 5 _and § be the arc ina1 which connects the end points of. Let
51 =1, U B and letd, be the closed curvé with 71, g(), ..., g8 ~1(n1) replaced by
B, g(B), . ..,gk l(ﬁ) Then, forj =1, 2,5, projects to a simple closed curde on X
such thatp | 5 5 — ¢§; is a finite-sheeted covering map. Moreover, note that, X)
is strictly less than' & A) for j =1, 2. Sinced is non-trivial andd = 61 - d, either 4,
or &, are non-trivial. After a finite number of steps as above, wé&ioba non-trivial
simple closed curve? such thati §’, \) = 0 and that, for a connected componeéht
of p~1(¢), p | 8': & — & is a finite-sheeted covering map. This is a contradiction.
O

Proof of Theorem 6.1. Lef be a closed surface of gepus2. Let [p, G] be
an element ofSy . We claim that there exists an elemerg Mod(S) such that the
sequence{c”([p]) }.cz converges to some maximal cusp.]] € dBx as |n| — oc.

If it has been shown, the similar argument in Theorem 5.5alsvéhat the claim of
the theorem holds: In fact, for any element][€ 0By, there exists a sequende, }

in Mod(S) such thatr,([p~]) converges to 4'] by Theorem 5.5. Since the action of
Mod(S) is continuous at maximal cusps (Corollary 3.2), we &fiad a sequence iifx
which converges to/] by a diagonal argument.

Now we will show that there exists an elememtc Mod(S) such that the se-
quence{c"([p]) }.cz converges to some maximal cusp.]] € 9Bx as |[n|] — oc.
(Most of the following argument is similar to that of the pfoaf Proposition 5.1.)
Note that the Kleinian manifoldvs =HZ U Q(G))/G is homeomorphic to a handle-
body H, of genusg whose boundatyH, is homeomorphic toS . Under the iden-
tification G = m(H,), we have a proper embedding AH H{ -» R(S) where
¥ maps the conjugacy class of: m1(H,) — PSLy(C) to the conjugacy class of
x op:m(S) — G = m(H,) — PSLy(C). By identifying AH (H,) with its image
V(AH(H,)), we regardAH H, ) as a subset & S ( ).

Let ¥ be a compact oriented surface with bound&y such thatX x I is
homeomorphic toH, . (For example, |& be a closed disk with  ogisk re-
moved.) We can find a pairA\(, \'/) of maximal curve systems o  which binds
% (cf. Lemma 5.4). Using this pair, we define a maximal curvetesys\ on § =
J(X x I) = 0H,, as

A=V x {0 U x (1)U (az y {%})

Then (Hy, M) is doubly incompressible by Lemma 4.2 and hemtH H,,(\, K) is
compact by Theorem 4.1. Put= Dy, o--- 0 D,, € Mod(S), whereX = {a;}).;. Now
we consider the sequendgp,] = qc([p]l, o "X)}.ez In AH(H,) C R(S). Then we can
see that the sequend§p,]}.cz is contained in a compact sétH H{, A\, K) C R(S)
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for someK > 0 since we have

length; (\) < R -length, —.x(\) = R - lengthy ().

from Lemma 5.2 for somek > 0. Therefore the sequendé¢p,]}.cz has a convergent
subsequence.

On the other hand, sinc€x is compaéfp,] = o"([p])},cz also has a con-
vergent subsequence. Take representatiye®f [p,] = o"([p]) so that the sequence
{pn} converges to a representatipn,. Since p,] = [p,] o 0", we may assume that
pn = pn oo, In addition, there are elements, € PSLy(C) such that the sequence
{0 - pn - a1} converges to a representatipn..”

For any component of A\, we claim thatp..(«) is a parabolic element. But this
can be seen from the same argument in the proof of Propoditibn Therefore, we
leave the proof to the reader.

Since po.(«) are parabolic for any component of A, we can conclude thaif]
is a maximal cusp iNOBx whose accidental parabolic locus ls by Lemma 6.2.

O

7. Some property of the set of Schottky groups

Let S be a closed surface of gents2. In this section, we collect some property
of Sx which can be easily seen. For a representatiasf 71(S) onto a Kleinian group
G, we denote byN; its Kleinian manifoldH® U Q(G))/G.

Lemma 7.1. The mapping class grouMod(S) acts onSx transitively that is
Sx = {o([p]) toemoas) for any [p] € Sx.

Proof. Let [p1, G1] and [p2, G2] be arbitrary two elements ofx . Then there
exists a homeomorphistWg, — Ng, such that the restriction of this map to the
boundaries is a quasiconformal m&p(G1)/G1 — Q0(G2)/G2. Now one can see that
[p2] = a([p1]), where o € Mod(S) is the isotopy class of a homeomorphism $f  in-
duced by the quasiconformal map. O

A Kleinian group is calledgeometrically finiteif it has a finite sided convex fun-
damental polyhedron i3,

Lemma 7.2 (Hejhal [11], Matsuzaki [23]). Each elemenfy] € Sx is an isolated
point in Cx. On the other handf a torsion-free geometrically finite elemerip] € Cx
is isolated inCy, then[p] € Sx.

Proof. The first statement is due to Hejhal [11], who showeat #my element
[p, G] € Cx such thatG is a Schottky group is isolated dh. Conversely, let take
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an element ] € Cx which is isolated inCx . Since the same argument of Lemma 2.1

reveals thatCxy — Cx is closed, j] is also isolated inCy. It was shown by Mat-

suzaki ([23, Theorem 3]) that, if a torsion-free, geomeltic finite element j] € Cx

is isolated inCy, then ] is a Schottky group. Thus, the second statement is proved.
O

RemARrRk. In Matsuzaki [23], obtained is a necessary and sufficientitmn for a
(not necessarily torsion-free) geometrically finite elamef Cx to be isolated inCx.

For [p] € Sx, the following lemma gives a characterization of the eletnesf
Mod(S) which stabilize p].

Lemma 7.3. Let[p, G] € Sx and o € Mod(S). Then the following are equiva-
lent
@) oD = [pl,
(2) o.(kerp) = kerp, and
(3) o can be extended to a homeomorphism of the Kleinian manNgldwhere o is
regarded as a homeomorphism Bf= ONg.

Proof. (1) = (2) and (3) = (2) are trivial. (2) = (1) can be seen from
Matsuzaki [23, Theorem 2] and Lemma 7.2. We will show that £2)3). Let (f, p)
be the projective structure corresponding . (We may assume that: X — X is a
qguasiconformal map. Let:"A — A be a lift of 0: X — X. If o.(kerp) = kerp, then
¢ descends to a quasiconformal map f(A) — f(A), because the covering group
fi A — f(A) is kerp. SinceG =p(m1(S)) is geometrically finite and2 @ ) 5 A ),
Marden’s isomorphism theorem [19] implies thatcdn be extended to @ -compatible
quasiconformal automorphism . This quasiconformal map can be extended to a
G-compatible homeomorphism ®f3UC, which descends to a homeomorphismNyf
(cf. [7]). U
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