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1. Introduction and results

A stochastic proces$X, : t+ > 0} on R?, which is defined on a probability space
(2, F, P), is said to be a selfsimilar additive process with expongnt O if it satis-
fies the following conditions:
(i) {X.} and{c?X,} have the same finite-dimensional distributions for every 0,
(i) X,— X4, Xi, — X4, ..., X, — X,,_, are independent for any and any choice of
O0<rh<t<ty<- - <ty
(iif) alomost surelyX, is right continuous in> 0 and has left limits irv > 0.
We can derive the sample function behavior of selfsimiladitite processes with ex-
ponentH from those with exponent 1 by using their selfsintijaHence, throughout
this paper we only consider a selfsimilar additive procgxs} on R! with exponent
1. The distribution ofX; is self-decomposable. Thus its Lévy measure is repredente
ask ( )/|x| dx, wherek § ) is nonnegative decreasing ong® and nonegative increas-
ing on (—00,0), and [5,(1 A |x|?)k(x)/|x| dx < co. We use the words “increase” and
“decrease” in the wide sense in this paper. From now on we aagphat both the
Gaussian covariance and the drift X,} are zero andfmglk(x) dx < oo, that is,
that the characteristic function of; is represented as

Px,(z) = / '™ Py, (dx) = exp [/ (e — 1)@ dx|,
R1 Rl |x|
where k ) > 0, k(x) is decreasing on (Bc) and increasing on oo, 0), and
Jra(@ A [xk(x)/|x| dx < co. Here we denoted the distribution &fy by Px,.

We have investigated recurrence-transience for selfsimddditive processes
(see [11], [16], and [17]). However, the attempt has not beempletely successful
so far. In order to achieve this aim, we need to get imfornmaadout their sample
function behavior. Hence we study growth of their samplecfioms as time tends to
infinity. There is a precedent for this study, but it only dewalith increasing selfsimilar
additive prcesses (see [14]). Even in the case of Lévy gsaorR?, growth of sam-
ple functions is not known under general assumption, butespapers deal with the
case of subordinators and of symmetric Lévy processeseffample, see [5], [6], [9],
and [7]). In order to solve this kind of problems, we need tueligp some techniques,



188 K. Y AMAMURO

and we shall suggest useful tools. One is to use the fisrt BGeaitelli lemma and
the generalization of the second Borell-Cantelli lemmae Dither is to use the distri-
bution of the hitting times with respect tpX,} to apply these lemmas. We can find
them being applied to strictly stable processes (see Goyoll1.3 and Theorem 11.5
in [8]). We note that strictly stable processes are onlyyLpwcesses which are self-
similar additive processes. These tools might be more ugefilne future. In addition,
we shall devise some method which does not need the Borelielidemmas.
We state the limsup behavior of the selfsimilar additivecesses{ X, }.

Theorem 1.1. Let h(¢) be an increasing positive measurable function [&noo)
and leth(t)/t be increasing. Suppose thafx) > 0 for all x € R\ {0},

(1.1 lim supk(pox) < 1 for somepg > 1,
|x|— o0 k(x)
and
(1.2) ‘Iir‘ninf kk((px) >0 for everyp > 1.
x|—o0 X

(1.3) /loo {k (@) +k (—@)} ? < oo (resp. =00),

then we have

im suplX! = .
(1.49) “,rEEOUph(t) =0 (resp. =x) a.s.

Corollary 1.1. In the same setting as imheorem 1.1,there does not exist a
function i(¢) such that

. X
Ilmsup| i =1 as.

t—oo h(t)

ExampLE. If |x|*k(x) is slowly varying atd+oo for somea > 0, then (1.2) holds.
In particular, if o > 0, we have limy_ . k(pox)/k(x) < 1 for any po > 1. This means
that (1.1) holds. Such important examples are strictly Istginocesses with index,
where 0< a < 1.

Remark 1.1. The paper [14] deals with the case whére () = 0 enc(0)
with respect to this problem. It has the assumption that 4 QR. This assumption
corresponds to the conditioh x ( )k+—§) € OR in the case wheré x( ) 0 for all
x € R\ {0}. Our conditions (1.1) and (1.2) are stronger than it.
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Remark 1.2. In [15] recently Toshiro Watanabe has shown the folgwiSup-
pose thaty is an infinitely divisible distribution with Lévy measure. Let u*(r) =
p({x € R? : |x| > r}) andv*(r) = v({x € RY : |x| > r}). If v*(r) € OR, then it
follows that O< liminf, . p*(r)/v*(r) <limsup._, . u*(r)/v*(r) < co.

Using this, we can show the same result as Theorem 1.1 in tbe where the
characteristic function o is represented as

k
ﬂdxﬂ'wz

Ee™ = exp [—Tlazz + | (€ = 1—izxly <y (v)) x|
R!

Herea > 0 andy € R™.

Let A =k(0+) +k(0-). If A < oo, then we define the functiod x( ) on,(&) by

1
(x A1) exp [/ A = ku) = k(zu) du]
xA1

u

b ok(u) + k(—u)
exp [— /XM - du] .

We state the liminf behavior of the selfsimilar additive peeses{ X, }.

K (x)

Theorem 1.2. Let 0 < A < oo. Suppose thati(r) is a strictly increas-
ing positive measurable function dd, co), and that i(¢)/t is decreasing. Further-
more in the case whereA > 1, we suppose the following additional condition
limsup_, k(%) /h(t)* < oo for somea > 1.

If

(1.5) / K <@) ? = oo (resp.< o),
1

then we have

(1.6) lim inf |h}§t[)| =0 (resp. =) a.s.

Corollary 1.2. In the same setting as iffheorem 1.2,there does not exist a
function i(¢) such that

X, _

liminf 1 as.
11— 00

Remark 1.3. With respect to this problem the paper [14] assume khe} =(0
on (—oo, 0) but does not that limsup  A(t*)/h(1)* < oo for somea > 1 in the
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case where\ > 1. It is important progress that we do not assume the supgot(x)
is contained in either-{oo, 0] or [0, co).

Remark 1.4. Leth¢) = 2— ¢~ Then, from Theorem 1.2, we can obtain that
{X,} is transient in the case where<® A < oo. This fact has been already shown
in [16].

Remark 1.5. If h(r)/t is increasing, then it follows that

| X4 | X |
> Colimsup—

t—00 t—o00 h( )

If h(7)/t is decreasing, then it follows that

L X;
I|m|nf| |>CI|m|nf

>
1—00 h(t) 1—00 0.

| X4
t

Here Cy and C; are positive constants. Therefore our results show hoverdifft sam-
ple function behavior of a selfsimilar additive processrisni the strong law of large
numbers.

To give an example, letv > 1, and letk £ ) =x"* A2 if x > 0 and letk £ ) =
|x|7* A1 if x < 0. Choosingk ) = , we have limspp_, |X;|/h(t) = oo a.s. from
Theorem 1.1 and liminf,. |X,|/A() = 0 a.s. from Theorem 1.2. By the way, {;}
is a Lévy process whose distribution at time 1 is identicghwPy,, then we have

im 2= [ = [ xR

by virtue of [10] Theorem 36.5.

e _1) as.

2. Proof of Theorem 1.1

First, we prepare some lemmas.

Lemma 2.1. Lete > 0. Then it follows that

0<s<t 0<s<t

2.1) P ( sup |X,| > 36) <3 sup P (|X;|>e).

Proof. LetZi, Z>,...,Z, be independent random variables. Bt >=_; Z;
for k > 1. Then it follows that

P ( max |Sk| > 35) <3 max P(|Sk| > ).
1<k<n 1<k<n
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Indeed, this is shown by using [10, p. 126] Lemma 20.2. HemaseX, is right con-
tinuous and{X,} has independent increments, we can obtain (2.1). [l

The following lemma is found in [4, p. 574].

Lemma 2.2. Let F be a distribution function ofD, co). Suppose that' is abso-
lutely continuous with density . Then if the functior— exp{xf(x)/(1— F(x))} f(x)
is integrable on[0, c0), then F is subexponential.

The following lemma is found in [3] or in [4, p. 581].

Lemma 2.3. For F infinitely divisible on[0, co) with Leévy measure, it follows
that (1, x]/v(1, o) is subexponential if and only Ifm,_ (1 — F(x))/v(x, c0) = 1.

Lemma 2.4. Suppose that(x) > 0 for all x € R\ {0}. If we have
(2.2) lim inf k(”—o’)c) >0
X—00 X

for somepp > 1, then it follows that

2.3) 1 < liminf -L&1>%)
x=oo [V k(u)u—tdu
and
P(X1— X, 1 > x)
(2.4) 1 < liminf 0

w0 k() — K(pou))u—du’

In particular, if po =2, then we have

(2.5) lim sup P(X1 > x)

—— < .
xX—00 f2*1x k(u)u—ldu o

Remark. Let x > 0. We note that the lemma holds again with-u{) in place of
k(u) with respect toP £X; > x).

Proof. LetX; have the decompositioX, = Z; + Z, + Z3 such that
Pz, (z) = exp [/ (e — 1)k(x)x_ldx} ,
1

~ 1 .
Pz,(z) = exp [/ l(e’” — 1)k(x)|x|_ldx] ,
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~ 71 .
Pz,(z) = exp l/ (e — 1)k(x)|x|*1dx .

Now we notice that

(2.6) P(X1>x) > P(Z1> 2x)P(Zy+ Z3 > -2 1x),
2.7) P(X1>x) < P(Z1>2Yx)+ P(Z2 > 27 ).
Here (2.7) was shown sincés; < 0 a.s. From (2.6) we obtain that
P(X1 > x)

P(Z1 > 2x)

_ P(X1>x) y Jor k(u)u=tdu
L kutdu © P(Z1 > 2x)

(2.8) P(Zy+Z3>—-2"1x) <

From (2.2) we have

> k(x) k(x)
/1 exp{ [ k(u)u—ldu} x [0 k(u)u—tdu dx
> k(x) k(x)
= /1 exp{ k(pox) fxpox u=ldu } X floo k(u)u=1du dx

> k(x)
< const.x — ) dx <.
1 x [ k(u)u=tdu

Hence the distribution functiorf, k(u)u=*du/ [ k(u)u=tdu on [1, ) is subexpo-
nential by virtue of Lemma 2.2. Therefore, as— oo in (2.8), we can get (2.3) by
Lemma 2.3.

Next, we shall show (2.4). The Lévy measure %f — Xp0_1 is (k(x) — k(pox))/
|x| dx. We have

oS k(x) - k(pox) k(x) _ k(pox)
/1 exp{ L7 (k(u) — k(pou))u—"du } x [ (k(u) — k(pou))u—Ldu dx

_ [~ k(x) — k(pox) k(x) — k(pox)
= /1 eXp{ fxpox k(u)u=tdu } X floo(k(u) — k(pou))u—tdu dx

0 k(x) k(x) — k(pox)
= /1 eXp{k(pox) fjoxuldu} T (k) — kot S

Hence, using Lemmas 2.2 and 2.3, we can get (2.4) in the sameasvave showed
(2.3).
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Lastly, we shall prove (2.5). From (2.7) we have

P(X1 > x) - P(Z1 > 27x) L Pz > 271x)

(29 Joou k@utdu =[5 k@utdu 5 k(utdu’

By virtue of Lemma 2.3 the first term in the above right-handesconverges 1 as
x — oo. And the second term is caluculated as follows: Sikce € PR, we have

Josi k(u)/udu € OR. And we haveP (Z, > 27%x) = o(exp(~axlogx)) for some

«a > 0 by virtue of Theorem 26.8 in [10]. Hence we get

supP (Z2>271x) _
- - < (6.9]
w2 [y, k() /udu

by the representation theorem for OR. Thereforex as ~o in (2.9), we can get (2.5).
We have completed the proof of the lemma. [l

The following lemma is found in [13, p. 317].

Lemma 2.5. Let E, be any sequence of events. If
> P(E)) =
n=1

and if for somec > 0

liminf > k=1 2om=1 P(Ex (N En) ..
n—oo (22:1 P(Ek))2 <ec,

then we have

P(limsupE,) > ¢!

n—oo

Lemma 2.6. Suppose that(x) > 0 for all x € R. If (1.1) holds then it follows
that

limsup

a— o0

(f;" kaxtdx 25 k(x)|x|_ldx> o

k(a) k(—a)

Proof. PutB & ) = sup., k(pox)/k(x). Now we have, for large enough

n+1

faoo k(x)xtdx
o W Z /p K@
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Zk() 10970

< Z B(a)"log pp < 0.

n=0

Here we calculated as follows: For large enough

kapg) _ kapg) klapg D) k(apo)
k@) k(aph D k(aph? k(a)

< B(a)" < 1.

In the same way we can also get

i S k(x)|x|tdx
imsup
a—00 k(—a)

The lemma has been proved. ]
Now we shall prove Theorem 1.1.
Proof of Theorem 1.1. (i) First, we shall consider the caserahhe integral

of (1.3) is convergent. Then we have Jim. h(t)/t = co. PUt M ¢) = sug,, |X;|.
Let e > 0. By Lemma 2.1 we have

> P(M(2") > 3eh(2h)

n=1
<3 sup P(|X,| > en(2'Y)
;O<s<2” | |
h(2"— 1
<32p(|x1|>€ ( ))

n=1
[eS)

< const.x Z/M - k(x)|x|"tdx +3(@ —1) =1, (say).

on+l

Here! is large enough and the last inequality was shown by Lezm. We notice

that
o dr
/ —/ k(x)|x|"tdx
1 U x>0

2n+1

>

dt
/ k(x)|x|"tdx
t h(2rtly
n=0 ‘X‘ € on+3

log 22/ g k(x)|x| tdx.

n=0

v
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Hence we have, foe < 4,

I < const.x /loo {k <e%> < hm) } — + const.
< const.></l { <h(t)> < h(t))} +const.< oo,

where the first inegaulity was shown by Lemma 2.6 and the tejdulity from (1.2).
By virtue of the first Borel-Cantelli lemma we have

1

P(liminf{M(2") < 3ch(2'")})

IN

P(iiminf{ sup |X,| < 3en(2'71)))

OO -1y

. X,
P | liminf su < 3e .
< n—oo {znlgxpgzn ]’l(S) -

lim sup|h)((‘v)|
5§—00 N

IN

Hence

<3¢ a.s.

As ¢ — 0, we can get (1.4).

(i) Next, we shall consider the case where the integral a3)(Is divergent. Let > 0
andc > 1. PutE, ={[Xy| < epg™, |Xpa — Xp| > ch(pg™) + epg*}. It suffices to
show that lim_,. P(limsup,_,  E,) = 1. Indeed, as we have

limsupE, C limsup{|X .| > ch(ps™)},

n—oo n— o0

it follows that

| |Xpn+1|
I,Sn_igph( iy = >c as.
As ¢ — oo, we have
Iimsup| x| =00 as.
s—oo h(S)

First, we shall show tha}_ 2, P(E,) = co. Now we have

o0
S PED = 3 PUX | < b PUX g — Xyl > el + g™
n=1 n=1

e h(pn+1
P(IX1| < epo) Y | P <|xl — X, 1l >ec e +e> =1, (say)
0

n=1
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If lim, o h(p)/pf < oo, then I = oo. Hence from now on we suppose that
lim,—oc h(p)/pg = co. By virtue of Lemma 2.4 we have, for large enoulghand /4,

oo L s
I > const.x Z/ o kx) — k(pox)
n=lp ‘X‘>2( ] e) |)C|

e
> const.x i / N h(p”? de
k
= const.x le/ "(‘j,":)<|x|<4po M) |(x|) x=J, (say)
Here, as we have
[ x> o) + (- pob) og
b<lx|<pob %]

for b > 0, it follows that, for large enougky,

e} n+1 h n+1
chonst.xZ{k(4pc (P )+k( Doc ('Zﬂ )}
Po Po

n_ll

h(p/1+1 h(pn+1
const.x Z { < 1 +k e

n=lp

e [ () ()
Po

Here the second inequlity was shown from (1.2).
Let n < m. Furthermore, we have

Y

Y

P(E" N E”‘) S P(En N {|Xp81+1 — Xpm| > Ch(pg”'l) + 6p6n+l})

P(En)P(|ng,+1 - m| > Ch(p6n+1) + 6p6n+1})
P(Em)

P(|Xp,,,| < 6pm+l

P

P(|X1| < epo)’

P(E,)

P(E,)

Hence, by Lemma 2.5, we have liminf,, P(limsup,_ . E,) = 1. The theorem has
been proved. O

3. Proof of Theorem 1.2

First, we prepare some lemmas.
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Lemma 3.1. Let A\ = k(0+) +k(0-) < oo. There is a positive consta@  such
that

P(|X1] < a) > CK(a)

for all small enougha > 0.

Proof. In the case wherke (0+) = 0 &r «D= 0, the lemma has been already
shown in [12, p. 298]. We shall prove the lemma in the case avh¢d+) (0-) > 0.
Define two distributionsu; and p by

/Zl(Z) = exp I:/O (eizx o )k(x) | |

respectively. K. Sato and M. Yamazato proved the followisge((5.7) in [12, p. 298]):
As x | 0, we have

dx| and uz(Z)—eXp[/ (¢ — 1)k(x) ]

11([0, x]) ~ C1x*C®IK4(x),
p2([—x, 0]) ~ Cox*O) Ky(x),

where C; and C, are positive constants and

) = o [ 1O,

Kals) = ox0 [ /1Mdu] .

u

We notice that the support qf; or py is contained in [0oco) or (—oo, 0], respectively.
Hence we can obtain that

P(|X1| < a) > p1([0, a]) po([—a, O])
~ C1C2K (@) asa — 0.

The lemma has been proved. ]

The following lemma was pointed out by K. Sato and M. Yamazéee
Lemma 2.4 in [12, p. 280]).

Lemma 3.2. If 0 < A < oo, then there is a constant M such that, foe R?,

|Px,(2)] < MK (|z]7Y).
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Here we introduce some terminology. From now on define thetiom g () on
[0, c0) by

el t>1
tet <1

(3. «w={
And we define a time-homogeneous transition functioh, y(B ) by

pl,y,B)=P Kgpsny — Xg) +x €T)

for h >0,y =, x) € [0,00) x RY, and B € B([0, o) x RY), whereT" ={z € R!:
(t+h,z) € B}. Let {Y;,} be the time-homogeneous Markov process with this tramsitio
probablity p &, y, B ). The procesg)} is expressed by a system of probability mea-
sures{P” : y € [0, 00) x R} on the space of paths on,[) x R!. The expectation
with respect toP” is denoted byE“. Furthermore denote by, the transition operator
of {¥,}. Refer to the paper [16].

Lemma 3.3. The procesdY,} is a Hunt process.
Proof. Denote byCy the real Banach space of continuous functions ardp x

R! vanishing at infinity with the norm of uniform convergencerFany f € Co and
y =(t, x) € [0, 00) x R, we have

Br0)= [ PUE)S+h Xyon — X +3).
Q
For eachr , almost surely the limit of,,) ass | ¢ is equal to the limit as 1 7, so
we haveP, f € Cp. FurthermoreP, f(y) — f(y) ash | O for any f € Co. Hence, by
virtue of Theorem 9.4 in [2, p. 46], the proce§E,} is a Hunt process. O

Fora >0, let f, () = @—|x|) V0. Then the Fourier transform gf, is as follows:

~ i sin2-laz\?
h@= [ e = ()
And let ¢,(z, x) = f.(x) for each , x )e [0, co) x R™.

Lemma 3.4. Let A < oo. We define a projectiodl  bylI(z,x) = x. Let 7 =
inf{r > 0 :|T1(Y;)| < a} for a > 0. Then we have

P (1 < o0) < CoE” [/OO (ba—l(Yx)ds}
0

for large enougha . Here&ly is a positive constant.
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Proof. By virtue of Lemma 3.3 the proce$g,} has the strong Markov property.
Hence we have

B [ / N ¢01(Y3)ds] > B / " (V) dsiT < oo}

= EY / Gp-1(Ysar)ds; 7 < oo}
LJo

v
t2

= EY _EYT [/OO ¢a_1(Ys)ds} T < oo]
L 0

> PY(r < oo)t>oir‘lj‘<a E®Y) {/0 ¢q-1(Ys) ds] .

Therefore it suffices to prove that

inf  E®Y [ / h ¢a_1(Ys)ds} > 0.
0

1>0,|x|<a

Now we shall show it. For & ¢ < 1, we have

E.x) [/Ooo ba-1(Ys) ds:|

E |:/ ‘}‘a—l(Xg(S+]) — Xg(]) +.x)ds:|
0
6 ~
> / Efa—l(Xg(S-'.[) — Xg(,) +x) ds
0
)
= / ds / frs@) explp(@)] dz= 1. (say)
0 R!
where

K(u/(g(s +0) = kw/GO)

Jul

o(z) =izx + /Rl(e"“‘ —-1)

First, we suppose that< 1. Let M > 0. Then we obtain that

‘ [ o gl ) K,
u|<g(s+1)M

ul

<z

) du <|z|g(6 +1) k(u)du.

u
J
Ju| <g(s+1)M g(S +t) lul <M

And we have

[ e D s,
|u|>g(s+t)M

Jul

cof MGl Kl [0,
h |u|>g(s+1)M - |u|>M

ul ul
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Second, we suppose that- 1. Then we obtain that

‘ [ pilullls £OD —Kujgl)
lu|<1

|ul

u u
<l|z k(| ——— ) k| — du < \z|.
g l,gl( (g(s+t>) (g(t))) g
And we have

‘ [ et D k),
Ju|>1

M Ju

cof HUGEEDKusO),
B Ju|>1

:2/ @duSZ)\Iogg(Ht)

g(§_+1)<|u|§$ |Ll| g(t)

= 2)s.

Let € > 0. If we firstly choose large enoughf , secondly small enodighnd lastly
large enoughz , then we can ggt(z)| < 1 +e¢ for all z with |z| < a~*. Therefore,
choosing small enough, we have

4
I z/ ds/ Jfa—1(z) exp[—(1 +e€)]cos(1 +e)dz > O.
0 R
We have been proved the lemma. O

Lemma 3.5. Let i(z) be an increasing positive function ofi, co) such that
h(t)/t is decreasing. LeD < A < co. If

[~

and limsup_,  h(r%)/h(t)* < oo for somea > 1, then we havefor any positive
number g with G < A,
< /p B
/ (ﬁ) LN
1 t t

Proof. Since " K (h(t)/t)t~1dt < oo, we have lim_. h(r)/t = 0. And we
have K @ ¢ Yt) > (h(t)/t)* for large enough . Hence we obtain that, for large enough

M,
() dt < R\ di
°O>/1 K(T)7>/M (7) T

Aot
/°° (h(t“)) dt
> const.x =
" e t
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—1
© Ch()\ Y dt
= const.x ofl/ <Q> —.
o\t t
We repeate this calculation. Then we can get the lemma. [l

Now we shall prove Theorem 1.2.
Proof of Theorem 1.2. (i) We shall consider the case wheréntagral of (1.5)
is divergent. Lete > 0. We have

1> ) P(IX2| < eh(2"). [ Xz | > en(2™) fork=1,2..)
n=1

P(| X2 | < €h(2"), |[Xomi — Xo| > e(h(2"™) +h(2)) fork =1, 2..)

=
1l
[y

P( X2 | < €h(@)P (| Xpi — Xoo| > e(h(2) +h(2")) fork=1,2..)

M

=
1l
[y

Mg

> (|x < (”)> P(Xpr — Xpa| > ch(2) fork=1,2..).

n=1

Here the last inequality was shown sinde ((2+ h(2"))/2"* < h(2**)/2" < h(2X).
Now we have

(3.2) ZP (|x1| <e (22 ) = 0

n=1

Indeed, if lim_ A(z)/t > 0O, then (3.2) holds. We suppose that lim, A(¢)/t = O.
By Lemma 3.1 we have, for large enough

= h(2") = h(2)
ZP(|X1|<6 1 ) > constxZK( o )

n=1 n=m

fe'e) 2n+1
h(®)\ dt
const.x Z/ K <e£> =
5 t )t

o h
Const.X/ K (€ﬂ> ﬂ
om t t
o h
Const.X/ K (ﬂ) ﬂ
om t t

Here the third inequality was shown singex (DAx)* is slowly varying at 0. There-
fore, if the integral of (1.5) is divergent, then (3.2) holds

V

v

Y
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Hence, from the calculation at the beginning and from (3vi&), obtain that, for
anye >0,

(3.3) P(|Xp-1 — Xp1| > eh(2¥) fork=1,2...)=0.

Now, from (3.3), we have

P <U ﬂ{|X2"—1 — Xoa| > €h(2")}> = Zpk,
k=1

m=1n=m

where
pr = P(|Xp-1 — Xp-1| < eh(zk), | X o1 — Xp-1| > 6h(2’1+k) forn=1,2...).

Now let £ be fixed. Sinceh ¢() is strictly increasing, there is asifiee constant
¢ such thath (8") — h(2¢) > ch(2") for all positive integern . Indeed, we have
h2m)y — h(26) > h(2')(L — h(2X)/h(2*Y) for n > k+ 1, andh (2™) — h(2}) >
h(2") infi<,<i(R(2") — h(2))/h(2*) for n < k.
Hence, from (3.3), we have
e < P(|Xpmi1 — Xoia| > e(h(2"%) — h(2*)) forn=1,2..)
< P(| X1 — Xp-1| > €27 %ch(2") forn=1,2..)=0.

Therefore we have
P (U ({1 X212 — Xpma| > eh(2")}) =0,
m=1n=m

so it follows that

|X21171 - X271|

liminf ————=— <e¢ as.
A
Using selfsimilarity, we have
| X — Xy
liminf ————— < 2¢ a.s.
oo A2

Now, as the integral of (1.5) is divergent, we have,lirg, 2(t) = co. Consequently, as
e ] 0, we have

. . X’I
liminf |Xz|

Im ini h(2"):0 a.s.

We have completed the proof in the case where the integral.8) (s divergent.
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(i) We shall consider the case where the integral of (1.53dmvergent. It suffices to
show that, for large enough > 0,

(3.4) > P (X <ah(2") for somer € (2'~%,2"]) < co.
n=1

Indeed, by virtue of the first Borel-Cantelli lemma we have

=
1

' (Gﬁ {IX:] = ah(2") forallr e (2, 2n]})

1=1 n=I

P (Gﬁ {';;’)' >a forallre (22, 2”]}) )

=1 n=l

IN

Hence we have liminf, |X;|/h(t) >a a.s. Then, asa — oo, we have
liminf,_ . |X;|/h(t) = co. Now we shall prove (3.4). As the integral of (1.5) is conver-
gent, we have lim. ., h(t)/t = 0. Here it was shown sinc& h ¢ (1) > (1A (h(t)/1)).
Recall that the functiong 7( ) is defined by (3.1). Léj z1(2"1/h(2")). By
Lemma 3.4 we obtain that, for large enoubh

> P (1| <ah(2") for somer € (2'71,2'])

n=[

<Y P(inf{t > 2711 |X,| < ah(2")} < )
n=l
00 . 2nfl

=Y P (inf{t > b, |Xe| < a} <)

n=l

= Z/ POy, € dy)P’ (inf{r > 0:|1(Y,)| < a} < o)
R1

n=l

< C()Z/1 F(O‘O)(Yh” S dy)Ey l:/ Da—1(Ys) ds]
n=l R 0

= COZ E [/ }[,71(Xg(x)) dsj| =1, (say).
n=l by

N

Here, by Lemma 3.2 we have, for large enough

I = COZ/OO ds /R1 fa_l(x)i’xl(g(s)x) dx

n=l by
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C°MZ/, ds [ fotrx (g( )|x|)

n=l b,

o g g(s)a™t 1
2C0Ma*lZ/ &5 K (—) dx
0 X

e 8(8)

IN

IA

, o gs (5) g ,
2CoMa~ Z/ o) K (;) dx = 2CoMa™2(J1 + J»),

n=l * bn

where

n=l g(bn
o0 [e%e] dl t

I = —/ K (—) dx
; gn) 17 Ja x

First, we shall calculatg;. We have

=1 2a [ h(r)
J1 < _— < — —=dt
1= "Zl: g(bn) ~ 1092 Jy 1 12

In the case where\ > 1, using Lemma 3.5, we havé, < oo since the integral of
(1.5) converges. And, in the case where< 1, we haveh { Jr < K(h(t)/t) for large
enought . Thus we havé; < oo again since the integral of (1.5) converges.

Next, we shall calculate/,. Let A < 1. Since K &x~1) is regularly varying of
index —\, by virtue of [1, p. 28] Karamata’s Theorem in we obtain that

1 -1
lim 1K (ar™1) (/ K(axl)dx> =-\+1
and
0o -1
lim K(ay™%) </ K(atl)tldt) =\
y—00 y

Let min{1— A\, A\} > ¢ > 0. Hence we obtain that, for large enough ,

o0

1 * K(at™b)
. i
1- A—GZ,: g(ba) !

1 s a
(A—e)(l—A—e)gK(M)

const.x/ K (Za@> ﬂ
211 t t

IN
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o0 h
< Const.x/ K (ﬂ> ﬂ < 0
2l—1 t t

Here we used the fact tha x (/(L A x)* is slowly varying at O.
Now we shall consider the case whexe> 1. Let 1> § > 0, whereh —§ > 1 if
A > 1. Sincek £ Y(L A x)* is slowly varying at 0, we have

| " d
/ 1 ook (3) dx < const.x/ %
L X x . X

Hence, by virtue of Lemma 3.5, we obtain that, for large emmolg

> < dt < dr
12 < (CO/ = + Cl(A)/ ﬂ)
elb) T gba)

n=[

=1 GO 1
0Dty T 0 2 5B
2Co /°° o 21750y (\) [ (h(t))”ﬂ

~log2 Jy—: 12 (1-06)log2 Jus \ ¢ !

N

< 00,

where Co and C1()\) are nonnegative constants, and, in particulai\) = 0 if A > 1.
Here we used thaK A(s (/)) > h(r)/t for large enought in the case wheke= 1.
Hence (3.4) has been shown. We have completed the theorem. ]
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