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1. Introduction

Let = { ≧ 0} be a one-dimensional standard Brownian motion starting from
0. To (µ) = { (µ) = + µ ≧ 0}, a Brownian motion with constant driftµ, we
associate the exponential additive functional

(µ) =
∫

0
exp
(
2 (µ)

)
≧ 0

which is the quadratic variation process of the corresponding geometric Brownian mo-
tion (µ) = { (µ) = exp

( (µ))
≧ 0}.

These Wiener functionals play important roles in many fields; mathematical fi-
nance (see, e.g., Yor [33], [34], Geman-Yor [10], [11], Leblanc [17]), diffusion
processes in random environment (Comtet-Monthus [5], Comtet-Monthus-Yor [6],
Kawazu-Tanaka [16]), probabilistic studies related to Laplacians on hyperbolic spaces
(Gruet [12], Ikeda-Matsumoto [13]) and so on. The reader will find more related top-
ics and references in [37].

However, even for fixed , the joint law of
( (µ) (µ)) or, equivalently, that of(

= (0) )
due to the Cameron-Martin relationship between(µ) and is fairly

complicated, although it is quite tractable (see [33]). As an example of the description
of this law, we present the following conditional Laplace transform ([2], [13], [18]):

[
exp

(
−

2

2

) ∣∣∣ =

]
1√
2π

exp

(
−

2

2

)

=
∫ ∞

| |

√
2π 3

exp

(
−

2

2

)
0( φ( ))

where ≧ 0, 0 is the Bessel function of the first kind of order 0 andφ( ) =√
2 /2(cosh − cosh )1/2 ≧ | |.

A quite different description of the law of (µ) is as follows (Geman-Yor [10],
Yor [34]). Let λ be an exponential random variable with parameterλ, independent of

. Moreover let 1 , be a Beta and a Gamma random variables with parameters
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(1 ), , respectively, and be a uniform random variable on [0 1]. We assume that

1 and are independent and that is also independent of . Then it holds that

(1.1) (µ)
λ

(law)
= 1

2
(law)
=

1− 1/

2

where = (κ + µ)/2 = (κ− µ)/2 andκ =
√

2λ + µ2.
In any case, despite this complexity, a number of identities about or(µ) for

different µ’s are known. In particular, let us recall the simple Bougerol’s identity ([4]):

(1.2) sinh( )
(law)
= γ

for any fixed , where{γ ≧ 0} is another Brownian motion independent of . This
formula makes it easy to calculate the Mellin transform of the probability law of .
See Alili-Dufresne-Yor [1] for a simple proof of (1.2).

The main result of the present paper goes into another direction, in that it exhibits
a relation — in terms of exponential functionals — between(−µ) and (µ), which we
present in the following way, strongly inspired by Dufresne [9].

Theorem 1.1. Let µ > 0. Then one has the identity in law

(1.3)

{
1

(−µ) > 0

}
(law)
=

{
1
(µ) +

1
˜ (−µ)
∞

> 0

}

where ˜ (−µ)
∞ is a copy of (−µ)

∞ , independent of (µ).

In fact, Theorem 1.1 is a reinforcement of Dufresne’s result [9]. He showed that
the identity (1.3) in law holds for any fixed time from the knowledge of the laws of

(±µ)
λ

as given in (1.1) above and some algebraic identities in law between Beta and
Gamma random variables ([8]).

As a check on Theorem 1.1, let us discuss how we became convinced that (1.3)
may hold at the process level. Indeed, assuming Theorem 1.1, we find that

(
1

(−µ) −
1

(−µ)
∞

1
(−µ)
∞

)
(law)
=

(
1
(µ)

1
˜ (−µ)
∞

)
(1.4)

and, consequently,

(−µ)
∞ − (−µ)

(−µ)

(law)
=

˜ (−µ)
∞
(µ)(1.5)

holds for any fixed . But now, (1.5) is easily checked by using the Markov property
of (−µ) and the time reversal for{ (−µ) 0 ≦ ≦ } at time . Note, on the other
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hand, that the identity in law (1.4) for fixed does not seem obvious a priori. In the
end, the conjunction of the facts that (1.5) holds and that the identity in law holds for
fixed in (1.3) according to Dufresne [9] made us think that the full identity in law
between processes in (1.3) might hold.

We also take this opportunity to note that the identity (1.3) gives a very simple
check on the identities (101) and (102) in Comtet-Monthus-Yor [6], which are nothing
else but

[
1

(−µ)

]
=

[
1
(µ)

]
+

[
1

(−µ)
∞

]

We now give a detailed plan of the rest of this paper. In Section 2, we present a
number of variants and consequences of Theorem 1.1. Among them, the most impor-
tant result is Theorem 2.2, which expresses(−µ) in terms of (µ) and an independent
Gamma variable.

In Section 3, we give two proofs of Theorem 2.2: the first one relies upon the
enlargement of the filtration of (−µ) with the variable (−µ)

∞ , whereas the second one
uses Lamperti’s representation

exp
(

(−µ)
)

= (−µ)
(−µ) ≧ 0

where (−µ) = { (−µ)
≧ 0} denotes a Bessel process with index−µ and we condi-

tion (−µ) upon its lifetime

(−µ)
0 ≡ inf{ ; (−µ) = 0} ≡ (−µ)

∞

In Section 4, to show the versatility of our approach, we enlarge the filtration of
a 2 -Brownian motion, that of

(
(−µ) γ(ν)

)
, with the variable

(µ ν) ≡
∫ ∞

0
exp

(
(−µ)

)
γ(ν)

by using recent results about the law of(µ ν) obtained by Paulsen [24] and redis-
covered by Yor [36]; see also [3]. Although, in this 2 case, the results are not so
striking as that expressed by Theorem 1.1, they are still easy enough to present and
we compare them with the 1 story.

As a conclusion to this Introduction, we would like to indicate, apart from its own
interest which we have discussed, that Theorem 1.1 is the essential starting step in our
proofs of the following extension of Pitman’s 2− theorem ([26]): for any > 0,
the stochastic process(µ) = { (µ)

≧ 0} defined by

(µ) = log

(∫

0
exp

(
2 (µ)

) )
− (µ)
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is a diffusion process and has the same distribution as(−µ) . Moreover we give two
quite different proofs of this result in [20] and [21] which, we think, would be easier
to read once Theorem 1.1 has been presented separately, hence the present paper. See
also [19], where the above result has been announced together with related topics. Fi-
nally, a multi-dimensional extension of Theorem 1.1 or rather Proposition 3.1 below is
being used in [23] in connection with some queueing problems.

2. Brownian Motions with Opposite Drifts

Let (µ) = { (µ)
≧ 0} be a Brownian motion with driftµ ∈ R starting from 0

as in the Introduction. Then, thanks to the Cameron-Martin theorem, if(µ) denotes
the probability law of (µ) on the canonical path space = ([0∞); R), then for any
µ ν ∈ R the laws (µ) (ν) are related by

(µ)|B = exp

(
(µ− ν) − µ2− ν2

2

)
(ν)|B

where ( ) = ( ) ≧ 0 is the coordinate process andB = σ{ ; ≦ } is its
natural filtration. In particular, ( ) = exp(2µ ) is a harmonic function for (−µ) and

(µ) is the Doob -transform of (−µ).
We give another relationship between(µ) and (−µ).

Theorem 2.1. Letting µ > 0 and γµ be a Gamma random variable with param-
eter µ, independent of (µ), we set

(µ) =
∫

0
exp
(
2 (µ)

)
and ˆ (µ) = (µ) − log

(
1 + 2γµ

(µ)
)

Then the following identity in law holds:

(2.1)
{

(−µ)
≧ 0
}

(law)
=
{

ˆ (µ)
≧ 0
}

The following remark explains how the Gamma variableγµ comes into the pic-
ture. For this purpose, note that

∫ ∞

0
exp
(
2 ˆ (µ)

)
=
∫ ∞

0

exp
(
2 (µ))

(
1 + 2γµ

(µ))2 =
1

2γµ

Then, assuming that (2.1) holds, we recover the known result

(2.2) (−µ)
∞ ≡

∫ ∞

0
exp
(
2 (−µ)

) (law)
=

1
2γµ

(cf. Dufresne [9], Yor [35]).
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This remark can be developed so as to provide a method for a proof of Theorem
2.1, which we now present in the following equivalent form.

Theorem 2.2. Let µ > 0. Then

(i) (−µ)
∞

(law)
= (2γµ)−1.

(ii) Given (−µ)
∞ = 1/2 , the process{ (−µ)

≧ 0} is distributed as
{ (µ) − log

(
1 + 2 (µ))

≧ 0}.

We postpone the proof of Theorem 2.2 until the next section and we give some
consequences of it in the rest of this section. In particular, the following is an imme-
diate consequence of (2.1) and (2.2) and, considering the quadratic variation process
of (−µ) and its counterpart in (2.3) below, we obtain Theorem 1.1.

Theorem 2.3. Let µ > 0 and ˜ (−µ)
∞ be a copy of (−µ)

∞ , independent of (µ).
Then one has

(2.3)

{(
(−µ)
∞

(−µ)

(−µ)
∞ − (−µ)

(−µ)

)
≧ 0

}
(law)
=

{(
(µ)

˜ (−µ)
∞

(µ)

˜ (−µ)
∞ + (µ)

)
≧ 0

}

We next look at Theorem 2.1 from the point of view of stochastic calculus: The-
orem 2.1 gives a non-canonical semimartingale decomposition of(−µ), or, equiva-
lently, it tells us that the canonical decomposition of the stochastic process

ˆ (µ) = (µ) − log
(
1 + 2γµ

(µ))
≧ 0

in its own filtration B̂
(µ) = σ{ ˆ (µ); ≦ } is β − µ , where{β ≧ 0} is a

(
B̂

(µ))-
Brownian motion. Thus we have the following two expressions forˆ (µ):

ˆ (µ) = + µ −
∫

0

2γµ exp
(
2 (µ))

1 + 2γµ
(µ)

= β − µ

Therefore we obtain

(2.4)

[
γµ exp

(
2 (µ))

1 + 2γµ
(µ)

∣∣∣ B̂(µ)

]
= µ

for every ≧ 0.
The following confirms and amplifies this identity:
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Proposition 2.4. For every > 0, the following identity in law holds:

(
γµ exp

(
− (−µ)

)
{ (−µ) ≦ }

)
(2.5)

(law)
=
(
γµ exp

(
(µ)
)
{ (µ) − log

(
1 + 2γµ

(µ)
)

≦ }
)

where, on both hand sides, the Gamma random variableγµ with parameterµ is as-
sumed to be independent of{ (±µ)

≦ }.

Consequently, for any fixed> 0, a simple algebraic manipulation in (2.5) shows
that γµ exp

(
2 (µ))/

(
1 + 2γµ

(µ)) is independent ofB̂(µ) and is distributed asγµ,
which confirms (2.4). It may also be useful for further studies about exponential Brow-
nian functionals to record the following two-dimensional consequence of (2.5):

(
γµ exp

(
2 (µ))

1 + 2γµ
(µ)

exp
( (µ))

1 + 2γµ
(µ)

)
(law)
=
(
γµ exp

(
(−µ)

))
(2.6)

The identity between the first members of each side of (2.6) may be understood as a
consequence of the following:

(−µ)
∞ = (−µ) + exp

(
2 (−µ)

)
˜ (−µ)
∞

(law)
=

1
2γµ

whereas the identity between the second members of each side of (2.6) is the applica-
tion of (2.1) to one-dimensional marginals.

3. Two Proofs of Theorem 2.2

In this section we give two different proofs of Theorem 2.2. As was mentioned
in the previous section, (i) is known. Thus, it remains to prove (ii). The first proof
is based on the theory of the enlargements of filtrations (cf. Jeulin [14] and Yor [31],
Chapter 12) and the other one is based on Lamperti’s relation and some stability prop-
erties of the laws of Bessel processes under time reversal and time inversion. (See,
e.g., [32], where some of these arguments have been already used).

First Proof of Theorem 2.2. LetB(µ) = σ{ (µ); ≦ }, which in fact does not
depend onµ, and B̂

(−µ) = B
(−µ) ∨ σ{ (−µ)

∞ }. Then, applying the main result for
(semi)martingale decompositions in the set-up of the initial enlargement of filtrations
(cf. Yor [31]), we can show that there exists a

(
B̂

(−µ))-Brownian motion{ ∗} ≧0 in-
dependent of (−µ)

∞ such that

(3.1) (−µ) = ∗ + µ −
∫

0

exp
(
2 (−µ))

(−µ)
∞ − (−µ)
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Therefore, under the condition(−µ)
∞ = 1/2 , { (−µ)

≧ 0} is the solution of

= ∗ + µ −
∫

0

exp(2 )

1/2 −
∫

0 exp(2 )

As will be shown in the Appendix, this equation, considered as an ordinary equation
with the initial data{ ∗ + µ ≧ 0}, has a unique solution

= ∗(µ) − log
(

1 + 2 ∗(µ)
)

where ∗(µ) = ∗ + µ and

∗(µ) =
∫

0
exp

(
2 ∗(µ)

)

To summarize this first proof and for the ease of future references, we give the
following.

Proposition 3.1. There exists a Brownian motion∗(µ) ≡ ∗ + µ ≧ 0 with
drift µ > 0 with respect to the filtration

(
B̂

(−µ)
≧ 0
)

such that

(3.2) (−µ) = ∗(µ) − log

(
1 +

∗(µ)

(−µ)
∞

)
= ∗(µ) + log

(
1−

(−µ)

(−µ)
∞

)

In particular, ∗(µ) is independent of (−µ)
∞ and it holds that

(3.3)

(
1−

(−µ)

(−µ)
∞

)(
1 +

∗(µ)

(−µ)
∞

)
= 1

Note that (3.3) and some trivial algebra yield identity (1.3), where, instead of an
identity in law, we have an almost sure equality,(µ) and ˜ (−µ)

∞ being changed into
∗(µ) and (−µ)

∞ , respectively.

Second proof of Theorem 2.2. By Lamperti’s relation, for anyν ∈ R there ex-
ists a Bessel process{ (ν)

≧ 0} with index ν starting from 1 such that

(ν) ≡ exp
( (ν)) = (ν)

(ν) ν ∈ R

We now use this relation forν = ±µ. Setting

˜0 = ˜ (−µ)
∞ =

˜0

˜0 + (µ) and =
˜0

(µ)

˜0 + (µ)



390 H. MATSUMOTO, AND M. YOR

where, as usual with our tilde notation,˜0 is assumed to be independent of
{ (µ)

≧ 0}; we have

˜ (−µ)
∞

(µ)

˜ (−µ)
∞ + (µ) = (µ)

(µ)

Therefore, if we show

{
(−µ)

(−µ) ≧ 0
}

(law)
=
{

(µ)
(µ) ≧ 0

}

or, equivalently,

(3.4)
{

(−µ) ≦ 0
} (law)

=

{
(µ)

(µ) ≦ ˜0

}

for the inverse function of , we obtain the assertion of Theorem 2.2. Further-
more, noting that

(µ) =
˜0

˜0 −
and = 1− ˜0

we can easily show (3.4) from the following lemma.

Lemma 3.1. Let { (±µ)
≧ 0} be Bessel processes respectively with indicesµ

and−µ both starting from1 and define 0 by

0 = inf
{

; (−µ) = 0
}

Then the following identity in law holds:

(3.5)
{

(−µ) ≦ 0
} (law)

=

{(
1− ˜0

)
(µ)
˜0 /( ˜0− )

≦ ˜0

}

where, on the right hand side, ˜0 is assumed to be independent of(µ).

Proof. From D.Williams’ result ([27], [28], [29]) on the time reversal of Bessel
processes, and conditioning with respect to a last passage time, the law of
{ (−µ)

≦ 0}, conditioned on{ 0 = }, is that of the bridge of{ (µ) 0 ≦ ≦ },
given (µ) = 0. But, from Theorem 5.8, p.324 of [27], this bridge can be represented
as

(
1−

)
(µ)
/( − ) <

which finishes the proof of (3.5).
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In order to connect even better our two proofs and the existing literature on Bessel
bridges, let us recall that{ (µ)

≦ }, conditioned on (µ) = 0, is the solution of

(3.6) ( ) = 1 +β +

(
1
2

+ µ

)∫

0 ( )
−
∫

0

( )
− 0 ≦ ≦

(see the equation (12.8) in [31], p.36).
Thus the arguments just developed in the proof of Lemma 3.1 show that the de-

composition of{ (−µ)
≦ 0} in its own filtration, originally enlarged with 0, is

(3.7) (−µ) = 1 +β +

(
1
2

+ µ

)∫

0
(−µ) −

∫

0

(−µ)

0 −

where{β ≧ 0} is a Brownian motion in this enlarged filtration. On the other hand,
if we apply Itô’s formula to (−µ) = exp

( (−µ)), starting from the equation (3.1), we
obtain

(3.8) (−µ) = 1 +
∫

0

(−µ) ˜ +

(
1
2

+ µ

)∫

0

(−µ) −
∫

0

( (−µ))3

(−µ)
∞ − (−µ)

Now, Lamperti’s relation, (−µ) = (−µ)
(−µ) , yields (−µ)

∞ = 0( (−µ)) and the equation

(3.8) becomes, after time-changing it with the inverse of{ (−µ)
≧ 0}, precisely the

equation (3.7).

4. Enlarging the 2D Brownian Filtration with a Subordinated Perpetuity

Let γ(ν) = {γ(ν)
≧ 0} be another Brownian motion with driftν which is in-

dependent of the original Brownian motion(µ). We consider the stochastic process
(µ ν) = { (µ ν)

≧ 0} defined by

(µ ν) =
∫

0
exp

(
(µ)
)
γ(ν) ≧ 0

The purpose of this section is, assuming thatµ > 0 and enlarging the original
filtration F ≡ σ{ γ ; ≦ } with (−µ ν)

∞ = lim →∞
(−µ ν), to obtain a canoni-

cal decomposition of the pair{ γ } in this enlarged filtration, which we denote by
F̂ ≧ 0.

Our hope in developing this identity was to obtain an identity in law between
some functionals of

(
(µ) γ(ν)

)
and

(
(−µ) γ(ν)

)
, which might lead to further ex-

tensions of Pitman’s theorem just as (1.3) led to [19]–[21]; this, together with our
original interest in the enlargement of filtrations, motivated our derivation of Theorem
4.2 below. Unfortunately, we have neither discovered identities in law similar to (1.3)
nor further extensions of Pitman’s theorem involvingγ and exponential functionals of

(±µ), which does not mean that such extensions do not exist!
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The above motivations being explained, we still find it of interest to develop the
enlargement formulae with respect to{F̂ }. First we determine the law of the so-
called subordinated perpetuity(−µ ν)

∞ : it has recently been shown (cf. [24], [22], [36],
[3]) that it obeys the generic type IV Pearson distribution ([15], [25], [30]). Precisely,
the following is known.

Theorem 4.1. ([24], [3], [36]) For everyµ > 0 and ν ∈ R, the probability law
of (−µ ν)

∞ admits the density

(4.1) µ ν( ) = µ ν

(1 + 2)1/2+µ
exp(2ν arctan( ))

where the normalizing constantµ ν is given by

µ ν =
| (1/2 +µ +

√
−1ν)|2

π21−2µ (2µ)

REMARK 4.1. We note that the family{ µ ν}µ enjoys the recurrence formula

µ−1 ν =
(µ + 1/2)2 + ν2

µ(µ + 1/2) µ ν

The following functions will play important roles in the sequel:

ϕ( ) = (log µ ν( )) =
2ν − (2µ + 1)

1 + 2

ψ( ) = ϕ( ) + 1 =−2µ +
2ν + 1 + 2µ

1 + 2

The main result of this section is the following semimartingale decomposition of
the pair{ γ } in {F̂ }.

Theorem 4.2. Let µ > 0 and ν ∈ R. Then there exists a two-dimensional
(
F̂
)
-

Brownian motion{
(

ˆ γ̂
)

≧ 0} such that

(4.2) = ˆ −
∫

0
ψ
(

(µ ν)
)

and γ = γ̂ −
∫

0
ϕ
(

(µ ν)
)

where

(µ ν) =
(

(−µ ν)
∞ − (−µ ν)

)
exp

(
− (−µ)

)

Proof. We first remark that the presentation of the initial enlargement formula
given in Yor [31], Chapter 12, pp.33–34, is applicable with only one change, made
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necessary by the fact that our filtration{F } is generated by a two-dimensional Brow-
nian motion instead of a one-dimensional one. We may summarize as follows.

We denote byφ ( ) = φ( ) the density of the conditional distribution of (−µ ν)
∞

given F and write

φ ( ) = φ (0) exp

[∫

0
(ρ1( ) + ρ2( ) γ )− 1

2

∫

0

(
ρ1( )2 + ρ2( )2

) ]

Then, for a generic (F )-martingale ={ ≧ 0} given by

=
∫

0
( 1( ) + 2( ) γ )

there exists a
(
F̂
)
-martingale ˆ = { ˆ ≧ 0} such that

= ˆ +
∫

0

{
1( )ρ1

(
(−µ ν)
∞

)
+ 2( )ρ2

(
(−µ ν)
∞

)}

Thus, in order to prove Theorem 4.2, it only remains to findρ1 and ρ2.
We first note

(−µ ν)
∞ = (−µ ν) +

∫ ∞
(−µ) γ(ν) (law)

= (−µ ν) + (−µ) ˜ (−µ ν)
∞

where ˜ (−µ ν)
∞ is a copy of (µ ν)

∞ independent ofF . Then, by virtue of Theorem 4.1,
we get, for every Borel function :R→ R+,

∫

R
( )φ ( ) =

∫

R
( )

(
(−µ ν) + (−µ) ˜ (−µ ν)

∞ ∈
)

=
∫

R

(
(−µ ν) + (−µ)

)
µ ν( )

=
∫

R
( ) µ ν

(
− (−µ ν)

(−µ)

)
1

(−µ)

Therefore, the process{φ ( ) ≧ 0} of conditional probability densities of (−µ ν)
∞

given {F } is found to be

φ ( ) =
1

(−µ) µ ν

(
− (−µ ν)

(−µ)

)

Note, in particular, that this provides a family of (F )-martingales.
Then, writingφ ( ) in the exponential form by using Itô’s formula, we obtain

ρ1( ) = −ψ
(
− (−µ ν)

(−µ)

)
and ρ2( ) = −ϕ

(
− (−µ ν)

(−µ)

)
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which completes the proof of Theorem 4.2.

Finally let us discuss the enlargement formula (4.2) by comparing it with the en-
largement formula for the filtration of{ ≧ 0} enlarged with

(−µ)
∞ =

∫ ∞

0
exp

(
2 (−µ)

)

which is presented in Section 3 and asserts that, settingF ∗ = F ∨ σ{ (−µ)
∞ }, there

exists a (F ∗)-Brownian motion{ ∗ ≧ 0} such that

(−µ) = ∗(µ) −
∫

0

exp
(
2 (−µ))

(−µ)
∞ − (−µ)

or

= ∗ + 2µ −
∫

0

exp
(
2 (−µ))

(−µ)
∞ − (−µ)(4.3)

where ∗(µ) = ∗ + µ .
Next let us consider the caseν = 0 in Theorem 4.2, so that the functionψ be-

comes

ψ( ) = −2µ +
1 + 2µ
1 + 2

Let us further remark that the formula (4.3) is also an enlargement formula inG ∗ =
F ∨ σ{ (−µ)

∞ } ∨ σ{γ̂ ≧ 0} where{γ̂ ≧ 0} denotes the Brownian motion asso-
ciated with the martingale given by

(−µ) ≡ (−µ 0) ≡
∫

0
exp
(

(−µ)
)
γ = γ̂ (−µ)

Since F̂ = F ∨ σ{ (−µ)
∞ } ⊂ G ∗ for any > 0, in order that the formulae (4.2)

and (4.3) be coherent, the following conditional expectation relation must hold:

[ ( (−µ))2

(−µ)
∞ − (−µ)

∣∣∣∣ F̂
]

=
1 + 2µ

1 +
(( (−µ)

∞ − (−µ))/ (−µ))2

or, equivalently,

[
1

(−µ)
∞ − (−µ)

∣∣∣∣ F̂
]

=
1 + 2µ

( (−µ))2
+
( (−µ)

∞ − (−µ))2(4.4)
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But, this relationship also follows from the known fact (see, e.g., Dufresne [7],
Yor [35]): conditionally onF , the two-dimensional random variable(

(−µ)
∞ − (−µ) (−µ)

∞ − (−µ)) is distributed as
( (−µ)√ ( (−µ))2 )

, where, for a
(µ) variableγµ, = 1/2γµ and is a standard normal variable independent

of .
Indeed, this fact being recalled, we may write (4.4) in the equivalent form

(4.5)
[

−1 |
√

=
]

=
1 + 2µ
1 + 2

which is deduced from the following elementary lemma.

Lemma 4.1. Let γα be a random variable with parameterα and be
a standard normal variable, independent ofγα.
(i) For any Borel function : R→ R+, one has

[ (
√

2γα

)
2γα

]
= 2α

[ (
√

2γα+1

)]

(ii) The probability density of the(Student) variable /
√

2γα is given by

α 0( ) = α 0

(1 + 2)α+1/2
=

(α + 1/2)√
π (α)

1
(1 + 2)α+1/2

(iii) One has
[
2γα

∣∣∣ √
2γα

=

]
= 2α (α+1) 0( )

α 0( )
=

1 + 2α
1 + 2

Appendix : On a simple ordinary differential equation

In this appendix we show that, given continuous functionsϕ and , the ordinary
differential equation

(4.6) =ϕ( ) +
∫

0
exp(α )

(∫

0
exp(α )

)

for = { } ≧0 has a unique solution; furthermore, it admits an explicit representation
in terms ofϕ and .

For this purpose, we consider the primitive of :

( ) =
∫

0
( )

Then we have

= ϕ( ) +

(∫

0
exp(α )

)
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and

exp

[
−α

(∫

0
exp(α )

)]
exp(α ) = exp(αϕ( ))

Hence, setting

( ) =
∫

0
exp(−α (ξ)) ξ

we obtain

(∫

0
exp(α )

)
=
∫

0
exp(αϕ( ))

Therefore we can write the solution of (4.6) as

= ϕ( ) + ( ◦ −1)

(∫

0
exp(αϕ( ))

)

In our example, which appeared in the first proof of Theorem 2.2, we have
α = 2 ( ) = ( − 1/2 )−1. Therefore we obtain

( ) = log(1− 2 ) ( ) =
1
2

(
1

1− 2
− 1

)

and, finally,

(
◦ −1

)
( ) = − log(1 + 2 )

Note added in Proof. D. Dufresne: The integral of geometric Brownian motion,
Adv. Appl. Prob.,33 (2001), 223–241, presents an impressive survey of results on ex-
ponential Brownian functionals. In particular, his Theorem 3.1 and Corollary 3.3 are
the fixed-time analogues of our Theorem 1.1.
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[37] M. Yor (ed.): Exponential Functionals and Principal Values related to Brownian Motion, A col-
lection of research papers, Biblioteca de la Revista Matemática Iberoamericana, Madrid, 1997.
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