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Introduction

1. The object of the present paper is to prove some theorems concerning

the existence and the uniqueness of the solution of the initial value problem

for the evolution equation

(E) du/dt+A(t)u = f(t), Q<t<T.

Here the unknown u = u{t) as well as the inhomogeneous term fit) is a func-

tion on the closed interval [0, ΓJ to a Banach space X, whereas A(t) is a func-

tion on [0, T3 to the set of (in general unbounded) linear operators acting in

£. Before stating the results to be proved in the present paper, it is convenient

to give a brief survey of the results so far obtained on this "abstract Cauchy

or mixed problem".

In this survey we restrict ourselves to abstract theories, disregarding results

obtained primarily for the case in which A{t) is a concrete differential operator.

Nor shall we mention the results for the case in which Ait) does not depend

on t\ such a case belongs properly to the theory of generating one-parameter

semigroups of operators (Hilie-Yosida theory).

With these reservations, the first author to discuss an equation of the form

(E) was Phillips [25] he assumes that the main part A of A(t) is independent

of t, -A being the infinitesimal generator of a strongly continuous, bounded

semigroup exp ( -tA). while the variable part of A(t) belongs to B[£]. :) A

more general case was considered by the present author [31 Here the essential

assumptions are that

1) - A(t) is for each t the infinitesimal generator of a contraction semi-

group, and

Received April 20, 1961.
X) We denote by B[£] the set of all bounded linear operators with domain £ and

range in £.
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2) the domain Φ[A(ί)] = ® of A(t) is independent of t,

with some auxiliary assumptions implying the smoothness of Ait) and fit) as

functions of t. One of the merits of this result is that it is applicable to

parabolic differential equations (such as the heat equation), to the Schrδdinger

equation (in which iA(t) is self ad joint) and to certain kinds of hyperbolic

equations (written in the form of a first order system). But it was felt that

the assumptions 1), 2) were still too restrictive, and an attempt was made

(Kato [4]) to remove these restrictions, with a not very satisfactory result.

See also Mizohata [21] for the relaxation of the assumption 1).

Recently an essential improvement on 1) was attained by a series of papers

by Tanabe [31, 32, 33]. Here a new assumption is introduced that

3) - Ait) is for each t the infinitesimal generator of an analytic semigroup.

(That is, exp ( — sA(t)) has an analytic continuation to a sector including the

positive s-axis.) But this new assumption is compensated for by the following

relaxation of other assumptions: the semigroup exp ( — sA(t)) need not be

contraction (even for s>0), and the smoothness assumption on Ait) as func-

tion of t can be weakened considerably. Owing to the neiv assumption 3), the

Tanabe theory is not applicable to the Schrodinger equation or to hyperbolic

differential equations, but it is more powerful than the result of [3] when

applied to parabolic equations. In particular, the initial value uiO) is allowed

to be an arbitrary element of £, whereas w(0) ε Φ was assumed in [3]. On

the basis of the Tanabe theory, Komatsu [7] was able to prove that the solu-

tion uit) of (E) is analytic in t if A(t) depends on t analytically in a certain

sense and if f(t) is analytic. This result of Komatsu has an interesting ap-

plication on the unique continuation property of solutions of parabolic differential

equations (see also Yosida [38]).

The condition 2) that ®[A(ί)] be independent of t is retained by Tanabe

and Komatsu. This assumption was weakened to a great extent by Sobo-

levskii [29]. Here A(t) are restricted to be positive definite, selfadjoint operators

in a Hubert space, a very strong assumption, but 2) is replaced by the assump-

tion that

4) ®ΓA(f)A] is independent of t for some constant h such that 0<h<l.

As long as Ait) is positive selfadjoint, this condition is weaker than 2) in

virtue of the Heinz inequality. One of the objects of the present paper is to
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generalize the result of Sobolevskii to the case in which A{t) operate in a

Banach space.

2. The works described above are concerned with strict solutions of (is1),

in the sense that the solution u(t) constructed satisfies (E) everywhere in the

semi-open interval (0, T]. More precisely, u(t) belongs to £>LA(£)] for each

t^ (0, T], has a strong derivative du(t)/dt<Ξ% which is strongly continuous in

(0, Γ] and (E) holds true. On the other hand, there are a large number of

works which are aimed at obtaining generalized solutions of (E).

Visik and Ladyzenskaia [13, 14, 15, 34, 35] write (E) in the form

Su = f, Su(t) = du(t)/dt+A(t)u{t),

and consider the problem as an operator equation in a larger space $. consist-

ing of functions u(t) on [0, T] to dί. (Actually they assume 36 to be a Hubert

space and £ is the set of u(t) with integrable l!w(i)||2; as regards Ait)f they

assume that the dominant part of A(t) is positive self adjoint.) To this end

they extend S to a closed operator and prove that this closed extension has a

bounded inverse in an appropriate topology.2' The solutions obtained by them

are generalized or weak solutions of (E). The degree of weakness denends on

the assumptions made; they may be "almost everywhere" solutions, satisfying

(E) for almost every ί e (0, 7"]; they may be weak or "hyperweak" solutions.

"Almost everywhere" solutions could be regarded as not much different from

strict solutions, but it is interesting to note that, in constructing such solutions,

these authors also assume that Φ[A(f)] is independent of t. Weak and hyper-

weak solutions are constructed under weaker assumptions, but it is not clear

how near they are to strict solutions.31

Generalized solutions of (E) have also been considered extensively by Lions

[16, 17, 18, 19, 20]. In principle the method of Lions is similar to that of Visik

2> Their method depends essentially on the "energy principle." For applications to
hyperbolic differential equations and to the Schrodinger equation, they also consider the
abstract equations of the forms d2u/dt2jrA{t)u=f{t) and du/dtJriA{t)u = 0.

3^ It may be said that the distinction between strict and generalized solutions of (E)
is not very important if one is exclusively concerned with the application of (E) to linear
partial differential equations, where a weak solution can often be proved to be a strict
solution. Since, however, we are primarily interested in the abstract equation (E), whose
application is not restricted to partial differential equations, it seems rather important
to investigate under what conditions (E) has strict solutions.
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and Ladyzenskaia, but Lions start from a sesquilinear form φ£u, vl in a Hilbert

space 36, to which Ait) is formally related by (A(t)u, υ) = ψtίu, vl. The basic

assumption in his earlier work is that the domain of Φt is independent of t

if Ait) is positive self ad joint, this is equivalent to that Φ[A(ί)1/2] is independent

of t and, therefore, weaker than the assumption 2) stated above but is a special

case of the assumption 4) of Sobolevskii. In a recent paper of Lions [18] this

assumption is eliminated, and the existence and the uniqueness of a generalized

solution (almost everywhere solution) are proved under very general conditions.

In most of these papers, however, the initial value uiO) is subjected to more or

less severe restrictions.41

3. In the present paper we want to deduce several results that comprise

and strengthen most of the results stated above, except those of [3] and [18].

More precisely, we shall prove the existence and the uniqueness of a strict

solution to the initial value problem for iE) for any initial value w(0)eϊ,

under the assumptions that

i) for each t, -Ait) is the infinitesimal generator of an analytic semigroup

of operators in a Banach space

(as in Tanabe's theory) and

ii) c&ZAit)H] is independent of t for some h = l/m where m is a positive

integer

(as in Sobolevskii's theory, though h was arbitrary in the latter theory), with

certain additional smoothness assumptions on Ait) and fit) as functions of ί.

Thus our results generalize the results of both Tanabe and Sobolevskii.

Furthermore, it will be shown that the solution of iE) is analytic in t if, in

addition to i) and ii), /U) and Ait)~h are analytic in t. This generalizes the

result of Komatsu stated above.

It should be noted, however, that these results may not necessarily be

stronger for smaller values of h, for the Heinz inequality has not been proved

for non-self ad joint operators. Furthermore, the question arises how the assump-

tion ii) can be verified in applications. In fact, the fractional power Ah of an

operator A is defined in an abstract fashion, which will be quite complicated

4 ) For other results on the equation (E), see Foias et al. [1, 2], KrasnoseΓskii et al.
[8, 9, 10], Krein [11], Krein and Sobolevskii [12], Mlak [22, 23, 24], Sobolevskii [26, 27,
28], Solomiak [30].
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when applied to, say, a differential operator. At present the author has no

answer to this question that is general enough to be useful in the case of

Banach spaces, but it can be shown that the operator function A(t) defined in

terms of a sesquilinear form φtLu, v^\ with constant domain (as in Lions' theory)

satisfies the condition ii) with h = 1/3. In this way we are able to prove the

existence and uniqueness of the strict solution of (E) in this case. By making

use of the uniqueness of the generalized solution, it can then be shown that

the generalized solutions in the earlier works of Lions, and those of Visik and

Ladyzenskaia, are actually strict solutions, provided the inhomogeneous term

fit) is smooth, at least for certain initial values ^(0) e l

Furthermore, it can be shown that A(t)~m is analytic in t if <ρ£u, ul is

analytic in t for each u of the constant domain of φt. It follows that the

solution of (E) is even analytic if φt is analytic in the stated sense and if fit)

is also analytic.

The specific results for the case in which Ait) is defined in terms of the

sesquilinear form φt depend on the results of a separate paper of the author

[6], in which the fractional powers of dissipative operators in a Hubert space

are studied in detail.

4. The content of the present paper is as follows. In § 1 we state the

assumptions and the main theorems (Theorems I and ID, together with some

inequalities required in the following sections. The proof of these inequalities

is given in Appendix at the end of the paper. As a preliminary step in the

proof of the main theorems, we consider in §2 the special case in which A(t)

belongs to B[3Γ| the evolution operator U(t, s), which plays a central role in

the theorems, is constructed and a number of estimates on it are deduced.

The general case is treated in §3, where the evolution operator U(t, s) is

constructed as the limit of a sequence Un(t, s) corresponding to bounded Anit)

that approximates Ait) in an appropriate sense, and where the proof of

Theorems I, II is completed. In § 4 the main theorems are applied to the case

in which Ait) is defined through a sesquilinear form φt in the way described

above, the results being contained in Theorems III and IV. Here an essential

use is made of the results of [βl. The final section § 5 is devoted to some

remarks and examples, with discussions on possible (and impossible) extensions

of the results of this paper.
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§ 1. Assumptions and results

In what follows we consider the evolution equation (£) in a Banach space

X. Our main purpose is to construct the evolution operator (or fundamental

solution) Uit, s), defined for 0<s<.t<T, such that the solution of (E) can be

expressed in the form

(1.1) u(t) = U(t, 0)w(0) + ί U(t, s)f(s)ds.
Jo

To this end we make two assumptions on Ait). Roughly speaking, the

first assumption requires that —Ait) be the infinitesimal generator of an

analytic semigroup of operators, and the second that Ait) change smoothly

with t. More precisely,

i) For each fe[0, T}, Ait) is a densely defined, closed linear operator in

H with its spectrum contained in a fixed sector S9: iarg z\ <θ<π/2. The

resolvent of Ait) satisfies the inequality

(1.2) Kz-AdW'HMJUl for z$SQ,

where Mo is a constant independent of t. Furthermore, z = 0 also belongs to the

resolvent set of Ait) and

(1.3) llAttΓi^Aii,

Mi being independent of t.

As is well known (see, for example, Yosida [36]), (1.2) implies that —Ait)

generates a semigroup exp ( — sA(t)) which is holomorphic in a sector contain-

ing the positive s-axis. When (1.2) is satisfied, the two conditions (1.2) and

(1.3) are satisfied if Ait)-hi is replaced by Ait) (possibly with a different

MQ). Therefore, (1.3) is not an essential assumption as long as one is concerned

with the evolution equation (E) we assume it only for convenience.

Furthermore, (1.2) implies that the fractional powers Ait)h can be defined

and have a similar property as Ait), with β replaced by hβ (see Appendix).

Our second assumption is concerned with such a fractional power:

ii) For some h = l/m, ivhere m is a positive integer, ©CAU)'1] = Φ is in-

dependent of t, and there are constants k, Mi and M3 such that

(1.4) | |A(*) A J1(SΓ Λ | |< ;ΛΛ, O^fsST,

(1.5) lAit)hAis)~h - li |< Mz\t - s\\ Q^sST,
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(
)

(1.6) l-h<k<l.

As- is well known, the independence of ©LAU)AD of t implies that

A(t)h A(s)~h G B [ Ϊ ] ; (1.4) means that it is uniformly bounded. Note also

that (1.4) and (1.5) are equivalent to that A(t)hA(0)^h is uniformly bounded

and is Holder continuous in norm with the exponent k.

Our main theorem now reads

THEOREM I. Let the conditions i) and it) be satisfied. Then there exists a

unique evolution operator Uit, s) <= B[36] defined for 0 < s<t <T, with the fol-

loiving properties. Uit, s) is strongly continuous for 0< s <t < T and

(1.7) IΛt, r) = £/</, s)U(s, r), r<s<£t,

(1.8) Uit, t) =1.

For s<t, the range of Uit, s) is a subset of ΦLAU)] and

(1.9) A(t)U(t, s)e=Bpα \\A(t)U(t, s)||<; M\t - s\~\

ivhere M is a constant depending only on θ, h, k, T, Mo, Mi, Mz and

Furthermore, U{t, s) is strongly continuously differentiable in t for t> s and

(1.10) dU(t, s)/dt + A(t)U(t, s)=0.

If u^Ί), U{t, s)u is strongly continuously differentiable in s for s<t. If in

particular #e®L4(so)D, then

(1.11) Ot/U, s)«/3s)s=s,= Wf, so) A(sύ)u.

If fit) is continuous in t> any strict solution of (E) must be expressible in the

form (1.1). Conversely, the u(t) given by (1.1) is a strict solution of (E) if

fit) is Holder continuous on [0, T]; here u(Q) may be an arbitrary element

ofϋ.

Here we mean by a strict solution of {E) a function uit) such that uit)

is strongly continuous on [0, TJ, strongly continuously differentiable in (0, T]

and (E) is satisfied for f e (0, Tl

We have also a number of estimates concerning £/(£, 5), which will not

be listed here but which can easily be read off the proof of the theorem given

below.

Our second theorem is concerned with the case in which Ait) is analytic
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in ί in a certain generalized sense.

THEOREM II. Assume that Ait) can be continued to a complex neighborhood

Δ of the interval [0, T] in such a ivay that the conditions /), ifi are satisfied

for ty 5GJ. Furthermore, let A(t)~h be holomorphic for ί e Δ. Then the evolu-

tion operator U(t, s) exists for s<t, satisfies the assertions of Theorem I and

is holomorphic in s and t for s<t. (Here "s<t" should be interpreted as

meaning "t — 56 2"', where Σ is the sector | arg t \ < ~— θ of the t-plane, and

"s<t" as "s<t or s = ί".) If fit) is holomorphic for t e Δ, t>0, and Holder

continuous at t — 0, every solution of (E) has a continuation holomorphic for

ίGj, t > 0.

The proof of these theorems will be given in the following sections. Their

applications to dissipative evolution equations in a Hubert space will be given

in §4 (Theorems III, IV).

We collect here some immediate consequences of the assumptions i) and ii).

As noted above, i) implies that

(1.12) \\ίz-A{t)hT1\\<MJ\z\ for z$ShQ.

Here and in the following, the constants MA, MS, . . . are determined by β, h,

k, T and the preceding ones M>, Mh . . . . It follows from (1.3) that z=^ΰ

also belongs to the resolvent set of Ait)n, with

(1.13) \\A(t)~hHM5.

Furthermore, it follows from i) and ii) that

(1.14) ! ! A ω r t e x p ( - τ / U n ) | ! < M 6 | r P ,

(1.15) l!AU)αexp( - τA(t)) - A(sY exp( - r Λ ( s ) ) i ! ^ M 7 | τ r α U - s\k.

Here iarg τ\ <-™—θ, 0<a<a0; a0 is a constant and it suffices for our purpose

to take ao — 2. The constants Me, M- can be chosen independent of a and r.

Another inequality to be useful is

(1.16)

</5<l, Iarg a\ <•— - θ,

!argτί< f -θ, !arg(τ-tf)|<-f- -6.



ABSTRACT EVOLUTION EQUATIONS OF PARABOLIC TYPE 101

The proofs of these inequalities are given in Appendix.

§2. The case of bounded Λ(t)

In the present section we construct the evolution operator Uit, s) and

deduce various estimates on it, under the additional assumption that Ait)

G B R ] . The results will be used, in the following section, to construct the

Uit, s) in the general case as the limit of a sequence Unit, s) corresponding

to an approximating sequence i « ( ί ) e B R ] for Ait).

1. Construction of the evolution operator

If Ait) is assumed to be bounded for a single ί e [ 0 , T], in addition to the

assumptions i) and ϋ), it follows that AU)eB[#] for all t. In fact, the

boundedness of Ait) implies that of Ait)h

y so that the constant domain

Φ = Φ[A(f )A] must coincide with X. Thus Ait)h e= B[X] and hence Ait) ^ B[£]

for all t. Furthermore, it follows from (1.5) that

This shows that Ait)h is Holder continuous in the normed topology. Then the

same is true with Ait) itself in virtue of Ait) = [AU)AIΓ.

Under these circumstances, the construction of the evolution operator is

quite simple. It suffices to solve the integral equation

(2.1) £Λf,r) = l - f A(s)U{s,r)ds.

Since (2.1) is of Volterra type, it can be solved by successive approximation.

The solution obtained satisfies

(2.2) dU(t, r)/dt= -A(t)Uit, r), U(t9 * ) = 1 .

Let us consider another integral equation

(2.3) V(t, r) = l-[ Vit, s)Ais)ds;
J

the solution of (2.3) gives an operator function Vit, r) with the properties

(2.4) dV{t, r)/3r= Vit, r)Air), V(t9 *) = 1.

It follows that
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(dJds)V(t, s)U(s, r) = Vit, s)[_Ais) - A(s)lU(s, r) = 0,

so that Vit, s)U(s, r) is independent of 5. This gives immediately the follow-

ing results. Vit, s) = Uih s) and

U(t, s) U(s, r) = £7(ί, r), ί/U, f) = 1,
(2.5)

ac/U s)/aί= -A(t)Wt, 5), ac7(f, s)/ds=u(t, s)A(s).

At the same time the uniqueness of U(t, s) follows.

2. First estimates on U(t, s)

We shall now deduce several estimates on U(t, s) in terms of the constants

T, 0, /z, &, Mo, . . . that appear in our fundamental assumptions i), ii). We

still keep the additional assumption that Λ ( ί ) G B [ ϊ ] , but it is our object to

obtain such estimates as have no direct reference to this fact.

To this end, we construct several integral equations satisfied by U(t} s).

First we note that by (2.5)

(2.6) O/3s)U(t, s)exp( - (s-r)A(r))

= U(t, s)lA(s) -

Now we make use of a simple identity, due to Sobolevskii [29],

(2.7) A(s)-A(r)= ^A(s)x'phD(st r)A(r)pn (mh = l)
p = l

with

(2.8) D(s, r)=A(s)hA(rΓH-l.

Integra t ion of (2.6) with respect to s on (r, t) gives, after subst i tut ion of (2.7),

(2.9) U(t, r) -exp( -(t-r)A(r))

= - Σ U(t, s)A(sγ-phD(s, r) A(r)ph exp( - (s - r)A(r))ds.
p-i-'r

Set

XQ{t, s) = U(t, s)A(s)ι-Qh,
(2.10) 1 . q = l, . . . , m.

X( ) A()ιQh ( )1
XQo(t, s) = A(s)ι-Qhexp( - (t-s)A(s)),

Multiplying (2.9) from right by A(r)ι'qfι

y we obtain a system of integral equa-

tions satisfied by XQy q = 1, . . . , m.

In writing down these integral equations, we find it convenient to introduce

the following notation. For any two operator-valued functions K'(t, s), K"(t, s)

defined for 0<$<t<T, we define their convolution by
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K=K'*K", Kit, r) = \ Kit, s)K"is, r)ds.

Then the system of integral equations for XQ has the form

(2.11) XQ - Xφ + itiXp * KPφ 0 = 1 , . . . , w,

where the kernels Kpq are given by

(2.12) KpG(s, r ) = - D ( s , r ) A(rΫ*ph~qh e x p ( - ( s - r) Air)).

Suppose that the system (2.11) has been solved for Xq by successive ap-

proximation in the form

(2.13) Xqit, s) = Σ X , ( ί , s),
i - 0

(2.14)

We shall show that the series (2.13) are in fact convergent, with the rate of

convergence determined by the constants T, θ, h, k, Λf0, . alone. For

convenience in this estimation, we further introduce the following notation.

We denote by Q{ay M) the set of all operator-valued functions Kit, s), defined

and strongly continuous for 0 < s < t < T, such that

\\K(t, s)^<Mit-s)a~\

In particular, K^Qia, M) with a>\ implies that Kit, s) is continuous even

for s = t and Kit, t) = 0. The following lemma is a direct consequence of the

definition.

LEMMA 1. If Kf(ΞQia!, M') and K" E Q ( « " , M") ivith a1 and a" positive,

then K'*K"tΞQ,(a'-{-a", B{a', a")M'M"). Here B denotes the beta function?'

Now we have from (1.5) and (1.14)

(2.15) KPQ

in applying (1.14) note that 0<h<l+βh-qh<2 and l-qh>0. (2.15) and

(2.16) lead to the following estimates on Xqi:

5) The proof that {K! * K") (t, s) is strongly continuous for 5</ is not quite trivial,
but we may omit it since there is no particular difficulty.
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(2.17) X«i

where {Li} is a sequence defined successively by

(2.18) Lo = 1, Li+ι/Li •= BUi + i*, 7z + & - 1).

(2.17) can be proved by mathematical induction. For ι = 0, it coincides

with (2.16). Assuming that it was proved for /, we have from (2.14) and

(2.15), using Lemma 1,

k, CpQi)y

CpQi = LiM6nί(MzM6)
i+1B(ph + ik, k-ph + qh)

ik, h + k-l)

from which (2.17) follows for i replaced by i+1 in virtue of (2.18). Here it

should be noted that ph-f ik> h + ik>0, k-ph +qh>:h + k-l>0, see (1.6).

It follows from (2.18) that Li+JLi is of the order r ί A f *- 1 ) for /-> oo. Since

ft + ^ - l > 0 , we see from (2.17) that the series in (2.13) are absolutely con-

vergent for s<t, the convergence being uniform for t~s>:a>0. Noting that

the first term in each of these series is estimated by (2.16), we thus obtain

the estimates

(2.19) Xq e Q(qh, AΓ9), q = 1, . . . , mf

where M9 may depend, among others, on T.

We shall now extend (2.19) to non-integral values of q. To this end we

multiply (2.9) from right with A(rΫ~qh as before, but this time with not

necessarily an integral value of q\ we assume only that l - ^ f t > 0 . The result

is formally the same equation (2.11), where the summation is to be taken over

p = 1, . . . , m as before. But it is easily seen that the estimates (2.15) and

(2.16) remain true for such non-integral q. Since Xp for integral p have been

estimated by (2.19), we can estimate XQ from (2.11) by using Lemma 1:

(2.20) XQ(=Q(qh, (k-I + qhY1 Mu>) for k-l + qh>0,

where Λfio does not depend on q.6) Writing a - 1 - qh, this gives

(2.21) !!£/(*, s)A(s)Λ\\^(k-aΓ1Mio(t-sΓa, 0<a<k.

6> The factor (£—l+qh)-* has been taken out of B(ph, k-ph+qh) for ~p = m, which
appears on the application of Lemma 1 to the right member of (2.11), since this factor
tends to infinity for l—qh->k.



ABSTRACT EVOLUTION EQUATIONS OF PARABOLIC TYPE 105

We further note that the Xq with non-integral q can also be written ex-

plicitly in an absolutely convergent series if k - 1 -1- qh>0'> this series is obtained

by substituting (2,13) for Xp of (2.11). We do not write down the result;

it will only be remarked that the integrals involved exist if k — 1 + qh > 0.

3. Second estimates on U(t, s)

We next form another system of integral equations, starting from the

identity

(2.22) O/as)exp(-U-s)AU))£Λs, r)

- exp( - (t-s)A{t))LA(i) - A(s)lU{s, r)

that follows from (2. 5). Substituting the identity (2, 7), integrating with respect

to s on (r, t) and multiplying from left by A(t)Qfι, we obtain from (2.22) a

system of integral equations

(2.23) Y,= Y*o + JtHQP*Yp, 4 - 1 , . . . , m,

where

YQ(t, s) = A(t)ηhU(t, s),

(2.24) YQQ{t, s)^A(t)Qhexp{ - {t- s)A(t)),

(2.25) Hgp(t, s) = A{t)lτQ'ι~pn exp( - (t - s)A(t))D(t, s) .

For the kernels Hqp and the inhomogeneous terms YQo of (2.23), we have

the following estimates analogous to (2.15) and (2.16):

(2.26) HQPe=Q(k-qh+ph, M3M6), YQQ<Ξ<Ϊ(1-qh, M6).

An essential difference of (2.26) from (2.16) is that 1-qh in (2.26) becomes 0

for q-ni (whereas qh in (2.16) was >ϋ). This makes it difficult to deduce

estimates on the series obtained by solving the system (2.23) by successive

approximation in as simple a fashion as in the preceding paragraph.

Thus we have to deal with (2.23) more carefully. We set

(2.27) y , = y , o + n

and transform (2.23) into a system of integral equations for YQ:

(2.28) -Yi = Yio

where
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VI

(2.29) Y'Φ= ΈHQp±Ypo.
p = l

Let us now estimate Y'q*. For p<m, we have by (2.26) and Lemma 1

(2.30) HQp* Yp*e Q(l + k - Qh9 Mil), p<m.

To estimate Hqm * Ymo, we write it as the sum of the following three integrals

(note that rήh - 1)

c*
hit, r) = Hgm(t, s)lA(s)exp{ - is - r)A{s)) - A(r)exp{-(s - r)A(r))lds,

J r

72U, r) = HQm(t, r)A(r)exp{ - {s-r)A{r))ds
J r

^Hqm(t, r)ίl- exp(-(t-r)A(r)Π,

W, r) = f CfiWίί, s)-Hqm(t, r)lA(r)exp( ~ (s - r)A(r))ds.
J r

It and 72 can be estimated by (2.26), (1.14) and (1.15) with a = 0, and Lemma 1:

7i e Q(l + 2 ft ~ tffe, M8MiM7), 72

73 is further divided into two integrals:

7s(ί, r ) = 7S + 7ί' = f-f f with S = ( r + ί)/2.

I" can be estimated by (2.26) :

II/SΊ

In 7ί we make use of the identity

(2.31) Hqm{t, s)-Hqm(t, r)

, s)

This gives, in virtue of (1.4), (1.5), (1.14) and (1.16) with β = ft,

||7/,m(ί, s ) -£U(f , r) | |

< k-ιMzM*{t- sΓk'Qh (s~r)k(t- s)k + M2MzM,{t - r Γ ^ ( s -

^Afuίf-rJ^ίί-r)* for/-^5<S.

Hence
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Collecting the above results, we have

(2.32) ^ m ^ m 0 = /i+/2 + /S + /3'GQ(l + ̂ - A Λfie).

Combined with (2.30), we have by (2.29)

(2.33) Y'Qo<ΞQ(l + £-qh, Λf16), q=l, . . . , m.

In (2. 33) we have 1 + k - qh > k > 0. Since we have also k — qh+ ph

> # - l + f e > 0 in the estimate of HQp (see (2.26)), it is now easy to solve the

system (2.28) for Y'Q by successive approximation as in the preceding paragraph.

In particular, we thus arrive at the estimates

(2.34) Y j e Q U + £ - ( # , MίΊ), q = ly . . . , m.

We can deduce from (2.34) an estimate on YQ with not necessarily integral q.

To see this, we note that (2.27) is valid also for non-integral q>0, where Y'QQ

is again given by (2.29) and Yf

Q is to be defined by (2.28) (in which p takes

integral values as before). Since Yq in (2.28) has been estimated by (2.34),

(2.27) and (2.28) give an estimate of Yq. In this way we obtain an estimate

YQGQ(l-qh, (k-qh + h)~ιMls) the factor (k-qh + h)~ι comes from the

application of Lemma 1, the condition k — qh-\-h>Q being required.7) On

writing qh - a, we thus arrive at the estimate

(2.35) ιU(t)aU(ty s)^<{h + k-a)'1Mm(t-s)-\ 0<a<h + k.

Note that the range of a for which (2.35) is valid is slightly larger than in

(2.21) in particular (2. 35) is true for a = 1.

4. Third estimates on U(tt s)

We also need estimates on the operators of the form A{t)a+h U(t, s)A{s)~!ι.

To obtain such estimates, we multiply (2.23) (written for the arguments t, r)

from right with A(r)~h. On setting

(2.36) Zq(t, r) = A(t)QhU(t, r)A{rΓn,

we obtain a system of integral equations satisfied by Zq\

(2.37) ZQ = Zgo+ Y i H q P * Z p , q = l , . . . , m ,

where the inhomogeneous term is

Ί) See footnote 6>.
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(2.38) ZqQ(t, r) = A{t)Qhexp( - U - r) A(t))A{r)~h

~-(t-r)A{t))A(t)hA(r)"!t.

We have by U. 4) and (1.14)

(2.39) ZQ0£Ξ 0,(1 +h - qhf M2Me).

Since 1 + h — qh>h>0, there is no difficulty in solving the system (2.37) for

ZQ by successive approximation as before, obtaining estimates on ZQ. Then,

again considering non-integral values of q and proceeding as before, we ίiave8)

(2.40) ||AU)β+A£Λf, s) A(sΓh^< (k ~ aΓ'MiΛt - s)-«, 0<a<k.

5. Degree of continuity of U(t, s)

We next estimate the degree of continuity of U(t, s) in terms of the basic

constants. For Si<tu s2<t2 and tι<U we have

(2.41) U(U, s2)-U(tu s^

= U(h, s2) ~ U(U, si) 4- U(t2t si) - U(tlt si)

, s)/dslds+[*ldU(t, si)/dtldt

- f 2A(ί)ί/U, sOΛ.

Hence

(2.:42)

-\2A(t)U(tt

Making use of (1.4), (2.21) and (2.40) with a =l-h<k, we obtain

(2.43) \\W(t2, s2)-U(tu

Here we have assumed that tι<t2y but the final result of (2.43) is "obviously

true without this assumption, provided that Sι<ti and s2<£>.

8) Set a = qh-h.
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§3. The general case

1. The approximating sequence Λn{t).

We now turn to the general case in which Ait) is not necessarily bounded.

According to the program stated in the beginning of §2, we first construct a

sequence of bounded operators Άn(t) that approximate A(t) in a certain sense.

We set

(3.1) AnU) = AU)/»U), Jn(t) = [1 + *Γ1A(fVTm, n = l, 2, . . . .

This is equivalent to

(3.2) An(t)h - A(t)HJn(t)h - nil - / „ » ) * ! /„(*)* = [1 + *Γ ιAU)*]"1.

The equivalence of (3.1) and (3.2) is a simple consequence of the "operational

calculus", which can be justified with the aid of Dunford integrals representing

various "functions" of the operator A(t).2) Obviously Jn(t)h, And)'1, Jn(t) and

An(t) belong to B[£], and it follows from (1.12) that (set z = - n)

(3.3) Wjn(t)h\\<M4, \\A»(t)hHn(M4+l).

An important property of An^t) is that they satisfy the conditions i), ii) for

Ait), with possibly different constants. In other words, there exist positive

constants No to iV3, independent of t and n, such that

(3.4) \\lz-An(t)Ύ1l<N,l\z\, 2ΦS9,

(3.5) \\An(tVι\\<. Nu

(3.6) \\An{tytAn(srh\\<N2t

(3.7) ^An(t)hAn(s)'h-l\\<Ns\t-s\k.

To show this, we first note that a simple calculation based on 13.2) gives (for

simplicity we write A in place of A(t) when there is no ambiguity)

(3.8) (z - Ah

ny
ι = - U - zΓ1 + n\n- zY\nz{n - z)~ι - A*]"1.

But it is easily seen that Z&SHΘ implies nz(n — z)'1 $ Sho and \n-z\>

(n+\z\)sin(hθ/2). Hence we have, noting (1.12),

(3.9) | ! ( 2 - A 2 Γ i < | w - z Γ + w M 4 k - 2 Γ U Γ

< (n+\z\)M4/\z\\n-z\<Mj\z\sm(hθ/2) =Nj\z\ for 2^ SAO

9 ) An example of such a formula is (A2) of Appendix, which represents Λ~a if z = 0.
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with NA = MJsin(hβ/2) here we have used the fact that M 4 > 1 (which is a

necessary consequence of (1.12)). (3.9) is an inequality corresponding to

(1.12). From this (3.4) follows directly. In fact, let 2ΦS9 and set

ω = exp(2 πih). Then ωpzh $ S*θ for p = 0, 1, . . . , m - 1, so that \\(ωpzh - A jΓ 1 II

<*N*\z\-h by (3.9). Since (z- An)'1 = - Π (An-ωpzh)'\ (3.4) follows with
0

To prove (3.5), we note that (3.2) implies

(3.10) An(t)~h = A(tΓh + n~ι.

Since llA(ί)~Λ | |< M5 by (1.13), we have \\An(t)'h\\<ίl +M5 and (3.5) holds

with iVi=(l + Af6)
m. Again, (3.2) and (3.10) give

(3.11) Anit)hAn{s)'h = An(t)HlA(sΓh + w"1] = 1 + Jn{t)'ΎA{t)hA{s)-h - 11

Hence \\An{t)h An{syh\\< 1 + M 4(l + M2) by (3.3) and (1. 4), and | |A«(ί)ΛΛΛ(5)"A

~ l l ! < M 3 M 4 | ί - 5 | f e by (3.3) and (1.5). This proves (3.6) and (3.7) with

N* = 1 + Mi(l + Λf2) and Nι = M 3 M 4 .

The approximating property of Λ n (ί) is based on the relation10)

(3.12) s-lim/Λ(f)Λ = l for n-> 00,

the convergence being uniform in ί.11' This follows from

11(1 - JnH)h)A{θrh\\ = Λ^llΛίί)*-AU)*A(0)-Λ | |< n~ιM2M4-O,

considering that ©CA(0)A] = © is dense in 36.

2. Construction of ί/(f, s).

We have shown above that An(t) satisfy the fundamental assumptions i),

ii) and, moreover, that A n U ) e B [ £ ] . Therefore, there exist the associated

evolution operstors Un(t, s) satisfying the fundamental equations (2.5) with

Alt) replaced by An(t), and all the estimates deduced in the preceding sections

are valid for Un(t, s), provided we replace the constants Mo to Λf3 by No to

Ns and, accordingly, the auxiliary constants Af4, Λf5, . . . . by the correspond-

ing ones JVi, N5 It is important to notice that these constants are

determined by the fundamental constants T, θ, hy k, Mo, Mi, M2, Mz alone

1 0 ) s-lim denotes strong limit.
n> The convergence s-lim B,t{t)=B{t) is uniform in / if \\Bn{t)u-B{t)u\\-^i) uniformly

in t for every
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and do not depend on n. For example we have, corresponding to (2.21), (2.35)

and (2.40)

(3.13) - WUnit, s)An(sV\\<1 ( * - ct)~] Na(t - s)~a, 0<a<k,

(3.14) WAnitΓUnit, s)\\<(hfk-aΓ1N1s(t-sΓa, 0<a<h + k,

(3.15) ιUn(t)a™Un(

Also we have the estimate which corresponds to (2.43), but it is not necessary

to write it explicitly.

We shall now show that s-lim Unit, s) -U(t, s) exists. To this end we

start from the expression X{

q

n) given by (2.13), where Xg

n) are the Xq of §2

associated with Anit), and show that s-lim XQ

n) exist for <?= 1, . . . , m. Since

Un = Xm\ this will give the desired result for q = m. Now the series on the

right of (2.13) has a majorizing series by (2.17) (where XQi should be replaced

by XQf and M3, M6 by iV3, iVδ respectively), which is independent of n. There-

fore, it suffices to show that each term of this series has a limit for n ~> oo.

But these terms are determined successively by a formula corresponding to

(2.14), where we have the estimates (2.15) and (2.17) independent of n. In

view of the principle of dominated convergence, it then suffices to show that

(3.16) s-lim X{

qV(ty s) = X^t, s),

s-limK%\t t s)=KPQ(t, s)

for s<t and p, q~ 1, . . . , m. Recalling the definition of X{

QT and Kpq (replace

A by An in (2.10) and (2.12)), the problem is finally reduced to the verifica-

tion of the two relations

(3.17) s-lim An(t)a exp{ - τ An(t)) = A(t)a

(3.18) s-lim Anit)
n An(sΓh =A(t)hA{sΓh.

But these are simple consequences of the definition of An(t). (3.18) follows

immediately from (3.11) and (3.12). (3.17) also follows from (3.12) this is

a simple fact related to the approximation of semigroups and the proof will be

given in Appendix (see (A8)).

Let us note that the convergence in (3.18) is uniform in 5 and t and that

in (3.17) is uniform in t and τ as long as τ is bounded from below. This is

due to the uniform convergence in t of (3.12). Hence it follows that (3.16)
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holds uniformly for t — 5 > a > 0. In virtue of Lemma 2 stated below, we see

that the convergence of X$\t, s) and, consequently, of X{

Q

n) is uniform for

t - s>a>0. Since X^} (t, s) are strongly continuous in s and ί, we conclude

that s-\im Xqn) (t, s) are also strongly continuous for s<t.

LEMMA 2.12) Let H, Hn^Q(a, M) and Ky Kn^Qίb, N) ivith a, b>0. Let

Hn(t, s)-*Hit, s) and Kn(t, s)->K{t, s), n-*™, strongly and uniformly for

t -s>c for any c>0. Then {Hn*Kn)(t, s)-+(H*K){t, s) strongly and uni-

formly for t — s>c for any c>0.

A similar argument shows, more generally, that the same is true with non-

integral #(see §2.2). In other words,

(3.19) s-lim£/Λ(ί. s)ArtU)α= V(t, s; a), s<t, 0<a<kf

exists, the convergence being uniform for t-s>a>0, so that V(t, s; a) is

strongly continuous in s, t for s<t. In particular, we set

(3.20) U(t, s) = V(t, s; 0).

It will be seen that U(t, s) is the required evolution operator.

Since iVΊo is independent of n> it follows from (3.13) that

(3.21) \W(t,s; α) lk(^~αr)" 1 Mo(ί-5)" Λ .

In particular U(t, s) is uniformly bounded by

(3.22) \\U(t, s ) ! ! ^ * " 1 ^ .

Next we see from (3.19) that

(3.23) U(t, s) = s-lim Unit, s) = s-lim Un(t, s)Λn(sYAn(s)'Λ

= V(t, s; a)A(sΓ*,

where we used the fact that s-lim An(t)~* = A(tΓa (for the proof see (A 7) of

Appendix). (3.23) shows that

(3.24) U(t, s)A(sVaV(t> s; a)

in other words the opeartor U(t, s)A(s)a, defined with domain ΦCAίs)04], is

12) The proof of this lemma may be omitted since there is no difficulty. Only it
should be remarked that H,,{t, s)K,Λs, r)->H{t, s) K(s, r) strongly and uniformly for

< s < / - c for any c > 0 . This is seen, for example, by Lemma 4 of [3].
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bounded if a<k, the bound satisfying the inequality (3.21).

In quite the same way, it can be proved that sΛimY(

q

n)it, s) exists for s <t,

uniformly for t- s>a>0, where Yq

n) are the Yq of §2.3 associated with An(t).

Again considering non-integral q, we have that

(3.25) s-Yim AnitV Unit, s)-= Wit, s; a), s<t, 0<a<h + k,

exists, the convergence being uniform13) for t - s>a>0, and is strongly con-

tinuous in 5, t for s<t. Then we see as in (3.23) that Uit, s) = A(t)~aWit,

s; a). This shows that

(3.26) AitVUit, s) = W(t, s; α)

which implies that OίCtfU, s)]14) c S O U ) * ] for a<h + k. Since h + k>l, a =

is permitted and, therefore, Ait)U(t, s) beolngs to B[X] and is strongly con-

tinuous in 5, t for s<t. Furthermore; (3.14) gives

(3.27) \\Alt)*U(t, s)\\^(h + k-a)

This proves (1. 9).

Now we have by (2.5)

nitu r) - Unitu r) = - f 'AJS) ίUs, r)ds,U

for r<t\<U. Going to the limit w-> oo, we obtain

(3.28) U(tt9 r)-U(tu r) = - \2A(s)Ws, r)ds

taking the limit under the integral sign is justified, for example, by the principle

of dominated convergence. Since A(s)U(st r) has been shown to be strongly

continuous in s for s>r, (3.28) shows that Uit, s) is strongly continuously

differentiable for t>s and dU(t, s)/dt=. - A(t)Uit, s). This proves (1.10).

13; Actually the direct proof of this result would not be very easy, for the proof of
the uniformity of the convergence YQ

(

(J

n)(t, s)-+Y'qQ(tt s) requires rather complicated es-
timates (just as this was the case with the estimates of Y'qQ themselves, see §2.3). But
this difficulty can be avoided by first considering Zq instead of Yq. In fact, there is no
such difficulty in proving that Z[

q

n){t, s)->Zίjf(/, s) strongly and uniformly in s, t for
t—5>«>0. As before, the consideration of non-integral q leads to the result that
Anit)*Un(t, s)A,(0)-^W(t, s; a) = W(t,s; a) A{0)-h, 0<a<h+k, strongly and uniformly
for t—sT>α>0. Since we know that An(t)*Un(t, s) are uniformly bounded for /— s>α>0,
it follows that An(t)<tUn{t, s)->W(t, s; a)z>W\tt s; a)A(0)h uniformly for t-s>a>0
(note that $ = φ[A(0)Λ] is dense in £).

U) ^[U] denotes the range of the operator U.
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Similarly we have from (2.5)

Wn(t, r2)-Un(t, ri)]A n(0Γ ; i= Cund, s) An(sY~hAn(s)hΛn(0)~/ιds

for r\ <> n < t. Taking the limit n -> oo, we have as above

(3.29) Wit, r2)-U(t, r!)]Λ(0)"Λ= C V(t, s; 1 - h) A(s)hA(0)'hds.

Since V(t, s; l-h) is strongly continuous for s<t (note that l-h<k), it

follows that U(tt s)u is strongly continuously differentiable in s for s < ί for

each M G Φ , with

(3.30) dU(t, s)u/ds= V(t, s; l~h)A(s)hu.

If, in particular, w e Φ [ A ( s ) ] c φ , then i ( s ) Λ w e Φ [ i ( s ) 1 " Λ ] and, noting that

l~h<k, we see from (3.24) that the right member of (3.30) is equal to

U(t, s)A(s)u. This proves (1.11).

It remains to show that U(t, s) is strongly continuous in 5, t ίovs<t. To

this end we recall (2. 43), in which U and A should be replaced by Un and An,

respectively, and M2o by N2o. On letting n-> °°, we obtain the same estimate

(2.43) with M2o replaced by ΛVio. This inequality shows that U(t, s)A(0)~H is

Holder continuous in 5, / in norm for s<t This implies that U(t, s)u is

Holder continuous in ty s for we Φ = Ί)ίA(0)hl. Since U(t, s) is uniformly

bounded by (3.22) and © is dense in 36, it follows that UXt, s) is strongly

continuous for s<t. The relations (1.7) and (1.8) then follows from the

corresponding ones for Un(t, s) (see (2.5)) by taking the limit n-* <χ>.

This completes the proof of the first part of Theorem I. (The uniqueness

of U(t, s) can be proved as in §2.1.)

3. Solution of the inhomogeneous equation.

Suppose that u(t) is a strict solution of (E) in the sense stated in Theorem I.

Then we have, in virtue of (1.11),

(d/ds)U(t, s)u(s) = Uitt s)du(s)/ds+U{t, s)A(s)u(s) = U(t, s)f(s).

Integration of this equation with respect to 5 on (0, t) gives (1.1).

Finally let us prove the last assertion of Theorem I. Suppose, uit) is

defined by (1.1); we may assume that «(0) =0, for U(t9 0) w(0) satisfies the

homogeneous equation du/dt+Ait)u(t) =0 by the properties of U(t,s) already

proved. Set
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(3.31) Unit) = \ Unit, s)f(s)ds.
Jo

Since Unit, s)-*U{t, s) boundedly, this gives

(3.32) lim unit) =\ Uit, s) fis)ds = «(*).
n->oo J 0

In virtue of (2.5), (3.31) implies that dun/dt = - Anit)un +fit) and w«(0) =0,

so that we have, after integration,

(3.33) Unit) = \ tfis)-Anis)unis)ldS.

We shall now show that

(3.34) Mm Anit) unit) = Ait) uit) uniformly in t,

so that (3.33) gives by (3.32)

= f ίf(s)~Ά(s)uis)lds.
Jo

Differentiation with respect to t then gives iE), thereby completing the proof

of Theorem I (note that (3.34) implies that Ait)uit) is strongly continuous

in t).

To prove (3.34), we write

(3.35)

Anit)Unit)=§ Anit)Unit, s)[/(s) -/(*)]& + [ j Anit) Unit, s)ds\fit).

We recall that Anit) Unit, s) -> Wit, s 1) = Ait) Uit, s) strongly and uniformly

for t- s>a>0, being dominated by const, it - s)'1 by (3.14). Since Wfis)

-/(£)! !< const. (t-s)~\ e>0, by the assumed Holder continuity of fit), it

follows that

( Anit) Unit, s)ίfis)-fit)lds^\ Ait) Uit, s)ίfis)-fit)lds
Jo Jo

uniformly in t.

To deal with the second term on the right of (3.35), we note that (2.27)

gives for q-m

Anit) Unit, s) = A«(ί)exp(- it-s)Anit))+Y(Xί)'it,s)
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where Ym)f(t, s) is majorized by const. it-sΫ'1 by (2.34). Hence

\ An(t)Un(t, s)ds=rl- exp( -tAnit)) + ί Yln)f(t, s)ds
J 0 ^ 0

and

s-limf An(t)Un(tf s)ds = l - exp( -tA(t))+ f FmU, s ) Λ

uniformly in ί.15)

Thus we have shown that

(3.36) \im An(t) Unit) = v(t)

exists, the convergence being uniform in t. This implies, in particular, that

υit) is continuous in t. Then

u(t) = Urn unit) =\imAn(ty"And) unit) = Aitr'vtt),

so that A(t)uit) exists and is equal to vit). Thus (3.36) is equivalent to the

required result (3.34). This completes the proof of Theorem I.

4. Proof of Theorem II.

If the assumptions of Theorem II are satisfied, the operators Jn(t)n are

holomorphic for ί ε J . This is a direct consequence of a general theorem that

the resolvent (z- Tit))'1 of a closed linear operator depending on t is holo-

morphic in t for every z belonging to the resolvent set, if this is the case for

some particular value of z in the present case this particular value is 2 = 0.

(3.2) then shows that An(t)h and, consequently, An(t) = (An(t)H)m are also

holomorphic in Δ. It is now obvious from the construction of Unit, s) described

in §2.1 that Unit, s) are holomorphic for s, ί e J x J .

The various estimates deduced in §3.2 remain true for these Unit, s) with

complex s, t provided that s<t in the sense stated in Theorem II. To see

this, it suffices to note that these estimates can be deduced by considering the

integral equations satisfied by Unit, s) (such as considered in §2.2 to §2. 4) in

which s, t are restricted to lie on a straight line in Δ that has an angle smaller

than -TΓ - θ with the real axis. For such s, t the estimates can be deduced by

15> Here we have set Y'm(tt s) = s-lim F^ ! i )U, s). The existence of this limit and the
uniformity of the convergence for t—s>α>0 follows from that of lim Ym(t, s) = W{t, s;
1). See footnote.13)
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making use of the inequalities (1.2) to (1.6) and (1.12) to (1.16) in which r

may be any complex number with |arg r | < ~λ — θ. Also the convergence

Unit, s)-+U(L s) can be proved in the same way for s<t.

Thus U(t, s) is the limit of a sequence {Un(t, s)} where Unity s) are holo-

morphic and uniformly bounded in each compact subset of J x J with s<t.

Hence U(t, s) must be holomorphic for s<t This proves the first part of

Theorem II.

To prove the second part, we note that the solution of (E) is given by

(1.1) as shown by Theorem I. The first term on the right of (1.1) is holo-

morphic in t by what is proved above. Hence we may hereafter assume that

# ( 0 ) = 0 . Then we have u(t) = lim un(t) by (3.32). But un(t) has a continua-

tion holomorphic in ΣΓ\ Δ, for it is given by (3.31) where Unit, s) is holo-

morphic in ΔxΔ and f{s) is holomorphic in ΣΠΔ. Now it is obvious that

Unit) -> u(t) = j U(t, s) f{s)ds boundedly for t belonging to any compact subset

of ΣΠΔ. Hence u(t) is holomorphic for ί e i T l J .

§ 4. Application to dissipative evolution equations

in a Hubert space

The object of the present secton is to show that Theorems I and II are

applicable with satisfactory results to the evolution equation (E) in which

-Ait) are closed, maximal dissipative operators in a Hubert space H defined

in terms of certain sesquilinear forms. The contents of this section depend on

the results of a separate paper of the author [6] devoted to the study of the

fractional powers of dissipative operators in a Hubert space.

A linear operator A in a Hubert space is said to be accretive (and — A

dissipative) if Re(Au, w ) > 0 for we®D4]. A closed, maximal dissipative

operator — A is the infinitesimal generator of a contraction semigroup exp i — tA)

(that is, ΐ!exp( —tA)\\<l). The fractional powers Ax can be defined for such

operators. An important class of dissipative operators are defined in terms of

certain sesquilinear forms φZu, v] (linear in u, conjugate-linear in v). Suppose

that φίu, v] is defined for w, υ e Φ = Φ[ψ], the domain of φ, which is dense in

36, and that / M = Reφlu~}>0 (we write φίu2 = φZuy uϊ). Suppose further that

the "quadratic form" / M is closed and | ^ [ « ] | < J 3 / [ M ] for M G Φ , where g[_u~]

= Im ^[w] and β is a constant. Then we shall say that the sesquilnear ίorm
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φ is regular. It can be shown that to each regular sesquilinear form φ is

associated a closed, maximal accretive operator A such that %ίAl c %ίφl and

(Auy v) = φίu,vl for wεφ[A] and i eSDEψ]. Such an operator Λ will be said

to be regularly accretive.

If A is regularly accretive, the inequality (1.2) for Ait) is satisfied by

A with Mo depending only on β (see Theorem 2.2 of [6]). If we further

assume that fίul>δ\\uf with a constant δ>0, then A'1 exists and is bounded

with IIA"1!!^^"1. Thus (1.3) is satisfied by A with Mi = δ~\

Suppose now that Ait) is a family of regularly accretive operators such

that the associated regular sesquilinear forms φit) have the constants β and δ

independent of t. Then the condition i) is satisfied. Furthermore, suppose

that φ{t) have a domain Φ independent of t and φit)ίul is Holder continuous

in the sense that

(4.1) I φit) ίul - φis) ίul \<M\t-s \kfis) ίul, UΪΞ%

where fit)ίul = Reφit)ίul. Then it can be shown (see Theorem 4.2 of [6])

that, for 0<αr<l/2, A(t)a have a domain ΦΛ independent of t and

(4.2)

Therefore, the condition ii) is satisfied with ft = 1/3 provided that β>2/3. In

this way we are led to the following theorem.

THEOREM III. Let φit), 0<t<T, be a family of regular sesquilinear forms

in a Hilbert space 36. Let φit) have a constant domain ®, and let

(4.3) \git)ίul\<βfit)ίul, fit)ίul>δ\\u\\\

for M G Φ , where fit) ίul = Re φit) ίul, git) ίul = Im φit) ίul and β>0andδ>0

are constants. Furthermore, let φit) be Holder continuous in the sense of (4.1)

with 2/3<A<l. If Ait) are the regularly accretive operators associated with

φit), then the results of Theorem I hold true.

If, in addition to the assumptions of Theorem III, φit) can be continued

to a complex neighborhood of the interval [0, T] in such a way that φit)ίul is

holomorphic for every « e ® , it can be shown that Ait)~a is holomorphic for

0<α-<l/2 (see Theorem 4.3 of [6]). Thus we have

THEOREM IV. Let φit) be a family of regular sesquilinear forms defined for
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each t of a complex neighborhood A of the interval 0<t<T such that

= © is constant and (4.3) is satisfied. Furthermore, let ψU)[w] be holomorphic

for ί G j for each M G Φ , Then the results of Theorem II are true.

As we have mentioned in Introduction, these theorems strengthen some of

the earlier results of Lions and Visik-Ladyzenskaia.

§ 5. Remarks and examples

In the theorems proved above, we have been able to extend many of the

earlier results on the evolution equation (E) (see Introduction). Yet the

results are not satisfactory enough. In particular, the requirement in Theorems

I, II that ©D4(ί)Λ] be constant for some h = 1/m, m = 1, 2, . . . , appears still

too restrictive, and similar remark applies to the assumption in Theorems III,

IV that ©[>(*)] be constant. The assumption that &>2/3 in Theorem III also

appears rather artificial.

It is highly desirable to see whether or not such assumptions on the domains

of A(t)h or of φ(t) can be eliminated. For example, one could raise the ques-

tion whether or not the condition ii) can be replaced simply by the smoothness

of Ait)'1 in t.

In this connection the result of Lions [18] should be mentioned, in which

no assumption on ®[A(ί)A] is made. But he obtains only generalized solutions,

and it is not known how close these solutions are to strict solutions.

It should be remarked that the smoothness of Ait)'1 in t alone is not

sufficient to ensure the existence of strict solutions of (E) unless the condition

i) is assumed, even when Ait) are the infinitesimal generators of contraction

semi-groups. This was shown by a counter example in an earlier paper of

the author [4].

With a slight modification, this example can be written

(5.1) A(*) = ι[l + ( * - * ) " * !

Ait) being a family of multiplication operators in the Hubert space 36 = L2ia, b).

For convenience we assume that 0<a<b<T. In this example, there is no

strict solution of the homogeneous equation du/dt = - Ait)u other than uit) = 0.

Nevertheless, Ait) are the infinitesimal generators of unitary groups iiAit)



120 TOSIO KATO

are selfadjoint) and, moreover A(t)~ι is holomorphic in t in the whole complex

J-plane. Of course the condition ii) is not satisfied, for Ί)lA(t)kl is the set of

all wWeL2(fl, b) such that (t - x)"2hu(x) e L2(a, b) and this set changes with

t, at least for a<t<b, no matter how small h may be.

It is interesting to note that the same problem becomes well posed if the

factor i in (5.1) is dropped, namely

(5.2) A ( f ) = H - ( f - * Γ 2 .

Then Ait) are themselves selfadjoint and positive: A(t)>l, so that the condi-

tion i) is satisfied. Again A(t)'1 is holomorphic in the whole £-plane but

©ΓA(f)A] is not constant for any h>Q. In this case, however, the evolution

equation (E) is solvable. In fact, the evolution operator exists and is given by

(5.3) U(t,s)u(x)= { expl(t-xΓ1-'(s-xΓ1lu(x)

if x>t or x<s,

. 0 if s ^ x <; t.

The difference in behavior of the evolution equation in these two apparently

similar examples lies in the fact that A(ί) are the infinitesimal generators of

analytic semigroups (that is, the condition i) is satisfied) in the second example,

while this is not the case with the first. This suggests the possibility that

strict solutions of (E) could be obtained without assuming that Φ[AU)Λ] is

constant.

A remarkable feature of this example (5.2) is that

(5.4) U(t,s) = 0 if s< a and t>b

and U(t, s)-^0 otherwise. This implies that U(t, s) is not holomorphic in s

or in t. Thus it appears that the constancy of Ί)ίA(t)nJ is rather essential

at least in Theorem II.

Appendix

In this appendix we prove several inequalities needed in the text. These

are mainly concerned with the infinitesimal generators — A of analytic semi-

groups and their fractional powers A*. Assume that A satisfies the condition

i) for Ait) stated in § 1. Then A* can be defined indirectly by

(Al) A" β = ^
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see Kato [5, 6]. The integral on the right of ( A l ) is absolutely convergent

by (1.2) and (1.3), so that A " α e B [ a IU~αϋ can be estimated easily by α,

Mo and Mi. This proves (1.13).

For the resolvent of A°\ we have the expression

(A2) (z~AaΓι=- - U f (z-CΓ'iC-AΓ'dC,
c

see [5]. The integration path C can be chosen so as to run in the resolvent

set of A from infinity in the lower halfplane to infinity in the upper halfplane,

just inside the boundary of SB (note that 0<π/2). This is permitted since

(1.2) implies that the resolvent set of A penetrates into So at least by a definite

angle determined by Λf0, and that an inequality similar to (1.2) holds for

2 ί S e , with a θ'<θ. This path C can then be deformed to the union C of

the two rays re*1*', 0 < r < ^ . Then the inequality (1.12) can be proved by

using a similarity transformation C= \z\1/aC of the integration variable.

We next prove the inequality (1.14). To this end we make use of the

formula

(A3)

Aαexp( - r A ) = - -2-"kj 2 β β " " ( 2 - AVιdz9 α > 0 ,

which is also a simple consequence of the operational calculus with Dunford

integrals. Here the path C may be chosen as above then we have [ arg τz \

<π/2 for 2 ε C and the integral converges. On changing the integration

variable by τz = C, we obtain

Aαexp( -

Here it is convenient to choose the path C in the following way as the sum

of four parts Ch . . . , C4. Ci is the straight line from <χ>e~i{:ιl2~B) to - 1,

where s is a small positive number. C2 and C3 are the segments from - 1 to

0 and back, making a turn of + ^ a t 0. C4 is the straight line from - 1 to

ooe

i{πιeι~Z). Since | a r g r | < --J- ~ - θ, we have 1 arg ζ/τ \ >0- e> θ1 if s is sufficiently

small, so that !;(•-- - A) <> const. I τ/C | by the extension of (1.2) stated above.

In this way we obtain the estimate (1.14). The choice of the special path C

has the advantage that a uniform estimate valid for 0 < a < a0 is thereby
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obtained (aQ is any fixed positive number), for the contributions to the integral

from the parts C2 and Cz tend to cancel each other for a -* 0, which compensates

for the factor {Cl'1 that arises from the use of the estimate f A)

< const. |r/C|.

To prove the inequality (1.15), we resort to another expression (h

(A 4) A α exp(-rA) = - * f z*me~xzm(z - AhYxdzy

which is also a simple consequence of the operational calculus. Here C is

similar to the one used above, except that 0' is to be replaced by hθ1. Sub-

tracting from (A 4) a similar expression with A replaced by B and noting that

"1

l we obtain

(A 5) Aa exp ( - rA) - B* exp ( - τB)

Performing the change of the integration variable by τhz = ζ and then choosing

an integration path C similar to that used above, it is easy to obtain from

(A5) the desired inequality (1.15). Note that | | ( * - .AΛ)"Ί!< M[\z\~ι and

\\&ί{z-Bnyί\\=\\-l+z(z-BHΓι\\£l + M'4 for z$Sh*,. Again the contri-

butions to the integral from the parts C2 and C3 of C tend to cancel each other

for α~>0, so that the estimate is uniform in a for 0^<x<, α0.

To prove the inequality (1.16), we start from the identity

(A 6) ATexp ( - τA) - exp ( - σAΏ = - Γ Aa+1 exp ( - zA)dz9
J a

where the integral may be taken along the segment joining a and r. In virtue

of (1.14), the norm of the right member of (A 6) is not larger than

'

with an arbitrary β such that 0<)3<l. This proves (1.16).
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Next we prove that

IA7) An(tΓ«->A(t)-*i *>0,

strongly and uniformly in ί, where An(t) are as in §3. Since Anh-* A~h in

norm and uniformly in t by (3:10), we have U-f An)'1-* U-f A*1)'1 in the same

sense for Λ>0. An application of (AD then shows that An(t)~*-*A(t)~* at

least strongly for 0<a<h. Hence follows (A7) for an arbitrary α > 0 by

considering appropriate powers of both sides.

Similarly we can prove

(A 8) An(tΓ exp ( - τAn{t)) -> A{t)a exp ( - τA{t)),

α:>0, | a r g τ | < | — 0, r # 0 .

To this end it is convenient to use (A5) with B = An. In view of (3.10),

this gives

Aa exp ( - τA) - An exp ( - τA»)

*me-τzmA\z- Ah)-ιAh

n{z- Ah

nr
ιdz.

Thus (A 8) follows immediately by noting that \\Ah(z - A 'T 1 ! !^ 1 + M4>

WAniz-AnΓ^liCl + Ni (see the proof of (1.15) given above). Incidentally,

this shows that (A 8) is true in the sense of norm and uniformly in t and r

as long as I r | > δ > 0.
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