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The questions concerning the dimension of the tensor product Λ&κΓ of

two /^-algebras have turned out to be surprisingly difficult. In this paper we

follow a method using spectral sequences (§§1-3) which in some concrete cases

yields complete results (§§4-5). In particular, complete results are obtained

when Γ is a ring of matrices, triangular matrices, polynomials or rational func-

tions, so that in the first three cases Λ&κΓ is respectively the ring of matrices,

triangular matrices or polynomials with coefficients in the arbitrary algebra A.

Similar techniques yield additivity theorems for the dimensions associated

with a tower of three algebras when one of the extensions is special.

At the end (§§6-8) we venture into the domain of semi-primary rings, where

the behavior no longer seems to be controlled by spectral sequences. The key

result here is Proposition 11 dealing with the case when Γ is semi-simple.

We adhere throughout to the setting and notation of H. Cartan and S. Eilen-

berg, Homological Algebra, Princeton 1956. References to this work are indicated

as follows [C-E, V, 4.1.2] meaning Chapter V, Proposition 4.1.2. Other refer-

ences are made by number referring to the bibliography at the end of the

paper.

We have concentrated our attention on the functor Ext and the resulting

notions of dimension. All the results have analogues for Tor and the weak

dimension. With very few exceptions we have not bothered to state those

analogues explicitly. They supply a series of exercises for the willing reader.
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§ 1. Associativity formulas

We shall reexamine here the spectral sequences of CC-E, XVI, §4] and

obtain them under slightly more general conditions.

We begin with the situation described by the symbol (AΛ-r, Λ#Σ> CΓ.%)

where Λ, Γ and Σ are K algebras, K any commutative ring. We consider the

functor2)

T(A, C)=Hom Λ ^r(i4, HomΣ (B, O ) = HomΓ&x tA-S?ΛB, C).

Let X be a A ® Γ-projectίve resolution of A and let 7 be a Γ(g .Γ-injective

resolution of C. Then we have the double complex

T(X, Y)=UomAΘr(X, HomΣ (£, y)) = HomΓ®x ( X & Δ S , Y).

We have

= Extras l/V?£, C)

This implies

Consequently

Hu(T(X, y))=Hom Λ ® Γ (Z, Extr®s(Γ®£, O )

Ά(T(X, Y)) = H o m Γ ^ (TorΛ<2>Γ (-4, Γ®£), Γ).

ΆΆΛTiX, y ) ) = E x t A ® r U , Eκtr«x (ΓS B, O )

HπHΛTiX, Y)) = Extras (TorΛ^Γ (A, Γ®B) f C).

Thus we obtain the spectral sequences

&B, O ) ^ i ? M Γ ( Λ C),

g)S), C) =9ΛnΓ(i4, C),
<7

valid without any assumptions.

Now assume that

Γ is iΓ-flat, i.e. Tor? (Γ, X) = 0

for all r > 0 and all iC-modules X.

We shall prove that we then have the natural isomorphisms

2 ) Unadorned v£ and Horn are always taken over K.
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(i) Ext^fcs (Γ® B, C) ^ Exts (B, C)

(ii) T o r ^ Γ (A, Γ& B) ^ Tor£ (A, £

Thus the spectral sequences become

(1) ExtΛ®r(Af Ext!(£, O ) -=?RnT(A, C)

(2) E x t ί β s (Tor^ (A, B), C) =*RnT(A, C).
9

These are the spectral sequences given in [C-E, XVI, § 4] but under the stronger

assumption that Γ is if-projective.

Before we establish ( i ) and (ii) we shall prove a lemma that will also be

useful later.

LEMMA 1. In the situation (ABs> r-%C) assume B is A-flat and C is Γ($)Σ-

flat. Then B&%C is A&Γ-flat.

Proof. We must show that the functor T(A) = A®Λ®Γ(-B®ΣC) is exact

for AΛ-r. Since T(A) = (AφΛ£)®r<g>2C, T is the composite T = W of the

exact functors U{A) = A<g;ΛB and F(A') = A''$)r®?.C.

Now assume that Γ is if-flat. Applying the lemma to (KΓK, -Z-KΣ) we find

that Γ&Σ is J-flat. Consequently, the change of rings Σ-+Γ&Σ implies by

[C-E, VI, 4.1.3] the isomorphism (i). Similarly Λ£ Γ is yl-flat and the change

of rings A --* A8)Γ implies by [C-E, V, 4.1.2] the isomorphism (ii).

Quite analogously starting from the associativity rule

rJΛ ί Λ /"* \ Λ 'y' / D 'O i^\ ( Δ V'l ID \ -O /^*
J[ \ JΛ. I w * — MΛ, v̂ >; _/̂  (̂ > p V X!/ <^ 2? \s ) — \ JΓX vίV Λ *-} f v> Γ ® X ^

in the situation (AA-Γ, ΛSS> Γ-SC) we obtain the spectral sequences

Γ&B, O) j»LnT(A, C),

Bg'Π, C) ^LnT(A, C).

Under the assumption that Γ is iί-flat these reduce to

(la) Tor£ Θ r (A, Tor^ (B, O) ^> LnT(A, C),

(2a) TorJΘ Σ (Tor# (A, £) , C) =Φ L«Γ(A, C).

§ 2. Spectral sequences

We apply the spectral sequences (1) and (2) to the ϋC-algebras (Γ, Γ*, Λ*)

in the situation (ΓΓ-r*, Γ-BΛ*, CΛ*-Γ*), and under the assumption that Γ is iΓ-flat

(thus also Γ'' is iv-flat). The spectral sequence {2) then collapses and gives
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Ext'r*®.\< (B, C) ^ /?7ZT(,4, C). The spectral sequence (1) thus becomes

r* (/', Ext^lB, O) ^Ext?*®Λ* (B, C).

The functors Ext are treated here as functors of right modules. Replacing all

rings by their opposites and reverting to left modules we obtain

(I) HPU\ ExtσΛB, O) =>Ext"Θ Γ(B, C)
V ~V

in the situation (A-ΓB, A-rC). This is the first fundamental spectral sequence,

valid under the assumption that Γ is K-fidX.

We now consider the triple of if-algebras (K, Γe, Λe) and assume that Γ is

if-flat. Then Γ* also is /f-flat and Lemma 1 (applied to Λ^Γ=Σ=K) shows

that Γe = Γ&Γ* is also ϋΓ-flat. Thus the spectral sequences (1) and (2) may

be used. We shall apply them to the situation (7re, ΛΛS AAe-Γ

e). Then (2)

collapses and gives

Ext? <8>Λ« (Γ&Λ, A)^RnT{Γt A).

Thus the spectral sequence (1) becomes

ExtMr, Exti«(Λ A)) ^ E x t Γ ^ Λ ίΓ®^, A).
VV

Again replacing right Ext by left Ext and replacing Γ®A by Λ&Γ we obtain

the spectral sequence

(II) HP(Γ, HHΛ, A)) ^Hn(Λ(8}Γ, A)
PP

valid for any two sided Λ® /"-module A, under the assumption that Γ is ϋf-flat.

This is the second fundamental spectral sequence.

PROPOSITION 2. If A and Γ are K-algebras and Γ is K-βat then

(1) LdimΔ®rB *= d i m Γ + l . d i m Λ β (Λ-ΓB)

(2) 1. inj. dimA<g>r C ^ dim Γ-|-1. inj. dimΛ C ( A-ΓC)

(3) 1. gl. dim A & Γ 4- dim Γ -f 1. gl. dim ,1

(4) d imΛ&Γ^ dimΓ+dimyί.

7/ further Γ is K-projectiυe and contains a direct K-summand Kf isomorphic

ivith K thenZ)

i] The finitistic left global dimension, f. 1. gl. dim Λ, is defined as the supremum of all
1. din) \ β, for left Λ-modules B such that 1. dimΛ B <oo.
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(5) f. 1. g l . d i m A *=' f. 1. gl. d i m . i & ' Γ £ d i m Γ + f . 1. g l . d i m A

(6) 1. g l . d i m A *ϋ 1. g l . d i m Λ&Γ

<7) dim A ^ dim ί S Γ .

Proof. Inequalities (1), (2), (3) follow from ( I ) while (4) follows from

(II) (cf. beginning of §5).

When Γ is #-projective, we can apply [C-E, VI, 4.1.4] and [C-E, VI, 4.1.3]

to the change of rings A -• Λ(χ;7* to get

(8> l . d i m Λ β f* l.dimΛ<g>r£ <Λ-ΓJB)

(9) l . d i m Λ £ ' ^ 1. dimΛ<g>r B'&Γ (ΛBΊ.

Assuming /' has a /f-direct summand isomorphic to Ky B'&Γ will have a A-

direct summand isomorphic to £?', so that l . d i m Λ £ ' ^ 1. dimΛ B' $ Γ. Combining

this with (8) applied to B = S ' ® Γ and with (9) we obtain

(10)

From (10) we get (6) and the left inequality in (5). If B is a J®Γ-module

of finite dimension then (8) shows that B is also finite dimensional over A so

that the right inequality in (5) follows from (1).

By (10), dim A = 1. dimΛ« Λ = 1. d i m Λ ^ Γ Λ&Γ and by (8) 1. dimΛ-»r Λ«χ-Γ ^

l.dimΛ

β(8>rβ^ S)Γ=dim/l(g)7'. This proves (7) and completes the proof of

Proposition 2.

Remark 1. All the hypotheses of Proposition 2 are fulfilled when Γ is K-

free or when Γ is a i£-projective, supplemented ϋΓ-algebra.

Remark 2. The inequalities (l)-(4) can also be proved by induction, without

using spectral sequences, following the method given in [5, Proposition 3].

Remark 3. Taking Λ = K in (3) we find

1. gl. dim 7̂  ̂  dim Γ+ 1. gl. dim K.

This generalizes [C-E, IX, 7.6] where K was assumed semi-simple.

Remark 4. The statement (4) is contained in [C-E, IX, 7.4] when both A

and Γ are assumed ϋf-protective.

Remark 5. Assuming A semi-simple in (I) we find

//"IΓ, H o π u i B ,
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in the situation (Δ-rB, A-ΓC) provided Γ is if-flat. This generalizes [C-E, IX,

4.3]. If further, d imΓ-0 then Λ&Γ is semi-simple.

§ 3. A new spectral sequence

Consider ring homomorphisms

(here J, Γ and Ω are not assumed to be algebras), and let K be a left Λ-module

such that

(1) T W ( Γ , iΠ = 0 for r > 0 .

Assume further that we are given a left Γ-isomorphism

(2) a : i 2 ^ Γ ^ Λ # = ( . . ) # .

Apply the change of rings given by ψ to the situation (QB, Γ£Ω, ΓC). There

results [C-E, XVI, §5, case 4] the spectral sequence

(3) ExtS (B, Ext? (Ω, O) =» Ext? (J5, C).

In view of (2) we have

(4) Extf (Ω, C) % Ext^ (Γ®AK, C).

We now apply the change of rings given by ψ to the situation (AK, ΓΓΛ, r θ .

There results CC-E, XVI, §5, case 3] the spectral sequence

Extf (Tor£ (Γ, K\ C) =* Extl {K, C)
q

which in view of (1) collapses to

(5) Ext? ( Γ » A « ; C) % Exti (ϋΓ, C).

Combining (4) with (5) and substituting into (3) we obtain the spectral

sequence

(6) Ext£ {B, Extl (K, O) =* Ext? (JB, C), (QB, Γ C ) .

The operators of j? on Exti (K, C) are defined using (4) and (5) and

depend upon a.

As a first application consider a homomorphism

# : A -» Γ '

of supplemented ϋΓ-algebras. Assume that



ON THE DIMENSION OF MODULES AND ALGEBRAS, VIII. 77

(V) Tor,Λ (Γ, tf) = 0 for r > 0

which is certainly true if Γ is J-flat. Let I [A) be the kernel of the supple-

mentation A -> K and assume that the left ideal Γ I(A) of Γ is two-sided.

Define the if-algebra Ω = Γ/Γ I(A) with its supplementation induced by that of

Γ, and let <f : Γ-* Ω be the natural map. From the exact sequence 0-* I (A)

-»J->ϋf-*0, there follows the exact sequence Γ(χ AKΛ) -* Γ-> Γ&AK -» 0.

Thence results an isomorphism i? ~ Γ χ> Λ/£ of left Γ-modules. Thus the spectral

sequence (6) applies, and yields the spectral sequence of CC-E, XVI, Thm. β. 1]

from which are derived the Hochschild-Serre spectral sequences for groups and

Lie algebras.

The new application of the spectral sequence 16) that interests us here

deals with the case of a A'-algebra A such that K itself is an L-algebra. We

shall assume that

(1") Tor,A'ΘίΛ' (A & L,1*, ϋΓ) = 0 for r > 0

or equivalently

(Γ'a) Hr(K9 A®L<f) =0 for r > 0.

The superscript L indicates that we take the homology groups of K regarded

as an L-algebra. The condition (1") holds if A is /Γ-flat, for by Lemma 1 applied

to the situation (KΛL> K-LΛ*), with K and L treated as L-algebras, JΘ/.Λ* is

then K®LK-faX.

We now consider the 2,-algebra homomorphisms

where ψ is induced by the natural map K-* A while ψiλi'Sjhλt) =λι&κλt. We

define a left A & L.ί*-isomorphism

(2") a : Λ®κΛ**s (/ί® LΛ*) <8)κ®LκK

by setting

Its inverse /9 is given by $L()Λ& Lλ*) x k~]- λιk\)κλ}. Thus all the conditions

above are met and the spectral sequence (6) yields

(6") ExtfU,-A (£, Hl(Kf O) ^Ext l^ Λ . v (J3, C)



78 SAMUEL EILENBERG ET AL.

in the situation <^%K_\*B, Λ? Λ . V C ) . Taking B- ί and replacing C by A we

obtain the third fundamental spectral sequence

iIII) Hί(<L HlKK, A)) -=>H'ίλX A)y ( Λ $ > £ Λ * A )
V

valid under the assumption (1"), or in particular if A is ijf-flat.

A remark is needed concerning the operators of A%-χA': upon HliK, A).

Since H'ί(K, A) = Extl^Lκ (K, A) it follows from general principles that

Hl(K, A) will have operators of the same type as C = Homκ<zLκ (K, A). If A

is a A&L/ί*-module, there results that C is a Λ Szi-ί*-module. However the

operators of K on C may be derived using either the K-module structure of A

or of K. It follows that the left /if-operators of C coincide with the right K-

operators of C. Thus C is a A g}KA* module. The same follows for HliK, A).

PROPOSITION 3. Let A be a K-algebra satisfying Π'O and let K be an L-

algebra. Then4'

L-dim .ί ^ L-dim K -h K-ά\m A.

If further A is K-projective and contains a K-direct summand K' isomorphic

with K (as a K-rnodιιle) then

Z-dim K != L-dim A

(cf. [10, Theorem 5]h

Proof. The first inequality follows directly from the spectral sequence (III).

To prove the second inequality assume HliK, A) -* 0 for some κ®LκA. Then

Extκ®fK (K, A) ^ 0. Since K1 is a direct /i-summand of A it follows also that

K' is a (K& i K)-direct summand of A and K and K' are (K&' r.K)-isomorphic.

Thus Ext£#,,Λ- ( ί, A) =̂F 0. Now consider the change of rings given by ψ : K®LK

-> ί'χ)/J . Since Λ is iί-projective it follows that Λί<)/-J'ί; is iίg>Liί"-projective,

and thus by [C-E, VI, 4.1.4] we have E x t ^ v U, {*]A) ^ 0. Consequently

HΐλA, >'-]A) -v-0.

PROPOSITION 4. Let A be a K-algebra and let K be an L-algebra. If

L-dim 7^=0 then

L-dim A ί= A"-dim A

A) L-dim Λ means dim Λ where Λ is considered as an L-algebra, i.e., L-dim Λ
^ 1 . dim A S j v A.
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and for every A& fl A*-module A ive have

HΪU, A)^Hκ(.i, A')

ivhere Af is the submodule of A co?2sisii)tg of all elements a satisfying ka — ak

for all k e K. (Cf [8, Theorem 10.1].)

Proof. Since L-dϊmK-0, condition (l"a) holds and the spectral sequence

(III) may be applied. It collapses to the isomorphism

HκU9 HL(K, A)) zzHΪU, A)

which is precisely the required result since Hϊ(K, A) = Homκ®Lκ (Kt A) = A!.

THEOREM 5. Let Γ be an integral domain τvhich is a K-algebra and let Λ

be the field of quotients of Γ} also treated as a K-algebra, Then

Hn(A, A)^Bn(Γ, A)

for any iivo-sided A-module A. In particular

dim A §= dim Γ.

Proof First we note the natural isomorphism

Λ \& r A *̂  A

given by l L ® -Ώ- - n ^ - This implies
n r i T2T2

(!) IΓAA, C)=0 for r>0

(ii)

for any Λ®rΛ-module C i.e. for any yi-module C.

Since A is Γ-flat (CC-E, VII, §2, (l)]) s we may apply the spectral sequence

(III) with (Z, Kt A) replaced by (K, I\ A). In view of (i), this spectral sequence

collapses and gives

HvU, HlίΓ, A))τ*HlU, A)

which in view of (ii) yields the result.

M. Auslander has proven a similar theorem for more general rings of

quotients (unpublished).

§ 4. Applications

Given a l£-algebra /', the following properties of /' may be considered:
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(Pi) For every ϋί-algebra A

f. 1. gl. dim A &• Γ= dim /*+ f. 1. gl. dim A

and

1. gl. dim A &> 7" = dim Γ + 1 . gl. dim J .

(Po) For every ϋΓ-algebra A

dim A ® 7' = dim Γ + dim Λ.

(Pa) If K is an Z-algebra then

Z,-dim Γ = K-άim Γ+ L-dim K.

If Γ is commutative, we may also consider

(P4) If Λ is a Γ-algebra satisfying

.flf(Γ, ^l®Xy4*)=0 for r>0

Γ-dim yl < °°

then

A = jfif-dim Γ + 7̂ -dim yi.

Note that we have proved that the first condition in (PO is satisfied

whenever A is Γ-flat. Note also that (Pi) implies 1. gl. dim 7'= dim Γ + 1 . gl. dim K.

Adding 1. gl. dimϋf to both sides of the equalities in (Pi) we obtain

1. gl. dim K+iΛ. gl. dim Λ ® Γ = 1. gl. dim Γ + f. 1. gl. dim A

1. gl. dim ϋC+ 1. gl. dim A ® 7" = 1. gl. dim Γ-h 1. gl. dim A.

THEOREM 6. Let Γ=Kίxif . . . , xnl be the algebra of polynomials in inde-

terminates xu . . . , xn with coefficients in K. Then dim Γ=n and Γ has proper-

ties (Pi), (P2), (P3) and (P4).

THEOREM 7. Let Γ- K{χu . . . , xn) be the algebra of rational functions in

indeterminates xu . . . , xn with coefficients in the field K. Then dim Γ = n and

1 has properties (P2), (Pa) and (Pi).

THEOREM 8. Z,£f Γ- TniK), n > 1 be the algebra of all nx n "triangular"

matrices (kij) with entries in K satisfying k j - 0 for i < j . Then dim Γ- 1 and

Γ has properties (Pi), (P2) and <P3>.

The proofs of Theorems 6, 7, and 8 will be given in the next section.
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T H E O R E M 9. Let Γ=Mn\IO be the algebra of all nxn matrices with

entries in K. Then d i m Γ = 0 and Γ has properties ( P i ) , ( P 2 ) , and (P.O.

Theorem 9 can also be proved in the spirit of section 5 but, since dim Γ = 0

[C-E, IX, 7.8] and Γ is ϋΓ-free, this theorem is already implied by Propositions

2 and 3.

Theorem 9 has already been proved by Harada, [7, Theorems 1 and 2].

Remark 1. For Γ=K(Xi, . . . , xn), property (Pi) actually fails. Indeed Γ

being a field we have 1. gl. d i m Γ - 0 , while (Pi) would imply 1. gl.dim Γ— n.

Remark 2. Note that A ® KZxi, . . . , * * ] = ΛZXU . . . , #,,], .1 ζ\ Γn(/i )

= Tn(/ί) and ΛS MniK) =Mn(A). Furthermore, since every ring is an algebra

over its own center, Theorems 6, 8 and 9 imply results on ΛZxu - . . , Xnl,

Tn(Λ) and Mn(Λ) for arbitrary rings A. For example,

1. gl. dim A ίxi, . . . , xn2 = >/ + 1. gl. dim . ί.

Remark 3. If /iί is an L-algebra we may use the device in Remark 2 to

write Kίxu . . . , Xnl = Lίxu , ^»D®ι/iC, Ά(ϋC) = Tn(D - /,/i' and MΛ(Ar)

= Mn(L) &LK Thus in those cases, (P.-,) follows from (P2).

§ 5. Proofs of Theorems 6, 7 and 8

The proofs are based on the "maximum term principle" of spectral

sequences. This well known principle may be stated as follows: Let

V

and let {pύ, qύ) be a pair of indices such that

(1) Eξ'Q = 0 if p>po or q>qQ.

Then ive may conclude that

(2) f Γ = 0 for n >β<> + qύ,

First we note that (1) implies Epη = 0 for all r ^ 2, if p > p0 or q > </0. Thus,

because of convergence conditions, this also holds for r = ^ . Again, because of

convergence conditions, (2) holds, and moreover Hp^Qo ^ £ίc"^°. For every r ^ 2

the homomorphisms
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are zero and therefore E& ?9 = EptQ\ Thus EptQ* = Et9'*9 and everything is

proved.

In each of the cases when Γ is Kίxi, . . . , xnl or K{xu . . . , χn) or Tn(K)

we shall exhibit a class 3Ϊ of special /^-modules with some of the properties

(Q), (Qi)-(Qi) listed below. More specifically we shall show that

Γ=KZxi, . . . , * « ] satisfies (Q) with p = n, and (Qi)-(Q4),

Γ=K(xu . . . , Xn) satisfies (Q) with p = n, and (Q2)-(Q4),

Γ=Tn(K) satisfies (Q) with/> = l, and (Q1WQ3).

( Q) dim Γ = p < oo and Hp (Γ, A) - A for A ε 91,

(Qi) If Λ is a /^-algebra and f. 1. gl. dim Λ = q < oo, then there exist A®

modules JB, C such that 1. dimΛ B-q and

0 * Exti (£, C) ε 2ί.

(Qo) If A is a /Γ-algebra and dim A = q< oo then there exists a

module A such that

0 ^ HQ{A, A) G 9ί.

(Q3) If K is an L-algebra and L-dim K- q < °° then there exists a Γ

module A such that

(Q.j) If yί is a Γ-algebra satisfying #?(Γ, ^ ® A ^ * ) = 0 for r > 0 and

Γ-dim A = q < oo, there exists a Λ® LΛ*-inodule A e 9ί such that

flfίil, A) F̂O.

From (Q) and (Q/) we prove (P/). Since each of our Γ's is K-free we

may use Propositions 2 and 3 at will.

By Proposition 2 (5), q = f. 1.gl.dim A^f.lgl.dim Λ®Γ. Thus, if ^ = °°,

the finitistic global dimension statement in (Pi) is true. If q< oo, apply the

maximum term principle to the spectral sequence (I) to obtain

(4) Exti#Γ (£, C) ^ JH*(Γ, Exti (B, O) % Exti (5, C)

if Exti (5, C) ε 91. Now choose B and C as in (Qi) to get l.dimA®r£

But 1.άimA<s>rB ^p + q< oo by Proposition 2 (1) so that f. 1.gl.dim

^ 1.dimΛg>r^ ^ ί + α The converse inequality is Proposition 2 (3).
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To prove the second half of (Pi) we note that by Proposition 2, \',J), 16)

we have

l.gl.dimΛ *= 1. gl.dim Λ^Γ -ύ dim Γ + l . gl.dim A

and this disposes of the case 1.gl.dim A = ^ . If 1.gl.dim A < oo then f.l.gl.dim A

-1.gl.dim A and the part of ( P ^ already proved shows that

dim Γ+ 1. gl. dim A - f. 1. gl. dim A •>; Γ ^ 1. gl. dim Λ&Γ

which combined with the inequality above yields the desired equality.

To prove (P2) ? write dim A = q. Once again if q = :, Proposition 2 (4)

implies the conclusion of (Pa). If Q< CO, apply the maximum term principle

to the spectral sequence (II) to obtain

(5) HP*Q{Λ&Γ, A) ^ HQ(Λ, A) if HQ(A, A) e s}f.

If A is chosen as in (Q2\ then dim Λ £) Γ ^/> + <7. The converse inequality is

Proposition 2 (4).

As for (P3), Proposition ?, (with A-]) allows us to restrict our attention

to the case Z-dim K — q < 00. Apply the maximum term principle to the spectral

sequence (III) to obtain

(6) //£-*( Γ. A) ^ #'ί< /C. .4 ) if ffli Ar, A) e ίί.

Choosing A as in ιQ.0 we get Z-dim / ' ^ p-\- q. The converse inequality is in

Proposition 3.

In proving (Pj) we are assuming Γ-dim J - <; < «> and H*ΐ{Γ. A&κ*f ) -$

for Y > 0. Apply the maximum term principle to the spectral sequence (III)

with L replaced by K and K by Γ to obtain

(7) / / Γ " U , A) ^WiL A) if A £ 3 ( .

If A is chosen as in <Qι) λve have Λ'-dim.l ^β + q. The converse inequality is

in Proposition 3.

We are thus reduced to producing the class xH, proving (Q) and the ap-

propriate (QΛ We treat theorems 6 and 7 together, writing /',, for either

Kίxu . . , Xn\ KK a commutative ring) or KAx-. . . . , xn) (A" a field). Now vJl

is to be the class of symmetric /'''"-modules:

\H ~ {A j r^ - #ϊ for all r = ^ and a £ A/.

Clearly it suffices to know x>a--axl} for / - - I , . . . , n. Here <Qί> is obvious.
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since any A®rA'"'-module is symmetric by definition. Thus (Q) implies (7) and

(P4) directly.

A proof of (Q) for polynomial rings and rational function fields can be

extracted from [C-E, VIII, §4]. In the present situation, however, it is easy to

give an inductive proof along the lines of [10, Theorem 6]: If A = KLxi] we

consider the sequence

(8) 0 —> A® A -£+ A® A -1+ A —> 0

where <f is multiplication by z = Xι ® 1 - 1 ® Xi and -η is the ring homomorphism

defined by τ?(#i®l) = τ?(l(8 λxύ - xλ. The kernel of y is then the ideal generated

by z. To see that the sequence is exact it must be shown that ψ is a mono-

morphism i.e. that z is not a zero divisor. This is clear if we identify A® A

with Kίx, yl using the identification #i®l-*#, l&Xi-*y. The sequence (8)

being a Γi-projective resolution of A we have dim A ί= 1. If Λ is any symmetric

Γf-module then HomΓl

e (A, A) = HomΓl (A, A) ^ Λ. Further the map A -* A

induced by φ is zero. Thus Hι{ A, A) ^ A.

Essentially the same proof can be used to prove (Q) for A = iΠΛά), or we

may use Theorem 5 and the property (Q) for the polynomial ring.

We now assume that Γn satisfies (Q) and hence also (7) and (P4). If we

take Λ = Γ«*i = ΓΛ[>Λ+i] (or A = Γn(xn+i)) in (7) and (Pi) and use (Q) for n = 1,

then (Q) follows for Γn+i. This proves (Q).

To prove (Qi), for Γ=/fl>i, . . . , xn~] only, choose /i-modules B and C

so that LdimΔB = 0 and Exti(B, C) * 0. Convert B and C into Λ®Γ-modules

by setting XiB = 0, XiC = 0y ι = l, . . . , n. Then Exti (B, C) is symmetric (i.e.

is in ?ί).

For (Q2), let Λ be a /f-module with f^(yί, A)=^0, g = άimA. Since Γ is

/r-free, Hq{Λ, A®Γ)*0 and clearly A®Γand fl^(yί, A® Γ) both are symmetric

as Γe-modules.

For (Q3) choose a K(gLK*-moάu\e A such that i/ί(/Γ, A) * 0, ^ = Z-dimΛ".

Since Γ has a two-sided ϋΓ-direct summand isomorphic to Kt A&KΓ has a

if®L#*-direct summand isomorphic to A. Thus Ήq

L{K, A®KΓ) # 0 and, as

two-sided Γ-modules, A®i:Γ and Hl(K, A&KΓ) are symmeric. This completes,

the proofs of Theorems 6 and 7.

We now consider Γ= Tn{K). Here the cϊass 21 is the set of Γe-modules A

satisfying
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eijA - Aeui = 0 for (ι, j) * (2, 2), (*, /) * (1, 1)

where the e's are matrix units. We deduce that #>2 acts as identity operator on

the left and en acts as the identity on the right.

We examine the sequence

(9) O - > X I Λ X O Λ Γ—>0

of Γ*-modules:

Xι = ΣΓβa® **-,,,-_!Γ* 1< i ^ w

Clearly Z o and Xι are Γβ-projective. To see that the sequence is exact we

introduce the K-basis

for Xι, the if-basis

d k , i , ι = β k i ® e * ι n ^ k ^ i ^ l ^ l

f o r XQ a n d t h e u s u a l / i ί - b a s i s e m , n ^ k ^ l ^ l f o r Γ. T h e n

ψ(ck,i,ι) = dk,itι~ dkj-itι y(dk,i,ι) -βki.

Exactness is then obvious by fixing k and /. Thus (9) is a Γe-projective reso-

lution of Γ and therefore dim Γ ^ 1.

If A G ^ ί we obtain an isomorphism HomΓ* (Xι, A) ~ A by the

correspondence /-*/(£22®£n). Further the homomorphism HomΓ

e (^o, ^

-* HomΓβ (Xi, Λ) induced by ^ is zero. Consequently,

ffHΓ, A) = Ext^β (r, A) = Homr* (X, A) * A,

for any i4 e slί. This proves (Q).

For (Qi), choose /1-modules B and C such that Ldiπu-B = ̂  and Ext"7 (22, C)

=^0. Convert B and C into Λ®Γ-modules by setting £,>•£ = 0, (/, j) * (1, 1)

and e/i/C = 0 for (*, I)* (2, 2). Then Exti(i5, C) e 3ί.

For (Q2) choose a /ίe-module A with //9(yί? A) ^ 0 , q- ά\mΛ and convert

A into a (Λg)Γ)e-module by setting βijAβki^O for (ί, i ) # ( 2 , 2), (A, / ) * ( 1 , 1).

Then both A and //^/l, A) are in 3ί.
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For (Q 3) choose a if(g>z,if*-module A with Hl(K, A)*0, q^L-ά\mK.

Again convert A into a Γ ® L Γ * - m o d u l e by setting eijAeui-O for (i, j)±t (2, 2),

(*, /) # (1, 1). Then H i (A", A) e 51. T h u s the proof of Theorem 8 is complete.

If K is a field Lgl .d im Tn(K) = dim T,t(/JΓ) = 1 is already proved in [ 6 ] .

Remark 1. In proving (Qi) for Γ=Tn(K) and Γ = A " [ * i , . . . , XnΊ we

converted /ί-modules £ and C into Λ ®Γ-modules εJ3, ε C defined via supple-

mentations ε : Γ-> K and ε' : Γ-+ K. Similarly in proving (Q2) we converted

(or could have converted) ^-modules A into (Λv&TΎ-modules εA ε ' .

Remark 2. T h e proof of property (Pi) really shows somewhat m o r e : If

A is any Λίxu . . . , tfj-module satisfying *, A = 0, i' = l, . . . , w (Λ any r ing)

then

1. dim AC*! *„] A = w + 1. d i m A A

Similar remarks can be made about Tn{Λ) and Mn(Λ).

§ 6. Application of products

PROPOSITION 10. If Kis afield, A and Γ are any K algebras, and (AB, rB')f

we have

(1) 1. dimΛ B -f w. 1. dimΓ B
11= 1. dimΛg>r B ® B1 ^ 1. dimΛ β +1. dimΓ B'

(2) 1.gl.dim Λ-f w.gl.dim Γ £ Lgl.dim A ®Γ •£ 1.gl.dim A + dim /'

(3) dim yj + w. dim Γ ^ dim yl $ Γ ^ dim /I + dim Γ.

PTΌO/. The right hand inequalities result from [C-E, XI, 3.2], Proposition

2 (3) and Proposition 2 (4), respectively. If ExtΛ(£, C) * 0 and Tor£(C;, B')

* 0 then since K is a field we have

Horn (Tor£ (C, £'), Ext£(£, C)) #0.

Thus by [C-E, XI, 3.1] the JL -product shows that

ExtAVr(B®B', Hom(C;, O ) # 0 .

Hence l.dimΛ®rB®i5'^^-f g, proving (1), and also the left hand inequality

in (2).

Finally, (3) follows from (1) by replacing Λ, Γ, B, B' by A\ T\ A, Γ.

Remark 1. The analogue of Proposition 10 is equally true for weak di-

mensions ([C-E, XI, 3.2] no longer applies but may be replaced by the spectral

sequences (la), (2a) of section 1 with Σ=K). Then (1) and (3) become equalities
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w. 1. dimΛ<g> r B $ B' = w. 1. dimΛ 5 + w.l. dimΓ B'

w. dimyί ® Γ = w. dim Λ -f w. dim 7".

Remark 2. If in Proposition 10 we know that w. gl. dim Γ - dim Γ, then (2)

becomes

1. gl. dim Λ ® Γ= dim Γ+1. gl. dim /I

i.e. the second conclusion of (Pi) is valid. This is the case when Γ is semi-

primary with (nilpotent) radical N and with Σ=Γ/N separable and of finite

degree over K ([4, Corollary 5 and Proposition 12] and [2, Corollary 9]).

Remark 3. If in Proposition 10 we know that w.dimΓ=dim/' (i.e. that

w. 1. dimr* Γ = 1. dimΓe Γ) then (3) becomes

dim A % Γ = dim Λ + dim Γ

i.e. Γ satisfies (P2). This is the case if Γe is either left Noetherian or semi-

primary (see [C-E, VI, Exer. 3] and [2, Corollary 8]). With the stronger hy-

potheses lΛ : Kl < oo and [Γ : Kl < co the result was proved in [C-E, IX, 7.4].

Remark 4. In general it is not true that if K is a field

dim A '8) Γ = dim A + dim Γ.

For example, let A and Γ be locally separable algebras over K with [.] : i i ]

= [ Γ : ϋf] = £o. Then Λ&Γ has the same properties, and [10, Theorem 4]

implies dim A = dim 7" = dim Λ ® Γ = 1.

§ 7. Semi-simple algebras

PROPOSITION 11. Let Σ be a semi-simple algebra over a field K with IΣ : K]

< oo and let A be any K-algebra. If in the situation (,\-%Bt A-ZC) we have

Extϊβ* (J5, C) * 0, ExtS (Bt C) = 0

for some in > 0 then

Ext?& (5, C) * 0.

Proof We begin by noting that 2* must be inseparable. For otherwise

dim Σ = 0 [8, Theorem 4.1] and so the spectral sequence (I) collapses to

E x t ^ (£, C) * i/°U Extl'U, £))

contradicting the hypothesis.
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The rest of the proof breaks up into three steps. In the first, we assume

that Σ is simple and the center Z of Σ is a purely inseparable extension field

of K (i.e. there exists an integer / such that zp/ e K for all z E Z , where p A 0

is the characteristic of K).

Consider the algebra Ω = ΣΦZΣ*. We have the natural /f-algebra epimor-

phism Σ $;KΣ* = Σe -* Ω whose kernel M is the two-sided ideal in Σe generated

by elements z g> 1 - 1 ® 2* for z e Z. Now, (2 & 1 - 1 ® 2* )*' = 2*' ® 1 - 1Θ zpf*

and since zpί e if it follows that (2 S>1 - 1 &>z*)pf = 0. Since the elements 2 (χ)l

- 1 (x) 2* generate M and are in the center of Σe

9 it follows that every element

of M is nilpotent. Since [_Σe : i f] < 00 we have [Z : ϋG < 00 and therefore

M is nilpotent. There is therefore an integer k such that

Mk * 0, M*+1 = 0.

Since Ω = Σ(g>zΣ* is simple [1, Theorem 7.IF] every left i?-module D is a

direct sum of simple i2-modules and all simple ^-modules are isomorphic. But

Σ, being a simple ring, is a simple ^-module. Thus D is a direct sum of copies

of Σ as a left J2-module. Consequently D&χB is a direct sum of copies of B

as a left A ® i'-module. Since the functor Ext converts direct sums (in the first

variable) into direct products CC-E, VI, 1.2] it follows that for each q the

relations

B, C)=0

are equivalent if D =¥ 0. In particular,

(1) ExtϊβsίΛίVsB, C ) * 0 .

Now assume

Ext ϊ&(£. C)=0.

Then from the above it follows that

ExtS#s (AfVMί+1 ® i B , C ) = 0

for all ifeO. Thus from the exact sequence 0 -» Mf'+1 -> Af1f- M'/Mitl -• 0

(with Af 0 ^^) it follows that

ExtΛ&.v (M'ι®ϊB, C) -> Ext' l^ (Af / τ l®2B, C)

is an epimorphism. Consequently < ΐ) implies that
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,τ(Σe(g^B, C) *0.

Now, Σeξ:-χB^Σ& KB. Further, if we consider the change of rings <f : A-» A$)Σ

we have

<VB - ( Λ'SJΣ) g) A B - -Γ^A B.

Since J&2"is Λ-projective it follows from [C-E, VI, 4.1.3] that Ext™%z(Σ(g KB, C)

zzExt™(B, C). Thus ExtlMB, C) * 0, a contradiction.

In the second step we assume that Σ is simple. Let Z be the center of Σ

and let L be a maximal separable subfield of Z; then Z is a purely inseparable

extension of Z. Setting ί' = A(g KL we have

Since Z, is separable and \_L : Kl < co we have K-άim L = 0 and the spectral

sequence (I), applied with Γ=L, yields

Ext?' (B, C) ^//°(L, Extlz(B, O ) .

Consequently Ext'y (B, C) = 0. The conclusion now follows from step one.

The third step reduces the case of Σ semi-simple to the case of Σ simple

by a trivial direct product argument.

COROLLARY 12. If Ext'Az#2 (-B, C) # 0 for some aw>LdimAB, then

ExtΛS-s (£, C) F̂ 0 /or α// <7 ^ ??2.

COROLLARY 13. // l.dimΛ<g>:sB > l.dimΛB ί/zew l.dimΛ®sB= oc.

PROPOSITION 14. Z f̂ 2* Z?̂  «w inseparable semi-simple algebra over a field K

with [21 : A"] < oo.

//ni2", 21) ^ 0 for all n>0

(cf [9, Theorem 11.lj).

Proof. Since Hn(Σ, Σ) = Eκtiz^ (Σ, Σ) it suffices, in view of Corollary 12,

to prove the conclusion for n = 1. By [C-E, IX, 5.3] we may assume that Σ is

simple. Let Z be the center of Σ. It was proved by Hochschild [8, Lemma 4.1]

that H\Z, Z) ^0. Since Z is a field, 21 is free as a left (or right) Z-module.

It follows that as a Z&κZ* -module J is isomorphic with a finite direct sum of

copies of Z. Thus H\Zy Σ) #0. We now consider the change of rings given

by ψ : Ze ^ Σe. Since Σe is Z'-free we have [C-E, VI, 4.1.3]
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0 * Hι(Zy Σ) = Extle (Z, Σ) % Exl^β (Σe<g)z*Zy Σ).

Now

We have seen in the first step of the proof of Proposition 11 that as a Σ% zΣ*

module Σ&2Σ* is isomorphic with a direct sum of copies of Σ. A fortiori, this

is true if we regard Σ(g> z 21* and Σ as ^-modules. Consequently Exts« (2", Σ) # 0

as required.

§ 8. Semi-primary algebras

THEOREM 15. Zef Γ denote a semi-primary algebra over a field K, with

(nilpotent) radical N and Σ = Γ/N (semi-simple and) finite over K If we assume

dimΓ>p = gl.dimΓ5)

then there exists a two-sided Σ-module A such that

HP+1(Γ, A) * 0.

For any such module A we have

Ήq{Γf A) * 0 for all q>p.

In particular\ dim Γ = oo.

Proof. There exists a two-sided /'-module A with HP+1(Γ, A) * 0. From

the consideration of the exact sequences 0 -* Ni+1A --> iVΆ -> N*A/Nt+1A -> 0 it

follows readily that #*+ 1(Γ f A') ^ 0 for A' = N*A/Ni+1A for some ι fe 0, (cf.

[4, Proposition 3]). Applying the same argument to the right operators we find

Hp+ι(Γy A") * 0 for

A" = A'NJ/A'Nj+1 = ISTAN'KN^AN' + N*ANi+1)

for some i > 0.

For any two-sided J-module A we have [4, Proposition 8]

Hq(Γ, A)^ExtQ

Γ^(Σ, A).

Thus it follows from Corollary 12 that the relation Hp+1(Γ,A)*0 implies

Hq(l\ A) # 0 for all <?>./>.

The last part of Theorem 15 appears already in [3].

5> If Γ is semi-primary l.gl.dim Γ = r.gl. dim Γ = w.gl.dim Γ [2, Corollary 9]. We use
the notation gl. dim Γ for this common number.
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THEOREM 16. Let K be a field, A any K-algebra, and Γ a semi-primary K-

algebra with radical N and tvith Σ=Γt'N finite over K Then

f. 1. gl. dim A (8) Γ = f. 1. gl. dim A + f. 1. gl. dim Γ.

Proof. In the situation (ΓB'), we have w.l.dimΓ J3' = l.dimΓi3' [2, Corollary

8], Thus Proposition 10 (1) becomes an equality and shows

f. 1. gl. dim A ® Γ ^ f. 1. gl. dim A + f. 1. gl. dim Γ.

Before we prove the reverse inequality we pause for a lemma.

LEMMA 17. Let c : Ξ -* Q be an arbitrary ring homomorphism, and in the

situation (Ξ-B) assume that

Torf (£, J5)=0 i>p.

Then there exists a left Ω-module B1 such that

Exts (Bt C)^ Extα^ (B\ C)

for all m>p and all left Ω-modules C.

Proof. Consider an exact sequence of E-modules

0 -* D -* Xp-ι -> . . . -> Xo -* B -> 0

with Xj projective for j = 0, 1, . . . , p - 1 . The iterated connecting homo-

morphism then yields isomorphisms

(1) Ext? (B, C) * ΈxxT* ( A C) m>p

Tori (i?, β ) ^ Tori-/, (i?, Z)) w > p.

Consequently Torr (i?, D) = 0 for r > 0. Thus by [C-E, VI, 4.1.3] we have

tST* (A C) % Ext^T* ((?,A C)

which combined with (1) yields the conclusion with B' = {?)D.

We now return to the proof of Theorem 16. Let l.dimΛ<8>ri? = m < °°.

Let p = 1. dimr -B. By inequality (8) of section 2 we have p t= m and thus p < *>.

It follows that TorΓίJ, £ ) = 0 if i > ^ . Since Λ* is a field [C-E, VI, 4.1.1]

shows that Tor,Γ(2 , B) * Tor,AΘΓ (Λ S i*, 5 ) , so that we may apply Lemma 17

with S = /i®Γ and i? = Λ φ i 1 to obtain a J&^-module B1 such that

for all ί > ί.
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This implies

p +1.dimΛ<g>2 Bf ί= 1.dimΛ<g>r B.

If ί +1. dimΛ®2 B' < s< °° then it follows that Ext i^r (B, C) = 0 for all (Λ®sC).

Since the kernel of Λ&Γ-> Λ&21 is nilpotent it follows (cf. [4, Proposition 3])

that ExtΛ®Γ(B, 0 = 0 for all (Λ<g>rO. Thus LdimΛ<g>rB < s. We have thus

proved that

p + 1 . dimΛ®2 B' = 1. dimΛ<g>r B.

Since LdimΛ<g>sB'< °° it follows from Corollary 13 that 1. dimΛ<g>2B' = l.dim Λ B'.

Thus we have
p + 1 . dimΛ B' = 1. dimΛ<g>r B.

This implies
/> + f. 1. gl. dim A ^ f. 1. gl. dim /I ® Γ

Since p = \.dimΓB < °o we have p £i.l.gl.dimΓ. Thus

f. 1. gl. dim Γ + f. 1. gl. dim /I ̂  f. 1. gl. dim A®Γ

as desired.

COROLLARY 18. Under the hypotheses of Theorem 16,

1. gl. dimΛ ® Γ = 1. gl. dim Λ + gl. dim Γ
or

l.gl.dimΛ®Γ= oo.

If Σ is separable the first alternative holds.

Proof If either 1. gl. dim/I or gl.dimΓ is infinite, Proposition 2 (6) shows

that 1.gl.dim/1®/1 is, too. In the contrary case 1.gl.dimΛ and gl.dimΓ are

equal to f. 1. dim A and f. 1. gl. dim Γ respectively, which proves the first assertion

of the Corollary.

If Σ is separable, and gl. dim Γ and 1. gl. dim A are finite, then dim Γ

= gl.dimΓ [4, Corollary 5 and Proposition 12] and so 1.gl.dim A®Γ < °°, by

Proposition 2 (3). Thus all three finitistic dimensions are equal to the corre-

sponding global dimensions.

Remark 1. For a result overlapping Corollary 18 see [3, Theorem 2].

Remark 2. If \_Σ : K~\ - oo the conclusions of Theorem 16 and Corollary

18 may fail. For example, let A = Γ= K(xu . . . , xn) so that gl. dim A = gl. dim Γ

= 0 but Lgl.dimJ®Γ=dimΓ=w [C-E, IX, 7.51.
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Remark 3. Under the hypotheses of Theorem 16, the ring Γe is semi-

primary. Indeed the kernel of Γe -> Σe is nilpotent, and Σe being of finite degree

over K is semi-primary. It therefore follows from Remark 3 of section 6 that

dim A ® Γ = dim A -f dim Γ.

Remark 4. If under the hypotheses of Theorem 16 we assume that gl. dim Γ

is finite, a similar argument can prove several extensions of Proposition 11.

For example, let l .d im Λ £< °°. Then

ExtXV (B, C) dp 0 implies E x t ^ r (B, C) * 0

if either

NC = 0 and m > f. 1. gl. dim A + gl. dim Γ

or

NB = 0 and m > 1. dimΛ B + gl. dim Γ.

REFERENCES

[ 1 ] E. Artin, C. Nesbitt, and R. Thrall, Rings with minimum condition, University of

Michigan Press, Ann Arbor, 1948.

[ 2 ] M. Auslander, On the dimension of modules and algebras, III, Nagoya Math. J., 9

(1955), 67-77.

[ 3 ] M. Auslander, On the dimension of modules and algebras, VI, Nagoya Math. J., 11

(1957), 61-66.

[ 4 ] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv.,

28 (1954), 310-319.

[ 5 ] S. Eilenberg, M. Ikeda, and T. Nakayama, On the dimension of modules and algebras,

I, Nagoya Math. J., 8 (1955), 49-57.

[ 6 ] S. Eilenberg, H. Nagao, and T. Nakayama, On the dimension of modules and algebras,

IV, Nagoya Math. J., 10 (1956), 87-96.

[ 7 ] M. Harada, Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka

City Univ., Ser. A. 7 (1956), 17-27.

[ 8 ] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math.,

46 (1945), 58-67.

[ 9 ] G. Hochschild, Cohomology and representation of associative algebras, Duke Math.

J., 14 (1947), 921-948.

[10] A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras, Trans. Amer. Math.

Soc, 82 (1956), 85-98.

Columbia University

Northwestern University and Institute for Advanced Study

Northtvestern University and Kyoto University






