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In the previous paper [7], we have studied the relationship between the

Riemannian connection of an ^-dimensional Riemannian space M imbedded into

the {n + k)-dimensional Euclidean space Rn+k and the canonical connection in

the bundle Pn, k = O(n + k)/{l) xθ(k) over the Grassmann manifold Mn> k -

O(n + k)/O(n)xO(k).

In the first half of the present paper, the relationship between the canonical

connections in bundles Pn, k>Pn, k = O(n + k)/O(n) x {1}, O(n) over Mn,k and the

invariant Riemannian connection on Mn, k will be discussed. We obtain the

holonomy groups of these canonical connections.

In the second half of the paper, we shall study the Pontrjagin classes of

manifolds, using exclusively differential forms. To facilitate the calculation, we

introduce two types of characteristic cocycles which are closely related to the

Pontrjagin cocycles. The duality theorem for the Pontrjagin classes, which has

been proved by Wu Wen-Tsun using the cellular subdivision of the Grassmann

manifold Mn, k [13], C4], [5], is proved here very easily using the theory of

symmetric functions. Our result gives a little bit more precise informations

than that of Wu Wen-Tsun, in the sense that we express the duality theorem

as a relation between the Pontrjagin cocycles (in stead of classes) and the nor-

mal Pontrjagin cocycles. This may not be interesting for topologists, but may

have some value from the differential geometrical point of view. We prove

also that the normal Pontrjagin cocycles of a Riemannian space depend only on

the Riemannian connection, not on the way how to imbed it. Finally we show

that the normal Pontrjagin classes of a manifold M depend only on the differen-

t iate structure of M.

The second half of the paper (§4-§8) can be read independently of the
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first half.

§ 1. Bundles associated with homogeneous spaces

Let G be a Lie group acting on a manifold M on the left as a differen-

tiate fransformation group and let H be the isotropic subgroup of G at ΛΓ0 G M.

Clearly H is a closed subgroup of G> hence a Lie group. Then M is identified

with GlH in a natural fashion. Since if acts on G on the right naturally, G

is a principal fibre bundle over G/H = M with group ϋΓ and with the natural

projection p : G -* G/if. We shall study the relation between this bundle G

over M and the bundle of frames over M.

Every element g of G induces a transformation δg of T(M), which maps

TXo(M) onto TgXo(M) isomorphically. We take TXi)iM) as a standard n-άimen-

sional vector space Rn (n = άim M). Then δg : Rn -* T^0(ikf) is a frame at

g#o £Ξ M, which we shall denote by ug. Let P be the bundle of frames over

M (with group GL(n, R)) with projection π. Then we have the following com-

mutative diagram.

p(g) = π(ug) h
G—+P

p Ψ •£ Ψ 7t

Λί—>Λf

where h(g) -ug.
The following proposition is well known.

PROPOSITION 1. h is a one-to-one mapping of G into P, if G acts effectively

on M and if there exists an affine connection on M which is invariant by G.

Under the assumption of Prop. 1, we can consider G as the bundle obtained

from P by reducing the structure group GLin, R) to H. And an infinitesimal

connection in the bundle G can be considered as an affine connection on M [11].

Consider now a slightly more general case: the case where G is almost

effective, i.e., the subgroup N consisting of all elements in G which leave M

fixed pointwise is discrete. Note that N is a normal subgroup of G contained

in H. Now, GIN is a principal fibre bundle over M with group H/N, whose

projection will be denoted by pf. The natural map ψ of G onto G/N is a bundle

homomorphism with discrete kernel, which may be called a semi-isomorphism.

The semi-isomorphism ψ induces a one-one correspondence between the set of
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connections in G and the set of connections in GIN [8]. Explicitly, to each

connection form ω on G/N, there corresponds the connection form ψ*(ω) on

G.

Now suppose that G is almost effective on M and that there exists an

afϊine connection on M invariant by G. From Prop. 1 and the above argument,

it follows that every connection in the bundle G can be considered as an affine

connection on M.

We shall apply the above procedure to the case where the orthogonal group

O(n + k) in n 4- k variables acts on the Grassmann manifold Mn, k = O(n + k)lθ(n)

xθ(k) in a natural manner. It is easy to see that Oin + k) is almost effective

on Mn,k (only / and — / act trivially on Mn,k)- Since the isotropic subgroup

Oin) x Oik) is compact, there exists an invariant aίϊine connection on Mn,k [10].

Therefore we can consider every connection in the bundle Oin + k) over Mn,k

as an aίfine connection on Mn,k. We shall define the canonical connection in

the bundle Oin + k) which corresponds to the invariant Riemannian connection

on Mn,k>

Let oin + k), o(n) and o(k) be the Lie algebras of Oin + k), Oin) and Oik)

respectively. Let mn,k be the orthogonal complement to the subspace din) + oik)

in oin + k) with respect to the Killing-Cartan bilinear form on oin + k). Then

oin + *) = oin) + oik) + m«, k

ad(s) mn,k = mn,k for all s&θin)xθik)

CmΛ,Λ, mn,ύ E oin) + oik).

Observe that the first two conditions say that Mn,k is reductive in the sense

of Nomizu [10] and the last one tells that it is moreover symmetric in the

sense of E. Cartan [2], [10].

Let θ be the oin + k)-valued left invariant linear differential form on Oin -f k)

defined by

θis) = s'1s sϊΞTsiOin + k ) ) .

Let ω, r/ and ξ be the o(w)-, oik)- and m«,^-components of the form θ respec-

tively :

It is easy to see that the form ω + η defines a connection in the bundle O(w-f k)
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over Mn,k> which we shall call the canonical connection in the principal fibre

bundle O(n + k).

From the fact that Mn,k is a symmetric space, it follows easily that the

canonical connection in O(nΛ-k) corresponds to the invariant affine connection

of the 2nd kind [10] on M«, &, which is nothing but the invariant Riemannian

connection on Mn,k- In the next section, we shall give an explicit correspon-

dence between the canonical connection in 0{n + k) and the invariant Rieman-

nian connection on Mn,k.

§ 2. Invariant Riemannian connection on Mn>k

The Lie algebra o(n + k) is the set of skew-symmetric matrices of degree

n + k and the spaces o(n), o(k) and mn,k are the sets of matrices of the follow-

ing types respectively:

X 0 \ / 0 0 \ / 0 Z

o o / \ o Y y \-z' o

where X and Y are skew-symmetric matrices of degree n and k respectively

and Z is a matrix of (n, &)-type.

Let xo be the point of Mn,k which is left fixed by O{n) xθ{k). Then the

tangent space TXo(Mn,k) can be identified naturally with mn, k, hence a matrix

Z can be considered as an element of TXo(Mn,k) and conversely. Let 5 and 5'

be elements of O(n) x{l} and {l}xθ(k) respectively. Then the linear trans-

formation of TXo(Mn,k) induced by sxs' e O(n) x O(k) corresponds to the

following matrix transformation of mn,k'

mn,k G Z > (SXS1) Z* ( s X ί O ^ e ΠTn,Jfe.

Let A and B be the matrices of degree n and k respectively which corresponds

to 5 and 5'. Then

A 0 W 0 Z \l A 0 \- Λ l 0 AZB*

0 BlK-Z* 0 / \ 0 ^ / " V - U Z S ' ) ' 0

Therefore the linear transformation sxs1 of TXQ(Mn,k) is expressed, in terms

of matrices, as follows:
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If

Z^U), Z=(zί), A^iaj), JB=(W),

where" 2, / = 1, . . . , n and q,r = l, . . . , k, then

Consider A and B as linear transformations of the vector spaces Vn and Vk

with bases £1, . . . , en and / ] , . . . , /& respectively and identify the tensor pro-

duct Vn ® Vk with the space of matrices Z as follows:

βiΘfr< >z;,

where Zr is the matrix izί ) of ik,n)-type with

zίj = 1 //* j = « and (? = r

^^ = 0 otherwise.

Then the above transformation Z -> ÎZB^ can be identified with the tensor pro-

duct (the Kronecker product) of A and B. We have shown the

PROPOSITION 2. Z^ί P be the bundle of frames over Mn,k and h the natural

semi-isomorphism of O(n + k) into P {see §1). Let τ be the natural homo-

morphism of O(n) x Oik) onto Oin) ® Oik) then we have the following com-

mutative diagrams

O{n + k)x(Oin)xiOik))—>Oin + k)

PxGLink,R) —> P

where ψ is the group multiplication in Oin + k) and p is the right multiplication

by the structure group GL(nk, R).

Let P* = hiOin + k)). Then Pr is a principal fibre bundle over Mn,k with

the structure group Oin) ® Oik) and the above proposition can be stated as

follows.

PROPOSITION 2'. A pair of mappings h and τ gives a semi-isomorphism of

the bundle 0{n-\~ k) onto the bundle P*, i.e., the following diagram is commuta-

tive :

Oin + k) x {Oin) x Oik)) —>Oin + k)

lhxτ * [h

P* x iOin) ® Oik)) —> P*



98 SHOSHICHI KOBAYASHI

Let ω* (resp. τff) be the o(^)-valued (resp. o(^)-valued) linear differential

form on P* corresponding to the form ω (resp. η) on O(n~{-k) (see § 1). The

forms 0/ and r* can be considered as skew-symmetric matrix valued differential

forms on P*. Let In (resp. h) be the unit matrix of degree n (resp. k). Then

ω* ® ijfe + i» ® γ* is an o(w&)-valued linear differential form on P*. From Prop.

2', we derive the

PROPOSITION 3. T/ẑ  following diagram is commutative:

τ ( p * )

that is, the form <o* ® h + In® V* defines the connection in P* ivhich corres-

ponds to the canonical connection in the bundle O(n + k).

Remark. The differential δτ of the group homomorphism r of O(n)xO(k)

onto O(n) ® Oik) induces an algebra isomorphism of o(n) + o(k) onto o(n) ® 7/e

The above defined connection in P* is evidently an invariant aίϊine connec-

tion on Mn,k whose homogeneous holonomy group is a subgroup of O(n) ® O(k).

Let C* be the form on P* corresponding to the mw,/e-valued form C on O(w + &).

Then the form of soudure on P [7], restricted on P*, is C* (under the identi-

fication of Rnk with mΛ,jfe). Then the Maurer-Cartan equation on O(n-\- k) gives

If we make use of matrix notations, this can be written as follows:

which shows that the connection in P* has no torsion. In general, if an aίfine

connection on a Riemannian manifold has no torsion and its homogeneous

holonomy group is contained in the orthogonal group, then it is the Riemannian

connection. Hence we have shown explicitly the

THEOREM 1. The canonical connection in the principal fibre bundle O(n-\-k)

over Mn,k corresponds naturally to the invariant Riemannian connection on

Mn,k.
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§ 3. Product of two connections

Let Pi and P2 be principal fibre bundles over the same manifold M and with

groups Gι and G2 respectively. The direct product PιXP2 can be considered

in a natural manner as a principal fibre bundle over M x M with group G\ x G2.

The part of PixP 2 over the diagonal Δ(M x M) = {(x, x) G M x M } i s a principal

fibre bundle over M (= J(Mx M)) with group d x G 2 , which we shall denote

by Pi°P2. Let ω, be the &-valued linear differential form on P* defining a con-

nection in Pi for i = 1, 2, where gϊ is the Lie algebra of G, . Then ^Γ(ωi)-f

uί(ω2) defines a connection in PiXP2, where μ, is the natural projection of

P1XP2 onto P/. Its restriction on Pi°P2 defines a connection in Pi°P2, which

we call the product of the connections ωι and ω2.

Let c be a curve in M starting from Xo and ending at Xi and let m be any

point of Pi such that mim) =ΛΓ0, where π; is the projection of Pi onto M. Let

dm) be the point of P, obtained by parallel displacement of #/ along c with

respect to the connection defined by ω/. Since (ulf u2) is a point of Pi°P2 over

Xo, we can define similarly c(ulf u2), i.e., the point of Pi°P2 obtained by parallel

displacement of (ui, u2) along c with respect to the connection defined by the

product of ωι and ω2. Then we obtain easily

c(uι, tίz)

Suppose now that c is a closed curve starting from xQ. Then there exists

a unique element s; £• Gi such that

c(ui) = UiSi

it is by definition an element of the holonomy group with reference point Ui

associated with the curve c. It follows evidently that

c(ui, U2)-{UU u2)(sϊy S2).

Hence

PROPOSITION 4. Let h be the holonomy group ivith reference point m of the

connection defined by ωι (i—l, 2) and h the holonomy group with reference

point (uu Uz) of the product of connections an and ω2. Then

(1) h<=hiXh2;

(2) The natural projection ψi'.hiXh2-^ hi maps h onto hi (/= 1, 2).

Remark, h is not necessarily equal to fexfe.
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Let Pn,k (resp. P%jk) denote Oin + k)/{l} x Oik) (resp. Oin + k)/O(n) x {1})

which is a principal fibre bundle over Mn,k with group Oin) (resp. Oik)). We

apply the above argument to the case where Pi = Pn,k and P2 = P%,k. We

shall show that the principal fibre bundle Oin + k) over Mn,k is isomorphic to

Pn,k°Pn,k. Let *i (resp. v2) be the natural projection of Oin + k) onto Pw,k

{resp. Pn,k) Then the map vιXι>2 of O(w + &) into Pn,kXP%,k defined by

will give an isomorphism of Oin + k) onto Pn,k°Pn,k. Let π, TΠ, 7Γ2 be the

projections of the bundles Oin + k), Pn,k, Pn,k onto Mn,k respectively. Then

πι°vi(s) = ̂ 2°7^(s) = πis) for all sG O(w + k),

which shows that mXv2 maps Oin + k) into Pn>k°P%,k-

Suppose that ivi x ^)(s) = ivχXv2){sf) for some 5, s 'Gθ(w + ^). From

,,-(5) = ̂ (5') (/ - i, 2), it follows that there exist s3 G Oin) x {1} and s2 G {1} x

O(A) such that s' = ssi and s' = ss2. Since O(^)x{l} and {l)xθik) intersect

only at the unit, we get that s} = s2 = the unit. Hence s = s', which proves that

^,x^2 is a one-to-one map. Let 1̂ and u2 be arbitrary points of Pn,k and Pί,jfe

such that πxiui) = π2iu2). Let Sj and s2. be elements of 0(72 +&) such that /̂(5/)

= ui for / = 1, 2. Then

Hence there exist elements 5?, e Oin) x {1} and s 4 e {1} x Oik) such that sλ = s2szSi.

Put 5 = SisI1 = S2S3. Then

v2is) =

This completes the proof of the following

PROPOSITION 5. The bundle Oin + k) over Mn,k is naturally isomorphic

to the bundle Pn>k° Pn,k.

We have shown in the previous paper [7] that the oin)-component ω of the

left invariant linear differential form θ — ω + τ? + C on Oin + k) induces an o(n)-

valued differential form on Pn,k, which we denote also by ω and which defines

a connection (called the canonical connection\ in the bundle Pn,k over Mn,k.

Similarly we can prove that the o(#)-component rj of 0 induces an oik)-valued
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differential form on P%,k, which we shall denote by the same letter -η and which

defines a connection in P*,& (by definition, the canonical connection in Pί,&)

Then

PROPOSITION 6. Under the natural isomorphism between the bundles O(n -f k)

over Mn,k and Pn,k°Pn,k, the canonical connection in O(n + k) corresponds to

the product of the canonical connections in Pn,k and P%,k>

Now we shall study the holonomy group of the canonical connections in

O(n + k), Pn,k and Pn,k- Because of Theorem 1, the study of the canonical

connection in O(n + k) can be reduced to that of the invariant Riemannian con-

nection on Mn,k Since Mn,k is an irreducible symmetric space in the sense of

E. Cartan, the restricted holonomy group of the invariant Riemannian connec-

tion on Mn,k coincides with the connected component of the unit of the linear

isotropic subgroup of the group of isometries [2], [10], in this case, SO{n) (8)

SO(k).

In order to obtain the (non-restricted) holonomy group, we have to inves-

tigate the canonical connection more carefully. By the above argument and

Theorem 1, the restricted holonomy group of the canonical connection in O(n + k)

is SO(n) x SO(k). Taking the unit of O(n + k) as a reference point, we consider

the set Po of all points in O(n + k) which can be joined to the unit by horizontal

curves [1], [8] with respect to the canonical connection in O(n + k). The set

Po is a principal fibre bundle over Mn,k whose structure group is the holonomy

group of the canonical connection [1], [8]. Since Po is arcwise connected, it

is a submanifold of SO(n-i-k). On the other hand, it is of the same dimension

as SO(n + k), because the connected component of the structure group of Po

has the same dimension as SO(n-\-k) Γ\ (O(n) xθ(k)). As easily seen, Po can-

not be a proper open submanifold of SO(n + k). Hence Po coincides with

SO(n + k). The holonomy group of the canonical connection in 0{n + k) is,

therefore, SO(n-\-k) Π (O(n)xO(k)). From Prop. 4 we obtain immediately the

holonomy group of the canonical connection in Pn,h (resp. P%fk). Thus we

have obtained the

THEOREM 2. The holonomy groups of the canonical connections in O(n-\ k),

Pn,k and Pt,k are respectively SO(n + k) Π (O(w)xO(i)), O(n) and O(k).

From the above theorem it follows that the holonomy group of the invariant
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Riemannian connection on Mn,k is the image of SO(n+ k) Γλ (O(n)xO{k)) under

the natural isomorphism of O(n) x Oik) onto O(n) ® O(k) and is decomposed

into two connected components: one contains the unit and the other contains

the following element:

whose determinant is obviously ( — l)n+k. As it is well known, Mn,k is orien-

table if and only if n -f- k is even.

§ 4. Curvature forms of canonical connections

From the Maurer-Cartan equation of θ = ω -f- v + C we obtain

dω = - "ϊΛω, ω~\ - ~9~K, Cl

dη= - γίrjy 7?] - -y[C, C]2,

where CC, Gi and K, C]2 are respectively the o(w)- and o(^)-components of [C, G.

Therefore the curvature forms Ωx and i?2 of the canonical connections in Pn,k

and Pn,k are given b y υ

Now we shall calculate the curvature form of the invariant Riemannian connec-

tion on Mn,k defined by

We observe that, for any matrices A, B of degree n and any matrix C of degree

h
LA <g)Ik, BΘ Ik] = [A, 5] ® Ik

lAΘIk, InΘCl = A(g)C-A®C = 0.
Hence

Cr, r ] = Cω*, ω

1} More precisely, Ωi (resp. Ώ2) is the form on Pnyk (resp. Pnyk) induced from the

form —1[C, CJi (resp. - i[C, ζh) on O(n+k).
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and

dγ + y LY, rl = dω* ® Λ + /« ® ^ * + y[>*» ω*] ® Λ + ~/« ® LV\ ?*]

where Ωf is the form on i>* corresponding to Ωi.

§ 5. Characteristic classes

Let P be an arbitrary principal fibre bundle over a manifold M with Lie

group G and with projection ?r. Let g be the Lie algebra of G. A polynomial

function / defined on 9 is invariant by G if

Aad(s) g) =f(g) for all ^ G g and S G G .

Suppose there is given a connection in P and let i2 be its curvature form.

Then Ω is a $-valued 2-form on P. The composite f{Ω) is a real valued dif-

ferential form of degree 2 r if / is a homogeneous polynomial of degree r. From

the property

Ω(ΰiSu U2S2) = s~1Ω{ΰι) ΰ2)s for all ΰu U2^TU{P),

5i, 52 G Ts(G),

we conclude that, if / is invariant by G, then there exists a unique differential

form f(Ω)* on M such that

It is known [3], [4j that f(Ω)* is a closed form and the cohomology class to

which it belongs is independent of the choice of connections. The cohomology

class of f(Ω)* is a characteristic class of the bundle P.

Remark 1. The form f(Ω) is always the coboundary of a certain form on

P; however /($)* is not, in general, cohomologous to zero in M.

Remark 2. If M is a Riemannian (resp. Hermitian) manifold and P is the

bundle of orthogonal frames (resp. unitary frams) over M, then the Pontrjagin

classes (resp. Chern classes) are characteristic classes of Pin the above defined

sense.

§ 6. Symmetric functions

First we recall some known results in the theory of symmetric functions.

We shall consider three types of symmetric functions of n quantities au . - , an.
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The symmetric functions pi, . . . , pn of the first type are associated with

the equation whose roots are the reciprocals of the quantities m

*- . . . + (-l)npnx
n

The function^ is the sum of the ( j products of r different quantities aι. Define

pr = 0 for r> n.

The symmetric functions qu . . . , qn, . . . of the second type can be obtained

by formal expansion of l/f(x) I

1/'f(χ) = 1/Π(1- arx) = Π(1 + arX + arx
2+ . . .)

= 1 + qxX + q2x
2 + . . . + qnx

n + . . . .

Then qr is the sum of the homogeneous products of degree r of the quantities

<Zi, . . . , an.

The symmetric functions h, . , . , tn, . . . of the third type are defined by

. s^ n r
tr — 2-λi = \Q>i<

The following formulae are fundamental [9].

(I) Pr-pr-iqi+pr-2q 2- . . . + ( - l ) r # r = 0

(ID r!

h l
h h 2
to 2̂ fa 3

tr-i

(III) r\ qr =

ti »1
t2 fa - 2
^3 fa fa — 3

ίr

Let B={bj) be a matrix of degree ^ over the field of real numbers and

let C be a non-singular matrix of degree n over the field of complex numbers

such that (a)) == A = C~1BC is a triangular matrix:

a} = 0 if / > /
Put

We shall express the symmetric functions iv, fa of the n quantities au . . . ,
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an in terms of elements b) of the matrix B. Put

P'ΛB) = ^ΣhjδUu ... ,irlji,... , jr)b}\ . . . bt

where d(h, . . . , ir I jίf . . . , jr) is the generalized Kronecker δ. From A-

C~XBC, it follows thativ(A) = p'r(B). This fact can be proved as follows. A

linear transformation B of the w-dimensional vector space V (over the field of

complex numbers) induces a linear transformation Br of ί\rV, where t\rV is

the space of homogeneous elements of degree r of the exterior algebra A V

over V. Then /v(2?) is nothing but the trace of Br. This proves our assertion.

Now we shall prove that pί(A) = pr. Since A is triangular, we have

p'r(A) = y Γ Σ^i 1 > . . ,^ ;V«f i , . . . , lr \ ji, . . - , Λ)«/i *%•

It is easy to see that, if k^ju - > ir-jr, then

5(ίi, . . , ίV ji, . . > /r) =0 Unless ίi = yi, . . . , tr-jr-

Hence we have that fir(A) —pr. Finally we have obtained

(IV) p r = ~ Σ δ ( i i , ... , i r ; j ι , ... , jr)b)\ . . . b%.

Next we shall calculate the symmetric functions tr of the quantitites aly

an. Since Ar = AA . . . A = C~ιBrC, we have

trace(Ar) =trace(i5r).

It is clear that U = trace(Ar). On the other hand,

Hence

(V) Oί

Notice that, if B is skew-symmetric and r is odd, then bothiv and tr vanish.

The definition of ql (B) is clear from (III) and (V).

§ 7. Characteristic classes of Pn,k and P%k

Let X be an arbitrary element of the Lie algebra o(n). We define pl (X)

as in the preceding section. Then pr is a polynomial invariant by O(n). Re-

placing Zby the curvature form Ωi of the canonical connection in Pn,k, we obtain

p'AΩJ = —Σδiiu . . . , ir I ju
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Let J)r be the form on Mn,k such that

πΐ(pr)=p'r(Ωi)

Similarly we obtain

tr{Ω\) = *ΣΩu2/\Ωl%A Λ

and define the form tr on Mn,k such that

We define also the form qr on Mn,k such that

The differential forms J>r, tr and qr on Mw,^ are all closed and their coho-

mology classes are independent of choice of connections in Pn,k.

Let Y be an arbitrary element of the Lie algebra o(k). We define p'r*{Y)

in the same way (just replacing n by k). Replacing Y by the curvature form

Ω2 of the canonical connection in P% k, we obtain

) T Γ . . . , ir Λ, . . . ,

Let ^* be the form on Mn,k such that

7Γ2*(ίr*)=i>;*(A).

We define similarly the forms F* and §r* on

Firstly we shall prove that

For this purpose, it suffices to show that

where π is the natural projection of O(n + k) onto Mn,k. The left invariant

O(^ + ̂ )-valued differential form β on O(n + k) is a skew-symmetric matrix

differential form (θ})ifj=li...,n+k- We have

Hence

π*(ΐ*) = ( -
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where the summations are taken over the indices alf . . . , ar which run from

1 to n and the indices λi, . . . , λr which run from n + l to n + k. It is now

evidentthat π*(ϊr) = - 7r*(?*). We have proved the following duality theorem.

THEOREM 3. tr + tr = 0.

Now we shall find the corresponding relationship between pr and p?. From

the formula (III) in § 6 and Theorem 3, it follows that

Tr

- 1
-Fl* - 2

Hence

Now, from (I) in §6, we obtain the

THEOREM 3'. pr + pr-ιpί + Pr-2p* + . . . + ί* = 0.

Remark. As we have seen in the preceding section, the forms pr, p*, tr

and tr vanish identically if r is odd.

§ 8. Characteristic classes of a manifold

Let M be an ^-dimensional Riemannian manifold imbedded isometrically in

the (fl-f k)-dimensional Euclidean space. Let P be the bundle of (tangent)

orthogonal frames over M and let P* be the bundle of normal orthogonal frames

over M. Then P and P* are principal fibre bundles over M with group O(n)

and O(k) respectively. Let hi be the natural bundle map of P into Pn,k> We

have shown in the previous paper [7] that the connection in P induced by hi

from the canonical connection in Pn,k is nothing but the Riemannian connection

on M. Let h2 be the natural bundle map of P* into P«,&. Then h2 and the

canonical connection in P%,k induce a connection in P*, which we shall call the

normal connection. It seems that the normal connection has been considered

implicitly in classical differential geometry.

Both h) and h2 induce the same mapping h of the base space M into the

base space Mn,k. Put

pΛM) - h*{pr\ Qr(M) = h*(qr), ίr(Λf) - ft*(?r),



108 SHOSHICHI KOBAXASHI

P?{M) = **(??), q*ΛM) = /**(??), ί?(Λf) = A*(??).

The differential forms pAM) and p%{M) on Λf are called the 2r-th Pontrjagin

cocycle2) and the 2/ -th normal Pontrjagin cocycle of the imbedded Riemannian

manifold M. The cohomology classes of pAM) and p*(M) are called the 2r-th

Pontrjagin class and the 2 r-th normal Pontrjagin class of ikf respectively. From

Theorems 3 and 3', we obtain the

THEOREM 4. fr(M) + f?(M) = 0,

A (Af)+j>r-i(M) ίi*(M)+ . . . + j>?(AΓ)=O.

Since the forms ίr(M) are completely determined by the curvature form of

the Riemannian connection on M, so are the forms t*AM). Since the forms

p?{M) and q?(M) are polynomials of t*(M) (see (II) and (III) in §6), they

depend only on the curvature form of the Riemannian connection on M. Hence

THEOREM 5. The differential forms p?(M), qΐ{M) and t?(M) are all in-

variants of the Riemannian connection on M.

We shall explain the meaning of the above theorem. Suppose j : M -» Rn+k

and j f : M -> Rn+k' and / : M'-> Rn+k' be isometrical imbeddings of an ^-dimen-

sional Riemannian space M. If k' ^ k, then we may consider / as an isometrical

imbedding of M into Rn+k. In general, there may not exist any motion ψ of

RnJrk such that/ = ψ'j. The above theorem states that the forms p*(M), q*(M),

tr(M) do not depend on j but depend only on the Riemannian connection on M.

As we have remarked in § 5, the cohomology classes oίpr(M)f qΛM), tAM)

are differentiable invariants of P, hence they are differentiable invariants of M.

From Theorem 4, it follows that the cohomology class of ί*(M) is also a dif-

ferentiable invariant of M. Since the forms p?(M), qΐ{M) are polynomials of

t%(M) (see (II) and (III) in § 6), their cohomology classes are also differentiable

invariants of M.

THEOREM 6. The cohomology classes ofpAM), qΛM), tΛM),p*(M), q?(M)

and tΐ(M) depend only on the differentiable structure of the manifold M.

Remark. We understand by " differentiable structure" "C° -differentiable

2> Our definition of Pontrjagin cocycles (and normal Pontrjagin cocycles) is different
from that of [4, 5] by constant factors. In the following theorem 4, these constant factors
are cancelled out.
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structure". However the abov,e theorem is true for the C3-differentiable struc-

ture.
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