HOMOTOPY GROUPS OF COMPACT LIE GROUPS
Es,, E;, AND E;

HIDEYUKI KACHI

§1. Introduction

Let G be a simple, connected, compact and simply-connected Lie group.
If ¥ is the field with characteristic zero, then the algebra of cohomology
H*(G ; k) is the exterior algebra generated by the elements z,,---,z, of

the odd dimension #,, -« -, %, ; the integer [ is the rank of G and == é 7,
is the dimension of G. Let X be the direct product of spheres of diméri;ilon
Ny, + + +,m;, then there exists a continuous map f:G—>X which induces
isomorphisms of H*(X;k) to HYG;k) for all i (cf. [8]). From this we
deduce by Serre’s C-theory [8] that f, :m(G) —>m(X) are C-isomorphisms
for all i, where C is the class of finite abelian groups. Therefore the rank
of n(G) is equal to the number of such i that #»; is equal to ¢, and
particularly if ¢ is even, then =,(G) is finite. It is a classical fact that
7,(G) =0 and =;(G) = Z.
According to Bott-Samelson [6] ;

n(E) =0 for 4<i<8, m(E)=2
m(E;) =0 for 4<i<10, wy(E) =2,
m(Es) =0 for 4<i<14, my(Ey)=2Z

where E;, E; and E, are compact exceptional Lie groups.

In this paper, using the killing method we compute the 2-components
of homotopy group =;(G), where G = E,, E; and E,. The resuls are stated
as follows;

j 4<j5j<14) 15 16 17 18 19 20 21 22 23

ni(Eg : 2) o | Z Z, Z, Zy 0 0 Z, 0 |Z+ 2,

i 24 25 | 26 | 27 | 28

m(Es:2)| Zo+2Z | Z| 0 | Z | 0
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i Ja<i<wol |1z |13 |15 6] 17| 18| 19
w(E 22| 0 z\|z|z|o|z|z|z|z|z+za

j 20 | 21 | 22 23 24 2% )
ﬂ'j(E-] :2) Zz Zg Z4 Zz + Zg + Zz Zz + Zz + Zg 22 + Zg

7 4<j7<8| 9 10 11 12 13 14 15 16 17

J

j 18 19 20 21 22

ﬂj(Es' H 2) le + Zg 0 Zs 0 0

All spaces that we concider in this paper are those which have the
homotopy groups of finite type. Let G be such a space, then n,(G) is
isomorphic to the direct sum of a free part F and the p-components of
7(G) for every prime p. We denote by (G :p) the direct sum of a
certain subgroup F’ of F and the p-component of z,(G), where the index
[F; F'] is prime to p.

Given an exact sequence for such A4,B and C

¢ .. —-—-)n'l(A)——-)nL(B)———)n,(C)-—) ¢y,
then we can form the following exact one in our case
e A p)— (B p)—m(C:p)—> -

The author is indebted to Professor H. Toda for his advice during the
preparation of the paper.

§2. The cohomology of the 3-connective fibre spaces of E; E, and
E;.

H. Cartan and J.P. Serre introduced a method to calculate the
homotopy group in [7].  Let K(r,n) be an Eilenberg-Mac-Lane space of
type (m,n).

THEOREM 2. 1. Let X be an arcwise connected topological space, then there
exists a sequence of (n — 1)-connected spaces (X,n) (n =1,2, -+, and (X,1) = X)
and continuous maps f, : (X,n + 1) —> (X, n) suck that:
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(L) the triple (X,n +1), fa, (X,n)) is a fibre space with a fibre K(x,(X),n —1).

(IX)  there exists a fibre space X!, over the base space K(m,(X),n), where X, and
(X,n) are of the same homotopy type, such that the fibre is (X,n +1).

Hence fio fyo« -+« o f,, defines the tsomorphism of m(X,n) to =(X) for
i=n.

Lemma 2.2, Let X be a 2-connected topological space. Assume that X
satisfies the following conditions,

(1) m5(X) is isomorphic to an infinite cyclic group,
2) H¥X;Z;) = A RA R+ RA, QB

where x5 is a generator of HYX 5 Z,) = Zy, Ay = Zo[%5)/(%5)%, A; = Z,[Sq¥Sq?™* - -
Sq?x,]/(Sq?Sqg? " - -« Sq?x,)?™ (s; =2 1) 1<i<r, and S¢*'Sqg¥ --- Sg*x;=0,
then

H*((Xy 4) 5 Zz) = Zz[w] ® A(am Ay * Qar) ® B

where the deg.a; = (21! + 1)(2% — 1) + 2%, deg.w = 22", d(apy @y, + - +, a,) indicales
a submodule having a,, -+ -,a, as a simple system of generators and B’ is
wsomorphic o B by (fio foo f)* : HNX ; Z,) —> H*(X, 4) ; Z,).

Proof. From the above theorem, there exists a fibre space ((X,4),
fi0 fao f3, X) with a fibre K(Z,2). Since K(Z,2) is the infinite dimensional
complex projective space, its mod 2 cohomology structure is H*(Z,2; Z,)
=~ Z,[u], where u is a generator of H%Z,2; Z,). Let {E¥} be the mod 2
spectral sequence associated to the above fibration ((X,4), X, K(Z,2)), then

F=ARA® - QA QB Z[ul

Clearly we have d;(1®@u) = 2,® 1. Hence if #n is even, d,(1®u") =0,
if nis odd, d,1®u™ =2,®u"?, and dyxP'@u") =0 for all =n>0.
Thus we obtain

EF=A4a)Q0A Q040 - - QA QBX® Z[u"]

where @, = (2,)%! Q u.

Let z be the transgression, <(u?) = Sg*x;, since the transgression
commutes the Steenrod operation. Thus d;(1®u?) = S¢?z;,®1. Since d,
is derivative, d;1®u?) =0 if n is even, d;(1Q u?") = Sg*x, @ u2™* > if n
is odd, and ds((Sq?x;)* -1 @ u®*) =0 for all » > 1. Thus
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EPFr=4(Gpd) 04, QA;Q -« - ®A, ®BR Z,[u']
where 4, = (Sg2x,;)* 1 ® u?.

Carrying on similarly, we have
Eftiy,=A(dpdy, » - +,d,) @ BQ Z[ur']

where @; = (S¢#Sq*" - + » S?x,)* 1 Qu*,i =0,1,++-,r, and s;>1. Clearly
d, =0 for all t >2"* 4+ 2. Thus we obtain

EX = Aaya, -+ + +,a,) Q B Z[ur""].

Since EZ** is the graded algebra associated to H*(X,4); Z,), assume
that a;, w, B’ correspond to &, #**', B respectively. We have the lemma.

Particularly, we can assume that B is mapped isomorphically onto B’
by the homomorphism (f;o fyo fi)*; H¥X ; Z,) —> H*(X,4) ; Z,). Thus
the relation of B are arranged in B'.

The mod 2 cohomology algebra of the exceptional Lie groups have been

determined by S. Araki [2] and S. Araki-Y. Shikata [3]. These algebra
are as follow.

2. 1) H*(Fy ;5 Zy) = Zylas]/(25) @ A(Sq°xs, 155 Sq°15),
(2. 2) HX(E; ; Z,) = Z,[xs)/(x3) ® A(Sq?x3, Sq*Sq?x s, %15, S¢*Sq Sq?xs, S¢Pxy5),
(2.3) HX(E; 5 Zy) = Zy[%s5, Sq°%s, Sq*Sq*%5]/(25, (Sg*x5)*, (Sq*SqPas)*)
& A(2,5, Sg¥SqiSq*xs, Sqixys, Sq*SqPe,s),
(2. 4) HX(Ey 5 Z,) = Zol %4 Sq°%s5, Sq*Sqs, %15)/(25°, (S@°%4)% (S¢*Sg°x4)*, 215)
& A(S¢Sq S 23, Sqt x5 SG*SGE 215, SRS PSP % 15)

where x; denotes a generator of degree i.

(2. 5) In the inclusion F,C E;C E; C E,, every subgroup is totally non-
homologous to zero mod 2 in any bigger group containing it, where each
exceptional group denotes simply-connected one. (See, S. Araki and Y.
Shikata [3], Theorem 3).

If S¢5S¢*Sq'Sq?x; =0 in E;, then this is a primitive element. By (2. 4),
there is no primitive element of degree 33. Thus S¢*S¢®S¢'Sq*x; =0 in
Ey. Similarly we have Sq'®S¢’Sq'S¢’z; =0 in E,E; and S¢'S¢’z; =0 in
F,.

CorROLLARY 2.3. Let G be the 3-connective fibre space over G : where
G = F,Es Er, Eyy then
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HXF, ; Zy) = Z[ys) ® A(Yss Y115 Y1ss Y23)s

HYEy 5 Z) = Z[Ysnl ® AWss Y1 Yiss Yurs Yo Ui,
(
(

where vy, denotes a generator of degree i. By the naturality of the homomorphism
p* = (f1fofs)*, we have

S@*Y15 = Yas in E;,E;, Ey and F,,
Sq'Y23 = Y in E~7,Ess
S@Y2r = Yoo in E,.

Lemma 2. 4. We have the following relations,

(1) Sq'ys = ¥sy S¢*ys=y, in F,
(ii) S¢*Yy = Y1 S®Ys = Yyir in Ees
(i) S@*Y1 = Yis in E~7-

Proof. (i) From Theorem 2.1, there exists a fibration (F,, K(Z,3),F)),
where F, denotes the space which has same homotopy type as F,. We

consider the spectral sequence {E}*} over Z, associated with the above
fibration. Then

E* = HXZ,3 5 Z,) Q HX(F ; Z,).
It is known that
HX(Z,3 ; Z2) = Z,Jv, Sq®, Sq*'Sg?v, « - -]

where v is a fundamental class of H3(Z,3: Z,). From the mod 2 cohomology
algebra of F,,Sq'v®1,(S¢%)?*®1 and v*®1 must be d,-images for some 7.
If =0 and 0<¢g<38, or ¢g=%0 and 0<p<3, then E»? =0 for all 7.
Since EY® has only one element 1®y, for <9, S¢'S¢?»®1 is not a
d,-image for r<8. Thus ¢ be the transgression, we have <(y,) = S¢'Sq®.
Since E¥° has only one generator 1®y, and (S¢?)?®1 is not a d,-image
for » <10, we have that z(y,) = (S¢?v)2..  Consider

d, :E?*"—>E}*° for p+qg=11 and r=q+ 1.

From Corollary 2.3, we have EZ?=0 for ¢=%8,9. But E}°=0. E}*
has one generator v ®y, and dy(v Q@ ys) = vS¢'Sgv ® 10, for dy(1® ys)
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= S¢'S¢®» ®1. Thus E?'' has only one generator 1®y,, and »'®1 is
not a d,-image for » < 11. Therefore we have that <(y,) =v'. Using
Adem’s relation, from Sq'Sq'Sq®v = S¢*Sq®v = (S¢%)?, Sq*(Sq*)? = Sq*Sq*Sq*v
= Sq’Sq’v = v!, we obtain Sq'y; = y,, and Sq¢*y, = ¥y;.

(ii) From Theorem 2.1, there exists a fibration (E;, K(Z,3),E,) where E,
denotes the space which has the same homotopy type as E;. Let z be
the transgression associated with this fibration. Let {E?'%} be the mod 2
spectral sequence associated with this fibration. Then

Ey* = HNZ,3 ; Z,)  H(Es ; Z,).

By the same argument as in F,, we have that <(y,) = (S¢%)? and z(y,,) = v
Concider

d, ; E?*—>E!*®° for p+qg=17 and r =g+ 1.

From Corollary 2.3, we have E??=0 for ¢=9,11,15 and 17 (¢< 22).
But E>1'5 =0. $,° has one generator (vSq*)®y, and d,(vSg*) X ¥,)
=S¥ R®1x0, for d, 1Ry, =(S¢)?*®1. Ef'" has one generator
Ry, and dp0?®¥yy) =v*®1%0 for d,1®yy,) =v*®1. Thus, since
E%'" has one generator y,; and (S¢'Sg%)?’®1 is not a d,-image for
r <16, di(1®¥y;) = (Sg'Sq)?®1, ie. (¥, = (S¢'Sg?)2..  Using Adem’s
relation,  Sq¢*Sq%)? = Sg®S¢*Sq*v = S¢*Sq¢*v = v* and Sq¢¥(Sq*)? = S¢*S¢°Sq*v
= S¢°Sq*'Sq* = (S¢'Sg*v)®.  From the commutativity of the Steenrod operation
and the transgression, we obtain S¢®y, = y,; and Sg*y, = ¥,;.

(iii) Consider the fibration (E;, K(Z,3),E;) of theorem 2.1 (II), where E,
has the same homotopy type as E;,. Let {E?'‘} be the mod 2 spectral
sequence associated with this fibration. Then

E¥ = HNZ,3 ; Z,) @ H*(E; 5 Z,).

From the mod 2 cohomology algebra of E; v*®1 and (S¢%)!®1 must be
the d,-images for some 7. Since H*(E; ; Z,) =0 for degree <10, we have
E?»%=0 for p=x0 and 0< ¢<10. Thus we have that <(y,,) = v*, where ¢
is the transgression. Consider

d, ; E?*—>E?° for p+qg=19 and r =g+ 1.

From HYE,;Z,)=0 for i=11,15 and i<19, it follow that EZ?=0 for
(p,q) % (4,11) and (2,15). On the other hand HZ,3;Z,) =0 for i=2,4



HOMOTOPY GROUPS OF COMPACT LIE GROUPS 115

and i <4. Thus E2?=0 for (p,q) = (4,11) and (2,15). From this we
obtain z(y,,) = (S¢%»)!. By Adem’s relation Sg¢*v* = S¢*Sq'Sq*v = Sq"°Sq'Sq’v
+ Sg"'S¢*Sq*v = Sq''Sq¢°Sq® + Sq''S¢*Sqlv = (Sq?v)t. Thus we obtain Sg¢ty,,

= Y19

Lemma 2.5. Let a topological space X be 2-connected and the homology of
finite type. Assume that HX(X ; Z,) has the additive basis ay, « + «,a, for dim.<<N.
Then there exist a finite cell complex K=,Ue Ue, U---Ue, where dim.e;
= degree a, = n; and a continuous map f ; K—> X such that f induces isomorphism
of H¥X ; Z,) onto H*K ; Z,) for dim.< N.

Particularly if mn-1(K™=Y) s finite, then we can assume that the class of
attaching map of e; belong to the 2-components.  Here . denotes a vertex and K™
the n-skelton of K.

Proof. We prove this by induction on dimension N.  Suppose that
there exist a finite cell complex K, = K¥! and a continuous map f,; K,
—> X satisfying lemma 2.5 for dim.<N. Here we may assume that
fo; Kb—> X is the injection by the mapping-cylinder argument. Suppose
that H¥(X ; Z,) has generator a,,, * * *,4a,.

From the cohomology exact sequence for pair (X, K;) and the assump-
tion of the induction, we have

H'X,K,; Z)=0 for i<N,
HYX, K, ; Z,) <H¥(X ; Z,).

By the duality, we obtain
H(X,K,;Z,)=0 for i<N

and

Hy(X,K, ; Z,) has the generators d,,, - *,d,.

By Serre’s C-theory [8], we have that nx(X, K)® Z,—> Hy(X, K,)
® Z, is an isomorphism. Let f;:(EV,S¥)— (X, K) (i =1,2,+++,7 — )
be the generators of ny(X,K,) such that they correspond to d.,; by the
above isomorphism and construct a cell complex K which is obtained from
the disjoint union of C(SV'y ...V S¥}!) and K, by identifying
SY¥-ty ..y SV with its image under a map (f,|SY )V ¢« ¢V (fr-|SFT) 5
SY-1y ..y S¥M!—>K, where CY is a cone over the space Y and SY!
is a (N —1)-sphere. Using the map f; the inclusion map f,; K,—> X has
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an extension over K and we denote this extension by ¢:K—>X. Then
g : K—> X induce an isomorphism Hy(K, K, ; Z,) onto Hy(X,K,; Z,) and
from the duality between homology and cohomology, it follows that g¢*:
HY(X, K, ; Z,)— H"(K, K, ;Z,) is an isomorphism onto.

Applying the five lemma to the diagram

HY" XK, ; Z,)—> HY(X, Ky ; Z;) — HY(X ; Z;)—> H"(K, ; Z,) = 0

N T

H Y (K, ; Z,)— HY(K, K, ; Z,)—> HY(K ; Z,)—> H"(K, ; Z,) = 0,
we obtain that
g*: HY(X ; Z,)—> H¥(K ; Z,)
is an isomorphism.

Particularly if zy_,(K,) is finite, then there exists an odd integer ¢ such
that ¢{f;|S¥"!} belongs to the 2-component of zy_,(K;). Displacing f; by
qfi it is sufficient for the last statement that we construct a cell complex
K from K,. Consequently the lemma is proved.

Let « be an element of =,,,-,(S" and consider a cell complex
K. = S" U ¢"* which is uniquely determined by « up to homotopy type.

THEOREM 2. 6. Let n>i and i=2 (4 or 8 respectively), then Sq':
HYKs ; Zy))—> H" Ky 3 Z,) ts an isomorphism onto if and only if a=7,,
(vo Or o, respectively) mod 2m,.;-,(S™). (For the proof see H. Tada; [11]
Proposition 8. 1)

From Lemma 2.5 and Corollary 2.3, there exist a cell complex
M=S*Ue Ue?Ue® and a continuous map f:M—>F, such that f
induces an Cy-isomorphisms #,(M) onto =(F, for i< 14, where C, is the
classes of finite abelian group whose 2-primary components are zero. Since
Sq'ys =y, in F,, we may assume that ¢° is attached to S$* by a map of
degree two. Then we have

(2. 6) 715(S? lg e :2)=0,
734(S? 9 e 2 = (St:2) =2, generated by »i,
we denote by % a generator of m;,(S®U ¢°:2) identifying with that of
2
7,,(S? : 2) by the inclusion S*c S* sz e,

Consider the following exact sequence
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7i(S? 1 2) —> (St 1 2) —>m(SP U € 1 2) —> (S 1 2) —>m(S° 1 2)
for i <15. From m,(S?) = 7,,(S%) =7,,(S?) =0 and =,,(S%) = {v3} = Z,, (2.6)
is obtained.

Consider the exact sequence

i

‘ s
M0 2) > m(ST Y €8 1 2) (ST U € U et 1 2) o my,(S1 2 2)

—> (S U e :2)
2

where i is the inclusion SPU e cC S*Ue* Ue?, and j:S*Ue® Uell—> S
2 2 2
is the projection. From (2. 6), we have the following exact sequence

Phd

i Ju
2.7 0—>m,(SPU € :2)—>m,(SP U e® Uetl:2)—>m, (S :2)—>0.
2 2

Then there exists a coextension (in the sense of [11]) ¥, of v,y and ju¥iy = vis.
Assume that 89, =0, then —— iw?2=1iw2=28p, Let f:SH¥ySsH
—> St Y e’ Ue' be a map such that f[S" and f|S" representative of
8¢, Dy, then fog:SH—> S8 LZJ e’ U e is homotopic to zero. Consider a
mapping cone C, of f, then there exists a coextension G :S*—>C, of g.
Let K be a mapping cone of G, then we have a complex

K=SBUe6UeIIUe12UeISUeIG

and Sq'ug = uy, Sq'u,, = u,,, where ug, u,, and u,, are cohomology classes
mod 2 which are represented by S% 2 and e'* respectively. Thus it is
verified that S¢'Sq'us; =0 in K. By use of Adem’s relation

Sq'Sqtus = Sq*Sq*us + Sq*Sqtus.

Since there is no cell of dimension 10 or 14 in K, the right side of the
above equation vanishes in K, but this is a contradiction. Thus we have
proved that 89, =0. Therefore, from the exact sequence (2. 7), we obtain

mu(SPU e Ue:2) ={inpt+{=Z,+Z.

In the complex M= S® U e* U e U e, let e be attached to S* U e* U e
2 2

by a map & :S*—>S* y e’ U e'!, then we have the sequence

h‘
71, (S™ 1 2) —> m, (S8 LzJ eUet:2)—a(M:2)—>m,(S*:2)=0
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is exact. By Lemma 5.5 of [10], =(F,) =Z,. Thus n,(M:2)=<Z, and
Pty = b0y + a(iw?) where a=0 or 1,
for an odd integer 5. Thus
Jxhwty = vy mod 2w, (S').

By theorem 2. 6, we have the following important lemma.

LEMMA 2.7. Sq'¥;, =¥ in F,.

Considering the natural inclusions F, c E, c E;, we have
COROLLARY 2.8. Sq'yy, = ys in Eg and E,.

§ 3. Homotopy group of some cell complexes.
Let X be an m-connected CW-complex and let « be an element of
Tn-1(X) (n>m). Consider a CW-complex K, =X u e,

LeEmMa 3.1. Let ¢ be an injection X—> K, and let p : K,—> S™ be a
mapping which shrinks X to a point. Then the following sequence is exact for
j<m+n—1
(B.1) ooy >y (X) —> i (Ky) — (8™ > gy (X) —> - -

Here 0 is a composition  E'op, :miK,)—>mi(S*), and E :n;(S™1)
—>;(S™) s the suspension homomorphism. If a is of order a power of 2, then
the above sequence is exact for the 2-primary components.

Proof. See Blakers-Massey [4].
We introduce necessary results on the homotopy group of spheres.
According to [11], the results are listed in the following table;

(1) n>k+1

3. 2)

k= 0 1 2 3 4 5 6 7 8

ﬂ',H_k(Sn . 2) Z 22 ZZ Zg 0 0 Zg le Zg + Zg

Generator tn N N2 Y v2 On Ty &n
k= 9 10 1m | 12 ‘ 13
k(S 1 2) Z,+Z,+ Z, Z, Z | o j 0

Generator V3 Nnnsrs Un Tnlnss o ‘
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(i) n<k+1 n =29, 10, 11, 13, 14.
(3. 3)
k= 8 9 10 11
reo(S® 1 2) Zy+Z,+ 2, | Z,+ 2, +Z,+ 2, Zy+ Z; Zs+ Z,
Generator 09716 Doy €9 050365 Vs Has M€ 10 O9v16 ol oy Dovys
Tre10(S™0 ¢ 2) Z+Z,+ Z,+ 2, Z+ Z, Zy
Generator A(31)5 v30y B10s Mro 1 G1ov17s Dyolhay Eo
M1 (S™ 2 2) Zy+ Z, Zg
Generator 011V 18 T1r s o

Mer1a( ST 2 2)

Generator

’fk+14(S“ 12)

Generator
k= 12 13 14

Treo(S° 1 2) 0 Z, Zis+ Z,
Generator aevie ads Ko
Tre10( S 1 2) Z, Z, Zy+ Z,
Generator A(vy) owiq AT
Trsr1 (S 1 2) Z, Zy+ Z, Zys+ Z,
Generator o' 0935 011028 631y K1y
Ter13(S*2 1 2) Z, Z, Zy+ Z,
Generator Eo Eo7,; 0%y Kys
Tpe(SM 2 2) VA Zs+ Z,
Generator A(eq) 034Ky

We shall use the following relations;

'4) an°”n+7=ﬂn°an+l=ﬁn+en

by Lemma 6. 4 of [11],

for n>10
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(3. 5) oMy =000, =03 +7,06,, for n>10
by Lemma 6. 3 of [11],

(3. 6) 0oV =0 for n>12
va©da3 =0 for n>11,
20100 vy = vye00y3 by (7. 20) of [11],
€nONiug =050 e, =0 for n>9 by (7. 10) and (7. 20) of 111],

(3.7 Gy O Ppsr =0 for n >11 by (10. 8) of [11],
630 Eneg =0 for n>6 by Lemma 10. 7 of [11],
(3. 8) VO taug =V 0vaey =0 for w>7 by (7. 17) of [11],
Va0 Npsz =N 0v, =0 for w6 by (5. 9) of [11],

(3.9 voottny=0 for n>7 by Theorem 7.6 of [11],

(3.10)  A(eg) 07 = 2000y by (7. 21) of [11].

Consider a generator ¢, of m,.,(S™ :2) = Z;; for » > 9 and a cell complex
K =S"Ue". Let i :S"—>K_  be the injection.

Oy .

ProrosiTioN 3. 2.  We have the following tables of the homotopy groups
7i(Ks, 1 2) for n =9, 10, 11, 14 and 15, and generator of their 2-primary componenis.

(3. 11)
7 J=<38 9 10 11 12 13 14 15 16
(K, © 2) o | z Z | z | z | ol ol z | o
Generator ixty 17 1472 TV IR
j 17 18 19 20 21 22
K, : 2) Z+ 242, | Ze+ 242 | Z | Zi+Z| 0 | 0
Generator fﬁ;zw, €95 TxDy | Tl910s LxcVEs Tulls| TsMotlro |ExCosiabolyy
(3. 12)
J Jj=<9 10 11 12 13 14 15 6 | 17
(K, : 2) 0 z Z | z | z | o] o | z | o
Generator Tacio | a0 | D% | favio il
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J 18 19 20 21 22 23
(K, *2) Z+2Z, Z+Z,+ Z, Z, Zs Z, 0
—= R~
Generator 16¢y7y ixer0 |Exd(Ca1)s TxT10811s Extlrol Txliotlay | 4vir | (xd(vey)
(3. 13)
j j=9| 11 12 13 u |15 1 ’ 17 | 18
K, 2 | o | z |z | z |z |o|o| z]o
Generator Twtin | LW | 6% | iwvn 1wv?
J 19 20 21 22 23 24 25
WK, 2 | Z+Z | 2tz | & | Ze | 2| 2 | z
Generator ix€14s 1/6\113 falliss ExT11€10] Tx11Ha 51:,,/ U40" | 140755 | ixyy
(3. 14)
¥ J<13 14 15 16 17 18 19 20 21
nJ(K,1‘ 1 2) 0 A Z, Z, Zg 0 0 Z, 0
Generator Gwers | x| G0 | dwvu iavis
j 22 23 24 25 26 27
K, 12 | Z+7, Z+ 2 zZ | z. | o =z
Generator 1?3:21, Txeia | Dwllia ial1a€1s | Exl1alhss ;: ixd(¢)
(3. 15)
J 15 16 17 18 19 20 21 22
K, :2 | o | z | z | z| z ool z | o
Generator Twtis | Tahs | 0502 | fabis iavls
7 23 24 25 26 27 28
2K, 2 | Z+2 Zo+ Z, Z Zsa 0 0
= ~
Generator 16¢00y Txess | Talisy ExMis€16 | Exlisae Voo
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Here we denote by B an element of mn(Ks, :2) such that of = B m— (S : 2)
i.e. we may consider that B is a coextension of B.

Proof. Consider the exact sequence
Ony iy a
« —> 7 (S™7 1 2) —> a(S" 1 2) —> (Ko, 1 2) —> 7o (S 2)
Ony
—> 7 (ST 2)—> e e

of 3.1) for j<2n+5. From 7#;(S"*7:2)=0 for j<n+6 and from the
exactness of the above sequence, it follows that

Iy :71:,(5" . 2)-—)71'1(Ka,. . 2)

are isomorphisms onto for j <z +6, and »n =9, 10, 11, 14, 15.
It follows from (3. 1) that the sequence

Gy iy 7]
Tn1(S™H7 1 2) = M o(S™ 1 2) —> Mg (Ko 1 2) —> 0u6(S"7 1 2) = 0
is exact for n > 9. From =,,,(S":2) = {s,} = Z;;, we have that
(3' 16) Ops ¢ nn+7(sn+7 . 2) _)nn+7(s7b : 2)

is an epimorphism. Thus we obtain 7,,;(Ks, :2) =0 for » =9,10,11,14 and
15.
Consider the exact sequence

an iy ]
Tnes(S"7 1 2) —> 7w 5(S™ 1 2) —> 75 (Koy 1 2) —> Z = {16¢,4.)—> 0
of 3.1) for n >9. From (3. 2),(3.3) and (3. 4 we have that
(3. 17) Ope = Wpes(S™H7 1 2) —> 1, ,4(S™ 1 2)

are monomorphisms for #>9.  Thus it follows from the exactness of the
above sequence that the table is true for =,.4(Ks, :2), n =29, 10, 11, 14, 15.
From (3. 17) and the exact sequence (3. 1), it follows that the sequence

Taro(S™T 1 2) > oS 2 2) — > e Ky 3 2) —> 0
is exact for # > 9. From (3.5), (3.2) and (3. 3), we have that
(3. 18) Ons 2 Tpao(S™7 1 2) —> 7, ,4(S™ 1 2)

is monomorphisms for # >9. Thus we obtain that
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nn+9(K"n . 2) z7‘E'n+9(sn : 2)/{”7» ° 7715-!-7} .

From (3. 18) and the exact sequence (3. 1), it follows that the sequence

dny iy
7tn+10(S"M $2) —>7,0(S™ 1 2) __)”nuo(Kan 12)—>0
is exact for » > 9. From (3.2), (3.3) and (3. 6), it follows that

(3. 19) Ogu 2 To(S0 1 2) —> m(S? 1 2) is a monomorphism,
O & Tasgo(S™7 1 2) —>7,,1o(S™ : 2) is trivial for n = 14, 15,
the kernel of gy, @ mo(SY7 1 2) —> my(S10 : 2) is

generated by {4v,;}, and
the kernel of a4 : 7y, (S8 : 2) —> 7, (S1 1 2) 1S

generated by {2v,}.
Thus it follows that the table is true for m,., (Ko, :2) # =29, 10, 11, 14 and
15.
In the stable rangs, we have the exact sequence
i P
0> 7411 (S™ 1 2) > pi11 (Ko, 2 2) —> p00o(S™ 1 2) —> 0

of 3.1) for n > 13. Moreover we have the following relation in the stable
secondary compositions

te<o, 4v, 2¢> mod 2G, from Lemma 9.1 of [11],
o<ag, v, 8> from Proposition 1. 2 of [11],

and < g,v,8: > is a coset of the subgroup oo G, + 8G,; = 8G,;,. Thus
t=<o,v,8> mod 2 Gy,

where G, is the n-th stable homotopy group of the sphere and ¢ is a
generator of the 2-components of G,,.
From Proposition 1. 8 of [11], we obtain

i = ix<o,v,8¢ > mod 2 i,G,,

=—8p

where @ € n;(Ks, : 2) is a coextension of a € 7, (S"*" :2). Thus, from this
and from the exactness of the above sequence it follows that

(3. 20) Tne11(Ka, 2 2) = {0} = Zg

for n > 13
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From (3.1), (3.19) and from =r,.,,(S**":2) =0 for >0, it follows the
next four exact sequences and the commutative diagram

00— my(S° 1 2) —ano(Ka. :2) —0.
E iE
i, a
0 —> 7, (S : 2) —> 7y, (Koyo 2 2) —> {dv 1} —>0
E E E
! =,

10— 755(S™ 2 2) —> 7y (Korgy ¢ 2) —> {2016) —> 0

lEn-u lEn-u lEn-u
i 9

e
0—>ps11(S™ 1270411 (Ko, 1 2) —>{vp s} —>0

for n>13, where E:m(S?:2)—>myp(SM:2) and EU i, (S :2)
—>7,.:(S™ 1 2) are isomorphisms. From (3.20) and the above diagram,
we obtain that

oo(Kay ¢ 2) = {islo} + {ixbe 0 vii} = Zy + Zy,
Koy 1 2) = {v} = Zi,
oKy 2 2) = (Bvy6} = Zy,
Tpi1n( Koy 2) = Dy = Zgy for n > 13,

It is easily seen the results of 7,.,,(Ks, :2) and 7,.3(Ks, :2) from the
exact sequence of (3. 1), the table (3. 2),(3. 3) and the relation (3. 6).
Consider the exact sequence

a1 i* 9 &0
y5(S18 :2)-—‘—)7r25(S" 2 2) —> ys( Koy ¢ 2) —> mp, (S8 1 2) —> 7, (S : 2)
of (3.1). From (3.2), (3.3) it follows that
(3. 21) oy s i(S1 1 2) —>my(SM 1 2) for j=24, 25

are monomorphisms. Thus from the exactness of the above sequence we
have

ﬂzs(Kau 1 2) = my(SM 2)/{"'%1} = {"11} = Z,
From (3. 1) and (3. 2), we have the exact sequence
72a(S1 1 2) > (S : 2) > myg( Ky + 2) —> 0,

From (3.7) and (3. 2), we have that
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3. 22) Ty 2 Tos(SM 1 2) —> moe( Koy, ¢ 2)

an isomorphism onto.

Next consider a generator v;, of m;3(S?:2) of order 8 and an element
= A(ey) +7 of m,(S?:2) of order infinite order, where 7 is an element
Neo © €11 + bv3, of m (S : 2) with the order at most 2 (¢,6 =0 or 1). Let a
ell complex K= S" U C(S¥YVY S¥) be obtained by attaching C(S®*V S!) to
1 by v,V g:S®Yy S*—>S%  Then we have the following lemma.

Lemma 3.3.  We have the following table of homotopy group m;(K:2) for
<21;

j i<9| 10 11 12 13 14 15 16
n,(K : 2) 0 z Z, Z, 0 z Z, Z,
Generator Tetio | 4010 | 4750 8,;:3 ;7: %;
J 17 18 19 20 21
(K :2) Ze+ Z, Z, + Z, Zy+ Z, Zy+ Z, AP
Generator 140105 2/;:3 TaVios Ex€10 | Ta710€11s Exllio [Ex010V17s Exl10lat| 13 @D Upo

Tere i : S —> K is an injection and we denote by & an element of ny (K :2) suck

hat @ is a coextension of a € m;_,(S¥ VY S¥ : 2).

Proof. By (3. 1), we have an exact sequence

(v1aVAB), in
3. 23) cee =SBV S 2) ——>7y(SYy 1 2) —> (K 1 2)
0 (V OVB)‘
—> ;o (SB Y S 2) —I—HTI_,(S“’ 12 —> .
or j<2l. We can identify =, (S®V S :2) ((v;o V B« respectively) with
3(S1 1 2) @mi(S" 1 2) (v + By respectively) for j<21 and we shall use the

lotation a = v pr + By. ‘
From the tables (3. 2), (3.3), the relations (3. 6), (3.8) and the exact

equence (3. 23), it is easy to see the results of m;(K:2) for j=17, 21.
Consider the exact sequence
702(S1 5 2) @ 1y (S ¢ 2) — >y (SY : 2) —> (K 1 2)

6 [ 3
—>m(S1? 1 2) B wye(Ste 1 2) —> my(SM 1 2)
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of (3. 23), where m;5(S? :2) Pm(SY 1 2) =7, ((S¥:2) ={v; .} = Z; and =,;(S¥ :2)
@myy(S1:2) =0 by (3.2). We have that the homomorphism e« : 7m,,(S* : 2)
P my(S1 1 2) —>m(S™ 1 2) is an epimorphism and its kernal is generated by

{2v;}» Thus we obtain the following sequence
iy k]
(3. 24) 0—> {01} —> (K : 2) —> {20, —>0.
By Adams [1],
{10 2015040463 =0 mod 4m;,(S¥ : 2)

and we have, by Proposition 1.8 of [11], 4 2v,;=

€4 igr,(S?:2). Thus 4(2’;:3 + iya) =0 for some a € m, (S :

replace 2::3 + iya by 2/;/13 Thus, from (3. 24), follows that

m(K 2 2) = {ison) + {2} = Zis + Zie

From (3. 23), we have the exact sequence

71 (S12 1 2) @ 70, (S 2 2) —> 710, (SM 2 2) — > 71y, (K - 2)

a «
—> (ST 1 2) D 1pp(S? 1 2) —> 7,y (S :

By (3. 6), (3.10) and the diagram (3. 2), (3.3), we have

a{oys} = v100 013 = 20,00 vy = Aeg,) © Ny = a{We)

Thus we obtain that

(3. 25) the kernel of a : 7, (S™3 : 2) @ mpo (S ¢ 2) —> myy(S¥ ¢

is generated by {o;; D 7,0} = Zys.
By (3. 8),(3. 10) and the diagram (3. 2),

v} = vyp0 9y = 0,

(3. 26) a{exa} =v,063=0,

a{ni} = B0l = d(eay) 0 124 + @y 0 €45 0 524 + buieon?,

— 2
= 20100 v13 0759 + 4davyg 0 g4

=0.

- i*{”w’ 2v13 4‘16}
2.  We may

2).

2)

Thus, from (3. 25), (3. 26) and the from above sequence, it follows that the

sequence
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iy /]
0—> {81} —>mu(K : 2) —> {01 D 7103 —> 0
is exact. By (9. 3) of [11],
10 € {v10y 20135 8ao) mod 8r,,(S* :2)

and by Proposition 1.3 of [11]

ix810 € Gs{v10) 2013, Beao}
=—38 2}13

T~
=—16 013D M0
Thus we obtain that
S~
71 (K ¢ 2) = {013 D 010} = Z12-
§4. Homotopy groups of exceptional Lie groups E;, E; and E;.

(I) Homoropy Groups r;(E;:2) for j < 28.
From Corollary 2.3, Lemma 2.5, there exist a cell complex Kj
=S¥ Ue® Ue’U e and a continuous map f: K 7 — E,, from which the

I15

following isomorphism f,, induced by a map f, is obtained;

(4. 1) S m(SB U e Ue Ue®:2) ~m(E:2 for j<28.

a15

Let ¢ be attached to Ko =S¥ U ¢* by a map g:S*—> Ks, and e? be

915

attached to S¥ U e® U e by a map h:S¥*—>S"¥ U e® U e, then, from

a15 7915
Corollary 2.3 and Theorem 2.6, it follows that the next diagrams are

commutative
g h
S% — K S28 3 S15 |y 23 U ¥
(573
“.2) (i) \\ l" (ii) 1}\ J,P’
S23 S27

where p,p’ are the maps which shrink S%,S5% U ¢® are respectively to a

a8

point. From (4. 1),
m(Ey:2) =my(S" U e® U e :2) for j<27.
G185

Consider the exact sequence
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A iy ?
T26(S% ¢ 2) —> mps(Kioys 2 2) —> mp6(S™5 U €2 U ¥ & 2) —> m,5(S26 2 2)
a15

of (3.1), where i’: Koy—>S" U e® Ue¥ is the inclusion map. From (i)
a1s

of (4. 2) and the table (3. 15), we have that
(4. 3) G Tpe(S% 2 2) —> mag( Koy © 2)

is an epimorphism. Thus, from the exactness of the abdve sequence, we
obtain

(4. 4) (S U e® U ¥ 1 2) = 0.

a5

It follows from (3. 1), (3. 15) and (4. 3) that the sequence

A 9
0= 77.'27(er15 : 2) ____)”27(815 U 323 U 327 . 2) _)71'26(526 . 2)
718
Ox
—> 7y(Kogs 2 2) —> 0
is exact. Thus we obtain

(4. 5) (ST U e® U et 1 2) = Z.

g15

Next consider the diagram;

73s(S U €2 1 2) = 0

a15

hy iy [}
(S 1 2) — > mpe(S™ U €2 U €271 2) —>my(S'° U €2 U €% U % 1 2) —> 7y (S : 2)=0

o 5 o

73s(S*™ 1 2) *;3—’527(52“ 12)

I
(ST U e®:2)=0

g15
where ¢ is a inclusion map. From (3.1) the row ahd column sequences
are exact, and from (ii) of (4. 2) and from the definition of 4, it follows
that the diagram is commutative. By (3.15), 0 :myu(S*TU e®Ue¥:2)
—>my,(S?* :2) is an isomorphism, and E :my,(S% :2) —>my(S¥ :2) is an
isomorphism. Thus, from the commutativity of the above diagram, it
follows that

By P mpg(S% 2 2) —> (S U e U e & 2)

915
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is epimorphic. Thus, from the exactness of the column sequence, we
obtain
(4.6) Te(ST U €2 U e U e 1 2) =0.
915
From (4.1), (3.15) and (4. 4) (4.9), it follows the next table of the

homotopy groups of exceptional Lie group E,.

ProrosiTion 4. 1.

j L2 | 3 |4<j<14| 15 ' 16 | 17 [ 18] 19 2 {
7 (Ey : 2) 0o | z 0 z | zZlz 2zl 0] o \
j 21 | 22 23 24 2% | 2 | 27 ] 28 \
7,(Es : 2) Z | o | z+2z Z+2 |zl o | z 1 o |

(I) Homotory crours n;(E;:2) for j< 25.

From Lemma 2.5, there exist a cell complex K& = S" U e'® U e U e*
Ue® U e’ and a continuous map Fk:Ki—>E;, such that Fky :m(Kz)
—>n,(E;) are C,-isomorphism onto for j<28. By Corollary 2. 8 and
Lemma 2. 4, ¢ is attached to S by a representative of v, € 7,(S" : 2).

Consider the diagram

Sll U e15 U ew )SIS U 619

Vulk lﬁ/?sw

E, c E,

where p is a map which shrinks S!* to a point and E, c E; is the natural
inclusion. Since n,(Ey) =0 for i < 14, kE[S"=~0 in E;. Thus there exists a

map k:S®Ue®—>E, such that the above diagram is homotopy
commutati~ve. A generator ;€ HS(E,: Z;) corresponds to a generator
%5 € H'%(Ey ; Z,) by the natural inclusion E, c E,. Thus, from the
commutativity of the above diagram, «,; € H'S(E, ; Z,) corresponds to a
generator of H'(S™ U e ;Z,) by k* Let f:S5—>F, be a representative
of a generator {f} of m(E,) =2, then kIS is homotopic to x{f} for
some odd integer x. Let ¢ be attached to S by B8:S®—>S8% for a
cell complex S'* U ¢ of the above diagram.

Since £ is extended over ¢, we have

0= (k|S¥)p=2(fup) in 2-component.
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By (4. 1), fy:m;(S')—>n,(E,) are C,-isomorphism onto for j < 21. Thus it
follows B=0. From this we have that S! U e is a subcomplex of Kz,
and ' is attached to S' by .

Lemma 4. 2. We may regard the inclusion j : Koy = S" U € C Ky as the

a11

Jfibre map. Let F be the fibre, then H*(F ; Z,) has additive basis {1, ayi, @y, Gy}
Jor degree << 29, where a; denote a generator of degree i.

Proof. From lemma 2.5, H*KE, ; Z,) = A(%15, X5 L1gy Tazy Xo7) for degree
<30 and S¢'xi; = %15 Sq*%i5 = Xasy SG'Caz = Xapy STy = Ty Let {E¥*} be
the mod 2 spectral sequence associated with the above fibering, then we
have

Es* = H¥Kg, ; Z,) @ HF ; Z,)
and
EX* = Az, 2,,) for degree~<< 30.

Clearly K7, and F are 10-and 13-connected respectively. We have the
following cohomology exact sequence - - —> H*KE, ; Zz)——J—>H*(K,;11 3 Zy)

—> H*(F ; Zz)~—i—>H*(KE”7 3 Zy)—> ++ - for degree < 24. It follows that
H*F ; Z,) ={l,a;,assy for degree< 24 where <(ay) = ;5 and z(ay) = %y,
ie, dis(1®ay) =2;;®1 and dp(l1®ay) = 2,;®1.  For 24<¢<29, any
non-zero element of EJ? must be cancelled by d, with some element of
E7 @, By the dimensional reason, the only posibilities of such ¢ are
q =24, 25, 26 corresponding to x,; ®ay, *,;2%,; Q1 and 2, ®1 respectively.
Thus HYF ;Z,) =0 for ¢=27,28,29. Since dix;®ay)=2,2;R1=%0,
%, @ ay, 18 not a dj-image, hence H¥*(F ; Z,) =0. We have also H*(F ; Z,)
=0 since %,;2,;,®1=0 in E}¥° By the dimensional reason, we see that
2,;® 150 In EZI'° hence there exists an element a, such that dy(1® ay)
=2,,®1 and a, generates H¥(F ; Z,) = Z,.

From the proef of this lemma, we have that a,,a,,, a5 are transgressive
elements. Since Sgtx;; = 2,3, Sq'%s; = 24, it follows, from the commutativity
of the Steenrod operation and the transgression, that

(4. 7) Sq*ay = @,  Sq'ayy = ay.

By Lemma 2.5 and Theorem 2.6, there exists a cell complex K
=Sy e?Ue® and a countinuous map from K to F which induces
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isomorphisms from 7;(Kp:2) onto m(F :2) for j<26. Let f:Ky—> Koy,

=S" U ¢ be the mapping from a fibre to the total space identifying F
a1

with K for dimension < 26. Then f|S' is a representative of v,;.

Consider the exact sequence
(4. 8) (K 1 2) D (K 1 2) (K £ 2)
(Kt 2) Ly (Ko £ 2)—> - -
associated with the above fibering for j <26 and the following homotopy

commutative diagram

sS4 > K,

(4. 9) qu i lf

St — Koy

From (3. 1), (3. 14) and from the fact that ¢* is attached to Ks, by a
coextension of vy, we have the next table ;

(4. 10)
7 7 <13 14 15 16 17 18 19 20
ﬂj(KF : 2) 0 Z ZZ Zz Zs 0 0 Zz
Generator it | x| Ea0% | dsvu iy
j 21 22 23 24 25 2%
ﬂj(KF . 2) 0 Z + ZZ 22 + 22 22 0 Z
N . . . . N
Generator 16¢215 14614 Taligs 15714815 1471415 64¢45

LemMa 4. 3.  For the homomorphism fy :ni(Ky :2)—>n,(Kosy, & 2), we have
the following table;

(4. 11)
. . . z . . 2 . N . - . .
a = Txtrs | UxT1g | UaTl1a | TxPu4 Tyv1y (1x16¢s1 | Txe1y | Txlhia |TsT1415| EaW1athas
. . . ~
Fet = | Qv 0 ‘ 0 Tub2y | 11612 | 4 2v5 0 0 0 0

Progf. From (4.9), (3. 8), (3. 9), it follows that the table is true excepting

~~

for a = i,16¢y;, i
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The relation ,7;;0 ¢, = iy} In 7,(Koy, ¢ 2) imply the formula

Fuliwvis) = iy 0 6o
Consider the following commutative diagram

Y11

SH — Sll

i vy i
L]

16¢21
822 _— S‘14 U e22 > Kd"
I14

AN
16:2,\

~
where 16¢,, is a coextension of 16¢,;, and b5,, is an extension of v;;. We
have

~

Fiulbiegy = 6405, 0 160y,
= — i{v11, 014 16¢5,} by Proposition 1.8 of [11],
= — il bY (9. 3) of [11],

= *‘4 i;‘/gl.

ProrosiTiON 4. 4. The homotopy groups nE; :2) for j <25 are listed in
the following table;

j 1,2 3 4<j<10 | 11| 12| 13| 14l 15
w(E; 1 2) 0 Z 0 j z | z | Z | o | z

j 16 | 17 | 18 19 2 | 21 | 22 23
ﬁ](E7 : 2) Zz 22 Z4 Z + ZZ 22 Zz Z4 Z + Zz + Zz

i 24 25
7[,‘(E7 . 2) Zg + Zz + Zz Zz + Zz

Proof. The results of z;(E;:2) for j <22 follow immediately from the
tables (4. 10), (3. 13), (4. 11) and from the exactness of the sequence of (4. 8).
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{ui1s €1as 250) D E*{uq, €14y 2¢15) C E'myy(S7) = 0.
Thus we have
(4. 12) {v11s €100 20,3 =0  mod 2m,,(S™).
Similarly we have
(4. 13) {vi1s tes 202,y =0  mod 2m,,(S™).

{o11s D14 © €159 2205F D {V11 © N1ty €159 2205F = {0, €455 22553 =0 by PrOPOSition
1. 2 of [11]. Thus we have

(4. 14) {v11> 1140 €155 20553 =0 mod 2m,,(S" : 2).
Similarly,
(4- 15) {Vu, 7]“ o ﬂ15, 2(24} = O mOd 271'25(811 . 2).

Consider the commutative diagram
(4. 16)

S Je 9 S
ﬂj(Kp . 2) —_—> ﬂj(Kan H 2) —> ﬁj(KE“‘1 : 2) —_—> nj-l(KF : 2) —> nj_l(KO'u :2)

D R AR e

Vile . , Vile
mi (St 2) 2 m(SH:2) — m(SH U €% :2) —> 7, (SY 1 2) —> 7y, (ST 2)
where ¢,;j are inclusions.

From Proposition 1.8 of [11] and the above secondary composition,
. - - I~ ~~—
coextension &, fyy, 40 €5 and 7o fy5 Of ey My Myuo ey and My 0 s

respectively are elements of order 2. Thus from the commutativity and
the exactness of the above diagram. (4.16), the results of =Kz, :2) for
j = 23, 24, 25, are obtained.

(ITI) Homoropry GROUPS m;(E,:2) for j<22.
By Corollary 2. 3,

HXE; 5 Z,) = Zy[y3] ® AWss Y115 Y15s Y175 Y230 Ysa)

and

S@®Ys = Yy SEYs = Y11y S¢'W11 = Y15y S¢Y15 = Yase

From Lemma 2.5, there exists a cell complex Kz and a continuous
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map [ : Ki,—> E; such that [, : =, (Kg)—>n;(E,) are C,-isomorphism onto
for j<24,1.e, KE;=SU el U e Ue Ue®Ue®U e
By Corollary 2. 8, e'! is attached to S* by 7,.

LemMmA 4.5. Koy =S°U e s a subcomplex of Kg.  Exchanging an

wnclusion map Koy—> K&, by a fibre map, we denote by F the fibre of this
fibering.  Then HX(F ; Z,) has the additive basis {1, ayy, @1y Goyy aro} for degree < 25
such that Sq'a,, = ay, Sqay = Gy, where a; denotes agenerator of degree i.

Proof. From Lemma 2.5, H*(KE; ; Zy) = 4(2g, %115 T15 %170 %,3) for degree
<32 and S’y = %y, S¢'%y = %isy S5 = oy SRy = X45.
By use of Adem’s relation we have relations

Sq¢*2y = Sq*Sq*xy = Sq'Sq'xy + Sq'Sq' 2,
Sq*xys = S¢*Sq'xy = S¢°Sq'x,, + Sqtxy;.

Since there is no cell of dimension 10 and 13, Sq¢*z,, =0 in Kg. Since
there is no cell of dimension 12 and S¢*z,, =0, S¢*x;; =0 in Kg. Then
¢ is inessential to e'%, that is, up to homotopy type S°Ue' Ue is a
subcomplex. Since m,(S° U €', S?) = m(SH) =0, we have that S°U e is a
subcomplex. Then, by Theorem 2.6, we may consider that S°U e’ = Ko,
is a subcomplex of K.

Let {E¥} be the mod 2 spectral sequence associated with a fibering
{Ksy, i, KEG} with the fibre F, then

EY* = HYKEz, 5 Z,) Q HXF ; Z,)
and

EX¥ = A (%g,%,;)  for degree < 25.

By concerning the cohomology exact sequence associated with this
fibering, we have HXF ;Z,) ={l,aa.+ for degree< 18 with generator
@0 @4 Such that d;;1®a,) =2,®1 and d;1R®a,) = 2,;® 1. For the total
degree<<27, E¥ is the sum of 'E¥ =H*Kg ;Z)®{l,apa,) and
;“‘?s 1® H(F ; Z,). From ’E%* we compute ’EF* giving d, trivially except
:Ilr(b® ay) =bx,; ®1 and d,0Qay,) =bx;;R1, b€ HYKg, ; Z,). Then we
have for the total degree<< 30, ’EX* = A(xg, X171, %23) @ 1 + {2, ® a5y, 215X aye},
where we use the fact x2, = 2%, =0. Compare this with EX*, we conclude
that 2,,®1, #,;®a,, must be cancelled by some elements ay,a,, i€,
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dos(1® ay) = 2,5 @1 and d;;(1 R ay) = 24, R @y, Moreover, no other non-zero
elements exists in H*F ;Z,) for degree< 25. Thus H(F ; Z,)
= {1, ay0; @145 Gs9s G} for degree < 25.

From the above proof, a,,a;, and a,, are transgressive element. Since
Sq'z;; = 2,5 and Sgbx,; = 2,;, using the commutativity of Steenrod operation
and transgression we have Sg¢‘a,, = a;, and S¢fa, = ay.

By Lemma 2.5, there exists a cell complex Kp=S5"U e U e U e
and a continuous map which induce C,-isomorphisms from 7;(Ky) to m;(F)
for j<24. We identify the fiber to the total space, then we have a
commutative diagram

ok,
(4. 17) lﬂs lf

S — Kn‘g
where 7 is inclusion map, and the exact sequence

(4. 18) coo ——> Ky 1 2) —> ni(Koy : 2) —> mi(KE; 1 2)
—> 7 (Kp 1 2) =7 (Kog 1 2) —> « + «.

Consider the cell complex Kp=S"Ue"Ue®Ue® Since Sqg'a,
= a,,, e is attached to S by a representative of .

From 7,,(S™ U €', SY) = n(S*?) =0, we may assume that K,=S"U
C(SB Y SH) U e, -

Let «:S%—> S U C(S* Y S*) be the attaching map of e* and e* be
attached to S by g:S*—— S  Consider the exact sequence

2 v10VA.
75, (S0 1 2) — >y, (S0 U e U 2 @ 2) —> my (ST Y S0 1 2) N Ty (S0 ¢ 2).

From the definition of 3, we have the commutative diagram

]
7 (ST U e U €2 1 2)—>my(S¥ Y S 2)

PN A
Ty (SH Y 520 1 2) = 1y, (S 1 2) + 7, (S0 1 2)
where p is a map which shrinks S to a point. Since Sgta; = ay, Dia
=0+ 27 for =1 or 0. From the exactness of the above sequence,
0= (v1oV Blx 00 = vyg0 0,5 + x(Bo7y). Thus we have 2(Bo 7)) =vy003%0
and 2z =1.
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Put g =a(d(cy)) + b050 &4y + o3, + dzy, for some integers a,b,c,d, then

we have

V100013 = Bo 7y

= a(d(ear)) © M9 + 7% 0 €15 + cvig 0 Nyg + dyg 0 224y

=avyo0a;3+0+04dn,on, by (3. 6) and (3. 10).

Thus by (3.3) a=1 and d =0. Therefore

(4. 19) 8= A(ey;) + b1y 0 ey, + cv3, where b,c =0 or 1.
0a = gy + 7y

From (4. 19), Lemma 3. 3 and from the exact sequence

C (ST 1 2) — > m(SM U €M U €2 1 2) —>my(Kp 1 2) —>my (S

of (3. 1), we have the next table;

L

(4. 20)
i li<ol o] 3] u 15 | 16 o
7 Kp : 2) 0 |z |z |z|0|z|2a|2z]| 2+ 24 '
Generator Txtio | TxTo | 5720 8tz | Mg ' 92, ‘ 10109 2.)13
j 18 19 20 21
7 (Kp 1 2) Z,+ Z, Z,+ Z, Z,+ Z, 0
Generator 4V10s E%E10 $010€11s Bxellio 14010Y175 Laliolnt
LemmA 4.6.  For the homomorphism fy : mj(Ky : 2) —> we(Ksy 1 2), we have
the following table;
(4. 21)
a = ixtio | Ixl0 | ©xW30 1 i%010 2v1; ixvie | IxEro
Fea = | iy | G| Aiave | dwd | dxeetdave | dxgy | dwd | ixTeen
a = 15710 © €11 Lyl ' 14010¥17 l RN
fea = 0 it | dewn | i

Progf. We shall use the next relations
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723 =4v, for n>=5 by (5. 5) of [11],
NpOPpsy =v3 for n>6 by Lemma 6. 3 of [11],
7y 0 619 = Ty + & by Lemma 6. 4 of [11],

by (7. 10), (7. 20) of [11],

N20e,, =0 for n>9
n>5 by Lemma 6.7 of [11].

4, =nko p,,,  for

From (4. 17), (4. 22), it follows that the table is true except for « =7,; and

~
2v,3.

~
From the definition of %, and (4. 17), we have the commutative

diagram

SIO l) SS

;. w/
_ Ly

Sls > SIO §] ell > SQ 8] e17

V1o gy
’b\ l”
Sl4

where p is the mapping which shrinks S to a point and 7, is a extension
of 7, Thus we have

Sos = i*ﬁ° Tia = Tx{Mey V105 That D G40 by Lemma 5.5 of [11].

Consider the commutative diagram

SIO __.) S9

W BT

Sl7 ,____) SIO U e“ ) SQ ) elT

2%\ ylop "
Sll
Lo
Sll

then we have

SFa2v13 = 147050 2013 € 14{09s v100 2v15> Dy Proposition 1.7 of [11],
(S5 i*sg by (6. 1) Of [11].
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PrROPOSITION 4. 7.  The homotopy groups m;(Es:2) for j <22 are listed in
the following table;

j L2 | 3 |4<j<8 9]10 11 | 12 | 13| 14
7(Es 1 2) 0 4 0 Z]OIZIZ4]0 0
j 15 | 16 17 18 19 | 20 | 21| 22
7(Es ¢ 2) Z |0 | 242 | Zutz | 0 | Z 1 0o | o

Proof. The results of z;(E;:2) for j=¢18,20, follow immediately from
the table the (3. 11), (4. 20), (4. 21) and from the exact sequence (4. 18).

By (3.9) and Proposition 1.2 of [11], ¢ & <7, 8¢, 26>=<17, 24,8 >
+<2¢,7,8> and <24,7,8>=<g,27,8 >=0. Then, by concerning
the suspension homomorphism, we obtain

{9y 2010y Bey7} D Hy.
By Lemma 9.1 of [11], we have
{79y M0 © €11y 2235} 2 &

Consider the commutative diagram

S Ju [ S
Tg(Kp 1 2) — m3(Koy 1 2) —> mp(Kry 0 2) —> m(Kp 2 2) —> m30(Koy & 2)

T e e e T

my5(S1 1 2) - mi8(S? 1 2) —:—nrm(S’ U e :2)—> m, (S : 2) — my(S? 1 2)

where j is a inclusion map S*—> S° U e'l,
79

By Proposition 1. 8 of [11], we have

. . ~
Txtts € Ji{7es 20109 817} = — 8 204,

From the above commutative diagram and from the tables (3. 11), (4. 20),
(4. 21), we obtain

nlB(KE : 2) z le + Zg.

We have the following commutative diagram
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I Su
Moo Kr 1 2) —> mpo(Kog 1 2) —> mao(Krs 1 2) —> 7o(Kp 2 2) —> m,0(Koy : 2)

E * 1w j Ta a Ta IE

*

(ST 1 2) —> 5y(SP 1 2) > mp(ST U €l 12) — > 7y(S10 1 2) —> 7y(ST 2 2)

and from Proposition 1.7 of [11]

) . ~
Jx8s € Js{Msy W10 © €115 2000) = — 2590 &4y

From the exact sequence (4. 18) and from the table (3. 8), (4. 10), (4. 21), we
obtain

To(KEs + 2) = Zse

BiBLIOGRAPHY

[17 J. F. Adams: On the group J(X) IV, Topology, 5-1 (1966), 21-71.

[2] S. Araki: Cohomology modulo 2 of the compact exceptional groups E; and E;, J. of
Math. Osaka C.V., Vol. 12 (1961), 43-65.

[3] S. Araki and Y. Shikata: Cohomology mod 2 of the compact exceptional group Eg,
Proc. Japan Acad., 37 (1961), 619-622.

[4] A.L. Blakers and W.S. Massey: The homotopy groups of a triad II, Ann. of Math., 55
(1952), 192-201.

[ 51 R. Bott: The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.

[ 6] R. Bott and H. Samelson: Application of the theory of Morse to symmetric spaces, Amer.
J. Math., 80 (1958), 964-1029.

[ 7] H. Cartan and J.P. Serre: Espaces fibrés et groupes d’homotopie I, II, C.R. Acad. Sci.
Paris., 234 (1952), 288-290, 393-395.

[87 J.P. Serre: Groupes d’homotopie et classes de groupes abélian, Ann. of Math., 58 (1953),
258-294.

[9] J.P. Serre: Cohomologie modulo 2 des complexes d’Eilenberg Mac-Lane, Comm. Math.
Helv., 27 (1953), 198-231.

[10] M. Mimura: The homotopy group of Lie groups of low rank, J. Math. Kyoto Univ.,
6-2 (1967), 131-176.

[11] H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Studies.,
(1962).

Mathematical Institute
Nagoya University








