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TOPOLOGICAL STABILITY OF SOLENOIDAL

AUTOMORPHISMS

NOBUO AOKI

§ 0. Introduction

In [10] A. Morimoto proved that every topologically stable homeo-

morphism of a compact manifold M has the pseudo-orbit tracing property

in the case dim (M) > 2. Further, in studying relation between the topo-

logical stability and other stability of diffeomorphisms, he showed the

following

THEOREM A. Let Rr be the r-dimensional vector group and ψ be a

group automorphism of Rr. Then the following conditions are mutually

equivalent;

( i ) ψ is hyperbolic,

(ii) φ is expansive,

(iii) φ is structually stable,

(iv) ψ has the pseudo-orbit tracing property,

(v) φ is topologically stable.

The statement further is true for toral automorphisms.

We know (cf. see § 1) that every toral automorphism is contained in

the class of solenoidal automorphisms. Thus it will be natural to ask

what kind of solenoidal automorphisms have the pseudo-orbit tracing

property. Our aim is to investigate this problem by using results in [2]

and A. Morimoto [9, 10, 11].

§ 1. A main result and preparatory lemmas

Let f:X<—=>be a homeomorphism of a compact metric space (X, d).

We denote by Jf(X) the group of all homeomorphisms of X. Then /f(X)

becomes a complete topological group with the topology given by the

metric d(f, g) = max{d(f(x), g(x)), d(f~\x), g'\x)):xeX}(f,ge ^(X)\ We
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call / to be topologically stable iff for every e > 0 there is δ > 0 with the

property that for every g e J4?(X) with d(f, g) < δ there is a continuous

map h: X<—=> such that

i) hog^foh, ii) d(h(x),x)<ε(xeX).

A sequence of points {Xi}ie(a,b) (~°° < α < 6 < +oo) is called a δ-pseudo-

orbit of / iff d(f(xt), xi+ί) < δ. Given ε > 0, a d-pseudo-orbit {xτ} is called

to be ε-traced by a point y 6 X iff d(f%y), xt) < ε for every / e (α, 6). We

call / to have the pseudo-orbit tracing property (abbrev. P.O.T.R) iff for

every ε > 0 there is δ > 0 such that every ^-pseudo-orbit of / can be ε-

traced by some point y e X. We denote by Orbδ (/) the set of all (finite

or infinite) <5-pseudo-orbits of / and by ΊV ({JCJ, /) = Tre ({jcj) the set of all

y eX such that {xt} is ε-traced by y. We call (X, f) to have weak specifica-

tion iff for every ε > 0 there is M(ε) > 0 such that for every k > 1 and

k points xl9 , xfc e X and for every set of integers at < bt < α2 < b2

< ak < bk with aί+ί - b, > M(e) (1 < i < k - 1) there is * € X with d(/w(x),
fn(Xi)) < e (a, < n < 6,, 1 < i < fc).

We say that X is solenoidal iff X is a compact connected finite-dimen-
sional abelian group. Every finite-dimensional torus is clearly solenoidal.

Hereafter X will be an r-dimensional solenoidal group and σ will be

an automorphism of X. Our main result is the following

THEOREM 1. The following (A) and (B) are equivalent;

(A) (X, σ) is topologically stable,

(B) (X, σ) has the P.O.T.P..

Further there exist solenoidal automorphisms with P.O.T.P. such that

one of the following conditions holds:

(C) (X, σ) is not expansive,

(D) (X, a) is not densely periodic.

The second statement of Theorem 1 will follow from Remark 1 men-

tioned below.

Denote by (G, ϊ) the dual of (X, a) ((Tg)(x) = g(σx), g e G and x e X).

Let G be a minimal divisible extension of G (p. 168, [7]). Since G is

torsion free, G is so and rank (G) — rank (G) = r < oo (p. 34, [7]). It is

well known that T induces an automorphism γ of G. We shall write ΐ =

f for the sake of simplicity.

Let Q[x, x'1] be the ring of polynomials in x and x'1 with coefficients
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in Q (the notation Q means the rational field). Since G is divisible and

torsion free, for every f eG and every natural number n there is a unique

geG such that ng = f. So we consider g to be {Ijήjf and Q[x, x'1] to

act on G by (Σl=-m b^)g - Σ%-m *>sPg (b, e Q and geG). Then G be-

comes a Q[x, x~^-module. Since Q[x, x'1] is a principal ideal domain, it

follows (cf. p. 397, [6]) that there is in G a finite sequence {gl9 - -,gs}

such that G splits into a direct sum G = Ggl Θ 0 Ggs of ^-invariant

subgroups Ggt where Ggi = {fe G: mfe gp {Γgi' j e Z] for some mφΰ} for

1 < ί < s (the notation gp E means the subgroup generated by a set E).

Since ϊGgi = Gg. for 1 < i < s, we can find a polynomial ^^x) e Z[x] with

minimal degree rt such that qSj)gi = 0 holds, so that Θ = { ,̂ , Γx~ιgu

• migs> •• >^
rs~1^} is linearly independent (the notation Z[x] means the

ring of polynomials with integer coefficients). Hence the factor group

G/gp Θ is a torsion group; i.e. gp Θ is full in G. Numbering the elements

of Θ as Θ = {eί9 , er}, every Oφg e G is expressed as ag = aιeι + +arer

for some aφO and some au , ar with (α^ , ar) Φ (0, , 0). Since the

existence of (aja, , arja) is unique, we can define an into isomorphism

<p: G —• Qr by ^(^) — (α^α, , αr/α). To simplify the notations, we identify

g with (ahla, , αr/α) under ^. Then θ is the canonical basis of Zr (i.e.

ex = (1, 0, . , 0), , er = (0, ., 0, 1)), so that gp θ = Zr c G c G = Qr

C i?r. We extend ϊ on i?r by the natural way, and denote it by the same

symbol. For t = (tl9 , tr) e i?r, define ψ (ί)^ = ίiαjα + + trar\a (addi-

tion mod 1) for all g = (α^σ, , αr/α) e G. Then we get ψ(t) e X (p. 251,

[12]). In fact, ψ:Rr-+Xis an into homomorphism. The adjoint map f

of ϊ is defined by ψ(ft)g = ψ(t)ϊg = (σψ(t))g (t eRr,ge G). Since f and T

are isomorphic, we denote f by ϊ again, and say (Rr, ϊ) to be the lifting

system of (X, σ).

LEMMA B ((P.2(i)), [2]). Under the above notations, ψ(Rr) is dense in

X. If X is a torus then ψ(Rr) = X.

LEMMA C ((P.2), [2]). Let F be the annihilator of gp Θ in X. Then

(i) F is totally disconnected and ψ~ι{ψ(Rr) f] F} = Z\ (ii) X= ψ(Rr) + F

and (iii) there is a small closed neighborhood U of 0 in Rr such that ψ(U)

f] F = {0} and the direct product U X F is homeomorphίc to ψ(U) + F.

And ψ(C7) + F is a closed neighborhood of 0 in X (We write ψ(U) © F such

a neighborhood ψ(t/) + F).

LEMMA D. Under the above notations, the followings hold;
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( i ) there exist a torus VΊ and a vector group V2 such that ψ induces

a 1-1 homomorphism ψ* from the direct product group V1 0 V2 onto ψ(Rr),

(ii) ψ(Zr) is a closed subgroup in ψ(Rr),

(iii) ψ(Zr) is dense in F.

Proof Let K be the kernel of ψ. Then K c Zr by Lemma C(i), so

that there are a torus VΊ and a vector subgroup V2 such that RrjK = VΊ

Θ V2. Therefore ψ induces a 1-1, onto homomorphism ψ*: VΊ 0 V2 -> ψ(Rr)

in the natural way. (i) was proved. It is clear that ψ(Zr) c F. By Lem-

ma C (ii), ψ(Z r) Π ψ(Rr) c F Π ψ(Λr) - ψ(Z r) and so ψ(Z r) ΓΊ ψ(Λr) =

This shows (ii). Put B = ψ(Zr). Then Z/β = {(ψ(i?r) + B)/B} +

Since ψ(Rr)jψ(Zr) is a factor group of RrjZr, it is a torus and so (ψ(Rr) +

J5)/J5 is also a torus since (ψ(Rr) + B)/B ^ ψ(Rr)lΨ(Zr). On the other hand,

is connected, from which we have F = B.

LEMMA E. Let Vl9 V2 and ψ* be as in Lemma D. For a2 > 0 small

enough, let B(a2) be a closed neighborhood with the radius a2 of 0 in VΊ Θ

V2. Then B(a2) is a closed neighborhood of Rr and ψ*(t>) = ψ(v) for every

v e B(a2).

Proof. This is clear by the proof of Lemma D (i).

LEMMA F((P. 8), [2]). If H = ann (X, gp U-~ ΐ3®), then there exist

subgroups F~ and F+ of F satisfying the conditions;

( i ) σH = H and the topological entropy of σH equals zero,

(ii) H contains a sequence H = ff0D HXZ) ZD f^\ Hn = {0} of sub-

groups such that for n > 0, σHn = iϊ n and HjHn is finite,

(i i i) F - z> σ - ! F - 3 . . . 13 Πo°° ^ " n F - = {0},

( i v ) F+ Z) ( x F + = ) • . . = ) Πo00 ^ n ^ + = {0},

(v) σF'/F- and F+/σF+ are finite,

(vi) F=F-φF+Θiϊ.

By Lemmas C (iv) and F (vi), we have X = ψ(#0 + {F~ ®F+ ®H}.

Since X is connected, it follows that X = ^(#0 + {F~ θ F+} when i/ is

finite.

LEMMA G ((P. 4), [2]). (i) H = {0} iff G = gp U-~ Γθ, (ii) H is finite

iff (G, ϊ) is finitely generated under T; i.e. there is a finite set A in G such

that G = gp U-oo PA.

The space Rr splits into a direct sum Rr = Eu ® Es φ Ec of r-invariant
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subspaces Eu, Es and Ec such that the eigenvalues of ΐEtt, ΐES and TEC

have modulus > 1, < 1 and 1 respectively. We call that (Rr, ϊ) is hyper-

bolic iff Ec = {0}. It is easily proved that there are norms || ||tt and (| |(s

of Eu and E\ respectively and λoe(O,1) such that \\Γx\\u < λόn\\x\\u (xeEu

and n < 0) and ||Px||s < λn

Q\\x\\s(x e Es and n > 0). If Ec Φ {0}, by using

Jordan normal form in the real field for (Ec, T) we get a finite direct sum

Ec = ECo ® - - ® ECk of the subspaces ECί satisfying the following con-

ditions; for 0 < i < k, the dimension of ECί is 1 or 2, and

r0 /,

r*c ~ o * . I

where ϊί:E
Ci<—=>is an isometry under some norm || ||Ci of ECί and each

It\ ECi —• ECi~x is either a zero map or a map corresponding to the identity

matrix. We call that (Rr, ϊ) is central spin iff Ec Φ {0} and each Ii is a

zero map. If the characteristic polynomial p(x) of Γ is irreducible over

Q and p(x) has roots of modulus one, then (Rr, ϊ) is central spin. Define a

norm || ||c of Ec by ||x||c = max {||x*||c<: 0 < i < k) (x = x° + + xfc e ΘfjBcl).

Then we get easily that do(x, y) = max {||xM - yu\\u, \\xs - y%, \\xc - y%} is

a metric of Rr satisfying the following conditions; (i) dQ is translation

invariant, (ii) there is λ0 e (0, 1) with

(λondo(x, 0) (x e Eu, n < 0) ,
Λ D ) ί U , ) fee «.,»>».

and (iii) if ίJc ^ {0} then each of ϊt (under the above notations) is d0-

isometry. We see that there are ax > 0 such that for every a e (0, aλ], if

B(ά) = {x e Rr: do(x, 0) < a} then ψB(a) ®F~®F+®H is a closed nei-
ghborhood of X.

Let Λo be as above. Then the functions

if x - yeσ~nF- and x - y £σ-{n+1ψ-

0 if x = y ,

0 if x = y

are metrics generating the original topology of F~ and F+ respectively.

For x = x0 + xx + x2 + x3 e ψS^i) Θ F - Θ F+ ® H, put
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p(x) = min {al9 max {do{ψ-χxQ, 0), d_(xly 0), d+(x2, 0), d(x3, 0)}} .

Then the metric of X defined by

:-y) if x - y e ψB(a,) ®F~®F+®H
d(χ,y)=, .

l^i otherwise

is compatible with the original topology. It follows that for ε e (0, aj,

B(ε) = Bu(ε) ® Bs(ε) ® Bc(ε) where Bu(ε) = B(ε) Π E\ Bs(ε) = B(ε) Π Es and

Bc(ε) = B(ε) Π Ec.

In proving our results, it is important that closed neighborhoods are

chosen to be proper subsets of X, so that we take and fix a number aQ

such that

(*) 0 < a0 < min {al9 a2] .

Here a2 is the number chosen in Lemma E. For ε e (0, a0], a closed neigh-

borhood W(ε) = { x e l : d(x, 0) < ε} is expressed as

(**) W(ε) = W(e) Θ Ws(ε) ® Wc(ε)

where VFw(ε) - W(ε) Π {ψ£w(ε) Θ ί"}, Ws(ε) - W(e) Π {fBs(ε) Θ F+} and

W(e) = W(ε) Π {ψBc(ε) Θ H}. Let cϋ be a metric of X defined as above.

For x = xu + xs + xc e Wu(a0) Θ Ws(a0) ® Wc(a0), we have

d(x, 0) = max {d(xu, 0), d(xs, 0), d(x% 0)} and

(***> ^/ n m ^ Ro-Wd(*, 0) (x e Wu(a0), n < 0)
d(σnx, 0) < <

^ U?d(x, 0) (x e tn^o), Λ > 0) .

LEMMA H. If (X, σ) is ergodίc under the Haar measure, then ψ(2?c)

is dense in X.

Proof, There is in Ec a 7-invariant subspace ECl such that 7ECl is d0-

isometry. Hence Ec is expressed as Ec = ECl φ EC2 where ίJC2 is a sub-

space. Assume that ψ(Ec) is not dense in X, and put A = ψ(ECχ). Then

A is a (/-invariant connected subgroup of X. Obviously, σA is d-isometry;

i.e. the topological entropy of σA is zero (ent (σA) — 0). As before let (G, 7)

be the dual of (X, σ) and GA be the annihilator of A in G. Since G^ c

G c J?r, we denote by VA the smallest vector subgroup of Rr containing

GA. Then Rr is expressed as Rr = VA® V where Vf is a subspace. We

see that Rr/VA=V/ is the smallest subspace containing GA = G/G .̂ Since

G is finitely generated under T, so is G .̂ Let p(x) be the characteristic
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polynomial of 7QA. Then the Kolmogorov entropy of σA equals h(σA) =

Σm>i log |Λ| + log J where λ's are the eigenvalues of ΪQA and Δ is the

smallest positive integer such that Δp{x) has the integer coefficients (see

[13]). Since ent (σA) = h(σA) = 0, we have Δ = 1 (hence p(x) e Z[x\) and all

the roots of p(x) are modulus one. It follows from a result in the number

theory that they are the roots of unity since p(x) e Z[x]. On the other

hand, since (X, σ) is ergodic, all the roots of the characteristic polynomial

of ϊ are not the roots of unity. This is a contradiction.

Remark 1. Let M be a compact manifold and φ be a diffeomorphism

of M. It is proved in [10] that the set of all periodic points is dense in

the non-wandering set when (M, φ) is topologically stable. In general

this is not true for homeomorphisms on compact metric spaces. For ex-

ample, let T be an automorphism of Qr. Consider to Qr be an abelian

group imposed with the discrete topology. If (Rr, T) is hyperbolic, then

(Γ - I)Qr = Qr for every ; > 0 . From this we get that the dual (X, σ) of

(Qr. ϊ) has no periodic points except 0; i.e. (X, σ) is not densely periodic.

By Theorem 2 in the next section, (X, σ) has the P.O.T.P., and (X, σ) is

topologically stable by the first statement of Theorem 1.

Since Qr is not finitely generated under ϊ, (X, σ) is not expansive

(by Theorem 1, [2]). Therefore it will follow that there is a solenoidal

automorphism which has the P.O.T.P., but is not expansive.

Remark 2. The set &(X) of all non-empty closed subsets of X is a

compact metric space by the Hausdorff metric d. Denote by Orbε (σ) the

set of all A e &(X) for which there is {xt} e Orbε (σ) such that A = {xt\ i e Z}.

Let E(σ) denote the set of all A e ^(X) such that for every ε > 0 there

is Aε e 6rb ε (σ) with d(A, A.) < ε. Then E(σ) is closed in <€{X). We define

O(σ) = {Oσ(x): xeX}d %(X) where Oa(x) = {**(*): / e Z) for x e X. Obvi-

ously O(σ) C E(σ). We call σ to have the OE-property iff O(σ) = E(σ).

A. Morimoto asks in [11] whether the lifting system (Rr, ϊ) of (X, σ) is

hyperbolic if σ has the OE-property. In [3] it is proved that for every

automorphism β of a compact metric group, β has the OE-property iff β

has the P.O.T.P.. From this result together with Theorem 2 in the next

section, we shall see that Morimoto's problem is completely solved.

From Theorem 1 and Remark 2 we get the following

COROLLARY. The following (A)7, (BY and (C/ are equivalent;
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(Ay (X, σ) is topologically stable,

(B)' (X, σ) has the P.O.T.P.,

(C)' (X, σ) satisfies the OE-property.

Hereafter, the restriction and the factor of σ will be denoted by the
same symbol if there is no confusion.

§2, An auxiliary result

In this section we shall prove the following

THEOREM 2. The lifting system (Rr, ϊ) of (X, σ) is hyperbolic iff (X, a)

has the P.O.T.P..

For the proof we need the following lemmas.

LEMMA 2.1. (X, σ) has the P.O.T.P., then (X, σ) is topologically mixing.

Proof. By (Theorem 2, [1]), X contains σ-invariant subgroups Xx and

X2 such that (Xίy σ) has zero entropy, (X2, σ) is ergodic and X splits into

a sum X = Xί -{- X2. Since X/X2 is a factor group of Xu (X/X2, σ) has zero

entropy. As we saw in the proof of Lemma H, X/X2 is a torus and (X/X2,

σ) is not hyperbolic. It is easy to see that (X/X2, σ) has the P.O.T.P., so

that we must have Xλ = {0} by Theorem A. Therefore (X, σ) is ergodic

and hence (X, σ) is topologically mixing.

LEMMA 2.2. If (X, a) has the P.O.T.P., then (X, σ) satisfies weak speci-

fication.

Proof. By Lemma 2.1, (X, σ) is topologically mixing. Let ε > 0 be

given. Choose δ = δ(e) > 0 as in the definition of the P.O.T.P. Cover X

by a finite family % of d-balls. For any two Ut9 Us e °U there is Mtj > 0

such that σnVi (Ί Uj Φ φ for n > Mtj. Put M = max {MtJ: i,j} < oo. Let

xl9 - -, Xjc be points in X and ax < bx < < ak < bk be integers with a$

— bj_ι > M for 2 < j < k. For zeX we denote by U(z) some Ue W with

zeU. For 1 < j < k there is a point yj e U(σhjx3) such that σaj+1~bjyj e

U(σaj'+1xj+1). Consider the ^-pseudo-orbit {zt: ax < i < αfc} defined by zi =

ϋιXj for α7 < i < bj and zt = σ^^iyj) for 6̂  < ί < αJ + 1. Then there is a

point xeX which ε-traces the orbit. From this we get d(σι(x), a\Xj)) < ε

for α ; < i < δ, (1 < < k).

LEMMA 2.3. Lei σ be an automorphism of a compact metric group Y
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and K be a completely σ-ίnvariant normal subgroup of Y(σ(K) = K). If

both (Y/K, σ) and (K, σ) have the P.O.T.P., then so ίs (Y, σ).

Proof. By assumption, for every e > 0 there is a δ > 0 with δ < ε

such that for every ^-pseudo-orbit in K, a point in K ε/2-traces the orbit.

Choose η with 0 < η < 3/3 such that the following conditions hold;

(a) d(σ(x), σ(y)) < 3/3 when d(x, y) < η and

(b) for an arbitrary ^-pseudo-orbit {xt: a < ί < b} of Y, YjK contains

a point x + Ke YjK with d(σι(x + K), xt + K)< 3/3(α < i < b) (here d is

a metric on X/K defined by d(x + K, y + K) = inf {d(x + A, y + # ) : A, A7 e

By (b), for a < i < 6 there is kte K such that d(σι(x) + /54, x j < 37.

By (a), d(<;i+1(s).+ σ(^,), σ^)) < 3/3. We calculate that for a < i < b - 1

d{σ{k%\ ki+1) = d((jί + 1(x) + σ(^), σί+1(x) + ki+1)

), σ(xt)) + d{σ(xτ), xi+ι) + d(xi+1, σί + ί(x) + ki+1)

from which there is a point k e i£ ε/2-tracing the orbit {/̂ : α < i < 6}.

Since

rf((7f(x + k), xτ) < d(σXx + k), σ\x) + K) + d{σ%x) + ki9 xz)< e ,

the point x + A ε-traces the orbit {xt: α < i < b} in 7 and the proof is

completed.

LEMMA 2.4. Let Y and σ be as in Lemma 2.3. If Y contains a sequ-

ence Y' = KOZD KλZD - - - 3 f) Kn = {e} of normal subgroups such that for

n > 0, σKn - ULΛ α/id YjKn is finite, then (7, σ) has the P.O.T.P.

Proof. For every ε > 0, there are n > 0 and 3 with 0 < 3 < ε such

that

{x e Y: d(x9 0 ) < δ} c Kn c {x e Y: d(x, 0) < ε}.

Let {x̂ : a < i < b} be an arbitrary 3-pseudo-orbit in Y; i.e. c?(tfx̂  xί+1) < δ,

a < i < b — 1 (without loss of generality we may assume a + 1 < 0).

Then σxt — xi+1 e Kn (a < i < b — 1). Hence σix<> — xt e Kn since σKn = Kn;

i.e. d(σιXto xt) (a < ί < b). This shows that (7, σ has the P.O.T.P.)

Proof of Theorem 2.

As we saw in Section 1, Rr splits into a direct sum Rr = Eu ® Es ® Ec

of the Γ-invariant subspaces.
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Proof of <=): By Lemma 2.2, (X, σ) obeys weak specification. Hence

(R\ 7) is central spin by (Theorem 2, [2]); i.e. if Ec Φ {0} then 7 on Ec is

d0-isometry (the metric d0 is defined as in Section 1). We shall now prove

that if Ec Φ {0} then (X, σ) has not the P.O.T.P.. To do this, assume that

(X, σ) has the P.O.T.P.; i.e. for every ε e (0, a0) there is δ > 0 with δ < ε

such that every ^-pseudo-orbit is ε/2-traced by some point of X. Fix 0 Φ

vQ e Ec with d(v0, 0) < δ and set zi = jϊj(vQ) for j e Z. Then it follows that

d(7(zJ),zJ+d - doUP+Kυά, (j + i)rj+ι(v0)) = d o ( o , u o ) < a ,

and so fo} e Orbδ (r). Put Vs(v) = {ueRr: dQ(v, u) < e} for υ e Rr. Then

there is k > 0 such that V6(kυ0) Π V,(0) = ^. From the relation between

the metrics d0 and d, we have

δ > do(ϊ(zj), zj+1) = d(σψ(z3), ψ(zj+1))

for j e Z, and so {ψ{z3)} e Oτbδ (σ). By the assumption there is x e X such

that d(σj(x), ψ(Zj)) < ε/2 for j e Z. Since ψ(Ec) is dense in X (by Lemma

H), we can find 0 φye ψ(Ec) with max {d(σ%y), σ*(x)): 0 < i < k) < ε/2.

Hence d(σj(y), ψ(Zj)) < ε for 0 < 7 < k, from which we have

d(y, ψ(z0)) = d(y, 0) = do(ψ-\y), 0) < ε and

= do(ψ-\y), kv0) < e .

Therefore ψ~\y) e Vε(0) Π V£kv0), which is a contradiction.

Proof of =». Since i ί is the annihilator of gp (J-«> ^reθ in X (see

Lemma F), (gp IJ-- rwθ, 7) is the dual of (X/H, σ) and G/gp U-00 7nΘ is a

torsion group. Hence the dimension of X = X/ϋ" is equal to that of X

since if is zero-dimensional. Since gp U-00 7nΘ is clearly finitely generated

under 7 and since the lifting system (Rr, 7) of (X, σ) is hyperbolic, it fol-

lows that (X, σ) is expansive (see Theorem 1, [2]). We see that X is ex-

pressed as X = ψ(Rr) + {F- Θ F+} by Lemma G (ii). Let ε0 > 0 be an

expansive constant for (X, σ). Then, for 0 < ε < ε0 we have a coordinate

neighborhood W(ε) = Ww(ε) 0 Ws(ε) of 0 in X where VFtt(ε) ^ {0} and Ws(ε)

Φ {0}. It is easily seen that there is δ = (̂ε) > 0 such that if cί(x, y) <

δ ( x j e X ) then {Wu(ε) + x} Π {Ws(ε) +3/} consists only of one point.

Therefore (X, σ) has the P.O.T.P. using (***) (for the proof, see p. 74, R.

Bowen [4]). From this fact together with Lemmas 2.3 and 2.4 and Lemma

F (ii), we get the conclusion.
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§ 3. Proof of Theorem 1

To see the statement (A) => (B), we shall prepare the following three

lemmas.

LEMMA 3.1. If (X, σ) is topologically stable, then X\Fix (σ) is dense

in X where Fix (σ) = { x e l : σ(x) = x}.

Proof. Notice that Fix (σ) is a subgroup of X Assume that X\Fix (σ)

is not dense in X. Then Fix (σ) is open in X. Since X is connected, we

get X = Fix (σ); i.e. σ = id. Take ε > 0 with 2ε < diameter (X) and let

δ > 0 be as in the definition of topological stability. Now we can find

aeX with d(a, 0) < δ such that {na: neZ} is dense in X (see [5]). Let

fa: X<—=> be a homeomorphism defined by fa(x) = x + α(xeX), then

d(fa(x), x) = d(fa{x), σ(x)) < δ. Hence there is a continuous map h: X <—=>

w i t h h ofa = a o h a n d d(h(x), x)<ε(xe X ) . S i n c e h(aή) = h(fn

a(O)) = σnh(0)

= h(0) for all n, we get h(x) = h(0) for all xeX, and so ε > d(Λ(0), x) for

x e X On the other hand, since ε < diameter (X)/2, there is y e X with

d(h{ϋ), y) > ε, which is a contradiction.

LEMMA 3.2 ([10]). Let φ be a homeomorphism of a connected metric

space Y. Assume that φ is uniformly continuous and Y\Fix (φ) is dense

in Y. Take and fix a constant δt > 0 and an integer k > 0. Then for

every {xj e Orbδl (φ) and ε1 > 0, there is {x[} e Orb3δl (φ) such that i) d(xif x )

< β! for 0 < i < /2 and ii) Ŷ  = MxD, xί+i} (0< ί < έ — 1) are disjoint.

We shall describe here a proof given in [10] for completeness. We

can assume ε2 < δu For this εl9 there is ε[ > 0 with β! > eί such that

d(x, y) < εi implies d(φ(x), ψ{y)) < εx. First we can find x[ e Y (0 < i < /?)

such that x ^ x̂  (ί ψ j) and d(x ,̂ x ) < εί (0 < ί < A). Next we shall

show by induction that Yo, •••, Yfc_i are disjoint by taking x suitably.

Assume that Yέ = WxO, x +i} (0 < i < ^ — 2) are disjoint. We shall show

that, by changing x ^ and x'k if necessary, Yt Π Yj- = ^ (0 < i ^ i < k — 1).

Consider the point φ(x'k-ι) and assume ^ ! . i ) e | J i = } 3 .̂ Then there is a

unique i < ^ — 1 such that φ{xf

k-d — ^% since x^-^Φ Xj (j < ^ — 2) implies

9(xi_!) ^ ^(Xj). If ί < ^ — 2, we can find x ^ near x£_i such that ^x^-i)

Φx\. Ί£ i = k — 1 (φ(x'k-i) = ί̂-i)> then we can find x ^ near x/

lc_ί such

that ^(x^i) Φ x'jc'-u since Y\Fix (9) is dense and open in Y. We denote

xί'-i by x'k-i again. Then we can assume that x'k <£ U?=o Yί, since Uf=o 3^

is a finite set. Thus we have proved that Yo, Y1? , Yfc_! are disjoint.
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For i < 0 (resp. i > k) we define x\ = φ~\x§ (resp. x̂  = ^" f c (^)) . Then

we see that {xβ e Orb3δl (9) since

rf(^(x ), x + i) < <%(xQ, pfo)) + d(ψ{xτ\ xi+ί) + d(xί+1, *J+1)

< ε1 + δt + eί < 33j

for 0 < i < £ — 1. This completes the proof of Lemma 3.2.

LEMMA 3.3 ([8]). Let M be a differentίable manifold of dim (M) > 2

with a metric d. Let Mt = {pί? g j (1 < ί < β) 6e a subset of M consisting

of at most two points pt and qt with d(piy qt) < δ. Assume that Mt Π

Mj — φ (ί Φ j). Then there is an onto homeomorphism η\ M<—=> such that

d(η(x), x) < 2πδ for x e M, and that η(Pi) = qt (1 < / < k).

Proof of the statement (A) =̂> (B). The proof will be done along the

following two cases.

Case (1). For the case dim (X) = 1, we get that (R\ ϊ) is hyperbolic

by applying Lemma 3.1. Therefore (X, σ) has the P.O.T.P. by Theorem 2.

Case (2). We can use Lemma 3.3 when dim (X) > 2. For every ε >

0, choose δ > 0 (δ < ε) as in the definition of topological stability. Since

= X by Lemma B, for every {x,} e Ovbδ/l2π(σ) there is {x7} c ψ(Rr) such

that d(xt, x7) < δ/24π, d{σ(x^ σ(x7))<d/24τr and σ(x[) - x7

+1 e W(δ/6π) (ί e Z)

where W(δ/6π) is a closed neighborhood with the radius δ/6π of 0 in X.

Since (X, σ) is topologically stable and ψ(Rr) is connected, we have that

ψ(Rr)\(ψ(Rr) Π Fix(σ)) is dense in ψ(Rr) (by using Lemma 3.1).

Take and fix an integer k > 0. Notice that σ and σ'1 are uniformly

continuous on ψ(Rr)> By Lemma 3.2 there is a sequence {x"} e Orhδ/2π(σ)

such that d(x , x O < δ/2π (0 < i < k) and {σ(x^), x-CJ (0 < i < β - 1) are

mutually disjoint. Choose two closed balls B' and B of 0 in Vί ® V2 such

that {xΠΪ U {o-x-'jί"1 c ψ*0B0 Q Ψ*(B). Since ψ*(B) is a differentiate

manifold, as in Lemma 3.3 there is an onto homeomorphism ηx\ ψ*(B)<—=>

such that diη^x), x) < δ (x 6 ψ*(β)), ^(x) = x for x e ty*(B)\ψ*(B') and

^a(x-0 = x +i (1 < i < & — 1). Choose a small open subgroup Ff of F such

that ψ*CB + ^ 0 ^ = {0} and ψ*(B) + F 7 is a closed neighborhood of X.

Define a map ^ί: ψ*(B) + F; <—=> by η[(x + y) — η{(x) + y (xe ψ*(B) and

y e Ff). Then it is clear that η{ is 1-1 and onto. Let η be a map from

X onto itself defined by

(x) if x e ψ*(B) + JF7

if x g ψ*(S) + F 7 .
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It is easily checked that η\ X<—=> is an onto homeomorphism having the

properties; d(η(x), x) < δ for xeX, η(x) = x on ψ*(B') + F and ψix") =

Xί+ι (1 < i < k — 1). Put φ =z η°σ. Since (%>(x), 0<x)) < 3 for x e l 5 we

have {<p*(x)} € Orb5 (σ). By the property for δ > 0, there is a continuous

map /ι: X<—=> such t h a t hoφ = σ o h and d(h(x), x) < ε for x e l If x =

Λ « ) , then for 0 < ί < k

d{σ%x\ xz) = d(σ%h(x'Q% xt) = d(h(φ%x'Q% xd

x't, Xί) < 2ε ,

which shows x e Tr 2ε({xJJ, σ). Since & is arbitrary, (X, σ) has the P.O.T.P.

It remains to prove the statement (B) =̂> (A). First we shall prepare

the following two lemmas.

LEMMA 3.4. Let a0 be as in (*). For every fe J^(X) with max {d(σ, /),

d(σ~\ f-1)} < aJ2, there exist yoeF and foe^(X) with fo(ψ(Rr)) = ψ(Rr)

such that f(x) = y0 + fo(x) for x e l

Proof. Put g(x) = f(x) - y'o (x e X) where y0 - /(0). Since d(f(0), σ(0))

= d(/Q, 0) < αro/2, we get d(g(x), f(x)) < ao/2 (x e X). Notice that {x e X:

d(x, 0) < a0} c ψB(α0) Θ F (see (**)). Put κ(x) = g(x) - σ(x) (x e X). Since

d(κ(x), 0) < d(g(x), f{x)) + dif(x), σ(x)) < aQ for all xeX, we have Λ (X) e

ψBia0) ®F for xeX and so tciψRr) c ψJ3(>o) θ F. Since ψ(Rr) contains

the identity 0 and κ(ψRr) is connected, we have tc(ψRr) c ψB(a0), from

which g(ψRr) c ψ(i?r) In the same way, it follows that g-\ψRr) c ψ(i?r)>

so that giψRr) = ψ(i?r) Since } Ί e I = ψ(J?r) + F, yΌ splits into the sum

yΌ = Ψ(ϋ) + Jo with ψ(ι ) e ψ(ir) and y0 e F. Put /0(x) = ψ(υ) + ^(x) (x e X).

Then /o(x) satisfies all the conditions of the lemma.

LEMMA 3.5 ([10]). Let Y be a metric space such that every bounded

set is relatively compact. Let f: Y<—=> be a homeomorphism with the

P.O.T.P.. If (Y,f) is expansive, then (Y,f) is topologίcally stable.

We shall give here a proof due to A. Morimoto [10]. The proof will

be used in proving the statement (B) ==> (A). For every ε > 0, there is

δ > 0 such that {xj e Orbδ (/) implies Trs ({xj, /) = φ. We can assume

ε < εo/4, where ε0 is an expansive constant of/. Take a g e J4?(Y) with

dig, f) < δ. We shall prove that there exists a continuous map h: Y <—=*

having the property in the definition of topological stability. Take a

point x e Y. It is easy to see that {g%x)} e Orbδ (/). Hence there is y e
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TV ({g*(x)}9 / ) ; i.e. d(f\y\ g\x)) < ε for i e Z. If / e Ύr ({g%x% f), then we

have

diPiylPiy')) < d{f\y\g%x)) + d{g\x),f%y>)) < 2ε < ε0 ,

which implies y = / . Thus by putting Λ(x) = y, we get a well-defined

map h: Y <—=> with the property

(1) d ( f ( Λ ( x ) ) , ^ ( x ) ) < ε for ieZ.

Putting i — 0 in (1) we get

(2) d(h(x), x) < ε for x e 7 .

Next we have, again by (1) for x and g(x),

d(f%f(h(x))), nh(g(x)))) < d(nf(h{x))\ g%g{x)))

+ d(f\h{g(x))\ gKg(x))) < 2ε < ε0

for every ie Z, which implies f(h(x)) = h(g(x)). Finally we shall prove

the continuity of h. Assume that h is not continuous at x0 e Y. Then,

there is a sequence xv —> x0 (v -> oo) such that yv = h(xv) does not tend

y0 = h(x0) as v —> oo. Since {JCV} is bounded and d(h(xv), xv) < ε for v > 0, the

set {Λ(xυ)} is also bounded. Hence we can assume, by taking a subsequ-

ence if necessary, that yv -* ^ Φ Jo (v —> °°) Since / is expansive, there

is k e Z such that d(fk(y'o), fk(y0)) > ε0. Fixing k, we can find v0 > 0 such

that for v > v0

(3)

since fk is continuous and yv -+yΌ {v —>• oo). We can assume

(4)

since gfc is continuous and xv —> x0 (y —> oo). Now we have, using (2) and

(4),

d(f\yXfk{yd) = d(f"(Hx,)), h(g*(x0)))

d(h(g\xv)\ g\x.))

3e

and hence by (3) we obtain

εo < d{f\y'd, f(yj) < d(f"(y'o), /*(y,)

< εo/4 + 3ε < e0 ,
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which is a contradiction. This completes the proof of Lemma 3.5.

Proof of the statement (B) => (A). Remark that Ψ * ( V Ί Θ V2) = ψ(Rr)

(by Lemma D (i)). By Theorem 2, (Rr, 7) is hyperbolic. Hence (Rr, T), and

so (Vi φ V2, 7), is expansive and has the P.O.T.P. (see Theorem A). Using

Lemma 3.5, we get that ( V i θ V2, 7) is topologically stable; i.e. take εe

(0, αro/2) such that ϊB(3ε) c B(a0) and 7~1B(3ε) C S(α0) and let δ > 0 (δ < ε)

be the number with the property of topological stability.

Take fe Jf(X) with d(f, σ) < δ (Then we may assume that the number

δ is chosen such that d(f~\ σ~ι) < ao/2). By Lemma 3.4 there are yoeF

and /o e 3f(X) such that fo(ψ(Rr)) = Ψ(#r) and /(x) = /0(x) + j/ 0 for x e X

Since ψ(Zr) = F by Lemma D (iii), we can choose in ψ(Zr) a sequence

{yn}n>i such that yn -+y0 as n -• oo. Put /n(x) = yn + /0(x). Then d(/n, σ)

< δ for n large enough. Fix such an integer n and define fn(υ) = ψ*"1

/nψ*(ι;) (we VΊΘ V?). Then we claim that fn\Vx® V2<-^ is uniformly

continuous. Indeed, we denote by F(ε) a closed neighborhood with the

radius ε of 0 in F. Since fn: X <—=> is uniformly continuous, for every λ e

(0, a0] there is a > 0 with a < Λ such that for every v e Vx ® V2

fn(ψ*B(a) Θ F(a) + ψ*(ϋ)) C ψ*B(^) Θ F(^) + /nψ*(ι;),

from which

fn(Ψ*B(a) + ψ*(ι;)) c ψ*B(λ) + /nψ*(ι;) .

Hence, fn(B(ά) + v) c. B(X) + fn(v); i.e. our requirement was obtained.

Let d0 be a metric of VΊ Θ F2 defined as in Section 1. Since ϊ —
ψ"1 oo oψ? we have

3 > d(σψ*(v),fn1r*(v)) = doίψ*" 1 ^*^), ψ * " 1 ^ * ^ ) ) - doiWj

so that {/n(ϋ)} e Orbδ(r) for i; e ^ Θ y2. Hence there is weVx®V2 with

dlfiiv), Γ(w)) <ε(je Z) since ( ^ Θ V2, 7) has the P.O.T.P.. Put w = hn(v).

Since (V^Θ V2, 7) is expansive, from the proof of Lemma 3.5 it follows

that hn: VΊ Θ F2 <—=> is a continuous map such that hn°fn — a° hn and

do(AM, id) < e. Put hn = ψ*ohnoψ*-1. Obviously, hnofn = σohn on ψ(i?r)

and d(hn(x), x) < ε for x e f(Rr)-

We now prove that hn is uniformly continuous. Since d(fl(v), 73hn(v))

< e for j e Z and υeVx® V2i we have

Ψ*-7iίΨ*(^) ~ r^n(ι;) = /jί(ι ) - Γhn(v) e B(ε) ,
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so that for all υ e Vx Θ V2 and all j e Z

(5) fiψ*(v) - σ*hnψ*(v) e ψ*B(ε) .

Since (Rr, T) is expansive, it is easily checked that for every λ > 0

(λ < ε) there is N > 1 such that d(hn(x), hn{y)) < λ when σjhn(x) — σjhn(y)

6 ψ*B(3ε) for with |y| < 2V. Take a > 0 such that if d(x, y ) < or for x,

yeψ(Rr) then max{d(/^(x),/^(y)): -N < j < iV} < λ. Then for j with

L/Ί < ^

x), σ%n(y)) < d(σ%n(x),fi(x)) + d(fi(x),fi(y))

+ d(fi(y), <rΆn(y)) < 2ε + J < 3ε ,

which shows that d(hn(x), hn(y)) < Λ . Indeed, fix y e ψ(Rr) and put /^(Λ;)

= pn(x) - fl(y). Then fcy(W(a) + y) c ψ*B(^) Θ F(ί) where W(α:) = ψ*JB(^)

Θ F(α). Since κy(ψ(Rr)) = Ψ(i?r) and ψ(/?r) = U ̂ (W^α:) + y), we have

κv(x) 6 A : V ( % ) + y) C ψ*B(ί) and hence σjhn(x) - <^Λn(y) e ψ^βCδε).

Therefore hn is uniformly extended to a continuous map from X into

itself. We shall denote it by the same symbol. By using (5) we have

for m and n large enough and for all xe X

σi{hn(x) - hm(x)}

Since for fixed j

l im n , m _ d(f£, /& = (),

there is N(j) > 0 such that f{(x) - f&x) e ψ*jB(ε) for n, m > iV(y) and x

e X Hence for n, m > iV(j) and x e l

(6) ABW-.Am(x)6(j-VB(38).

As before we have J5(3e) - B(3ε)u θ JB(3ε)s where B(3ε)w = β(3e) Π £ % and

B(3ε)s = J5(3e) ΓΊ £ ' . Hence ψ*B(3e) = ψ*ΰ(3ε)M θ ψ*ΰ(3ε)s. Since r£(3ε) c

B(α0) and r^BQε) C J5(α0), obviously σψ*B(3ε) c ψ*J5(^0) and σ-1ψ*B(3e)

C ψ*B(a0). It follows easily that σψ*B(3ε)u c ψ*B(^0)
w and

C ψ*β(α0)
5. Hence Π - - ̂ ψ*JB(3e) = Π - - σ^*£(3ε)M φ Π - -

{0}. From (6) we have for τι, m > max {N(j): — i < y < i} and x e

For any open neighborhood U of 0 there is ί > 0 such that Π5=-< tf'

C [/. This implies that l i m ^ . ^ d(hn, hm) = 0; i.e. {hn} converges uni-
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formly to some continuous map h of X. Since hn o fn = σ © hn on X and

d(Λn, id) < ε for an arbitrary large n, it follows that hof= a oh on X and

d(h, id) < ε. Therefore (X, σ) is topologically stable. The proof of The-

orem 1 is completed.
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