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ON THE EXISTENCE OF CONDENSER POTENTIALS
CHRISTIAN BERG

0. Introduction

The existence of condenser potentials was established in the frame-
work of Dirichlet spaces by Beurling and Deny, cf. Deny [5] or Landkof
[10], simply by choosing the potential of minimal energy within a certain
convex set. This same idea works for non-symmetric Dirichlet spaces,
cf. Bliedtner [3].

Let (u;).>, be a transient convolution semigroup on a locally compact

abelian group G and let « = r ;dt be the potential kernel. The associ-
0

ated negative definite function on G is denoted 4. For an explicit for-
mulation of these concepts see [2]. We may now state that x satisfies
the condenser principle in the special case where £ is associated with an
ordinary Dirichlet space, corresponding to « being realvalued, cf. [7], or
more generally in the case where « is associated with a non-symmetric
Dirichlet space, corresponding to + satisfying the inequality |Im | <
A Re ), cf. [1].

The purpose of this note is to show that every potential kernel &
satisfies the condenser principle.

The condenser potential is constructed as sum of an alternating
infinite series. As an application it is proved that the condenser meas-
ures are concentrated on the boundaries if and only if (y,).., consists of
probability measures and is of local type. Results of this type was ob-
tained by Itd [8] for Dirichlet spaces.

A similar approach to condenser potentials but in the context of
function kernels has been given by Kishi [9].

In section 3 we finally give an extension of the condenser principle
to arbitrary Hunt convolution kernels.
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1. The condenser principle

Let G be a locally compact abelian group with a fixed Haar meas-
ure wg. In this and the next section (y,),., denotes a transient convolu-

tion semigroup and k = r 1:dt is the potential kernel. By D*(x) we
0

note the set of positive measures ¢ on G for which r+y exists.

For a compact neighbourhood V of 0 we always denote by ey the
canonical x-balayaged measure of ¢, on CV. We put 7y = aprx(e, — e¢p)
where a, is the uniquely determined number such that 7,(G) = 1. Here
and in the following we mainly use the terminology from [2].

The existence of condenser potentials is formulated in the following
theorem.

THEOREM 1. Condenser principle.

Let (2,2, be a pair of open subsets of G such that 2, is compact
and disjoint from 02,. Then there exist positive measures py, p € D*(k)
such that & = kx(yy — py) satisfies

(i) 0<¢é< wg

(i) &= we in 2,

(iii) £€=0 in 2,

(iv) supp (u) & go’ supp (1) S gl‘

Proof. Let 2, be the canonical equilibrium distribution for 2,. Then
0 < kxdy < wg and k+dy = wg in 2, (cf. [2] p. 156). We define a sequence
(A)nso of measures inductively: 2,,., is the canonical balayaged measure
of 2,, on £,, and 2,,,, is the canonical balayaged measure of 2,,,, on 2,
n >0, We then have for n > 0
Q) k#Aynyy < kxdy, With equality in 0Q,,
Q) kxdynys < kg, With equality in 2,
3) supp (4;,) S 2,, Supp (4041 S Q..

The sequence (x*1,) is decreasing and converges accordingly vaguely
to a potential kxr, and z is the vague limit of (2,) (ef. [2], Th. 16.10).
It follows by (8) that r must be supported by 2, N 2, and hence zero.
Having shown that («¢*4,) decreases to zero, we get that the infinite
alternating series

(4) z (—1)"x,,

is vaguely convergent.
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The n'th partial sum and the sum of (4) is denoted respectively S,
and & By (1) we get

n—1
Sy = kZ_:O (k5 23, — K¥2gip) > 0
and S,, =0 in 2,, and by (2) we get
Sons1 = £xA) — Zn: (k% Apg—1 — £*2pp) < £xdy < wg
k=1

and
SZn+l = IC*ZO = Wg in .Qo .

This shows that 0 <& <#*d) <we and that € =ws in 2, =0 in 2,.

We finally have to show that & has the form x+(y, — p,) for measures
o and p, satisfying (iv). In order to obtain this we actually show that
the series (4) is absolutely convergent.

We first prove the following formula

(5) i (=D egprrxld, = gopE (vaguely) .
n=0

Since the series (4) is alternating we have for n > 0
0<é— 8o < K5y 0 < Soni1 — & < k4ynsr
and hence
0 < egp*& — egp*S,, < eoprbildy, < k¥lyy
and
0 < edp#Synir — eov*€ < egp*hrlynyy < K*Aynyit

which show that (¢;,xS,) converges vaguely to ey»*&, i.e. that (5) holds.
For every compact neighbourhood V of 0 we finally have

(6) >3 (=) n(ey — eoy)idn = & — egpié -

n=0

Let now V be so small that 2, + V is disjoint from 2, + V and let
#¢C:(@) be chosen so that g =1 on 2,4+ V and ¢ =0 on 2, + V. By
(3) we have

$rx(ey — ecv)*honinr ) = 0,
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and
rx(eg — eop)* Ao, @) = LZM(G) ,
ay
so by (6)

- 3 1n(G) = <& — eorré, ) < o0 .

aV n=

This implies that the series >, 1,, is vaguely convergent with sum
o, Which is a positive measure supported by the compact set 2,, We
clearly have

/f*/lo = }:(;IC*ZZ,L ’
n=

so by (4) the sequence

E*(Z 22k+!)
#=0

increases to rxy, — & By Lemma 15.7 of [2] follows that the series
> -0 A2x4+1 18 vaguely convergent, and the sum g is a positive measure
supported by 2, By Lemma 15.3 of [2] we finally get that u € D*(x)
and kkpy = kg — & D

Remarks. 1) It follows from the above proof that y, p, and & are
canonically constructed and that

&= 2 (~Drexds

where 1, is the canonical equilibrium distribution for £, 2,,,, is the canon-
ical balayaged measure of 1,, on 2, and 2,,., is the canonical balayaged
measure of 2,,,, on £,, Furthermore

#o=1§12n, ﬂ1=1§)22n+1'

The measure g, (resp. g,) is called the inner (resp. outer) canonical
condenser distribution, and & = (g, — p,) is called the canonical condenser
potential for the pair (2,, 2).

2) The canonical condenser potential for the pair (2,, 2,) is domi-
nated by the canonical equilibrium potential for 2, i.e. & < kx4, If
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0, = ¢ they are equal.

3) Since k¢ satisfies the principle of positivity of mass (cf. [2] Th.
16.25) we have u(G) < m(G).

Under certain further assumptions we have y(G) = y,(G), see Corollary
4 below.

2. Applications

We recall that (g,),., is called of local type if its infinitesimal gen-
erator on C,(G) is a local operator. This is equivalent with « satisfying
the principle of local unicity of mass: If xxo, = ko, in an open set U
then ¢, = ¢, in U. It is also equivalent with supp (e¢cy) S oV for all (or
sufficiently small) neighbourhoods V of 0. For these and other equivalent
properties see [2] § 18.

We can formulate an equivalent condition in terms of the condenser
distributions.

THEOREM 2. Let ¢ be a potential kernel for a transient convolution
semigroup ()iso- Then (u)iso ©s of local type if and only if the follow-
ing holds:

For any pair of open sets (2, 2) for which 2, is compact and dis-
joint from 2, the canonical outer condenser distribution p, is supported
by 02,.

Proof. Suppose first that (z).s, is of local type. Since x#py = ki
in 2, we get by the principle of local unicity of mass that p, = g in 2,,
and since supp () N 2, = ¢ we have (2, = u1(2,) = 0, hence supp (¢)
c 09,

Conversely, suppose that the outer condenser distribution p, always
lies on the boundary of £,. The measure £ is potential kernel for the
reflected semigroup (&,);», and it suffices to prove that (#).., is of local
type. Let V be a compact neighbourhood of 0 in G and let §,» denote
the canonical ¥-balayaged measure of ¢ on CV. Then £xdsr < ¥ with
equality in CV. It suffices to prove that §,-(CV) = 0. Let £, be an open
set such that 2, is compact and contained in CV. We choose an open
set 2, DV such that O, N O, = ¢ and let & = gx(yy — 1) be the canonical
condenser potential for the pair (2,, 2).

For an approximate unit (4;);c; from C;(G) for which the support
of ¢; is sufficiently close to 0 for all el we have (4 — p#)*¢;, =0 on V,
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because supp () < 2, and supp (¢) < 32,. Therefore we have

<50V1 E*¢i> = <’E*5CV9 (,Uo - ,U1)*¢i> = <’E: (#o - ﬂx)*¢i> = 5*¢i(0) .

Given a compact subset A C 2, we have &x¢; =1 on A and &x¢;(0)
=0 if supp (¢,) is sufficiently close to 0, so we have §;(A) = 0. By the
arbitrariness of A we get 6,v(2,) = 0 and by the arbitrariness of 2, we
get 6o7(CV) =0. 1

It is also possible to give necessary and sufficient conditions that
both inner and outer condenser distributions lie on the boundary.

We shall use below that #,(G) =1 for one (or all) ¢ >0 if and only
if ecy(@) =1 for one (or all) V. (Cf. e.g. [4] Th. 5).

It will be convenient with the following Proposition.

PROPOSITION 3. Let k be a potential kernel for a transient convolu-
tion semigroup (p);, of probability measures. If kxp = kxv in the com-
plement of some compact set, then u(G) = v(G).

Proof. For an open relatively compact set 2 we denote by 2, the
canonical equilibrium distribution for 2. Then kx4, tends vaguely to wg
as £ increases to G. Since kxd, < wg we get that e,pxkxl, converges
vaguely to egp*wg = wg and hence that »,*2, converges vaguely to 0 as 2
increases to G. This implies that 1, converges vaguely to 0.

Let ¢ € C7(G) be symmetric of integral 1. Then there exists a func-
tion f e CH(@) such that rxuxé < rxvxg + f and hence

(@) = lim kxdg#pxd(0) < 1im rx25 %% (0)
ote a6
+ lim 2,% f(0) = »(G) .
€Nne

Similarly we get v(G) < u(@. ©

COROLLARY 4. Let x be o potential kernel for a transient convolu-
tion semigroup of probability measures.

(i) For every positive measure pc D*(x) and every open set £ for
which CRQ is compact we have p?(G) = (G), where p? is the canonical
balayaged measure of p on £.

(i) For any pair (2, 2,) of open sets for which 2, is compact and
Q, is the complement of a compact neighbourhood of 2, the condenser
measures p, and p, for (£, £2,) have same total mass: p(G) = w(GQ).
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Proof. (i) follows since r#p = gxp? in Q. (ii). With the terminol-
ogy of the proof of Theorem 1 we have by (i) that 4,,..(@) = 2,,(G) for
all » > 0 and hence p(G) = u,(@. o

THEOREM 5. Let k be a potential kernel for a transient convolution
semigroup ()iso. Then (p);so ts of local type and p,(G) =1 for all £ >0
if and only if the following holds:

For any pair of open sets (2,2, for which 2, is compact and dis-
joint from 2, the condenser distributions p, and p, are supported by 392,
and 08, respectively.

Theorem 5 follows from the following two propositions together with
Theorem 2.

PROPOSITION 6. Let k£ be the potential kernel for a tramsient con-
volution semigroup (p).s, of local type and such that p(G) =1 for all
t>0.

If kxp = kxv + 0g 0 an open set 2 then p =y in Q.

Proof. Let feC:(2) and choose a compact neighbourhood V, of 0
such that supp(f) — V, S 2. For V C V, we then have &, *f € C;(2) be-
cause supp (eqy) € 9V, and therefore

</C*,U, Sx(eg — ECV)> = </C*U, f*(eo - ECV)> + <€0G, Sa(ey — EC’V)> ’

but the last term vanishes because ¢;(G) = 1. We then have

Spvrps T = v, I
and for V—0 we get (g, f> =<y, f>, hence p=v in 2. o

PROPOSITION 7. Let r be a potential kernel for a transient convolu-
tion semigroup (u);so.

If the canonical equilibrium distribution 2, for an arbitrary open
relatively compact set 9, is supported by 082, then u,(G) =1 for all £ > 0.

Proof. It suffices to prove that ¢;(G) = 1 for all sufficiently small
compact neighbourhoods V of 0. Let 2, be a non-empty open relatively
compact set and let f e Cf(2,) be such that {wg, /> = 1. Denoting by 2,
the canonical equilibrium distribution for 2, we have supp (1,) C 02,.

For V so small that supp (f) — V € 2, we therefore have

0= <20a E*(Eo - é'CI’)’kf> = <K*20,f - ECV*f> ’
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and hence

1 = <l€*20, f> = <’5*'209 é’(,'V*.f> S <0)G, ECV*f> == Ecv(G) .

On the other hand we always have e (G) < 1. 1

3. Extension to Hunt convolution kernels
In this section we drop the assumption that x,(G) <1 for all ¢ > 0
and suppose k = r 2. dt is an arbitrary Hunt convolution kernel on G,
0

cf. [6]. For an excessive measure r on G (i.e. yxr < for all ¢ > 0) and
an open set 2 we define the reduced measure R? as the infimum of all
excessive measures majorizing = on 2. The reduced measure R? is again
excessive, and if £ is relatively compact R? is a potential R? = kx1 gen-
erated by a uniquely determined measure 1e D*(x), cf. [4].

By the same method of proof as in Theorem 1 we obtain the follow-
ing generalization of Theorem 1:

THEOREM 8. Let x be a Hunt convolution kernel and let r be an
excessive measure. For any pair (2, 02) of open sets such that 2, is
compact and disjoint from 0, there exist positive measures p,, p, € D*(k)
such that & = gx(yy — py) satisfies
(i) 0<K¢é<r,

(i) &€ =17 in 2,

(i) &€=01in 2,

(iv) supp (1) S 2o, supp (1) S 2.

The measure & is sum of the infinite alternating series

g =3 (=D,

where 2, is the uniquely determined measure such that R2 = kxiy 2Ayn,.
is the canonical balayaged measure of 2,, on 2, and 2,,,, ts the canonical
balayaged measure of 2,,,, on 24 n > 0. Furthermore

t = Z_:Ozzn and g = "Z=:022n+1 .

Remark. Theorem 1 is obtained for r = w; which is excessive if
and only if p,(G) <1 for all ¢ > 0, i.e. if and only if « is the potential
kernel for a transient convolution semigroup in the above sense.
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