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§1. Introduction

We assume that the readers are familiar with the notations in
Nevanlinna theory, see [2], [9].

Let f be a nonconstant meromorphic function in the plane. We say
that a function A(r), 0 < r < oo, is S(r,f) if

nr) = o(T(r, f))

as r — oo, possibly outside a set of finite linear measure.
A meromorphic function a(z) is said to be a small function for f if

T'(r,a) = S(r,f).

Throughout this paper, we denote by a, b, b, - - -, a,, @,, - - - small mero-
morphic functions for f.

Let
(1.1) ¢R@) =f"+ a.f" 4, +af+a.

E. Mues and N. Steinmetz [8] proved the following Theorem.

THEOREM A. Let f be a meromorphic function. Assume that ¢ given
by (1.1) satisfies

(1.2) N, 0; ¢) = S(r,f) and N(r,f) = S(r,f).
Then
¢ = (f+ a.../n)".
N. Toda [12] proved an extension of the Theorem A
THEOREM B. Let f(2) be a meromorphic function and ¢ be given by
" Received November 13, 1987.
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11). If
(1.3) lim sup (N(r, 05 ¢) + 2N(r, N)IT(r, f) < 1/2,

r—0o re
then we have
¢ = (f+ an—1/n)" .
Recently, Weissesnborn [14] proved the following theorem:

TueoreM C. Let f be a meromorphic function and ¢ be given by (1.1).
Then we have that either

¢ =(f+ a,.,/n)y

or

(1.4) T(r,f)< N (r,0; ¢) + N(r, ) + S(r, ).

In this note, we will extend these theorems to differential polynomials,
instead of (mere) polynomial, of f.
We call, for a meromorphic function f,

MIf] = a@f"(f )y - - (fm)=

as a differential monomial in f of degree 7,, = ny+ --- + n,, and of weight
Fy=n,+2n+ -+ +@m+ n,. We call

P[f] = 1; M, = ZGZI a()fro(f)m - - (fm)rm

as a differential polynomial in f, where a, are meromorphic functions
and I is a finite set of multi-indices 1 = (n,, n,, - - -, n,,) for which a, =0
and n,, n,, - - -, n, are nonnegative integers. We define the degree 7, and
weight I'p of P by

Yp=max7,, and max[l,,.
ier Aer

If P is a differential polynomial, then P’ denotes the differential poly-
nomial which satisfies

PIf(2)] = dizpmz)]

for any meromorphic function f. Note that 7, = 7p.
Steinmetz [11] investigated the value distribution of some differential
polynomials in f. His result is as follows: put

(1.5) ¥ =f"P[f] + QIf],
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where P and @ are differential polynomials in f. Then

THEOREM D. Let f be meromorphic function and ¥ be given in (1.5)
and 'y < n—2. If

N(r’o; qf) = S(r’f)7
then
m(r, ) + m(r, 0; ) + Ny(r, ) + Ni(r, 05 f) = S(r,f).

If, in (1.1), we replace f by f— a,_,/n, then we can write ¢ in (1.1)
in the form

(1.6) ¢ =["+ QIf],
QU1 =0b,of""+ - + bf + b

The form (1.6) for polynomial corresponds to the form (1.5) with
I'y < n— 2 for differential polynomial.

In consideration of this Theorem D due to Steinmetz, we will prove
here the following Theorems:

THEOREM 1. Let f be a meromorphic function and ¢ be given in (1.6)
and Q[f]1+0. Then

(L.7) 2T(r, f) £ N(r, ) + N(r, 0; f) + N(r, 05 ¢) + S(r, f).
If QI0] + 0, then
(1.8) nT(r,f) < N(r,f) + N(r,0;f) + N(r, 0; Q) + N(r, 05 6) + S(r, f).

THEOREM 2. Let f be a meromorphic function and ¥ be given in (1.5).
We suppose Q[f] +0 and I'y < n — 2. Then we have

(L9 2T(r,f) < N(,f) + N, 0;f) + (r» + DN(r, 0;¥) + S(r, f).
If further m(r, P) = S(r,f), then
(1.10) 2T(r,f) < N(r,f) + N(r, 0;f) + N(r, 0;¥) + S(r,f).

§2. Preliminary lemmas

Lemma 1 ([2] [8] [11] [14]). Let @ and Q* be differential polynomials
in f having coefficients a; and af. Suppose that m(r,a;) = S(r,f) and
m(r, a¥) = S(r, f), but we don’t require that T(r,a;) = S(r,f) and T(r, a})
= 8S(r,f). Ifrq<n and
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fQ*[f1 = QIfI,
then
m(r, @*[f]) = S(r, ).

Remark. Clunie proved his lemma under the stronger hypothesis that
T(r,a;) = S(r,f) and T(r, a}) = S(r,f). Mues and Steinmetz [8] remarked
that Clunie’s proof does also work under the weaker assumption stated
above. In particular, there might be coefficients of the form f’/f or, more
generally, ¥’/¥ where ¥ is the differential polynomial given by (1.0).

Lemma 2. If P[f] is a differential polynomial and 7, = h then
2.1) m(r, P) < hm(r, f) + S(r,f).
Proof. Write
P[f] = P,lfl + --- + PRilf]

where P,[f] (j=0,1,---,h) are homogeneous polynomials with respect
to f,f, ---,f™, with degree j. P,[f] is the sum of a finite number of
terms [see 1],

a()(f'Ify - - (F™ Iy f7
where j =n, 4+ --- 4+ n,. Thus we can write
Plf] = RIf1f* + --- + Rlf],
where R,[f] = P,[f]/f’ and hence
m(r, R,)[f]) = S(r,f), Jj=0,1,---,h.

Therefore we have

m(r, PIf) < hm(,f) + 3 m(r, Ryi f)
< hm(r,f) + S(r,f).
Remark. Yang [13] proved above lemma under the condition N(r, f)
= 8(r, /).
§3. Proof of Theorems 1 and 2
Proof of Theorem 1. Write

¢ ="+ [rQlf]
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where
0<m<En—2 @010, 7o,=7¢—m<n—m-—2.

Put + = f*~™/Q, and apply the second fundamenntal Theorem to . Then
we obtain

(3.1) T(r,y) < N(r,y) + N(r, 0; ) + N(r, —1,4) + S(r; v).

Since + is a rational of f with degree n — m, we apply the Mokhon’ko’s
theorem [6].

(3.2) T(r,y) = (n — mT(r,f) + S(r,f).

Thus

(3.3) S(r, ) = S, f).

Each term on the right side of (3.1) are estimated as follows:
(3.49) N(r,y) < N(r,0; Q) + N(r,f) + S(r, ).

(3.5) N, 0; ) < (,0;f) + S(r. f)

(3:6) N(r, =1;4) < N(r, 0; ¢) + S(r, /),

(3.7 N(r,0;Q) < (n—m— 2T, f) + S, f).
From (3.1)-(3.6)

(3.8) (n — m)T(r,f) < N(r, 0; @) + N(r,f) + N(r, 0; )

+ N(, 0; ¢) + S(r,1) .

From (3.7) and (3.8), we obtain (1.7). If Q[0] =0, thatism =0, @, = @,
then we get (1.8) by (3.8).
For the proof of Theorem 2, we follow some ideas given in [8], [11],

[14].

Proof of Theorem 2. We may suppose v # 0, see [11]. Differentiat-
ing (1.5), we obtain

(3.9) fr'A=B
with
(3.10) A= |)fP — nf'P+ fP’

3.11) B=Q — ¥'"Q.
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By the Remark after the Lemma 1, we look at A and B as differential
polynomials in f with coefficients having small proximity function and
3 n—2.

We may suppose A + 0 [see 11]. By applying Lemma 1 we have

(3.12) m(r, A) = S(r,f),
(3.13) m(r, Af) = S(r,f),
hence

(3.14) m(r, f) < m(r, Af) — m(r, 0; A) < m(r, 0; A) + S(r,f).

We define w(z, f) as follows; if z, is a pole of y-th order for f(2),
then o(z, f) = v, and if z, is a regular point for f(z), then w(z,f) = 0.
Let z, be a pole of f and neither pole nor zero of coefficients of P and
Q. Put w(z,f)=pand 0(2,Q) =k 0 kE<pl,<p (n—2). Write

(3.14) Q@) =Rl(z—2z)+ ---, R+0

hence for £ > 1

(3.15) Q) = —kRl(z — 2)" + ---

We have

(316  V@WE) = —n* e —z)+ -, (F=n=k+2).

From (3.11), (3.14), (3.15) and (3.16)
B(2) = (n* — RR|(z — 20" + - -
For k£ = 0, we have
o(z, B) =1
Thus
3.17) w(iz,B)<k+1 k=0.
If we have the development around z,
AR)=8S@z—2z)+ -+, peZ, S+0,
then from (8.9) and (3.17)
pn—1D—p<k+1=pn-2)+1,

hence
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(3.18) p—1<yp.
Thus
(319) w(zm f) -1 é w(zo’ 1/A) .

By (3.10) and (3.18), if 2, is a pole of A and neither pole nor zero of
coefficients of P and @ then, z may not be pole of f. Thus z, is a zero
of ¥. And we see from (3.10) w(z,, A) is at most one. Therefore,

(3.20) N(r, A) < N(r, 0;¥) + S(r, f),
(3.21) N(r, A) = S(r.f).

From (3.10)

(3.22) A = fPG

with

(3.33) G =) — nf'If) + (P'[P).

Let z, be a zero of f and neither pole nor zero of coefficients of P and
Q@ then w(z, G) is at most one by (3.23). Thus

(3.24) (2, 1/f) — 1 £ o(z, 1/A).
From (3.19) and (3.24)
(3.25) Ny(r, /) + Ni(r, 0; /) < N(r, 0; A) + S(r, ).
From (3.22)
(3.26) m(r, Alf) < m(r, P) + m(r, G) < m(r, P) + S(r,f).
By the first fundamental theorem

m(r,f + (1)) = T(r, (f* + DIf) — N(r, f + (1/f))

= 2T(r,f) — N(r,f) — N(r, 0; ) + O(1)
= m(r’f)+ m(r70;f)+ 0(1),

hence
(3.27) m(r, f) + m(r, 0; f) = m(r, f + (1/f)) + O(1)

=< mfr, A(f + ()} + m(r, 0; A) + O(1)
< mur, Af) + m(r, Alf) + m(r, 0; A) + OQ1).

From (3.13), (3.26), (3.27) and Lemma 2
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m(r, f) + m(r, 0, f) < m(r, P) + m(r, 0; A) + S(r, f)
< hm(r,f) + m(r, 0; A) + S(r, ),

from (3.14), we get
(3.28) m(r, f) + m(r, 0; f) < (b + Dm(r, 0; A) + S(r,f).
By the first fundamental Theorem, (3.28) (3.25), (3.20) and (8.21), we obtain

2T(r,f) = m(r, f) + m(r, 0; f) + Ny(r, f) + Ny(r, 0; f)
+ N(@, f) + N(r, 0; f) + 0(1) < (h + Dm(r, 0; A) + N(r,0; A)
+ N(r,f) + N(r,0;f) + S(r, f) < (h + DT(r, A) + N(r, f)
+ N(r, 0;f) + S(r,f) < (b + DN(r, A) + (h + D{N(r, A)
+ m(r, A)} + N(r,f) + N(r, 0; ) + S(r, f)
< (h+ DN, 0;¥) + N(r, f) + N(r, 0; f) + S(r, f).

From this proof, if m(r, P) = S(r,f), then we may put A =0 in (1.9).
Thus Theorem 2 is proved.
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