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Introduction

In the study of elliptic differential operators of second order, we found
that the automorphism pseudogroups are of finite type ([4]). However
this fact takes a complete change in elliptic differential operators of first
order.

So as to make the objects which can be dealt with clear, we intro-
duce the concept of pseudoellipticity of first order differential operators
(Definition 1.1), which is naturally satisfied by first order elliptic dif-
ferential operators.

Here we restrict our considerations to differential operators defined
on the jet space J'(R? RY). We can classify first order pseudoelliptic dif-
ferential operators into two types: One is of finite type and the other is
of infinite type.

If a differential operator P(x, D) is of finite type, the automorphism
pseudogroup is generated by the maximal subgroup of the affine trans-
formation group whose linear part is just the center of GL(2, R) (Cor-
ollary 4.2). Thus in this case by similar arguments to elliptic differential
operators of second order, the differential operator P(x, D) admits a
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transversally projective structure on the space of integral points I(P)
of P(x, D) (cf. [4]).

If a differential operator P(x, D) is of infinite type, the system of
defining equations of the automorphism pseudogroup 2(P) is of Cauchy-
Kowalewski type (Theorem 4.1, Definition 6.1).

In this paper we develop an invariant theory of first order pseudoel-
liptic differential operators of infinite type. In particular, we determine
the canonical invariant generator of a first order pseudoelliptic system
of differential equations of infinite type (Theorem 9.1). Consequently we
see that, under the differentiability of class C¢ a first order differential
operator P(x, D) is pseudoelliptic and of infinite type with the structure
vector (e, b) if and only if it is %(P)-automorphic and A(P) = P,,,, where
B,y 18 a pseudogroup determined by the vector (g, b) (Theorem 12.1).

From this standpoint we study a generalization of pseudoelliptic dif-
ferential operators of infinite type and prove that, if a single differential
equation P is “decomposed” into a family of pseudoelliptic systems of
differential equations of infinite type with the structure vector (a, b) by
a rational expression with two variables, then the automorphism pseudo-
group A(P) coincides with that of each pseudoelliptic system of differen-
tial equations (Theorem 16.2). These theorems (Theorem 12.1 and 16.2)
are very interesting from the viewpoint of geometric foliations. We state
these theorems in terms of foliations (Proposition 17.2, 18.1) and attempt
to connect our study of differential equations with that of transversal
structures of foliations.

In Section 1, the system of defining equations of the automorphism
pseudogroup UA(P) of a first order pseudoelliptic differential operator P(x, D)
is determined (Theorem 4.1).

In Section 2, we calculate a fundamental system of differential in-
variants of %(P) for a pseudoelliptic differential operator P(x, D) of in-
finite type (Proposition 8.1).

In Section 3, we find a canonical generator of a pseudoelliptic system
of differential equations of infinite type P(x, D)u = o (Theorem 9.1).

In Section 4, we state a characterization of a pseudoelliptic differen-
tial operator P(x, D) of infinite type by the standpoint of the automor-
phism pseudogroup A(P) (Theorem 12.1).

In Section 5, we study a generalization of a pseudoelliptic system of
differential equations of infinite type from an invariant point of view
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(Theorem 16.2).

In Section 6, we study a structure of a pseudoelliptic system of dif-
ferential equations of infinite type or of its generalization from the view-
point of foliation (Proposition 17.2, 18.1).

A generalization of our study in the sapce J'(R?, R*) to that in the
space J'(R*, R™) and a general study of foliations associated with first
order pseudoelliptic differential operators or their families remain to be
done as interesting problems.

§1. Defining equations of automorphism pseudogroups

1. Let E be a vector space over R and denote by I'(n, E) the set of
local C~-maps of R" to E. Let F be another vector space over R and
denote by Hom (E, F) the vector space over R of linear maps of E to F.
Then for the canonical coordinate system {x,, ---, x,} on R", a differential
operator of I'(n, E) to I'(n, F) of order 1 is an expression

P(x, D) = 3} a(x)D; + b()

where D, = 9/ox; and a,(x) and b(x) are Hom (E, F)-valued C<~-functions
on R
In this paper we deal with only these differential operators of order

To this differential operator P(x, D) there corresponds the differential

operator

P(])(x’ D) = I; a,(x)D,

called the principal part of P(x, D).

DerFiniTioN 1.1. A differential operator P(x, D) = > 7, a,(x)D, + b(x)
of I'(n, E) to I'(n, F) is said to be pseudoelliptic at x ¢ R* if dim £ = dim F
and det g,(x) >0 for k=1, ---, n.

Denote by J'(n, k) the 1-jet space of local maps of R* to R* and as-
sume that 2= dim E. Then for any differential operator P(x, D) it is
easy to see that there exists a unique map o: J'(n, k) — F such that
P(x, D)f = o(ji(f)) for any element f ¢ I'(n, E) where ji(f) is the 1-jet of f
with the source x.

Denote by 0e F the zero of F and set I(P) = ¢7'(0) C J'(n, k). Let
&(P) be the set of elements feI'(n, E) satisfying P(x, D)f = 0 and set
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S(P) = {ji(f); x belongs to the domain of f and fe@(P)} C JYn,k).
Then, in general, we have S(P) C I(P). Each element of &(P) is called
a solution of P(x, D) and each point of I(P) is called an integral point
of P(x, D).

DeriniTION 1.2. A differential operator P(x, D) = > ¥_; a,(x)D,+b(x) is
said to be pseudoinvolutive at p e I(P) if S(P) = I(P) on a neighbourhood
of pedi(n,k).

Note that, under the analyticity, any differential operator of order 1
which is pseudoelliptic at x is psedoinvolutive at any point p € I(P) whose
source a'(p) = x.

2. In the following we assume that n = dim E=dim F = 2 and that
any differential operator P(x, D) = > %_, a,(x)D, + b(x) under consideration
is pseudoelliptic at a point x € R? and pseudoinvolutive at any point p e
I(P) with o'(p) = x.

Choosing a coordinate system {u,, u,} (resp. {v,, v,}) on E (resp. F), we
can set ay(x) = (@¥(%))i<s ;<. and b(x) = (b(x)),<;,;<.. For any element
uel(2, E), if we set P(x, D)u = v, then we have

= 313 a@0u o) + 36, (=12).

Let %A(P) denote the pseudogroup of all local transformations ¢ on E
such that, for any u e &(P), if the composition ¢ou is defined, then gou
€ @&(P). U(P) is called the automorphism pseudogroup of P(x, D). For
such ¢ and u we have

2

@.1) S aP(@@ufon) + 369 =0 (=1,2)

J=1k=1

and
(22 33 ¥ V(08 wou)oufom) + 1 bU@ @ =0 (=12,
Then by the pseudoellipticity of P(x, D) at * and by (2.1) and (2.2), we get
det ((x)) 2} 3. a£/(x)(09,(1)/0u)0ufox) + 3, a5/(x)(0g(w)/ous)
{ 2(x) (z a(x)Ou,lox) + ;;1 b”(x)u,)

£=1

@9 - (Y ad@ouw) + 35 @u)
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+ j};} ai/(x)(0¢(w)/du,)
2 2
x {at(0) (35 ato)ou,ox) + 3] bxu)
2 2
— a3 @ ox) + 3] b))
+ det (a,() 2 09(x)g, =0 (i=1,2).
i=1

Since P(x, D) is pseudoinvolutive at any point p € I(P) with «'(p) = x, the
relation (2.3) holds identically on I, . (P) = {p € I(P); «'(p) = x, f'(p) = u}
where f' is the target projection of J'(R% E) onto E. I(P) is the set of

points in J'(R? E) defined by (2.1) and, on I, (P), ou,/ox, and du,/dx, are
independent. Therefore from (2.3) we get

fi i/ (x)(0¢;/0u,) det (a,(x))
+ J}; @i (x)(0¢,;/0u,)(al¥(x)ai(x) — ai¥(x)ar(x))

+ ]il ai/(u)(@¢;/0u,)(ai(x)ai(x) — ai'(x)ai(x)) = 0,
2.4) G ¢=12)),
9;1 al¥(x)(a(x)b™(x) — ai¥(x)b*(x))ul04,/ou,)

+Jél ai?(x)(al(2)b™(x) — ai'(x)b™(x))u 94 ;/0u,)

+ det (@) 3 6409, =0,  (A=12).

In the case n = dim E = dim F = 2, this is the system of defining equa-
tions of A(P) around x e R* for a differential operator P(x, D) which is
pseudoelliptic at x and pseudoinvolutive at any point p e I(P) with
a'(p) = x.

The system of differential equations (2.4) seems to be “overdetermined”.
However later, in Theorem 4.1, we shall show that, if P(x, D) = P,,(x, D)
the system of defining equations (2.4) of A(P) comes to be “determined”
under a ‘‘generic” condition. Throughout this paper we shall deal with
pseudoelliptic operators P(x, D) like that P(x, D) = P,(x, D).

3. Denote by «/(E) the pseudogroup of all local transformations of
E. The exceptional model which does not satisfy the “‘generic” condition
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(which is the condition det K* % 0 (i = 1,2) in Theorem 4.1) is the case
in the next proposition.

ProrosiTioN 3.1. Assume that a differential operator P(x, D) is pseudo-
elliptic at x,€ R* and pseudoinvolutive at any point p € I(P) with «'(p) = x
which is near to x, Furthermore assume that P(x, D) = Pg(x, D) and
a;'(x)az'(x)az' (x)ai'(x,) # 0. Then U(P) = L(E) if and only if ai'(x)/aj'(x) =
adi(x)/ i (x) = aP(x)/ai(x) = a¥(x)/ai(x) around x,. In this case for any se&
&(P), the rank of s at each point of its domain near x, is smaller than 2.

Proof. In the system of defining equations (2.4), the coefficients of
0¢,/ou, are
A%(x) = a¥(2) + ARaP @ (@ai(x) — a(x)ai(x)
for i1=1,2 and ¢=1,
Afy(x) = A(x)ai(x)(ar*(x)ai’(x) — ai’(x)az’(x))
for i=1,2 and ¢ =2
and the coefficients of 9¢,;/0u, are
Af(x) = A(x)ai (x)(at(x)ar(x) — ai(x)as!(x))
for 1=1,2 and ¢=1,

A%(x) = a¥(x) + A(x)ai (x)(ad(x)ai’(x) — ai(x)as’(x))
for i=1,2 and ¢ =2

where A(x) = det (a(x))™'. If we assume that ai'(x)/ai'(x) = ai*(x)/a}¥(x) =
a(%)]ad(x) = a*(x)/a(x), then we have A¥(x) = A¥(x) = A%(x) = A%(x) =0
and so the left hand sides of (2.4) are identically zero. This means that
AP) = A(E).

Conversely if A(P) = #(E), then A¥(x) = A¥(x) = A%(x) = A%(x) =0
from which we can easily obtain the equalities ai'(x)/a;'(x) = al*/ai¥(x) =
ai(0)/aii(x) = ai’(x)/az’(x) = £(x)".

Next we shall prove that the rank of any element u € &(P) is smaller
than 2 at each point of its domain 6(u). Any u e S(P) satisfies

(D 3 a0u,fox) + 63 @0u ) =0, (=1,2).

By the pseudoellipticity of P(x, D), det (a,(x)) = 0. Therefore (3.1) implies
that, at each point x € (w), the vectors “(Qu,[0x,, du,/dx,) and “(Qu,/dx,, du,/dx,)
are linearly dependent, that is, the rank of u at x e€d(u) is smaller than
2. This completes the proof of Proposition 3.1.
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4. Let us again consider a differential operator P(x, D) = P,(x, D)
which is pseudoelliptic at x, € R* and pseudoinvolutive at any p € I(P) with
a'(p) = x which is near to x,, We set

Kj(x) = (2 — £)ai’(x) + A(x)ai’(x)(ai(x)ai(x) — af(x)ai(x))
1<i,j,£<2).
Then, since b*/(x) = 0 for any i, j, the system of defining equations (2.4)

around x, is written by the form

(4.1) z K (0)(08,/0u) = Li(x, 36,/us, 3gafous), (1< i,¢<2).

Denote by K'*(x) the 2X2 matrix (Ki(x))ic; .- By an easy calculation
we see that
det K(x) = A(x)(ai(x)ai’(x) — ai(x)ai(x))(a3(x)ai’(x) — ai’(x)af(x)) .
THEOREM 4.1. We assume that det K'(x,) % 0. Then the system of
defining equations of %A(P) around x, is given in the following form:
(4.2) 0, /0u, = a(x)(0;/ou,) + 0¢,/0u; ,
' a¢2/au1 = b(x)(0¢,/0u,)
where a(x) and b(x) can be expressed as functions of ai(x).

Proof. Since det Ki(x,) = 0, (4.1) is written around x, by the form
(4.3) 0¢,/0u, = Fi(x, 0¢,[0w,, 0g,[ou), (L < 1,7 < 2)

and F} is written by
Fi(x, 34, [0uy, 0,/0us) = Njy(x)(@;/ouws) + Nija(x)(@p2/0u.)
where
Nif(x) det K*(x) = ai(x)ai’(x)
+ Ax)ai(x)ai(x)(ai’(x)ai(x) — ai'(x)ai’(x))
+ A(x)az'(x)af(x)(az (x)ar’(x) — ai'(x)ai(x))
+ A(x)ai(x)ai’(x)(ai(x)ai(x) — aX(x)az'(x)),
— Ni(x) det K*(x) = af(x)ai’(x)
+ A(x)ai(x)ai’(x)(ar (x)ai'(x) — ai(x)ar'(x))
+ A@)ai’(x)at(x) (a7 (x)a’(x) — ai'(x)af’(x))
+ A(x)ai(x)ai’(x)(ai(x)ai (x) — a'(x)as'(x)) .

Since the identity transformation of E is a solution of (4.2), we obtain
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Ni(x) = 1 and Nj(x) = 0. Therefore the system of defining equations of
A(P) at x is written by

09 fou, = Ni(x)(0¢;/0u,) + 04y/0u,,

(44) 200w, — NDOHw), =1,

where Ni(x) = Ni(x) and Ni¥x) = Ni(x).

Now we shall prove that Ni(x) = Ni(x) and Ni(x) = N%x). For the
. .. . — ak(x) .Bk(x))
simplicity of expressions, hereafter we set a,(x) (Tk(x) () Then we

have

Ni(x) det K'(x) = Ax){B()exa(2)(ay(%)3,(x) — Bi(2)7:(x))
+ Bux)a(2)(Bo(2)7,(%) — du(x)ei())
+ () Bi()(7(%) By(x) — an(x)3,(x))
+ Bui(@ay(x)(ax(x)0:(x) — Bo(x)7T2(x))}
= A(x)(oe(x) (%) — ﬁZ(x)al(x))
X (To(x)Bi(%) — ax(x)3,(x) + a,(%)3,(x) — Bo2)74(%)) .
Therefore
1(x) = (3,(2)Bi(x) — Bux)3,(x))~"
X (1(%)Bi(x) — ax(%)8,(x)) + a,(x)3,(x) — B(2)7,(x)) .
On the other hand
Ni(x) det K*(x) = A(x){0,(x)To(x)(exs(x)3,(x) — Bi(2)7,())
+ 52(x)7’1(x)(ﬂ2(x)71(x) — 0y(x)er,(x))
+ 7(x)3,(x)(7(%)Bi(x) — ax(x)0,(x))
+ 5,(36)7’1(36)(&2(36)52(36) - ﬁz(x)n(x))}
= Ax)(1x)3,(x) — 3x(x)7:(x))
X(TZ(x)ﬁx(x) — ay(%)0,(x) + al(x)52(x) - ﬁ2(x)rl(x))

which shows

Ni(x) = (3(0)Bi(x) — ox)d,(x))~"
X (72(x).81(x) — ay(%)0;(x) + o, (x)d5(x) — ﬁz(x)rx(x))

and thus we get Ni(x) = N¥(x). Similarly we can prove that

Ni(x) = Ni(x) = (a(0)7,(x) — a(2)7(0))(@(x)B,(x) — Bo(x)3,(2)) "

and this completes the proof of Theorem 4.1.
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Note that, if the assumptions a,(x)B.(%)7:(%)0(%,) #= 0 and «,(x)/ay(x)
= Bi(x)/B(x) = 7(x)[T(x) = 6,(x)[6,(x) around x, in Proposition 3.1 are sat-
isfied, then det K'(x,) = 0. In this case we have seen that U(P) = <(E).

CoROLLARY 4.2. If, in (4.2), a(x) or b(x) is not constant around x,,
then UA(P) is generated by the maximal subgroup of the affine transforma-
tion group on R® whose linear part is the center of GL(2, R).

Proof. Since 3¢,/ou; does not depend on x, from (4.2) we get a¢,/ou,
= 0¢yfou; = 0 and 0¢,/0u, = d¢y/ou,. These imply that ¢(u, u,) = au, + B
and ¢,(u,, u,) = au, + § where «, p and § are constants and « % 0. This
completes the proof.

Remark 4.1. If P(x, D) is the Cauchy-Riemann operator, then we

see that a(x) = 6,(x) = T(x) = 1, Bu(x) = — 1 and ax(x) = Bi(x) = 7(x) =

3,(x) = 0. Therefore it is easy to see that K'(x) = <_01 (1)) and K*(x) =

((1) (1)) Thus det K'(x) = det K*(x) = 1 # 0 and by Theorem 4.1, the sys-

tem of defining equations of A(P) is given in the following form:

a¢1/3u, = a(x)(a¢1/au2) + 8¢2/6u2 ,

a¢2/au1 = b(x)(a¢1/auz) .
In the proof of Theorem 4.1, we have seen that

a(x) = (3:(x)B(x) — Pu(x)d,(x))"*
X (Tz(x).Bx(x) — ay(%)5,(x) + a,(x)d,(x) — ABZ(x)Tl(x))

and

b(x) = (0(x)Bi(x) — Bu(x)3i(x)) ™"

X (a(2)7,(x) — a,(X)7(x)) .

Therefore for the Cauchy-Riemann operator P(x, D) we get a(x) = 0 and

b(x) = — 1. That is, the system of defining equations of UA(P) is given by
a¢1/aul = 8¢2/au2 ,
Osfou, = — ¢, fou, .

These are also the Cauchy-Riemann equations.

There are two ways to generalize the Cauchy-Riemann operator on
JYR, RY).

One is the way to generalize it to the following pseudoelliptic system
of differential equations on J'(R™, R*™):
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(pzl PR =0,

(pél ple)zo (k:]-""im))

] Ms ] Ms

where pfi = duffoxt (B, £ =1, ---,m; i,j =1,2).
Another way is to generalize it to the Cauchy-Riemann equations on
JYR™, R*™) which is the following overdetermined pseudoelliptic system:

pi — pi =0,

pflz_pgzl209 (kagz]v""m)-
In any case, this suggests to us that it is reasonable to extend our con-
sideration of pseudoelliptic systems of differential equations on J'(R? R?)

to pseudoelliptic systems or overdetermined pseudoelliptic systems of dif-
ferential equations on JY(R™, R™).

Remark 4.2. Let us consider a following pseudoelliptic system of
differential equations on J'(R", R*) where n > 3:

2 n
P: Z Z a?ch(x)p;cb =0 ’ (l = 1’ 2) ’
h=1 k=1

where p? = 0u,/0x,. Then by similar arguments to the proof of Theorem
4.1 we can see that the system of defining equations of (P) is given by
an overdetermined system in the following form under generic conditions:

0, [0, = (%)@ /0us) + 0s/0u, ,
3¢2/au1 = b(k)(x)(a¢1/auz) ’ (k=1--,n—1).

Therefore, in this case, even if all a,(x) and b,(x) are constants, except
for the case ay, = --- = a¢,.,y and by, = -+ = by, A(P) is generated
by the maximal subgroup of the affine transformation group on R? whose
linear part is the center of GL(2, R).

§2. Differential invariants of differential operators of infinite type

5. Let I be a pseudogroup on a manifold M and denote by R, the
sheaf of germs of local vector fields X on M which generate local 1-
parameter groups of local transformations ¢ belonging to I'. This sheaf
L, is a weak Lie algebra sheaf ([2]).

Let us consider the k-jet space J*(IV, M), £ > 1, whose element is a

k-jet ji&(f) of a local map f of N to M, where x belongs to N, called the
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source of p = jif) and denoted by «f(p). Furthermore we set p*(p) =
f(x) and JYN, M) = N X M.

It is easy to see that any pseudogroup /" on M is naturally lifted to
a pseudogroup I'® on J*INV, M) and so the sheaf &, is also lifted to a
weak Lie algebra sheaf {¥F on J*N, M). I'® (resp. &) is considered
as a pseudogroup (resp. a weak Lie algebra sheaf) 1 X I' (resp. 0 X &)
on N X M.

Denote by (2{”)) the isotropy algebra of the stalk (2{”), over p. Then
(D), = (2F),/(F), is regarded as a subspace of the tangent space T,
of J*(N, M) at p.

DerinitioN 5.1. ' is called (N, k)-regular if, for each integer ¢,
0 < ¢ <k, dim (D), is constant.

Assume that I' is (IV, k)-regular. Then the correspondence D
JYN, M)> p — (D), < T, is an involutive distribution on J*(N, M).

DerFiNiTION 5.2. A function y given on a small neighbourhood 1I of
ped® N, M) is called a differential invariant of a vector field Z on 1 if
Zy = 0. If, for any cross-section Z of D¥ on U, y is a differential in-
variant of Z, then y is called a differential invariant of I". Furthermore
if {y,, -+, %,}, @ = codim D, is a family of functionally independent dif-
ferential invariants of I' on U, it is called a fundamental system of
differential invariants of I" on 1.

6. In the following we assume that N = M = R* and let us con-
sider a differential operator P(x, D) of order 1 satisfying the following
conditions:

(1) P(x, D) is pseudoelliptic at x, € R".

(2) P(x, D) is pseudoinvolutive at any p € I(P).

(3) detKi(x) x0,i=12.

(4) P(x, D) = P,y(x, D).

Then by Theorem 4.1 the system of defining equations of the automor-
phism pseudogroup A(P) is given by

a¢1/au1 = a(x)(a¢1/au2) + a¢2/au2 y

DerFiNITION 6.1. Let P(x, D) be a differential operator satisfying the
conditions (1), (2), (3) and (4). Then P(x, D) or a system of differential
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equations P: P(x, D)u = 0 is said to be of infinite type at x, if a(x) and
b(x) are constants around x,. The vector (a, b) is called the structure
vector of P(x, D) or P.

Assume that P(x, D) is of infinite type at x, with the structure vector
(a, b). By considering (6.1) infinitesimally, a vector field X(u,, u,)@/ou,) +
Y(uw,, u,)(@/ou,) defined on 1 C M = R* is a local cross-section of Ly, if
and only if it satisfies

0X/ou, = a(0X/ou,) + 0Y/ou, ,

(6.2) aY/ou, = b(6X/ou,)

or simply (6.2) is written by

X,, = aX,, + Y.,,
Y,, = bX,,

Remark 6.1. If P(x, D) is of infinite type at x, with the structure
vector (a, b), then, as is calculated in the proof of Theorem 4.1, the con-
stants ¢ and b are expressed around x, as

a = (0(x)pi(x) — pu(x)5(x))~’
X (1(0)Bi(x) — ax(2)8,(x) + a(x)5x(x) — BT i(x))

and
b = (5(0)Bi(x) — Bx(x)3,(x))~ (e X)71(x) — ey(x)75(x)) .

Let W be a cross-section of 2y, defined on . Then W is naturally
lifted to a vector field W® on U® = (8)*(11) which is a cross-section of
L. Consider the canonical coordinate system {x,, x,, u,, u,, pi, pi, p3, P3}
on J'(R? R?) introduced by p} = du,/ox,.

LemMMA 6.1. For a vector field W = X(u,, u,)(@/ou,) + Y(u,, u,)(0/0u,),
W is expressed by

W® = X(@/ou,) + Y(0/ou,)
+ X, {(api + p)(@/op1) + bpi@/opd) + (ap; + P3)(©/ops) + bpi(d/dp3)}
+ Y., (pi(@/op)) + pi@/ap}) + pi(d/opy) + pi@/ap3)} .

Proof. We set 8t = 0/ox, + pi(d/ou,) + pX(d/ou,). Then we have W®5t =
oW, ([3]). Applying this equality to the function u, (resp. u,), we get
Whpl = 84X (resp. W®p? = 3tY). This means that W is expressed by
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W = X(0/ou,) + Y(0/ou,) + (X.,pt + X,,pD@/op) + (Y., pi + Y., p)@/0p}) +
(X.,p} + X,,p5@/opt) + (Y., ps + Y., p)@/0p}). Since W satisfies (6.2), we
get

W® = X(6/ou,) + Y(0/ou,)
+ X..{(api + pD(G/op)) + bpi(@/dpi) + (ap; + pP(@/op) + bpi(d/3pd}
+ Y,,(pi(@/api) + pi@/opi) + pxd/apy) + pi6/dpi)}.
This completes the proof.

ProOPOSITION 6.2. Assume that P(x, D) is of infinite type at x, with
the structure vector (a, b). Then a function f given on a neighbourhood 1
of pedJ'(R RY) with o'(p) = x, is a differential invariant of UA(P) if and
only if [ satisfies the following relations:

(api + p)@flopi) + bpi(@flopd) + (ap: + p)@f[dpy) + bpidflops) = 0,
(6.3) (pi(@3ffop)) + pi@flopd) + py@flop:) + pi@ffop;) =0,
offou;, =0 and offou, = 0.

Proof. Since, for any constants 3, f, 7 and 1/, there exist constants
a« and « such that (X, Y), where X = au, + pu, + 7 and Y = o'y, + fu,
+ 7/, is a solution of (6.2). Therefore at each point u = (u,, u,) we have
{(X(w), Y(u), X,,(w), Y, ,(w); X@ou,) + Y(0/ou,) is a cross-section of Ly
around u} = R'. Then by Lemma 6.1, f is a differential invariant of 2(P)
if and only if F satisfies (6.3). This completes the proof of Proposition
6.2.

7. We set 2z, = p}, 2, = pl, 2z, = p; and 2z, = p} and let us consider
differential invariants of a vector field Z = (az, + 2,)(0/02,) + bz,(0/02,) +
(az, + 2,)(0/02,) + bz,(3/0z,) on J'(R% RY). If we regard Z as a vector field
on R!' with the coordinate system {z, z,, 2;, 2,} and find a fundamental
system of first integrals of Z around z = (pi(p), pX(p), Pi(p), PXP)) € R, we
can get a fundamental system of differential invariants of Z around p =
Ji(f) because the functions x,, x,, ¥, and u, are differential invariants of
Z around p.

It is well-known that there exists a local coordinate system {y,, y,,
Y5, ¥, on a neighbourhood U of the origin 0¢ R* such that Z = 9/0y, on
. If we can find such a coordinate system, then {y,y; ¥} is a funda-
mental system of first integrals of Z on U. This coordinate system
{¥1, ¥2, ¥5, ¥5} can be found by solving the following system of ordinary
differential equations
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dz,/dt = az, + z,,
dz,/dt = bz, ,
dz,/dt = az, + 2,,
dz,/dt = bz,

(7.1)

with the initial condition z,(0) = 0, z,(0) = y,, 2,(0) = y,, 2,0) = y, and by
setting y, = ¢ ([1]).

LeEMMA 7.1. Assume that a* + 4b >0 and set p, = (a + va* + 4b)/2,
p: = (@ — va* + 4b)/2 and H = (0,2, + 2)/(0,2, + 25). Then around a point
2 = (2, 2, 25, 2,) With (0,2, + 2,)(p:2, + 22) = 0, the following family of func-
tions {f,,f. f;} is a fundamental system of first integrals of Z defined as
above:

fl — (‘01 — pz)zl(Hl’l(m-—pz)‘l _ sz(m—pz)_‘)—l ,
fo= (Pzzs + Z4)((Pz — Pn)ITl—M(m—pZ)_l)_1 — (02 + z4)((.02 - Pl)Hm(Pr”)_l)—l s
fa = PZ(szs + 24)(([72 — Pl)Hm(m‘M)kl)_l - P1(P223 + 24)((102 - ;01)1;1'12('“_"2)_1)—1 .

Proof. Associated with the system of ordinary differential equations
(7.1), we have the following algebraic equation with respect to p:

a—p 1 0 0

b —p 0 0 (o B = 0
= — ap — “ = .

0 0 a—p 1| 7%

0 0 b —p

According to the theory of ordinary differential equations, in the case
a® + 4b > 0, we can find the following unique solution (z,(2), 2,(t), z,(t), 2(2))
of (7.1) with the initial condition z,(0) = 0, z,(0) = ¥,, 2,(0) = v, 2,0) = y,;

2(1) = (o1 — p2) ' yale™ — ),

z(t) = (o, — o) ya(ps”" — ™), )

2(t) = (0, — p) (025 + e — (075 + y.)er},
20 = (o, — p2) {035 + y)o.e” — (01s + Yp.e'} .

(7.2)

Setting y, = t in the right hand side of (7.2) and solving (7.2) with respect
to {yl’ Y25 Vs y4}9 we get

Y = (Pl - Pz)—l 10g ((40121 -+ zz)(Pzzl + ZZ)_X) ,
Yy = ((31 . p2)zl(Hﬂ1(m—pz)“1 . sz(m—ﬂz)‘l)—l ,
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Y = (Pzza + 24)((102 - Pl)HM(pl_m_l)_l - (Plza + 24)((.02 - P1)Hm(“~p2)—l)_l >
¥ = 0025 + 2)((02 — p)H" "7 — o032, + 2) (00 — p)H 077

which prove Lemma 7.1.

Lemma 7.2, Assume that a* + 4b < 0. Then the following family of
functions {g,, g, 8} is a fundamental system of first integrals of Z around a
point z with z, 2 0: By setting § = v — a® — 4b/2 and y, = 6~ Cot~* (2,(dz,)*
+ a(26)),

& = 02(e“"" sin (07"
8 = e “"((cos (0y,) — a(26)7" sin (0y)))z; — 07'(sin (03))z) ,
g = e~ “((cos (0y,) + a(20)~" sin (0y))z, + (40)™'(46" + a’)(sin (0y,)zy) -

Proof. In the case o’ + 4b < 0, we have the following unique solu-
tion (z/(t), 2,(9), 2,(t), z(t)) of (7.1) with the initial condition z(0) = 0,
2(0) = ¥, 2(0) = 5, 2(0) = .
2,(t) = 01y, *"” sin (61) ,
2,(t) = (20)7'y,e“9*(20 cos () — a sin (1)) ,

(7.9) (1) = €%y, cos (69) + (20)7'(ay; + 2y,) sin (6%)) ,
2,(t) = (40)(ay, + 2y,)e*?*(20 cos (ft) — a sin (6t))
{ — 27'y,e*D%(q cos (6t) + 20 sin (6t)) .

By setting y, = ¢ in the right hand side of (7.4), let us solve (7.4) with

respect to {y, Yo, Vs, Vi)
From the 1-st and 2-nd relations of (7.4), we get

2(2,)™" = (0 cos (0y)) — (a/2) sin (y,))(sin (Oy)
= f cot (Ay,) — a/2
and so
(7.5) ¥, = 07 Cot™ (2,(62)~" + a(26)7).
Then by an easy calculation we obtain
Y, = 0z,(e“"” sin (6y,) 7",
ys = e~ @%((cos (0y,) — a(20)™* sin (0y1))z, — 67'(sin (63,)z,) ,
Yo = e “%((cos (0y,) + a(20)™ sin (6,)z,
+ (40)7'(46" + a*)(sin (031))2,) -

(7.6)

This completes the proof.
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LEmMMA 7.3. Assume that o* + 4b = 0. Then around a point z with
az, + 2z, % 0, the following family of functions {h,, h,, h;} is a fundamental
system of first iategrals of Z: By setting y, = 2z,(az, + 22,7,

hl = (yl)"‘zle—(ayl)/‘l ,
hy = (1 — (@/2)y)z — y.2)e™ v,
hy = (1 + (a/2))y.2, + (a2/4)y1z3)e—(ay1)/2 .

Proof. The unique solution (z,(f), 2,(¢), z:(8), 2.()) of (7.1) with the
initial condition z,(0) = 0, 2,(0) = ¥, 2,(0) = y,;, 2,(0) = y, is as follows:

2(t) = — 7,0 + yy(t + Deto”,
2(t) = (a/2)y:e“"" 4 31 — (a/2)(t + 1))e ",
17 Az = (1 — (@/2)y; — y)e“” + ((@)2)ys + y)(t + De@dr?
2,0 = — (@/2)(1 — (a/2)y; — y)e "
+ ((@/2)y; + y)(1 — (a/2)(t + 1)et"".

Setting y, = ¢t in the right hand side of (7.7) and solving (7.7) with respect
to {¥1, ¥z, ¥5, 5.}, we get

¥y = 2z(az, + 22,)7",

W= () e,

v, = (1 — (@/2)y)z, — yz)e @v/?

v = (1 + (@/2)y,2, + (@*[4)y,z)e~ @/,

This completes the proof.
8. Let us write 3, = 2/2, 3, = 2:/2, and 3, = z,/z,.

Proposition 8.1. Let P(x, D) be a differential operator of infinite type
at x, with the structure vector (a,b). Then the following family of func-
tions {x,, %, I°, I3} is a fundamental system of differential invariants of
A(P) around a point p € J'(R}, R*) which satisfies (3,)%(p) + a3(p) — b % 0:

IP" = (35 — 3)/((3)" + a3 — b),
I = ((a + 3230 — b3:)/((3.)° + az. — b).

Proof. Assume that o* + 4b > 0. Then by Lemma 7.1, f,/f; and f£/f,
are functionally independent differential invariants of Z around p which
satisfies (0,2(p) + 2(P))(0:2(P) + 2(p)) = 0. Since p, = (a + v’ + 4b)/2

and p, = (@ — V" + 4b)/2, (0.2(p) + 2(P))(2:2(P) + 2(p)) = 0 if and only
if (3" + a3, — b)(p) = 0.
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Furthermore 3, = pi/p!, 3, = pi/p! and 3, = pi/p; are differential in-
variants of the vector field Z/ = pi(9/ap)) + pi(6/op}) + pi@/opy) + pi(0/dp3).
Since (fy/f)[ow, = 3(f,/f)/ou, = 0, by Proposition 6.2 we see that f,/f; and
f:/f; are differential invariants of UA(P). It is easy to check that

felfy = Gags — 3)/((3)° + ag. — b),
filfi = ((@ + 33, — b3)/((3)* + a3, — D).
Because codim D{», = 4 by Proposition 6.2, the family of functions {x,, x;,
fi/fi, filfi} is a fundamental system of differential invariants of %(P) around p.
Secondly assume that a* + 4b < 0. Then by Lemma 7.2, g,/g, and
g,/g. are functionally independent differential invariants of Z. Note that
in this case (3,)* + a3 — b > 0. By similar arguments stated above, the
family of functions {x,, x,, g./g,, g;/g,} is a fundamental system of differen-
tial invariants of A(P). We see that, by setting 5 = Cot~' (673, + a(26)7"),

8,/g, = 07'(sin 5 cos 7 — a(26)~' sin® 9)3, — 6 *(sin’ n)3,
= 07*(sin’ 1)(3:3s — 34) ,
8:/8 = 07'(siny cos 7 + a(260)! sin® 9)3, + (46°)~'(46* + &*)(sin’ )3,
= 07%(sin’ n)((@ + 82)3s + 47'(46" + a*)3) -
Since sin®*(Cot™' x) = (1 + x*)~', we can easily see that
67" sin’ 5 = ((3.)" + a3 — b)™
and we get
881 = (Bads — 3)/((3)* + a3, — b)
8l = (@ + 308, — b3)/((3.) + az. — ).

Finally assume that a* + 4b = 0. Then by Lemma 7.3, h,/h, and h,/h,
are functionally independent differential invariants of Z around p which
satisfies az,(p) + 2z(p) % 0. Since ()’ + a3 — b = (3. + a/2)’, az(p) +
22(p) % 0 if and only if ((3)* + a3, — b)(p) % 0. Then the same argu-
ments lead us to the assertion that the family of functions {x,, x,, A,/h,,

h,/h,} is a fundamental system of differential invariants of (P) around p.
It is easy to check that

hofhy = (335 — 30)/(3: + @/2)
= (385 — 3)/((3) + @3, — D),
hofhy = (@ + 303 + (@’[49)3:)/G: + a/2)"
= (@ + 303, — b3)/((3)’ + a3, — b) .
This completes the proof of Proposition 8.1.
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§3. Invariant structures of differential operators of infinite type

9. Let P(x, D) be a differential operator of infinite type at x, with
the structure vector (a, b). The system of differential equations P(x, D)u
= 0 is expressed on J'(R?, R?) by

a(x)pi + ﬁl(x)p% + ay(x)p; + ﬁz(x)pg =0,

9.1
@1) 7(x0)pi + 8(x)pi + TAx)p; + dx(x)p; =0

and, around a point p € J'(R’, R?) satisfying pi(p) = 0, (9.1) is written by

ay(%) + Bux)3: + ax(x)3s + B(x)3. =0,

©2) 7.(2) + 3.2 + Ta(0)3s + 8,(x)3, = O

where 3, = 2,/z, (i =2,8,4) with z =p}, 2,=p}, z,=p} and 2z, = pi
Remember that (9.2) is pseudoelliptic at x,, pseudoinvolutive at any point
p e I(P) and satisfies det Ki(x,) + 0, i = 1, 2.

TueoreM 9.1. Let p be a point of J'(R', R*) such that «'(p) is near

to x,, z(p) =0 and ((3.)* + ag — b)(p) = 0. Then around p the system of
differential equations (9.2) is written by

Igt = (,Bz(x)51(x) - .Bl(x)52(x)) det (ay(x))*,

I3 = (B(0)T(%) — ax(x)dy(x)) det (ax(x))~
where {x,, x,, I¥'®, I$®} is a fundamental system of differential invariants of
A(P) around p given in Proposition 8.1.

Proof. We can write

It = Ag, + Ay,

9.3)
Iy = B3, + By,

where, by setting p, = (a + V@' + 4b)/2 and p, = (@ — va* + 4b)/2,

A= 3o + 370 + 37",

A= — (.01 + 62)4(!’2 + 37,

B, = p,001 + )7 (o2 + 37",

B, = (o, + 02 + 301 + 8 7'(0: + 37 -

Note that among A,, A,, B, and B, there exist the relations

B = — PlpZAZ ’

(9.4)
BZ = A1 - (Pl + PZ)AZ .
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From (9.3) and (9.4) we have

gs = (“— (A1 - (,01 + Pz)Az)I?’b + AZIg’b)(Al - (OIAE)‘I(AI - pzAz)_l ’

(9.5)
B = (“ PIPQAZI%’I’ - A1I§1’b)(A1 - PlAz)-i(Ax - PzAz)_l .

Then by (9.5), the system of differential equations (9.2) is written by

(— a(®)(A; — (o1 + p)A) — Bu(X)0102 AN + (a(0) A — B(x)ANIE?
= — (%) + Bux)3)(A, — 0, A)(A; — pA),

(— 72(30)(141 — (Pl + Pz)Az) - 52(3‘3)91102142)1‘11”’ 4 (1(x)A, — do(X)ANIP?
= — (7)(%) + 3.(0)3:)(4; — p,ANA; — pAy) .

Now let us solve (9.6) with respect to I’ and I¢*. We have

(9.6)

a(x) (A, — (Pl + Pz)Az) + ﬁz(x)MPQAz — ay(x)A, + ﬁﬁ(x)Al
9.7 Tox)(A, — (Pl + Pz)Az) -+ 52(x)P1P2A2 — TAx)A; + d(x)A, ‘
= (ay(x)0x(x) — To(2)Bo(X)N(A;, — 0, AN(A; — p:As),
— (au(x) + Bu(x)3:)(A; — piA)(A — pAy) — a(0)A, + ‘Bz(x)Axl
9.8) — (1(x) + 6,(x)3. (A, — PiAz)(Al - PzAz) — To(x)A, + 6(x)A,
= (A, — 0,4)(A, — 0, AW,
where
W, = ((2)8:(x) — ay(x)0(x)A; + (0,(2)8o(x) — Bi(x)3:(x)) A3
+ (@ (0)7(x) — T(x)a(x)A; + (B()T(x) — 5,(x)ers(x)) Asgs
and
a(x)(A; — (o, + p2)AY) — (ay(x) + Bu(%)32)
©9.9) + B(x)p,0,4, X (A — p,A)(A, — 0:A)
T(x)(A, — (o1 + 0)A,) — (1 (x) + 8,(x)3,)
+ 0:(x)0,0:4, X (A, — 0, A)(A; — pA)
= (A1 - plAZ)(Al - PzAz) Wz
where

W, = (a,(2)7(x) — ()T (2)A; + (a(x)0u(x)p10: — To(x) (01 + 02))
— T(x)(B(x)p10 — (x) (01 + p)))As
+ (BT(x) — ax(0)3(x)As3: + (Bu(x)(Gu(x) 0,0 — To(x) (02 + 02))
— 0y (®)(Bx)p102 — ax(x)(0: + 02)))Ase -

Since we have
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oo = — b
= (a,(2)7o(x) — a(X)7(x))(0(x)Bi(x) — Bu2)3,(x)) ",
(9.10) o+ e=a
= (T(%)Bi(x) — ax(x)0,(x) + a,(x)3,(x) — BoX)7,(x))
X (Go(x)Bi(x) — Box)3,(x)) ",

we can write

Ay = — (o102 + (o1 + 03 + @)
@1 — (B3(x) — BDRNT
where
U = a,(x)7(x) — a(x)7,(x)

+ (T(0)Bi(x) — ax(x)3,(x) + @, (2)d(x) — Lo)7(%))32

+ (3(x)Bi(x) — Bo(2)3,(2))(32)" -
Therefore the relation A, = — Ay, and an elementary calculation show
that

— W, = Ay{((2)d:(x) — T1(0)Bx(%))3 + (Bu(x)da() — 8,(2)B:(2))(32)’
+ (e (2)7o(x) — 7o) + (Bu)To(x) — Fi(xX)as(x))}
= By(x)3,(x) — 3(%)Bi(x) .

As for W,, we have
W, = (a(0)7o(x) — a(0)7(x)A; + V,A,
+ (ABl(x)TZ(x) - az(x)al(x))Axﬁz + VzAzﬁz

where
Vi = — (@b + 10)a) + 1EE®D + a@a)
and
Vi = — Bi(x)(0(0)b + Ty(x)a) + 5,(x)(B(x)b + ax(x)a) .
By (9.10) we can easily get
Vi = (a(x)7:(x) — a,()T(2))(T (%) Bi(%) — aa()3,(x))
X (52(35);81(35) - ﬁZ(x)al(x))_l ’
Vi = {(a(0)8,(x) — Bu(0)7:(x))(cta(x)0:(x) — Be(x)72(x))
— (a(x)3,(x) — Bu(x)T (X))} 3x)u(x) — Lo(x)3,(x))™" .

Then from (9.11)

9.12)
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VA, + VoAg, = (a(0)73(x) — au()T())(To(x)pi(x) — a(x)3,(x)) U
+ (@(2)0,(x) — B()To(%))* — (a(2)d,(x) — Li(2)T(x))
X (ay(x)3x(x) — u()To(2))3U" .

Therefore, by the relation A, = — A,3, again, we get

— W, = U Hay(x)1(x) — aa()71(2))(0(x)Bi(x) — Bo(x)3,(x))3
+ (Bu(x)75(x) — a()3,(x))(3:x)B(x) — Pa(x)3,(x))(32)"
+ (a,(0)7(%) — ()T (X))T (%) Bi(xX) — ts(x)3,(x))
+ (((2)0,(x) — Bu()7o(x))*
— (ay(x)0,(x) — Bu()T (X)) o(x)0:(x) — Lo 2)To(x)))32}
= To(2)B(x) — a(x)3,(x) .
Then by (9.7), (9.8) and (9.9), we see that (9.6) is written by

It = (By(x)d,(x) — Bi(x)d(x)) det (ax(x))™",
It = (B()Ty(x) — an(%)3,(x)) det (ay(x))~" .
This completes the proof of Theorem 9.1.

§4. Geometric structures of differential operators of infinite type

10. In this section we shall investigate a geometric structure of a
differential operator satisfying the condition (1), (2), (3) and (4) stated at
the beginning of the article 6.

ProposiTioN 10.1. Let P(x, D) be a differential operator of infinite
type at x, with the structure vector (a,b). Let p be a point of J'(R?, R?)
such that o'(p) is near to x,, pi(p) %0 and ((3,)" + ag, — b)(p) = 0. Then
a vector field Z given around B'(p)e R is a local cross-section of Ly if
and only if it satisfies the relations ZVI¢® = 0 and Z®I* = 0 around p.

Proof. By Theorem 9.1, the system of differential equations (9.2) is
written by

IP" = (By(x)d,(x) — Bi(x)dy(x)) det (ax(x))",

I = (Bi(0)7y(x) — ax(x)d,(x)) det (ay(x))~" .
Then if we denote by I" the pseudogroup on a neighbourhood of f'(p) € R
defined by I' 5 ¢ if and only if ¢@*I{? = I¢* and ¢V*I9* = I?, it is clear
that I' < A(P) around §'(p). Conversely by Proposition 8.1, I{® and I§?
are differential invariants of 2€(P) around p. Therefore Ly, C £, around
B'(p). This proves that Ly, == &, around F'(p).
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11. At the beginning of this article we shall define automorphic sys-
tems which will play an important role hereafter.

Let N and M be C~-manifolds with dim N = dim M and denote by
J*(N, M) the space of k-jets of local diffeomorphisms of N to M.

Let I be a pseudogroup on M. Then there corresponds to I' a weak
Lie algebra sheaf 2, on M. If we denote by B(L,) the pseudogroup on
M generated by local 1-parameter groups of local transformations which
induce local cross-sections of £, then P(L,) < I'.

Let {F,};., be a family of functions defined on a neighbourhood of
p e JXN, M).

DEerFiNITION 11.1. A system of differential equations
P. F,=0,---,F, =0

is said to be [-automorphic at (x,, f) if the following conditions (i), (ii)
and (iii) are satisfied:

(i) x,eN and f is a solution of P around x,.

(ii) Any solution of P near to f is written by ¢of for some ¢el
near to the identity.

@iii) For any € PB(L;), if the composite o f is defined, it is a solu-
tion of P.

Remember that we denote by &(P) the solution space of P and by
A(P) the pseudogroup generated by all local transformations ¢: M D U —
B C M satisfying ¢(S(P)|U = &(P)|B. U(P) is called the automorphism
pseudogroup of P. Since P is given on J“N, M), any solution of P is a
local diffeomorphism of N to M.

ProrposiTiON 11.1. Assume that I' is (N, k)-regular (c¢f. Definition 5.1)
and let {x,, -+, %, ¥, -+, ¥n} be a fundamental system of differential in-
variants of I' around p = j’;,,(f)ej"(N,]ll) where {x, ---,x,} is a local
coordinate system at x,e N. Consider the system of differential equations

p: yl’:zh"',ymzxm

where Ayx) = y,(i(f)), j=1,---,m. Around f(x,) if, near the identity
transformation, I' is defined by the condition that I's ¢ if and only if
¢V*y, =y, j=1,--+, m, then P is I'-automorphic at (x,, f).

Proof. Let f* and f* be solutions of P defined on a neighbourhood U
of x,., Then we have
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(11.1) yUHM) = y,Ge(F),  J=1-m

for any x e U. Let U* be a neighbourhood of p such that U*/D{¥ (cf.
Definition 5.1) is a manifold and let z* be the projection of U* onto
Ut/D®. Then (11.1) implies that z*(j%(f")) = #*(j%(f*). Let v be any local
diffeomorphism of U and define a local transformation o* of J*(N, M) by
o*(Ji(f)) = ji-s(fow). Then for any local transformation ¢ of M, in
particular for ¢ € I', we have ¢® o w* = 0*0 ¢* if the composite is defined.
This means that we have #*(ji%(f' o w)) = 7*(j%(f*o w)) for any x in the do-
main D(w) of w. We set g = f*o(f")"'. Then we have

gXJftew) =Jif o (f) o fow)
=Jjif*e0), xeD(w).

Therefore we get

(&N Jif e w)) = 7' (G 0 0)) , x € D(w)
or

(&"*y5(jufr o)) = ¥5(ji(f'ew)), x€Dlw),
j =1 .-.,m.

Since o is any local transformation on U, we have
(11.2) g(k)*y’;:y?, j—_:l, e, m.

If f* and f* are near to f, then g is near to the identity. Therefore (11.2)
implies that g belongs to I'. This completes the proof.

12. Now again we assume that N= M = R. Let (a, b)c R* and
denote by ., the pseudogroup on R’ defined by the condition that
Beany 2 ¢ = ($(wy, ), $o(uy, wy)) if and only if 9¢,/0u, = a(dg,/ou,) + d¢./ou,
and 9¢,/0u, = b(d¢,/ouw,).

Let us consider a differential operator P(x, D) of I'(2, R*) to I'(2, R?)
of order 1 satisfying the following conditions:

(i) P(x, D) admits a solution f which is a local diffeomorphism of
R? to R* defined on a mneighbourhood of x,.

(i) The automorphism pseudogroup A(P) of P(x, D) is B, for some
vector (a, b) € R* satisfying ((3.) + a3, — b)(p) = 0 where p = ji (f).

TueoreM 12.1. If P(x, D) above is of infinite type at x, with the struc-
ture vector (a, b), the system of differential equations P: P(x, Dyu =0 is
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A(P)-automorphic at (x,,f). Conversely, under the analyticity, for a dif-
ferential operator P(x, D) satisfying (i) and (ii), if P: P(x, D)u = 0 is %(P)-
automorphic at (x,, f) then there exists a differential operator P(x, D) of
infinite type at x, with the structure vector (a,b) such that S(P) = &(P)
near f.

Before proving Theorem 12.1, the following lemma is prepared.

Lemma 12.2. For any vector (a, b) € R® there exists a differential oper-
ator P(x, D) of infinite type at x, with the structure vector (a, b).

Proof. Choose arbitrary constants B, f,, 6, and 4, satisfying 6,8, —
B0, % 0 and consider the following equations with variables X, X,, X,
and X,:

0,X, — 0, X, — BX, + B X, = a(0,B, — ‘3251) ’

XzXz - X1X4 = b(52ﬁ1 - 5251) .

It is easy to see that the set of points (X, X,, X, X,) € R* satisfying (12.1)
contains such a point (X?, X3, X3, X9 that 6, X? — p,X? 20, 0,.X] — B.X{ %0,
BiX) — BX?x0 and 6,X] — 0,X5 % 0. Then if we set a, = X, a, = X},
7, = X} and 7, = X!, the system of differential equations

(12.1)

alp} + ,81p% + aypi + ,szg =0,

7.0} + 607 + T.ps + .05 = 0

is pseudoelliptic at any x € R?, pseudoinvolutive at any p € I(P,)) and satis-
fies det Ki(x) = 0. Then by Theorem 4.1 and Remark 6.1, P, is of infinite
type at any x,e€ R* with the structure vector (a,b). This completes the

0.

proof of Lemma 12.2.

13. Proof of Theorem 12.1. Assume that P(x, D) is of infinite type
at x, with the structure vector (a, b). By Theorem 9.1 the system of dif-
ferential equations P i.e. (9.2) is written by

It = (B(x)d,(x) — Bu(x)3(x)) det (ax(x))™",
Ip? = (Byx)7o(x) — an(x)3,(x)) det (ax(x)) ™

where {x,, x,, I¢'?, I$*} is a fundamental system of differential invariants
of A(P) around p. Then by Proposition 10.1 and Proposition 11.1, we see
that P is UA(P)-automorphic at (x,, f).

Conversely we assume that the system of differential equations P is
A(P)-automorphic at (x, f). By Lemma 12.2 there exists a differential
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operator P(x, D) of infinite type at x, with structure vector (a, ). Then
by Proposition 10.1, the pseudogroup P ., is, near the identity, defined
as the set of local transformations ¢ on R’ satisfying ¢®*[2® = J%? [ =
1,2. Therefore by Proposition 11.1, the system of differential equations
(13.1) Ipr =2,  Ie? =2,
where 1,(x) = I¢°(i(f)), i = 1, 2, is YA(P)-automorphic at (x,, f). Since f is
a solution of P: P(x, D)u = 0, the system of differential equations P is
written by (13.1) around p and near f. Note that A(x) % 0 because f is
a diffeomorphism and so satisfies 3,3, — 3, = 0 at ji(f).

Let @' and @% be any two constants satisfying a@3'4,(x,) + @3*2.,(x,) > 0.
We set

AX, Y, x) = X&(x) + Ya(x),

(132 B(x) = ai'a(x) + @'2(x)
and

CX, Y, x) =(@X — aY) (X + bY)AX, Y, x)d — B(x)Y)
(13.3) + X(B(x)X — A(X, Y, x)a)},

D(X, Y, x) = (@7°X — @'Y) " {(ba3 + adi)A(X, Y, x)a3’ — B(x)Y)

+ @(B(x)X — A(X, Y, x)a)} .
Then it is easy to see that there exist constants X, and Y, satisfying the
following conditions (13.4) ~(13.8):

(13.4) X, — @Y, % 0.
(13.5) B(x)C(X,, Yy, ) — AKX, Yo, x)D(X,, Yy, 5) 2 0.
(13.6) Bla)@ — a2D(X,, Y, %) = 0.

(13.7) A(X,, Yy, x)X, — C(X,, Yy, %)Y, % 0.

(13.8) A(X,, Y,, x)a2 — B(x)Y, % 0.

If we set al(x) = AX,, Y, x), @®(x) = B(x), @' = X, and @ = Y,, then
(13.3) is written by

a(@H (@) — EER))

C(X, Y, ) = —det (@) | + aP@al — a'wa |,

— b@’(x)as — aX(x)ay’) — a3

@’ a(@'(x)a; — ax(x)ay)

D(X,, Y, x) = — det (@)~ + @H(x)a; — a’(x)as | .

@' — W(@H(x)a — at(x)a;’)

(13.9)
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By (13.2), A(X,, Y,, x) = @*(x) and B(x) = @ (x) satisfy

a7 A(X,, Yo, x) — @:’B(x) = 2,(x) det (@)

13.10
( ) — G5A(X,, Y, x) + @3'B(x) = 2,(x) det (G,)

Therefore we get

(@P(x)as — ayar(x)) det (@) = (%),
(@3'af(x) — ai*(x)as’) det (@) = (%)
around x,.
If we set a'(x) = C(X,, Y,, x) and ai'(x) = D(X,, Y,, x), then by (13.6),
(13.7) and (13.8), we get
det K'(x) = (@1'(x)ai’(x) — a’(x)ai'(x))'(@i'ai’(x) — ai'ai(x))
X (@ar(x) — a;’ai(x))
2 0 around x,.
Now consider the system of differential equations
a'(x)pt + @ x)pt + a@;'py + @'p; =0,
ai(x)p; + at(x)pi + a@i'p; + @'p; = 0.
Then P is pseudoelliptic at x, and det Ki(x,) = 0. From (13.9), we obtain
the relations

P

(a1 A - W) = 6@ — EEW) + BEE ~ datE,
Y aape) — avan() = b@rare) — ara(x)) .

Furthermore under the analyticity P is pseudoinvolutive at any point
peI(P). Therefore by Theorem 9.1, P is written by

It = (G1(x)@3 — @;’ai(x)) det (@,) ",

I3 = (aa(x) — @(x)a) det (@' .
This shows that the solution space &(P) of the system of differential
equations P coincides with the solution space &(P) of the system of dif-

ferential equations P around x, and near f. This completes the proof of
Theorem 12.1.

§5. Differential equations whose invariant structures are
families of pseudoelliptic systems

14. Let f be a local transformation on R? defined on a neighbour-
hood of x, and set p = ji(f). For a vector (@, b) and the point p, we
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assume that ((3,)* + a3, — b)(p) = 0.

Let F(u,, u,) be any function on R* such that (0F/ou,)* + (0F/ou,)* x 0
on any domain of R* and set

Ax) = FAL (G, 1))
around x,. Consider the single differential equation
P(F):. F{y*, I¢®) = 2
and the pseudogroup
I'(F) = {p € 4 (R"); pO*¥F (17", I3") = F(I°, I3)} .

LEmma 14.1. A(P(F)) = I'(F).

Proof. It is clear that A(P(F)) D I'(F). Now let ¢ € U(P(F)). Then
OHE TP, IP®N3E(f) = A(x) and so we have
(14.1) gOREIP?, I ) = FAL?, I3*)(JA 1)) -

Let o be any local transformation on a neighbourhood U of x,, Then
the local transformation o' on J'(R’, R*) defined by w'(jX(s)) = ji-iu(s°w)
satisfies 0'o g™ = ¢ ow'. Therefore by (14.1) we get

gOKEFIL?, I3")(Gf o 0)
= ¢ * o 0" ¥ (F(IP?, I ()
= 0¥ o gOK(F (I3, IE)(7L 0 (f))
= o"*F(I2°, I¥)(GL ()
= F(I?*, I)(Jf o w))

where x is any point in the domain of w. Since w is an arbitrary local
transformation on U, we have

O, I5%) = F(IE, I5)
This shows that ¢ € I'(F) and completes the proof of Lemma 14.1.

15. Let I and J be differential invariants of %, defined on a
neighbourhood of ji(f) € J(R}, R*) such that I + J = constant and 0I/ox, =
dJjox, = 0, i = 1, 2 where {x,, x,, u,, u,, pi, pi, Pi, 3} is the canonical coordi-
nate system on J'(R’, R?). Consider any vector field

Z = (X,,pi + X.,p)@/op1) + (Y., pi + Y., p)0/0pD)
+ (X,,p: + X, p)@/0p3) + (Y., p: + Y,,03)(3/0p3)
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on J'(R', R’). Then by setting W, = pi(8/op}) + pid/opy), W, = pi@/ap}) +
p0/opy), W, = pi(@/dp)) + pi6/op;) and W, = pi(8/op}) + pi(0/opd), Z is writ-
ten by

Z=X,W + X, W, + Y, W+ Y, W,.

ProposITION 15.1. Assume that b 2 0 and the following two conditions:
(1) Z is a cross-section of 2y, , if and only if ZI = 0.
(i) Z is a cross-section of 2y, if and only if ZJ = 0.
Then Z is a cross-section of Ly ., if and only if Z(I + J) = 0.
Proof. By the condition (i), ZI = 0 if and only if X,, = aX,, + Y,,
and Y,, = bX,,. On the other hand ZI =0 if and only if X, dI(W)) +

X,,dI(Wy) + Y, dI(W,) + Y, dI(W,) = 0. Therefore, under the condition (i),
we have

(eX,, + Y, )dI(W,) + X, dI(W,) + bX,,dI(W,) + Y,,dI(W,) =0.

Since X,, and Y,, are arbitrary, we see that, under the condition (i), the
following relations (15.1) hold:

adl(W,) + dI(W,) + bdI(W;) = 0,

151 dI(W) + dI(W) = 0.

Similarly, under the condition (ii), the following relations hold:

adJ(W,) + dJ(Wy) + bdJ(W;) =0,

(15-2) dJ(W) + dJ(W) = 0.

Then we get the relations

(15.3) ad(I + JYW) + dI + J)YW,) + bd(I + J)(W;) =0,
' dd + JYW) + dd + J)(W) = 0.
Now we have
Z(I + J) = X, dI + )W) + X,,d(I + J)W,)
+ Y d( + W) + Y, d( + JXW).
Therefore by (15.3), we get
Z<I + J) = (Xu1 - aXuz - Yug)d(—[ + J)(Wl)
+ (Y, — bX, )dI + JYW,).

We shall now prove that d(I + J)W) %0 and d{ + J)W,) = 0.
Define the pseudogroup I';,; by I';,, = {p € L(RY); ¢V*I + J) = I + J}.

(15.4)
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If d(I + J)(W,) = 0, then W, is a cross-section of £,,,,. On the other
hand 2,,,, D 2, and the vector fields Z, = pi(3/ap}) + pi(8/op}) + pi(d/dpy)
+ pi0/ap3) and Z, = (api + p)(@/dp1) + bpi(d/api) + (api + p)(3/d p:) + bpi(3/dp3)
are cross-sections of ¥y ,,. Therefore W, Z, and Z, are cross-sections of
%r,.,» Consider the space (D, ), = (86,),[(8%, ) C T,(J(R:, RY). Then
(D§), J) is contained in the space of integral points (I + J — 2) of the dif-
ferential equation I + J = 1 if p e YT + J — 2) where A(x) = (I + J)(GL(f)).
Since the image of the map j(s): D= the domain of s)>x —ji(s)e
JYR, R for any solution s with rank 2 of the differential equation I 4
J=121is transversal to Df),,, dimDf), 4+ 2<dimJI + J —2) =T and

so dim Df), <

Now 9/ou,, a/auz, Z,, Z, and W, are cross-sections of D{) . There
exists such a point p e J'(R?, R*) that the tangent vectors (3/ou,),, (a/auz)p,
(Z), (Zy), and (W,), are linearly independent and so, around p, D{), , i

generated by 6/0w,, 8/ou,, Z,, Z,, W,. Therefore [W, Z,] is also a local cross-

section of D),  around p.

However we have [W,, Z,] = bpi(6/0p}) + bpy(d/dp3) — pi(d/dp1) — pi(d/ops)
and this is not obtained by any linear combination of the above genera-
tor. This shows that [W,, Z,] is not a local cross-section of D@

I'r+g
around p and this contradicts to the involutiveness of D) Therefore

Tr+g°
d(I + J)W) = 0.

Similarly if d(I + J)(W,) =0, around such a point p that (3/ou,),,
©/ouy),, (Z,),, (Zy), and (W,), are linearly independent, {0/0u,, 3/ou,, Z,, Z,, W}
is a generator of D), .. However we have [W,, Z,] = pi(d/dp}) + pi©0/opi) —
(apt + pH(0/0p}) — (aps + pI)(@/op}) which is not obtained by any linear
combination of the above generator. This contradicts to the involutive-
ness of D), .. Thus we get d(I + J)W,) = 0.

Now it is easy to see that W, (I + J) and W,(I + J) are independent
as functions. Therefore by (15.4), Z(I 4+ J) = 0 if and only if X, = aX,, +
Y,, and Y,, = bX,,. This completes the proof of Proposition 15.1.

COROLLARY 15.2. Assume that b == 0 and I™J" 2 constant where m and
n are integers such that m* + n* 5 0. Then under the conditions (i) and (ii)
in Proposition 15.1, Z(I™J") = 0 if and only if Z is a cross-section of Ly, ,.

Proof. Assume that n = 0. Since we have Z(I™) = mI™'ZI, Z(I") =0
if and only if ZI=0. Therefore by the condition (i), Z(I™) = 0 if and only if
Z is a cross-section of 2y, ,. The similar assertion holds for the case m = 0.
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Now assume that m %0 and n % 0. Since Z(log|I|) = ZI/I, ZI =0
if and only if Z(ogl|I]) = 0. Therefore Z(mlog|I]) = 0 if and only if Z
is a cross-section of %, ,. Similarly Z(nlog|J|) = 0 if and only if Z is
a cross-section of 2y, ,. We have mlog|I|+ nlog|J| = constants because
I™J" 2 constant. Then by Proposition 15.1, Z(mlogl|I|+ nloglJ|) = 0 if
and only if Z is a cross-section of 2y, ,,.

On the other hand we have Z(mlogl|I|+ nlogl|J]|) = Z(log|I™J")) =
Z(ImJ™[ImJ". Therefore Z(I™J") =0 if and only if Z(mlog|I|+
nlog|J|) = 0. This completes the proof of Corollary 15.2.

CoroLLARY 15.3. Let F(z, 2,) be a non-constant real rational expres-
sion of the variables z, and 2, i.e. F(z;,2,) = (035 ;21 @;,27259) (0L 11 byi2220)
where a;, and by, are non-zero real numbers and m,, n, are integers > 0.
Assume that I and J are functionally independent and b 2 0. Then, under
the conditions (i) and (ii) in Proposition 15.1, Z(F(1, J)) = 0 if and only if
Z is a cross-section of 2y, ,.

Proof. Since I and J are functionally independent, >3i ., a, I™J™
A< <s), 2 b ™™ (1 < ¢ <t) are not constants. Therefore by
Proposition 15.1 and Corollary 15.2, Z(35 ., a;;I™J™) = 0 if and only if
Z is a cross-section of L, ., and Z(37;,., by, I™J™) = 0 if and only if Z
is a cross-section of 23, ,. Since F(I, ) is not constant, again by Corol-
lary 15.2, Z(F(I,J)) = 0 if and only if Z is a cross-section of Qg ,,. This
completes the proof.

16. Now let us study the pseudogroups I'je.» and I'j... Let ¢ be any
local transformation on R:. Then for 3, = p!/p! we have
$D*, = ($*pD/($V*pD)
(16.1) = (0¢(w)/0x,)/(0p.(1)[0x,)
= (¢ipi + ¢:pD/(dipi + $ipD)
where ¢ = (¢,, ¢,) and ¢} = 8¢,/0u,. Similarly we have

(16.2) ¢*3, = (4ip: + $ep)/(dipt + $ipd)
and
(16.3) ¢V *3, = (ips + Gp)/(dipi + $ap3)

where 3, = py/pi and 3 = pi/pi.
PrOPOSITION 16.1. Rr/pp == L0 = 8, if b 2% 0.
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Proof. The differential invariant I¢® of $,, is defined by

IP" = s — 33)/((8:)" + a3 — b) .
By (16.1), (16.2) and (16.3) we have
$VH@e — 3a30) = ($igs — gap)(0ip; — PipPD/($ipi + $ipD)’

and

$OM@) + a3, — b)) = (hipy + ¢:p))'/G
where

G = (¢ipi + 0D + algipi + GPNGiPL + ¢ipl) — b(gipt + ¢ipd)

Then we get

PRI = (figs — Pig)(pip: — Pap))/G
On the other hand we have

It = (pipi — pipD/(P)* + apipi — b(pD)?) .

Therefore I';.:5¢ if and only if ¢ satisfies

(16.4)  (gigi — Pip)(pipi — PapD)/G = (pip: — Pip)/(PD)* + apipr — b(p1)) .

On J'(R*, R?), we have plp? — pip? = 0. Therefore the relation (16.4) is
written by

(16.5) (pig3 — pspD((p))* + apipi — b(p)) = G.

This relation identically holds as a polynomial with respect to the vari-
ables pi, pi, p; and p;. Thus we can induce from (16.5) the following three
relations among ¢i, ¢, ¢; and ¢;:

(16.6) Hrd: — i = (42 + agigs — b(4Y)?,
(16.7) b(gigi — did3) = (9D + agdigl — b()*,
(16.8) algips — dipl) = 26103 + a(Pids + Bipt) — 2bgids .

These relations (16.6) ~ (16.8) are the defining equations of I'j.e.

Let us now induce from these relations the defining equations of
Rrjas

Let X(u)(0/ou,) + Y(u)(©/du,) be any local cross-section of 53,.11“,,.. If
¢, 1s the local 1-parameter group of local transformations generated by
X(w)(@/ou,) + Y(w)@/ou,), ¢, satisfies (16.6) ~ (16.8) and
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dé(w/dt|._, = XW)(@/ou,) + Y(w)(@/ow,),
do(p.(w)fou,dt],-, = X, (u),
da(¢t(u))2/aukdt|t=0 = Yuk(u)

where

¢t(u) = ((¢’c(u))1) (¢t(u))2) .
By these relations and by (16.6), (16.7), (16.8), we get

(16.9) X, +Y,=2Y, +aX,,

(16.10) — bX,, +Y,)=aY, —2bX,,,

(16.11) aoX,, +Y,)=2Y, +aoX, +7,) — 2bX,,.
From (16.9) and (16.11), we obtain

(16.12) X, =aX,, +7Y,,

(16.13) Y, = bX,.

Since (16.10) is induced from (16.11), the relations (16.12) and (16.13) are
equivalent to the relations (16.9), (16.10) and (16.11). This proves that
(16.12) and (16.13) are the defining equations of 2., and this means that
QFI“”’ = ’Q'ﬁ‘(a,tn'

Next let us consider the defining equations of Lrige We have

¢V *(3.) + ag. — b)) = (gipi + )G
and
¢D*(bgs — (a + 3203) = (¢ip1 + $ipD)*H
where
H = b(gip; + $:ip)(gipi + ¢:0) — a(gipi + ¢:p)(ip: + $ipd)
— (¢ipi + ¢ipD(ip: + $2p3)
= (b(¢)* — agigi — ($D")pips + (boigs — agipl — $ip})pip:
+ (bgipt — agigs — Gig)pip: + (b(ga)* — adups — ($2))Pipi .
Since I = ((a@ + 3.3 — b3.)/((3)* + a3, — b), by easy calculations we see
that ¢ satisfies ¢V*Ip* = I® if and only if
(16.14) (P} + apipt — b(p))H = (bpip: — apip; — PiP)G .

This relation holds identically as a polynomial with respect to the vari-
ables pi, p}, p; and pi. Therefore we get the following relations (16.15) ~
(16.22) among 41, ¢i, ¢; and ¢3:
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b(¢1)’ — agigi — (81" + albgids — adpi — Big)

16.15
(16.15) = B + agig — b))
(16.16) a(b(g))’ — agipt — (¢1)) — b(bgid; — agipt — $idi)
' = b(2¢}6% + alpigl + pipd) — 2bgiaY)
(16.17) — b(b(g1)* — agigi — (6))°) = () + agipl — b{gD)?) ,
(16.18) bpipy — agsgi — ¢agi =0,
bgigh — aghgt — gii -+ a(b(yd’ — agigi — (4D
(16.19) = — (26163 + a(gigi + ¢ipl) — 2bdigh)
— a((¢3)? + agidy — b(#3)) ,
a(bgsgi — agips — digs) — b(b(g:) — agids — (45))
(16.20) = — (1) + agigl — b($1))
— a(2¢3p3 + a(pips + Pipd) — 2bgig))
(16.21) b(bgip1 — agips — ¢igs) = a(($)’ + agigi — b(¢)?) ,
(16.22) b(gr)* — agigs — (63 = — ((¢3)° + agigs — b(4)) .

These relations are the defining equations of I",..

Let us induce the defining equations of Qplg}b from the above rela-
tions (16.15) ~ (16.22). Let X(w)(@/ou,) + Y(u)(@/ou,) be any local cross-
section of Lrpg0 Then from (16.19) we get

(16.23) Y, = bX,,.
From (16.16) we get bX,, = abX,, + 0Y,, and so
(16.24) X, =aX,, + Y,

because b x 0. It is easy to check that X(u) and Y(w) satisfy the other
relations induced from (16.15) ~ (16.22) if they satisfy the relations (16.23)
and (16.24). Therefore X(u)(@/du,) + Y(u)(3/ou,) is a local cross-section of
Rrgo if and only if it satisfies (16.23) and (16.24). This completes the

proof of Proposition 16.1.

THEOREM 16.2. Let F(z,, z,) be a non-constant real rational expression
of the variables z, and z,. We set A(x) = FUIX*(GI(f)), I*(Gf))) and con-
sider the single differential equation P(F): F(I#?, I3*) = A around the point
p = ji(f). Then the automorphism pseudogroup W(P(F)) of P(F) coincides
with the pseudogroup B, around B'(p) and near the identity if b x 0.
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Proof. Since I?* and I3* are functionally independent, by Proposi-
tion 16.1 and Corollary 15.3, we have L,y = Z;,, Where I'(F) = {¢e
A(RY); gM*F(Ip0, I9?) = F(I¢*, I¥%)}. Then by Lemma 14.1, we get Sypr)y =
L,..- This completes the proof of Theorem 16.2.

§6. Foliations and differential equations

17. Let us consider a foliation § on a manifold M and denote by
T(%) the tangent bundle to .

DeFintTioN 17.1. For a foliation , if there exist 1-forms o, ---, o,
on M satisfying the following conditions (1), (2) and (3), then the pair
(®, o) is called a generalized Lie foliation where o = (0,, - - -, w,):

(1) g = codim {.

@) T(®)> X if and only if o(X) = 0.

B) dw, =2« Cipw;Nw, where all c¢;;, are functions on M. If all
¢, are constants, (%, w) is called a Lie foliation.

Now consider a differential operator P(x, D) of infinite type at any x
with the structure vector (a, b). Then we have a system of differential
equations P: P(x, D)u = 0 which is written on JY&% R®) by (9.1). By the
pseudoellipticity of (9.1), it is also written by the following normal form

p} = Hl(xly x27 p;) pg) ’

(17.1)
Dt = H(x;, x5, p3, p3) .

LEMMA 17.1. The set of integral points I(P) of (9.1) or (17.1) is a 6-
dimensional regular submanifold of J'(R?, R?).

Proof. The vector fields Z, = (api + pi)@/dp}) + bpi(@/op?) + (ap; + pi)
-(9/0py) + bpi(9/dp) and Z, = pia/api) + pi9/opi) + pi/opy) + pi0/opi) on
JYR?, RY) are linearly independent at each point because pip: — pip; =¢ 0.
We set DY = (2f%),/(2), and consider the correspondence D®:
JYRL R) > p— Dy < Tp(j (R*, R?)). Then by Proposition 6.2, DV is a 4-
dimensional involutive distribution on J'(R% R?) generated by Z, Z,, Z, =
d/ou, and Z, = 9/du,. Since the image of the map j'(s): U — J(R?, R for
any solution s: U — R* of P is transversal to D and dim (Im (j'(s))) = 2,
we see that I(P) is a 6-dimensional regular submanifold of JY(R?, R?)
defined by p! = H'(x;, x,, P}, p?) and p? = H¥x,, %, p}, p). Since JY(R?, R?)
is open in J'(R?, R?), the proof of Lemma 17.1 is completed.
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Let us consider the distribution E on J'(R?, R®) generated by the fol-
lowing vector fields E, and E,:

E, = 3/ox, + pi(d/ou,) + pi(@/ow.) ,
E, = 9/ox;, + pi@/ou,) + pi@/ou,) .

Since [E, E,] = 0, E is involutive. For any local map f of R* to R, the
vector fields E, and E, are tangent to the image of the map j(f) at each
point of it. Since P is pseudoinvolutive, we have I(P) = S = {ji(s);
s € &(P), xethe domain of s}. By Lemma 17.1, I(P) is a regular submani-
fold of J'(R?, R?). Thus we can obtain the involutive distribution E on
I(P) by restricting E to I(P).

PropositioN 17.2. The foliation § on S = I(P) given by E is a gener-
alized Lie foliation of codim 4.

Proof. The vector fields E,, E,, Z,, Z,, Z;, Z, on J (R*, R*) are tangent
to S and linearly independent at each point of S. By Lemma 17.1 these
vector fields define a complete parallelism on S.

Let L be any leaf of §. Then for any point p e L, there exists a
neighbourhood U of p such that L N U is the image of the map j'(s) for
a solution s of P. Conversely for a solution s of P, the image of ji(s)
is an open subset of a leaf of §. By Proposition 6.2, Z,, Z, Z, and Z,
are cross-sections of Lyp,. E, and E, are tangent to any leaf L of § at
any point. Thus we see that [E,, Z,] is also tangent to any leaf of {,
that is, at any point of S, [E;, Z,] is a linear combination of E, and E,.
On the other hand, [Z,, Z,] is clearly a cross-section of [y, that is,
[Z;, Z,] is a linear combination of Z,, Z,, Z, and Z, at any point of S.

Let w,, ws, 05, 0, be 1-forms on S defined by 0,(Z,) = d,;, and o,|E = 0.
Then it is easy to check that

da; = 3 ¢ 0Ny
ik
and
T® > X if and only if w(X) =0

where all ¢, are functions on S and v = (w,, 0, 0, ®,). This shows that
the pair (%, ) is a generalized Lie foliation of codim 4. This completes
the proof of Proposition 17.2.

18. Let f be a submersion of R* to R® and let us consider a single

differential equation
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P(F): FUI" I3") =2

on J (R?, R*) where F(z, z,) is a non-constant real rational expression of
the variables z, and 2z, and A(x) = FI*(Gf)), I#°(jXf))). The automor-
phism pseudogroup A(P(F)) is, by Theorem 16.2, B, ,, near the identity if
bx0.

Assume that b % 0, I(P(F)) is a regular submanifold and P(F) is
pseudoinvolutive i.e. I(P(F)) = S(P(F)). Let s: U— R e &P(F)) and
denote by G'(s) the image of the map j'(s): U— J' (R, R?). If we denote
by J, the maximal integral manifold of D™ through ped (R, RY), then
DM(s) = U ,eps) 3, 1s a regular submanifold of S(P(F)). Denote by
S°(P(F)) the connected component of S(P(F)) containing G'(f).

ProrosiTioN 18.1. There exists a foliation § on S°(P(F)) satisfying
the following conditions:

(i) codim{ = 1.
(1) On each leaf L of ¥, there exists a generalized Lie foliation (., w;,
of codim 4.

Proof. Let L be a maximal connected subset of S°(P(F)) which is
locally given by D%(s) for some s € &(P(F)). Denote by § the family of
all such subsets of S°(P(F)). Then it is clear that SAP(F)) = U ez L.

If L, and L, are elements of § with L, N L, = ¢, then for peL, N L,
there exists an element s € S(P(F)) such that ji(s) = p. Since D"(s) C L,.
D®(s) C L, and dim D"(s) = dim L, = dim L,, it is clear that L, = L,.
Therefore § is a foliation on S°P(F)) and codim$ =1 because
dim S°(P(F)) = 7 and dim L = 6 for Le .

Since the vector fields E, = 0/ox, + pi(0/ou,) + pi(d/ou,) and E, = d/ox,
4 pi@/ou,) + pid/ou,) are tangent to G'(s), they define a 2-dimensional
involutive distribution D, on L i.e. the foliation &, on L. Furthermore
the vector fields Z,, Z,, Z, and Z, are tangent to D%“(s) at each point of
D" (s) for se@&(P(F)) because Lypuy) = Ly,,. Therefore, in particular,
they are tangent to L at each point of L. Define the vector valued 1-
form o; = (0}, 0}, 0}, 0}) by

w}‘lDL = 07
wi(Z) = b;; .

Then we see that the pair (§., w,) is a generalized Lie foliation on L of
codim 4. This completes the proof of Proposition 18.1.
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