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Introduction

In the study of elliptic differential operators of second order, we found
that the automorphism pseudogroups are of finite type ([4]). However
this fact takes a complete change in elliptic differential operators of first
order.

So as to make the objects which can be dealt with clear, we intro-
duce the concept of pseudoellipticity of first order differential operators
(Definition 1.1), which is naturally satisfied by first order elliptic dif-
ferential operators.

Here we restrict our considerations to differential operators defined
on the jet space J\R2, R2). We can classify first order pseudoelliptic dif-
ferential operators into two types: One is of finite type and the other is
of infinite type.

If a differential operator P(x, D) is of finite type, the automorphism
pseudogroup is generated by the maximal subgroup of the affine trans-
formation group whose linear part is just the center of GL(2, R) (Cor-
ollary 4.2). Thus in this case by similar arguments to elliptic differential
operators of second order, the differential operator P(x, D) admits a
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transversally projective structure on the space of integral points I(P)
of P(x, D) (cf. [4]).

If a differential operator P(x, D) is of infinite type, the system of
defining equations of the automorphism pseudogroup 2ί(P) is of Cauchy-
Kowalewski type (Theorem 4.1, Definition 6.1).

In this paper we develop an invariant theory of first order pseudoel-
liptic differential operators of infinite type. In particular, we determine
the canonical invariant generator of a first order pseudoelliptic system
of differential equations of infinite type (Theorem 9.1). Consequently we
see that, under the differentiability of class Cω, a first order differential
operator P(x, D) is pseudoelliptic and of infinite type with the structure
vector (α, b) if and only if it is 2ί(P)-automorphic and 2l(P) = $β(α,6) where
Sβ(α,6) is a pseudogroup determined by the vector (α, b) (Theorem 12.1).

From this standpoint we study a generalization of pseudoelliptic dif-
ferential operators of infinite type and prove that, if a single differential
equation P is "decomposed" into a family of pseudoelliptic systems of
differential equations of infinite type with the structure vector (a, b) by
a rational expression with two variables, then the automorphism pseudo-
group δί(P) coincides with that of each pseudoelliptic system of differen-
tial equations (Theorem 16.2). These theorems (Theorem 12.1 and 16.2)
are very interesting from the viewpoint of geometric foliations. We state
these theorems in terms of foliations (Proposition 17.2, 18.1) and attempt
to connect our study of differential equations with that of transversal
structures of foliations.

In Section 1, the system of defining equations of the automorphism
pseudogroup 2ί(P) of a first order pseudoelliptic differential operator P(x, D)
is determined (Theorem 4.1).

In Section 2, we calculate a fundamental system of differential in-
variants of 2ί(P) for a pseudoelliptic differential operator P(x, D) of in-
finite type (Proposition 8.1).

In Section 3, we find a canonical generator of a pseudoelliptic system
of differential equations of infinite type P(x, D)u = o (Theorem 9.1).

In Section 4, we state a characterization of a pseudoelliptic differen-
tial operator P(x, D) of infinite type by the standpoint of the automor-
phism pseudogroup δί(P) (Theorem 12.1).

In Section 5, we study a generalization of a pseudoelliptic system of
differential equations of infinite type from an invariant point of view



PSEUDOELLIPTIC 17

(Theorem 16.2).
In Section 6, we study a structure of a pseudoelliptic system of dif-

ferential equations of infinite type or of its generalization from the view-
point of foliation (Proposition 17.2, 18.1).

A generalization of our study in the sapce J\R\ R2) to that in the
space J\Rn, Rm) and a general study of foliations associated with first
order pseudoelliptic differential operators or their families remain to be
done as interesting problems.

§ 1. Defining equations of automorphism pseudogroups

1. Let E be a vector space over R and denote by Γ(n, E) the set of
local C°°-maps of Rn to E. Let F be another vector space over R and
denote by Horn {E, F) the vector space over R of linear maps of E to F.
Then for the canonical coordinate system {x19 , xn} on Rn, a differential
operator of Γ{n, E) to Γ(n, F) of order 1 is an expression

P(x, D) = Σ α*(*)A> + b(x)

where Dk — d/dxk and ak(x) and b(x) are Horn (E, F)-valued C°°-functions

on Rn.

In this paper we deal with only these differential operators of order
1.

To this differential operator P(x, D) there corresponds the differential
operator

n

called the principal part of P(x, D).

DEFINITION 1.1. A differential operator P(x, D) •= YJ

n

k=1ali{x)Dk + b(x)
of Γ(n, E) to Γ(n, F) is said to be pseudoelliptic a t x e Rn if dim E = dim F
and det ak(x) p̂ 0 for k — 1, , n.

Denote by J\n, k) the 1-jet space of local maps of Rn to Rk and as-
sume that k — dim E. Then for any differential operator P(x, D) it is
easy to see that there exists a unique map σ: J^n, k) —> F such that
P(x, D)f - σ(jl(f)) for any element / e Γ(n, E) where jl(f) is the 1-jet of /
with the source x.

Denote by 0 eF the zero of F and set I(P) = a~\0) c J\n, k). Let
©(P) be the set of elements feΓ(n,E) satisfying P(x, D)f = 0 and set
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= {jl(f); x belongs to the domain of f and fe<5(P)}(zJι(nyk).
Then, in general, we have S(P) C I(P). Each element of ©(P) is called
a solution of P(x, D) and each point of I(P) is called an integral point
of P(x, D).

DEFINITION 1.2. A differential operator P(x, D) = Σ*=i ak(x)Dk + b{x) is
said to be pseudoinvolutive at p e I(P) if S(P) = I(P) on a neighbourhood
of p e J^tt, £).

Note that, under the analyticity, any differential operator of order 1
which is pseudoelliptic at x is psedoinvolutive at any point p e I(P) whose
source a\p) = x.

2. In the following we assume that n = dim-B=dimF = 2 and that
any differential operator P(x, D) = Σ?Ui au(x)Dk + b(x) under consideration
is pseudoelliptic at a point x e R2 and pseudoinvolutive at any point p e
I(P) with a\p) = x.

Choosing a coordinate system [ul9 u2} (resp. {ϋ^ u2}) on E (resp. F), we
can set ak(x) — (<4y(#))i<t,.7<2 a n d 6(^) = (6ίi(jc))1<ί,J<2 For any element
u € Γ(2, E), if we set P(x, D)^ = u, then we have

vt = Σ Σ oί^xXdUjIdx^ + Σ 6 ' ^ ) ^ (i = 1, 2).

Let 2ΐ(P) denote the pseudogroup of all local transformations φ on E
such that, for any u e ©(P), if the composition ^ow is defined, then φou
e ©(P). St(P) is called the automorphism pseudogroup of P(x, D). For

such φ and u we have

(2.1) L Σ αl/(x)(aι/,/9xfc) + Σ bίj(x)uj = 0 (ί = 1, 2)

and

(2.2) Σ Σ Σ anxXdφjWduXduJdXt) + Σ V'(x)φs{u) = 0 (i = 1, 2).

Then by the pseudoellipticity of P(x, D) at JC and by (2.1) and (2.2), we get

det (aλ(x)) Σ Σ ai'ixXdφjMlduMduJdxd + Σ
4 1 j l 1

Σ Σ iXφjM Σ
4=1 j=l 3=1

X UlXx^Σ a\\x){dujdxι)
I V=i

(2.3) - α?(x)(Σ a\%x)(dujdx2) -\
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ί / 2 2 \

X {αϊX^MΣ al£(x)(dujdx2) + Σ &u(x)^)

- a\\x)(± al\x)(dujdxt) + Σ &"(*)«.)}

+ det (αi(x)) Σ 6 f ί ( * ^ = 0 (i = 1, 2).. 7 = 1

Since P(x, JD) is pseudoinvolutive at any point p e I(P) with ^(p) = x, the

relation (2.3) holds identically on IX,U(P) = {p e/(P); α^p) -= x, ^(p) = ύ)

where β1 is the target projection of J^R2, E) onto E. I(P) is the set of

points in J\R\ E) defined by (2.1) and, on IXtU(P), dujdx2 and du2/dx2 are

independent. Therefore from (2.3) we get

JdUs) det (α,(x))

(2.4)

1(x)αf(x)) = 0

(i, £ = 1, 2) ,

+ det bhl(xW, = 0 , (Λ = 1, 2)

In the case n = dim £J = dim F = 2, this is the system of defining equa-

tions of 2ί(P) around x e R2 for a differential operator P(x, Z)) which is

pseudoelliptic at x and pseudoinvolutive at any point p e I(P) with

a\p) = x.

The system of differential equations (2.4) seems to be "overdetermined".

However later, in Theorem 4.1, we shall show that, if P(x, D) = P<1>(x, D)

the system of defining equations (2.4) of 2ί(P) comes to be "determined"

under a "generic" condition. Throughout this paper we shall deal with

pseudoelliptic operators P(x, D) like that P(x, D) = P<i>(x, D).

3. Denote by s/(E) the pseudogroup of all local transformations of

E. The exceptional model which does not satisfy the "generic" condition
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(which is the condition det Kι =̂ 0 (ί = 1, 2) in Theorem 4.1) is the case

in the next proposition.

PROPOSITION 3.1. Assume that a differential operator P(x, D) is pseudo-

elliptic at x0 e R2 and pseudoίnvolutίve at any point p e I(P) with a\p) = x

which is near to x0. Furthermore assume that P(x, D) = P<i>(x, D) and

al1(xQ)al2(xo)al1(xQ)af(xQ) Φ 0. Then 2ί(P) = j*(E) if and only if a?{x)laf{x) =

a1ι(x)la\2(x) = af(x)lal1(x) — αf(x)/αf (x) around x0. In this case for any s e

©(P), the rank of s at each point of its domain near x0 is smaller than 2.

Proof. In the system of defining equations (2.4), the coefficients of

dφj/dUί are

A%x) = α£>(x) + Λ{x)ay(x){a?(x)al{x) - al\x)a\\x))

for i = 1, 2 and ί = 1,

A%(x) = A(x)aV(x)(aϊ\x)af(x) - a?{x)a?(x))

for i = 1, 2 and i = 2

and the coefficients of dφjdu^ are

A%x) = Λ(xW(x)(al\x)al\x) - a\\x)al\x))

for i = 1, 2 and ^ = 1,

(αf(x)al\x) - al\x)af(x))

for £ = 1, 2 and I = 2

where Λ(x) = det (α^x))"1. If we assume that ά£(x)lά£(?έ) = αί2(x)/α22(x) =

αf(x)/αf(x) - αf(x)/αf(x), then we have AJ\(x) = Af2(x) = A%x) = Af2(x) = 0

and so the left hand sides of (2.4) are identically zero. This means that

2ί(P) = j*(E).

Conversely if Sί(P) == s/(E), then A%(x) = A}x

2(x) = AJKx) = A%(x) = Ό

from which we can easily obtain the equalities αl1(x)/α2

1(x) = αl2/«22(^) =

αf(x)/α2

2

1(x) = αf(x)/α22(x) = £(x)~\

Next we shall prove that the rank of any element u e ©(P) is smaller

than 2 at each point of its domain δ(ύ). Any u e ©(P) satisfies

(3.1) Σ ai'ixXdUjIdxd + £(x)(Σ aί^xXduβxS) = 0 , (i = 1, 2).
.7=1 V = l /

By the pseudoellipticity of P(x, D), det(αx(x)) ^ 0. Therefore (3.1) implies

that, at each point x e δ(u), the vectors '(dujdxu dw2/dXi) and t(dujdx2, du2ldx2)

are linearly dependent, that is, the rank of u at x e δ(u) is smaller than

2. This completes the proof of Proposition 3.1.
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4. Let us again consider a differential operator P(x, D) = P^x, D)

which is pseudoelliptic at x0 e R2 and pseudoinvolutive at any p e I(P) with

aKp) — x which is near to x0. We set

K)e{x) = (2 - 4)αί>(*) + ^)ai^)(ai»(x)ar(x) - af(x)a\\x)),

(1 < i, h t<2).

Then, since bίj(x) — 0 for any i, j , the system of defining equations (2.4)

around xQ is written by the form

(4.1) Σ KjtixXdφjIdu,) = L%x, dφjdu2y dφjdu2), (1 < i, £ < 2).
. 7 = 1

Denote by Kι(x) the 2 x 2 matrix (K^Jίx})^^^. By an easy calculation

we see that

detX*(x) - Λ(xXα?(x)αi2(x) - αfί^αiX^ίαfίx)^^^) - a\\x)aT(x)).

THEOREM 4.1. We assume that det -fi?(x0) ^F 0. Then the system of

defining equations of Sί(P) around xΰ is given in the following form:

dφjdu, = ΦXdφJdud + dφ2jdu2,

dφjdu, = b(x)(dφjduι)

where a(x) and b(x) can be expressed as functions of aiJ'(x).

Proof Since det Kl(x0) Φ 0, (4.1) is written around xύ by the form

(4.3) dφβUi = F){xy dφjdihy dφjdu2), (1 < i, jf < 2)

and Fj is written by

Fj(x9 dφjdih, dφ2ldu2) = Nj.ixXdφJdu,) + N}2(x)(dφ2ldu2)

where

iVί/x) det K\x) - αf (x)αr(x)

+ ^(x)α?(x)αίXx)(α^(x)αf(x) - aT(x)a\\x))

+ Λ(x)ai\x)ai\x)(af(x)a\\x) - <#{x)a?(x))

+ Λ(x)af(x)a[\x)(aϊ{x)af(x) - af{x)af(x)),

- NS/*) det ίΓ*(x) = a?(x)at?(x)

+ Λ{x)af(x)a\\x)(af(x)af{x) - af(x)al\x))

+ Λ(x)alXx)a?(x)(af(x)a\Xx) - a?(x)a?(x))

+ Λ(x)aγ(x)a\χx)(a%(x)af{x) - a\\x)af(x)).

Since the identity transformation of E is a solution of (4.2), we obtain
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iVj2(x) = 1 and Ni2(x) = 0. Therefore the system of defining equations of

Sί(P) at x is written by

dφjdu, = Nt(x)(dφjdut)

dφi/du, = N\{x)(dφ,ldud , (i = 1, 2)

where Nί(x) = iVĵ x) and Nι

2(x) = Nίix).

Now we shall prove that Nl(x) = N%x) and iV^x) = iV|(x). For the

simplicity of expressions, hereafter we set ak(x) = y$(l Λ \\ Then we

have

Mx) det K\x) = ^(x

- β2(x)Ux))}

X

Therefore

N\(x) = (52

X

On the other hand

x(rΐ(χ)β1(χ) -

which shows

N%x) = ( J ^ W * ) - i32(x)51(

X (Ux)&(x) - α 2 ( x ) ( ) ( ) ( ) J ( ) 1 ( )

and thus we get N\(x) = Nl(x). Similarly we can prove that

Nl(x) = Nt(x) = (α2(x)r1(x) - αi(x)r2(x))(52(x)ft(x) - iS2(x)51(

and this completes the proof of Theorem 4.1.
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Note that, if the assumptions 2̂(̂ 0)̂ 2(̂ 0)̂ 2(̂ 0)̂ 2(̂ 0) Φ 0 and a1(x)la2(x)

= βi(x)lβz(x) = Ti(x)lΐ2(x) = δ^/δ^x) around x0 in Proposition 3.1 are sat-

isfied, then det Kl(xQ) = 0. In this case we have seen that 2ί(P) = s/{E).

COROLLARY 4.2. I/, in (4.2), a(x) or b(x) is not constant around x0,

then 2Ϊ(P) is generated by the maximal subgroup of the affine transforma-

tion group on R2 whose linear part is the center of GL(2, R).

Proof Since dφjduj does not depend on x, from (4.2) we get dφjdu2

= dφ2ldu1 — 0 and dφx\duλ — dφ2/du2. These imply that φx{uu u2) = aux + β

and φ2(uί, u2) = au2 + β where a, β and β are constants and a Φ 0. This

completes the proof.

Remark 4.1. If P(x, D) is the Cauchy-Riemann operator, then we

see that a,{x) = δ,(x) = Ϊ2(x) = 1, β2(x) = - 1 and a2(x) = β^x) = ϊ^x) =

δ2(x) = 0. Therefore it is easy to see that K\x) = ( \ Q) a n d K ^ =

(1 JY Thus detϋΓ^x) = detiί2(x) = 1 Φ 0 and by Theorem 4.1, the sys-

tem of defining equations of SI(P) is given in the following form:

dφjdux = a(x)(dφjdu2) + dφjdu2,

dφjdu, = b(x)(dφjdu2) .

In the proof of Theorem 4.1, we have seen that

a(x) = (δ2(x)β1(x) - /32(x)^1(x))-1

x (r2(χ)A(x) - a&Mx) + ^1(χ)^2(χ) - β2{χ)r,{χ))

and

b(x) = (δt(x)βί(x) - β2(x)δ1(x))-1

X (a2{x)r,(x) - a,(x)r2{x)).

Therefore for the Cauchy-Riemann operator P(x, D) we get α(x) = 0 and

b(x) = — 1. That is, the system of defining equations of 2I(P) is given by

3^/3^! = dφ2\du2,

dφ2/du1 = — dφjdu2 .

These are also the Cauchy-Riemann equations.

There are two ways to generalize the Cauchy-Riemann operator on

J\R\ R2).
One is the way to generalize it to the following pseudoelliptic system

of differential equations on J\R2m, R2m):
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Σ (Pίί - P%) = o,
p. "

where p% = duζ/doή (k, £ = 1, . ., m; ij = 1, 2).

Another way is to generalize it to the Cauchy-Riemann equations on

J\R2m, R2m) which is the following overdetermined pseudoelliptic system:

pm pg-pS = o,

In any case, this suggests to us that it is reasonable to extend our con-

sideration of pseudoelliptic systems of differential equations on J\R2> R2)

to pseudoelliptic systems or overdetermined pseudoelliptic systems of dif-

ferential equations on J\R2m, R2m).

Remark 4.2. Let us consider a following pseudoelliptic system of

differential equations on J\Rn, R2) where n > 3:

P: ΣΣα?Wrf = 0, (£ = 1, 2),
h=l fc=l

where pi = dujdxk. Then by similar arguments to the proof of Theorem

4.1 we can see that the system of defining equations of 2I(P) is given by

an overdetermined system in the following form under generic conditions:

jdu, - a(k)(x)(dφjdu2)

dφjdu, = bi1c)(x)(dφjdu2) , (k = 1, , n - 1) .

Therefore, in this case, even if all α(fc)(x) and bik)(x) are constants, except

for the case α(1) = = α ( n_υ and 6(1) = = 6(n_D, 2ΐ(P) is generated

by the maximal subgroup of the affine transformation group on R2 whose

linear part is the center of GL(2, R).

% 2. Differential invariants of differential operators of infinite type

5. Let Γ be a pseudogroup on a manifold M and denote by 2Γ the

sheaf of germs of local vector fields X on M which generate local 1-

parameter groups of local transformations φf belonging to Γ. This sheaf

β Γ is a weak Lie algebra sheaf ([2]).

Let us consider the k-jet space Jk(N, M), k > 1, whose element is a

k'jet jl(f) of a local map / of N to M, where x belongs to N, called the
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source of p = jk

x(f) and denoted by ak(p). Furthermore we set βk(p) =

f(x) and J°(N, M) = N X M.

It is easy to see that any pseudogroup Γ on M is naturally lifted to

a pseudogroup Γik) on Jfc(iV, M) and so the sheaf £ Γ is also lifted to a

weak Lie algebra sheaf 2^fc) on Jfc(iV, M). Γ(0) (resp. 2^0)) is considered

as a pseudogroup (resp. a weak Lie algebra sheaf) l χ Γ (resp. 0 X QΓ)

o n i V x M

Denote by (ί£{P)l the isotropy algebra of the stalk (£^:))p over p. Then

{D{r])v = (^Γ^PK^ΓΎP is regarded as a subspace of the tangent space Tv

of Jk(N, M) at p.

DEFINITION 5.1. Γ is called (iV, ^-regular if, for each integer ^,

0 < t < k, dim (D^Op is constant.

Assume that Γ is (N, ^-regular. Then the correspondence D{P:

J\N, M)ap-> (D(

Γ

k))p C Tv is an involutive distribution on J\N, M).

DEFINITION 5.2. A function y given on a small neighbourhood U of

p e c/fc(iV, M) is called a differential invariant of a vector field Z on 11 if

Zy = 0. If, for any cross-section Z of D^ } on II, y is a differential in-

variant of Z, then y is called a differential invariant of Γ. Furthermore

if {yl9 - - -,yq}, q = codimZ)^, is a family of functionally independent dif-

ferential invariants of Γ on tt, it is called a fundamental system of

differential invariants of Γ on tt.

6. In the following we assume that N = M = R2 and let us con-

sider a differential operator P(x, D) of order 1 satisfying the following

conditions:

(1) P(x, D) is pseudoelliptic at xQ e R2.

(2) P(x, D) is pseudoinvolutive at any p e I(P).

(3) det K*(xQ) ^0, i = 1, 2.

(4) P(x, D) = Pφ(x7 D).

Then by Theorem 4.1 the system of defining equations of the automor-

phism pseudogroup 2Ϊ(P) is given by

3^/3^ = a(x)(dφjdih)

3^/3^ = b(x)(dφjdu2).

DEFINITION 6.1. Let P(x, D) be a differential operator satisfying the

conditions (1), (2), (3) and (4). Then P(x, D) or a system of differential



26 KAZUSHIGE UENO

equations P: P(x, D)u — 0 is said to be of infinite type at xQ if a(x) and

b(x) are constants around xc. The vector (α, b) is called the structure

vector of P(x, D) or P.

Assume that P(x, D) is of infinite type at x0 with the structure vector

(a, b). By considering (6.1) infinitesimally, a vector field X(uu u^id/du^ +

Y{u^ u2)(d/du2) defined on U d M = R2 is a local cross-section of 2a<p) if

and only if it satisfies

dX/du, = a(dXldu2) + dY/du2,
2 )

or simply (6.2) is written by

Remark 6.1. If P(x, D) is of infinite type at ΛT0 with the structure

vector (a, b), then, as is calculated in the proof of Theorem 4.1, the con-

stants a and b are expressed around x0

 a s

a = &(*)&(*) - βt(x)δ1(x)y1

X (r2(x)βi(x) ~ 0Lι(x)δx(x) + aάxfaix) - β2(x)ϊi(x))

and

6 = (^(x)A(x) - βt(x)δί(x)yi(ai(x)rι(x) - ax(x)ϊ2(x)) .

Let VΓ be a cross-section of 2 a ( P ) defined on U. Then VF is naturally

lifted to a vector field W{1) on U(1) = (jS1)"1^) which is a cross-section of

S^P). Consider the canonical coordinate system {xl9 x2, ul9 u2, pi, pi,pi, pi}

on J\R2, R2) introduced by p) — dujdxj.

LEMMA 6.1. For a vector field W = X(ul9 u2)(djdux) + Y(uu u2)(d/du2),

W{1) is expressed by

Wv - X(dldUί) + Y(dldu2)

+ XU2{(ap\ + PΪ)(dldpϊ) + bpKdldpt) + (ap\ + pt)(dldpl) + bpl(dldpt)}

l) + Plid/dpl) + Pl(dldPϊ) +

Proof. We set d\ = a/ax, + pKS/SMi) + PttβldUi). Then we have

, ([3]). Applying this equality to the function uλ (resp. u2), we get

W{ί)p{ = 3*X (resp. W(1)pJ = 3{Y). This means that W(1) is expressed by
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= XQ/duJ + Y(dldu2) + (XUlp\ + XU2pϋ(dldpϊ) + (YUlpl + YU2pϊ)(dldpϊ) +

(XUlp\ + XU2pϊ)(dldpl) + {YUlp\ + YU2pϊ)(dldpϊ). Since W satisfies (6.2), we

get

W{1) = X(dldux) + Y(d/du2)

+ Xut{(apl + pΐ)(dldpιd + bpXdldpΐ) + (ap\

+ YMQIdpd + plidldpO + Plid/dpd + pi

This completes the proof.

PROPOSITION 6.2. Assume that P(x, D) is of infinite type at x0 with

the structure vector (α, b). Then a function f given on a neighbourhood U

of p e J\R2, R2) with a\p) = xQ is a differential invariant of 3ί(P) if and

only if f satisfies the following relations:

(ap{ + pΐ)(dfldp{) + bp\(dfldpl) + (ap\ + PΪ)(dfldpϊ) + bp\(dfldpl) = 0,

(6.3) pl(dfldpϊ) + pl(df/dpϊ) + pl(dfldpξ) + pl(dfldpξ) = 0,

df\dux = 0 and df\du2 = 0 .

Proof, Since, for any constants β9 β\ ϊ and Γ, there exist constants

a and a! such that (X, Y), where X = aux + βu2 + ΐ and Y = a!uγ + β'u2

+ ϊ\ is a solution of (6.2). Therefore at each point u = (uίy u2) we have

{(X(u), Y(u), Xu£u), YU2(u))', X{dldux) + Y(d/du2) is a cross-section of S2ί(P)

around ύ] = R\ Then by Lemma 6.1, / is a differential invariant of 2ί(P)

if and only if F satisfies (6.3). This completes the proof of Proposition

6.2.

7. We set zx = p{, z2 = p\9 zz = p\ and z± = pi and let us consider

differential invariants of a vector field Z = (azt + z2){dldzx) + bz^d/dz^ +

(azz + 24)(9/3z3) + bzz(d/dz,) on J\R\ R2). If we regard Z as a vector field

on JR4 with the coordinate system {zl9 z2, z39 z^ and find a fundamental

system of first integrals of Z around z = (p\{p), pl(p), pl(p), pl(p)) 6 i?4, we

can get a fundamental system of differential invariants of Z around p =

jloif) because the functions xί9 x2, ux and u2 are differential invariants of

Z around p.

It is well-known that there exists a local coordinate system {yl9 yl9

y39 yA} on a neighbourhood U of the origin 0 e R* such that Z = dldyx on

II. If we can find such a coordinate system, then {y2, y39 y^ is a funda-

mental system of first integrals of Z on 11. This coordinate system

{yί9 y2, ys, y^} can be found by solving the following system of ordinary

differential equations
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(7.1)

'dzjdt = az1 + z2,

dzjdt = bzx,

dzjdt = azz + z4,

dzjdt = &23

with the initial condition ^(0) = 0, z2(0) = y2, z3(0) = y3, 24(0) = y4 and by

setting y1 = ί ([1]).

LEMMA 7.1. Assume that α2 + 46 > 0 and set p1 = (α + Vα2 + 46)/2,

p2 = (a — Vα2 + 46)/2 ατιd i ί = (^i^ + z2)l(p2z1 + 22) Γ/ien around a point

z = (^j, 2:2? 28, 24) w iί/i (^^j + z2){ρ<ιz1 + ^2) ^ 0, the following family of func-

tions {/i, /2, /3} is a fundamental system of first integrals of Z defined as

above:

Proof Associated with the system of ordinary differential equations

(7.1), we have the following algebraic equation with respect to p:

a - p 1 0 0

6 - ^ 0 0

0 0 a — p 1

0 0 b -p

= (pi -ap~ by = 0.

According to the theory of ordinary differential equations, in the case

α2 + 46 > 0, we can find the following unique solution (z^t), z2(t), zz(t), z±(t))

of (7.1) with the initial condition ^(0) = 0, z2(0) = y2, zz(0) == yz, z,(0) = y4;

(7.2)

(Φ) = (ft

= (ft -

= (ft -

Setting yx = t in the right hand side of (7.2) and solving (7.2) with respect

to {j>i, y2, y3, yj, we get

= (ft -

- (ft -

"1 log ((pA
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which prove Lemma 7.1.

LEMMA 7.2. Assume that a2 + 46 < 0. TTie/z Z/ιe following family of

functions {gl9 g29 g3} is a fundamental system of first integrals of Z around a

point z with z1 =̂ 0: By setting θ = V— α2 — 46/2 cmd yx = i^"1 Cot"1 (z2(θz1)'1

s i n

α2)(sin {θy,g3 = e~{aVl)/2((cos (θyl) + a(2θ)-1 sin (θyj)z4 -

Proof In the case α2 + 46 < 0, we have the following unique solu-

tion (z^t), zz(i), zz(t), z4(t)) of (7.1) with the initial condition 2̂ (0) = 0,

*2(0) = yi9 z,(0) - 3>3, z0) = y,:

(7.4)

Zl(t) = θ'1y2e
(at)/2ain(θt)9

( α ί ) / 2(2^ cos (W) - α sin (θt)),

cos («) + (2^)-1(αy3 + 2y4) sin

zA(t) - (4^)-1(αy3 + 2j4)e(αί>/2(2^ cos (θt) - α si

{ - 2-1y2e
{at)/\a cos (flί) + 2Θ sin (0ί)).

By setting yλ = ί in the right hand side of (7.4), let us solve (7.4) with

respect to {yl9 y2, y3, y4}.

From the 1-st and 2-nd relations of (7.4), we get

^(si)- 1 = (0 cos (θyd - (α/2) sin (0yi))(sin (^j;,))-1

= 0 cot (θy,) - a/2

and so

(7.5) y, = β-1 Cot"1 (z2(θz1)'1 + a(2β)-1).

Then by an easy calculation we obtain

(7.6)
= e"(α2/l)/2((cos (θyx) — a(2θ)~1 sin (θy$)zz — ̂ "^sin

This completes the proof.
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LEMMA 7.3. Assume that a2 + 46 = 0. Then around a point z with

azλ + 2z2 ^ 0, the following family of functions {hu h2, h3} is a fundamental

system of first iategrals of Z: By setting yt — 2z1(azί + 2z2)~\

h2 = ((1 - (α/2)y>, -

K = ((1 + (α/2))yA +

Proo/. The unique solution (zx(t), z2{t)y zs(t), zA(t)) of (7.1) with the

initial condition ^(O) = 0, z2(0) = y2, 23(0) = yS9 z^O) = y4 is as follows:

2,(0 = ((1 - (α/2))y, - y> ( α i ) / 2 + ((α/2)y, -^ w , J . i w - i ί(7.7)

• (α/2)((l - (α/2))y, -

((α/2)y, + y4)(l - (α/2)(ί

Setting 3Ί = ί in the right hand side of (7.7) and solving (7.7) with respect

to {yuy2,ys,yι}, we get

y, = 22,(α2, + 2z2)-',

y4 = ((1 +

This completes the proof.

8. Let us write g2 = 2̂/̂ 1, δs = zJzi ar^d g4 = zjzlt

Proposition 8.1. Let P(x, D) be a differential operator of infinite type

at xQ with the structure vector (α, b). Then the following family of func-

tions {xl9 x2, 7f'b, /a'6} is a fundamental system of differential invariants of

2ί(P) around a point p eJ\R2, R2) which satisfies (32)
2(p) + a$2(p) — b =̂  0:

/?'* = (6283 - 64)/((δ2)2 + a%2 - b),

IVh = ((α + δ2)δ4 - 66a)/((62)
2 + αa2 - b).

Proo/. Assume that a2 + 4b > 0. Then by Lemma 7.1, Λ/Λ and /,/£

are functionally independent differential invariants of Z around p which

satisfies (pίz1(p) + z2{p))(p2zx{p) + z2(p)) ^ 0. Since ft = (α + Va2 + 46)/2

and ^ = (α - Vα2 + 46)/2, (^^(p) + z2{p))(p2z,(p) + *2(p)) ^ 0 if and only

if ((δ2)
2 + 6̂2 - b)(p) * 0.
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Furthermore 82 = pl/pl, fo = pl/pl and g4 = pl/pl are differential in-

variants of the vector field Zf = p\(dldp{) + pl(d/dpl) + pKd/dpϊ) + pl(d/dpl).

Since difjβ/du, = difjfj/d^ = 0, by Proposition 6.2 we see that /2//; and

/3//i are differential invariants of 2ί(P). It is easy to check that

/2//1 = (6263 - δ4)/((δ2)
2 + 082 - &),

Λ//i = ((α + 62)64 - bfa)l((&Y + % - 6)

Because codim D$P) = 4 by Proposition 6.2, the family of functions [xl9 x2,

f2lfi,fjfί} is a fundamental system of differential invariants of 2ί(P) around p.

Secondly assume that α2 + 46 < 0. Then by Lemma 7.2, gjg1 and

gjg1 are functionally independent differential invariants of Z. Note that

in this case (g2)
2 + <% — b > 0. By similar arguments stated above, the

family of functions {xl9 x2, g2lg19 gjgi) is a fundamental system of differen-

tial invariants of 2I(P). We see that, by setting η = Cot"1 (θ~% + a(2θ)~ι),

gjgi = ^"Ysin 77 cos ^ — α(2^)"1 sin2 η)fa — ^"2(sin2 37)34

= 0-2(sin2 37X3283 - 64),

gjgi - 0-\sin η cos η + α(2^)"1 sin2 77)6, + (4#2)~W + α2)(sin2 77)33

= r 2 (sin 2 η)((a + 32)64 + 4-1(4#2 + α2)a3).

Since sin2 (Cot"1 x) = (1 + x2)"1, we can easily see that

θ-2 sin2 77 = ((a2)
2 + αδ2 - 6)"1

and we get

ft/ft = (6263 ~ 64)/((82)
2 + «62 - 6)

gjgi = ((« + 62)64 - 663)/((62)
2 + 6̂2 - b).

Finally assume that άι + 46 = 0. Then by Lemma 7.3, /ι2/^i and hz\hx

are functionally independent differential invariants of Z around p which

satisfies azx(p) + 2,ε2(p) =̂= 0. Since (δ2)
2 + afc — b = (g2 + α/2)2, a^(p) +

2Zi(p) # 0 if and only if ((a2)
2 + ag2 — 6)(p) =̂ 0. Then the same argu-

ments lead us to the assertion that the family of functions {xu x2, h2/hly

hjh^ is a fundamental system of differential invariants of SI(P) around p.

It is easy to check that

K\K = (6263 - 64)/(62 + α/2)2

= (6263 - 64)/((62)
2 + % - b),

Λ3/Λ1 = ((a + 82)64 + (α2/4)38)/(82 + «/2)2

= ((α + 62)84 - &δ3>/((δ2)2 + α82 -
 6 )

This completes the proof of Proposition 8.1.
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§ 3. Invariant structures of differential operators of infinite type

9. Let P(x, D) be a differential operator of infinite type at xQ with

the structure vector (a, 6). The system of differential equations P(x, D)u

= 0 is expressed on J\R\ R2) by

otx(x)p\ + A(x)pJ + tf2(x)p^ + &(*)/>! - 0,

Ux)p\ + δx{x)pt + Ux)p\ + δ2(x)pl = 0

and, around a point p e J\R\ R2) satisfying p\(p) ^ 0, (9.1) is written by

«i(*) + A(x)82 + oc2(x)h + βz(x)fa = 0,

Λ(x) + ^(x)δ2 + Πx)h + 2̂(x)δ4 = 0

where at = -εj^ (i = 2, 3, 4) with zx = p\, z2 == pj, ^3 = p^ and z± = pj.

Remember that (9.2) is pseudoelliptic at xo> pseudoinvolutive at any point

p e /(P) and satisfies det J5L*(Λ;0) =̂ 0, £ = 1, 2.

THEOREM 9.1. Let p be a point of J^R2, R2) such that a\p) is near

to xQ, zx{p) ^ 0 and ((g2)
2 + αg2 — b)(p) ^ 0. Then around p the system of

differential equations (9.2) is written by

- β1(x)δt(x)) det (α2(x))-χ,

where {xu x2, /f'δ, 1^} is a fundamental system of differential invariants of

2I(P) around p given in Proposition 8.1.

Proof We can write

(9.3) If'δ = Λ53 + A2a4,

/2

α'δ = 5 l63 + Bfa

where, by setting px = (a + Vα2 + 46)/2 and p2 = (a — Vα2 + 46)/2,

-Ai = 82(ft + fa)~\p2 + 32)"1,

A = - (ft + 82)~
1(ft + 62)"1,

A = ftp2(ft + δ2)"1(ft + a2) " x ,

S 2 = (Pi + p2 + fa)(pi + foYXp2 + 82)"1

Note that among Au A2, Bγ and B2 there exist the relations

(9.4) A=-ftftA2,
B2 = A,- (ft +
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From (9.3) and (9.4) we have

(9.5) α 6

Then by (9.5), the system of differential equations (9.2) is written by

(— a2(x)(A1 — (pt + ρ2)A2) — β2(x)p1p2A2)I^b + (a2(x)A2 — β2(

(9.6)

Now let us solve (9.6) with respect to If'δ and j£'&. We have

<^2(x)(A! — (Pί + /o2)A2) + β2(x)pip2A2 — tf2(#)A2 + /3o(x)A1

— O2\.X)QIP2-LΛ-C> I 2\X)JL\.2 \~ 02\X)-L*-\(9.7)

(9.8) - (Λ<

where

and

(9.9)

, - p2A2),

Ux)A2

(βi(x)T2(x) - δ1(x)a2(x))A2i

a2(x)(A1 - (Pί +

+ β2(x)pip2A2

T2(x)(A1 - (Pl +

+ δ2(x)pφ2A2

= (A, - ^

X (A, -

X (A!

where

W2 = {ax(x)r2{x) - ^

- Ti(x)(β2(x)pip2 - (x^xXp, + p2)))A2

+ (βi(x)Ux) - α:2(x)^1(x))A132 + (βι(x)(δ2(x)p1p2 - Ϊ2

- δ1(x)(β2(x)p1p2 - a2(x)(p1 + io2)))A2g2.

Since we have
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- ai(x)ΐι(x)Xδt(x)βί(x) -

(9.10)

we can write

(9.11)

= {Tt{x)β1{x) - α2(x)51(

X ( «

Λ = - W 2 + (pi + pύfo +

where

U = α,(x)r2(x) - at(x)Ux)

+ (rt(χ)β1(χ) - «,(*&(*) + «t(x)52(x) - /32(χ)r1(χ))32

+ (δ,.(x)βt(x) -

Therefore the relation At = — A2g2 and an elementary calculation show

that

-wt = At{(ai(x)δt(x) - r1(χ)/32(χ))a2

+ (Λl(x)r2(x) - Ux)at(x)) + (β1(x)Ux) - δ1(xWkx

As for W2, we have

= - α1(x)(δ2(x)6 + r2(x)α)

where

and

By (9.10) we can easily get

at(x)a)

(9.12) x
V, = {(αi(x)^(x) - i31(x)r1(x))(α2(x)δ2(x) - β,(x)Ux))

(*) - i31(x)r2(x))2}(52(x)i31(x) - /32(x)^

Then from (9.11)



PSEUDOELLIPTIC 35

= (aι(x)ϊ1(x) - ai(x)rί(x))(r2(x)β1(x) - a2(x)δ1(x))U-1

+ ((a2(xMx) - A(x)r2(x))2 - (a^δ

X (a2(x)δ2(x) - β2(x)ϊ2(x))yό2U-1.

Therefore, by the relation Aλ = — A2g2 again, we get

- W2 = U-ι{a,{x)Ux)

+ (βx{x)Ux)

+ (ax(x)r2(x)

+ ((a2(xMx) - β1(xMx))2

- (a&Mx) ~ j S ^ r ^ J M α c ) ^ ) - /S2(x)r2(x)))a2}

- r2(χ)β1(χ) - a2(χMχ).

Then by (9.7), (9.8) and (9.9), we see that (9.6) is written by

/?'* = (β2(x)δί(x) - βλ(x)δ2{x)) det (a2(x)Yι,

IVh = fa(x)h(x) - a2(x)δ,{x)) det (α2(x))- .

This completes the proof of Theorem 9.1.

§ 4. Geometric structures of differential operators of infinite type

10. In this section we shall investigate a geometric structure of a

differential operator satisfying the condition (1), (2), (3) and (4) stated at

the beginning of the article 6.

PROPOSITION 10.1. Let P(x, D) be a differential operator of infinite

type at x0 with the structure vector (a, b). Let p be a point of J\R2, R2)

such that a\p) is near to x09 p\{p) ̂  0 and ((g2)
2 + ag2 — b)(p) ^ 0. Then

a vector field Z given around β\p) e R2 is a local cross-section of 2%iP) if

and only if it satisfies the relations Z(1)/?'& = 0 and Za)Iρb = 0 around p.

Proof. By Theorem 9.1, the system of differential equations (9.2) is

written by

) det (α.(x))-1,

Then if we denote by Γ the pseudogroup on a neighbourhood of β\p) e R2

defined by Γ B Φ if and only if 0(1)*J?'& = Jf'δ and φ^*I^ = I^\ it is clear

that Γ C Sί(P) around β\p). Conversely by Proposition 8.1, Jf'δ and Ipb

are differential invariants of %(P) around p. Therefore 23UP) C 2 Γ around

β\p). This proves that 2 a ( P ) = 2 Γ around β^p).



36 KAZUSHIGE UENO

11. At the beginning of this article we shall define automorphic sys-

tems which will play an important role hereafter.

Let N and M be C°°-manifolds with dimiV— dimM and denote by

Jk(N, M) the space of β-jets of local diffeomorphisms of N to M.

Let Γ be a pseudogroup on M. Then there corresponds to Γ a weak

Lie algebra sheaf 2 Γ on M. If we denote by ψ(ZΓ) the pseudogroup on

M generated by local 1-parameter groups of local transformations which

induce local cross-sections of βΓ, then $β(£Γ) C Γ.

Let {FJy=1 be a family of functions denned on a neighbourhood of

peJk(N,M).

DEFINITION 11.1. A system of differential equations

P: F 1 = = 0 , - ,Fr = 0

is said to be Γ-automorphic at (xo,f) if the following conditions (i), (ii)

and (iii) are satisfied:

( i ) xQeN and / is a solution of P around x0.

(ii) Any solution of P near to / is written by φof for some φeΓ

near to the identity.

(iii) For any ψ e ^S(£Γ)J if the composite ψ o / is defined, it is a solu-

tion of P.

Remember that we denote by ®(P) the solution space of P and by

2ί(P) the pseudogroup generated by all local transformations φ: I D It ->

S3 C M satisfying 0(©(P)|U = ©(P) |». 2l(P) is called the automorphism

pseudogroup of P. Since P is given on Jk(N, M), any solution of P is a

local diffeomorphism of iV to M.

PROPOSITION 11.1. Assume that Γ is (N, K)-regular (c/. Definition 5.1)

and let {x19 , xn, yu ,ym} be a fundamental system of differential in-

variants of Γ around p = jlQ(f) e Jk(N, M) where {xl9 , xn} is a local

coordinate system at x0 e N. Consider the system of differential equations

where λό(x) = yj{jl(f)), j = 1, , m. Around f(xQ) if, near the identity

transformation, Γ is defined by the condition that Γ a φ if and only if

φ(v*y. = y.^ j = 1, , m, then P is Γ-automorphic at (x0,/).

Proof. Let f1 and f2 be solutions of P defined on a neighbourhood U

of XQ. Then we have
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(li.i) ymn) = ymh), i = l, , m

for any x e U. Let Uk be a neighbourhood of p such that UkjDψ) (cf.

Definition 5.1) is a manifold and let πfc be the projection of Uk onto

UklDψ\ Then (11.1) implies that π\Jl(Γ)) - π\jk

x(f2)). Let ω be any local

diffeomorphism of U and define a local transformation ωk of c/fc(iV, M) by

ωk(jl{f)) — Jt-χ{X)(f ° ω). Then for any local transformation ^ of M, in

particular for φ eΓ, we have φ(k) o ω

fc = ω

k o 0(fc) if the composite is defined.

This means that we have πk(jk

x(fι o ω)) = τrfe(ι/J(/2 o ω)) for any x in the do-

main D(ω) of ω. We set £ = /2o(/1)-1. Then we have

= jk

x(f2oω), xeD(ω).

Therefore we get

ΛgmJΆΓ ° ω)) = π\j"x(f.«)), x e z>(ω)

or

(^ ( f c )*^(iϊ(f o ω)) - yJO'Kf oo))), x e D(ω) ,

j = 1, , m .

Since ω is any local transformation on U, we have

(n.2) *(fc)*yj = yj, i = i, ,w,

If Z1 and /2 are near to /, then g is near to the identity. Therefore (11.2)

implies that g belongs to Γ. This completes the proof.

12. Now again we assume that N = M = i?2. Let (α, 6) e i?2 and

denote by 5β(α,δ) the pseudogroup on i?2 defined by the condition that

?(α,δ) 3 ^ = (0I(MI, UZ), Φi(uu w2)) if and only if 3^/3^ = a(dφjdu2) + dφ2ldu2

and 9^/3^i = b(dφjdu2).

Let us consider a differential operator P(x, D) of Γ(2, β2) to Γ(2, J?2)

of order 1 satisfying the following conditions:

( i) P(x, D) admits a solution / which is a local diffeomorphism of

R2 to R2 defined on a neighbourhood of xo

(ii) The automorphism pseudogroup 2ί(P) of P(x, D) is $β(α,δ) fo*1 some

vector (a, b) e i?2 satisfying ((g2)
2 + αa2 - &)(p) ^F 0 where p = ;^0(/).

THEOREM 12.1. // P(x, D) above is of infinite type at xQ with the struc-

ture vector (a, b), the system of differential equations P: P(x, D)u — 0 is
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%(P)-automorphic at (x0,/). Conversely, under the analyticity, for a dif-

ferential operator P(x, D) satisfying (i) and (ii), if P : P(x, D)u = 0 is 2ί(P)-

automorphic at (x0, f) then there exists a differential operator P(x, D) of

infinite type at x0 with the structure vector (a, b) such that ©(P) = ©(P)

near f.

Before proving Theorem 12.1, the following lemma is prepared.

LEMMA 12.2. For any vector (a, b) e R2 there exists a differential oper-

ator P(x, D) of infinite type at xQ with the structure vector (α, b).

Proof. Choose arbitrary constants βl9 β2, δx and δ2 satisfying δ2βx —

β2δι ^ 0 and consider the following equations with variables Xl9 X2, Xz

and XA:

. δ2Xi δ,X2 - β2X3 + βxX, = a{δ2β, - β2δx),

It is easy to see that the set of points (Xl9 X2, X3, X4) ei?4 satisfying (12.1)

contains such a point (X°u XI X°3, X°) that δ.Xl - β^ * 0, δ2X°2 - β2X\ * 0,

βxX°2 - β2Xl ^ 0 and δλX\ - δ2X°3 ̂  0. Then if we set a, = X°l9 a2 - X°2,

ϊx = XI and ϊ2 = X°4, the system of differential equations

# <*iP\ + βiPΪ + oc2p\ + β2p\ = 0 ,

°* T1p\ + δ,pl + ϊ2p\ + ^2p2

2 - 0

is pseudoelliptic at any x e R\ pseudoinvolutive at any p e I(PQ) and satis-

fies deti^(x) ^ 0. Then by Theorem 4.1 and Remark 6.1, Po is of infinite

type at any x0 e R2 with the structure vector (a, 6). This completes the

proof of Lemma 12.2.

13. Proof of Theorem 12.1. Assume that P(x, D) is of infinite type

at x0 with the structure vector (a, b). By Theorem 9.1 the system, of dif-

ferential equations P i.e. (9.2) is written by

where {x1? x2, /f'
δ, I2'

b) is a fundamental system of differential invariants

of 2I(P) around p. Then by Proposition 10.1 and Proposition 11.1, we see

that P is 2I(P)-automorphic at (x0, /).

Conversely we assume that the system of differential equations P is

2ί(P)-automorphic at (xO)/) By Lemma 12.2 there exists a differential
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(13.2)

operator P(x, D) of infinite type at x0 with structure vector (α, b). Then

by Proposition 10.1, the pseudogroup ^β(α,δ) is, near the identity, defined

as the set of local transformations φ on R2 satisfying 0(1)*/£'δ = I^b, i =

1, 2. Therefore by Proposition 11.1, the system of differential equations

(13.1) 7?'δ == λ1, I2

α'δ = Λ2

where lt{x) = I^b(jl(f)), i = 1, 2, is 2ί(P)-automorphic at (*0,/). Since / is

a solution of P: P(x, D)u = 0, the system of differential equations P is

written by (13.1) around p and near /. Note that λ^x) ^ 0 because / is

a diffeomorphism and so satisfies g2g3 — g4 ̂  0 at jj.(/).

Let άf and αf be any two constants satisfying dfλ^Xo) + dfλ2(x0) ^ 0.

We set

A(X, Y, x) = X^(x) + YΛ(x),

B(x) - άl%(x) + άfλ2{x)

and

C(X, Y, x) = (άfX - afY)-\{aX + bY)(A(X, Y, x)af - B(x)Y)

+ X(B(x)X - A(X, Y, x)df)},

D(X, Y, x) = (α?X - αl1Y)-1{(&^22 + ααr)(A(X, Y, x)α? - B(x)Y)

+ df(B(x)X - A(X, Y, Λ)O?)} .

Then it is easy to see that there exist constants Xo

 a n d Yo satisfying the

following conditions (13.4)-(13.8):

(13.4) α l a X 0 - α ? y 0 ^ 0 .

/iqκ\ n/γ \n(Y V r Ί A(Ύ V γ\Ώ(Y Y r ^ Λ - Π

(13.6) BiXoM21 - afD(X0, Yt, x0) ^ 0 .

/iq7\ A(Y V y\Y C(Y V r Ί V A- Π

(13.8) A(X0, Y05 x 0 )^ 2 - B(xo)Yo ^ 0 .

If we set d\\x) - A(X0, Yo, x), αf (x) - B(Λ), αj1 - Xo and α1/ = Yo, then

(13.3) is written by

ClyCli \X)U2 — ί*Ί VX/W2 / ^

I ^22/ r\^ll /yl2/v\^21 2

-f- »! vx;a2 — «! \X)a2

• b(al\x)af — af{x)af) — af

άf a(άl\x)άf - άf{x)άf)

(13.3)

(13.9)

o , * ) = - d e t ( α 2 ) - '

0, x) = -det(α2)-> I /y22/r\^rll ^12/r\^21

- &(αf(x)αf - αf(x)α2

2)
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By (13.2), A(Z0) Fo, x) = a{2(x) and B(x) = a?(x) satisfy

, Yo, x) - a?B(x) = Ux) det (α2)
( ' -afA(X0,

Therefore we get

(al\x)af - a?af(x)) det

(aϊa?(x) - di2(x)αr)det(α2)-' = Λ2(x)

around x0.

If we set ai\x) = C(Z0) Y0) x) and af(x) = I>(X0> yo, Λ), then by (13.6),

(13.7) and (13.8), we get

d e t ^ ( x ) = (aγ(x)af(x) - άf(x)df(x))-1(άfα52(x) - a?a?(x))

X (άfa?(x) - afaf{x))

# 0 around x0.

Now consider the system of differential equations

p anχ)P\ + a?(χ)Pl + &?P\ + δ?Pl = o ,

α?(x)p\ + a?(x)pl + afp\ + afp\ = 0 .

Then P is pseudoelliptic at x0 and det K'(xa) ^ 0. From (13.9), we obtain

the relations

13 12) af&f{x) ~ ^ f ( x ) = a^af&1^x) - ^ 2^ 2(^)) + <W(*) - 5 ^ ^ 2 ( χ ) '
d f « ι ( ) £?{x) = 6(α2

2

2df(x) - afa?(x)).

Furthermore under the analyticity P is pseudoinvolutive at any point

peI(P). Therefore by Theorem 9.1, P is written by

Ifδ = (αϊ2(x)αf - aψdl\x)) det (α,)' 1,

J j^ = (a?δ?(x) - a\\x)af) det (α,) ' 1 .

This shows that the solution space ©(P) of the system of differential

equations P coincides with the solution space ©(P) of the system of dif-

ferential equations P around xQ and near /. This completes the proof of

Theorem 12.1.

§5. Differential equations whose invariant structures are
families of pseudoelliptic systems

14. Let / b e a local transformation on R2 defined on a neighbour-

hood of x0

 a ^ d set p — jlo(f). For a vector (a, b) and the point p, we
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assume that ((a2)
2 + αg2 — b)(p) # 0.

Let F(uu u2) be any function on Rλ such that (dF/dutf + {dFjdu2f ^ 0

on any domain of R2 and set

λ(x) =

around x0. Consider the single differential equation

P(F):

and the pseudogroup

Γ(F) = {φe ^(Rz);

LEMMA 14.1. 2ί(P(F)) = Γ(F).

Proof. It is clear that 2ί(P(F)) 3 Γ(F). Now let ^ e W(P(F)). Then

Iΐ>\ Ia

2>
b))(jl(f)) = λ(x) and so we have

(14.1) φ

Let ω be any local transformation on a neighbourhood Ϊ7 of x0. Then

the local transformation ωι on J\R2,R2) defined by ω\px(s)) = 7i-i(x)(soα))

satisfies ω 1 © ^ = ^ o ω 1 . Therefore by (14.1) we get

where x is any point in the domain of ω. Since ω is an arbitrary local

transformation on U, we have

If") = F(Iϊ ", IV") •

This shows that φ e Γ(F) and completes the proof of Lemma 14.1.

15. Let / and J be differential invariants of 5β(o,δ) defined on a

neighbourhood of JlXf) e J(R2, R2) such that I + J ^ constant and 9//dx£ =

dJjdXi = 0, ΐ = 1, 2 where {*1( x2, "i, "2, Pί, Pi, P\> PΪ} is the canonical coordi-

nate system on JXR*, 2?2) Consider any vector field

Z = (XUιP\ + Xuj>ΪKdldpD + (YUιPl

+ {Xuιp\ + X
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on J\R\ R2). Then by setting Wx = plQ/dpϊ) + pl(d/dpl\ W2 = />ϊ@/3pD +

Pi(3/3PD, ^3 - PK3/3A2) + PK3/3PD and W4 = p?@/3/>ί) + rf(3/3pD, ^ is writ-
ten by

z = x t t l w, + x t t 2w2 + y t t lw, + yM2w4.

PROPOSITION 15.1. Assume that 6 ^ 0 and the following two conditions:

(i) Z is a cross-section of 2$ ( α δ ) if and only if ZI = 0.

(ii) Z is a cross-section of £%(a>b) if and only if ZJ = 0.

Then Z is a cross-section of £^(α>6) if and only if Z(I + J) = 0.

Proo/. By the condition (i), ZI - 0 if and only if XUχ = αZM2 + YW2

and Yttl = 6XWa. On the other hand ZI = 0 if and only if XUldI(W1) +

XU2dI(W2) + YMldI(W3) + YuidliWt) - 0. Therefore, under the condition (i),

we have

(aXU2 + YU2)dI(Wd + XuβI(W2) + 6XαadI(Wϋ + Y»,dI(WJ - 0.

Since XU2 and YU2 are arbitrary, we see that, under the condition (i), the

following relations (15.1) hold:

adI{Wd + dI(Wd + bdI(Ws) = 0,
( ' } dJiWd + dI(Wt) = 0 .

Similarly, under the condition (ii), the following relations hold:

ad J( Wi) + dJ{ W2) + bdJ( Wύ = 0,
( ' ' dJ(Wt) + dJ(W,) = 0 .

Then we get the relations

ad(I + JXWd + d(I + jχWd + bd(I + J)(WS) = 0 ,

d(i + jχwd + d(i + jχwd = o.

Now we have

Z(I +J) = XUld{I + JXWd + XUld(I

+ YUιd(I + JXWd + Y.td(I + JXWd •

Therefore by (15.3), we get

Z(I +J) = (XU1 - aX^ - YJd(I

+ (Yu1- bXU2)d{I

We shall now prove that d(I + J)(W1) ^ 0 and d(I + JXWd * 0.

Define the pseudogroup ΓI+J by ΓI + J = {φ e ^(R2); φm*(I + J) = I + J}.
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If d(I + c/)(VFi) = 0, then Wt is a cross-section of 2Γl+J. On the other

hand ZΓl+J => S,(βfί) and the vector fields Zί =p\(dldp{) + p\(dldp\) + pi(3/3p»

+ Plidldpϊ) and Z2 = (αpϊ + pD(3/3pϊ) + 6pϊ(3/3pD + (αpί + PD(3/3pί) + &PΪ(3/3pD

are cross-sections of &p(α>6). Therefore W^ Zi and Z2 are cross-sections of

2Γl+J. Consider the space (DPI+J\ = ( £ £ \ Λ / ( £ £ + , ) P
 c W W , #2)). Then

(D(ΓJ+J)P is contained in the space of integral points ίg(I + J — /I) of the dif-

ferential equation I + J = λ iίp e%(I + J - X) where λ(x) = (I + J)(jι

x(f)\
Since the image of the map /(s): D s (= the domain of s ) 9 x ^ j i ( s ) e

J\R2, R2) for any solution s with rank 2 of the differential equation I +

J = A is transversal to D#+<,, dim D^+ t / + 2 < dim ^(7 + J - λ) = 7 and

so dim D # + , < 5.

Now d[duu d/du2, Zu Z2 and W1 are cross-sections of D(r}

I+J. There

exists such a point p e J\R2, R2) that the tangent vectors (d/du^p, (d/du2)p,

(Z^p, (Z2)p and (W^)p are linearly independent and so, around p, D(r}

I+J is

generated by 3/3^, d/du2, Zu Z2, Wt. Therefore [Wx Z2] is also a local cross-

section of D{PI+J around p.

However we have [WUZ2] = bp\{djdpΐ) + bp\(dldpD - pϊ(3/3pί) - p!(3/3pi)

and this is not obtained by any linear combination of the above genera-

tor. This shows that [Wu Z2] is not a local cross-section of D{PI+J

around p and this contradicts to the involutiveness of D{PI+J. Therefore

Similarly if d(I + c/)(VF3) = 0, around such a point p that p

(d/du2)p, (Z^p, (Z2)p and (W,)p are linearly independent, {3/3^, d/du2, Zu Z2, W3}

is a generator of D{PI+J. However we have [WS9 Z2] = pi(3/3pί) + pJ(3/3pί) —

(αpί + Pΐ)(βldpl) — (αp2 + pΰΦldpϊ) which is not obtained by any linear

combination of the above generator. This contradicts to the involutive-

ness of DPI+J. Thus we get d(I + J)(W3) ^ 0.

Now it is easy to see that WX(I + J) and WJJ + J) are independent

as functions. Therefore by (15.4), Z(I + J) = 0 if and only if XUχ = aXu% +

YU2 and YUl = 6XM2. This completes the proof of Proposition 15.1.

COROLLARY 15.2. Assume that b ^ 0 and ImJn ^ constant where m and

n are integers such that m2 + τίu ^F 0. Then under the conditions (i) and (ii)

in Proposition 15.1, Z(ImJn) = 0 if and only if Z is a cross-section of &p(α>&).

Proo/. Assume that n = 0. Since we have Z(/w) = mImlZI, Z(Im) = 0

if and only if Z/=0. Therefore by the condition (i), Z(Im) = 0 if and only if

Z is a cross-section of S$ (αδ). The similar assertion holds for the case m = 0.
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Now assume that m ^ O and n ^ 0. Since Z(log|J|) = ZZ/7, ZJ = 0

if and only if Z(log|J|) = 0. Therefore Z(m log |J|) = 0 if and only if Z

is a cross-section of &p(α>δ). Similarly Z(ftlog|J|) = 0 if and only if Z is

a cross-section of fi*(βι6). We have m log \I\ + n log | J\ ^ constants because

J w J n ^ constant. Then by Proposition 15.1, Z(m log |Z| + τιlog|J |) = 0 if

and only if Z is a cross-section of S$(α>6).

On the other hand we have Z ( m l o g | I | + n l o g | J | ) = Z(log | I V |) =

Z(ImJn)/ImJn. Therefore Z(ImJn) = 0 if and only if Z(mlog |/ | +

n log IJ I) = 0. This completes the proof of Corollary 15.2.

COROLLARY 15.3. Let F(zί9 z2) be a non-constant real rational expres-

sion of the variables zx and z2 i.e. F(zl9 z2) = (EL=i α<^Γ^Γθ/(Σ*,ί-i bkts%*2%β)

where aiό and bM are non-zero real numbers and mi9 nk are integers > 0.

Assume that I and J are functionally independent and b ^ 0. Then, under

the conditions (i) and (ii) in Proposition 15.1, Z(F(I, J)) = 0 if and only if

Z is a cross-section of 2$(αt6).

Proof Since I and J are functionally independent, 2ϋC/=i a<ίjImiJmj

(1 < sr < s), ΣZi-i bkiI
nkJnt (1 < ^ < 0 are not constants. Therefore by

Proposition 15.1 and Corollary 15.2, Z(^l,j=i ai5I
miJm^) = 0 if and only if

Z is a cross-section of 2%(atb) and Z ( 2 M - I bk4I
n*Jnt) = 0 if and only if Z

is a cross-section of 2«p(αtδ). Since F(J, J ) is not constant, again by Corol-

lary 15.2, Z(F(I, J)) - 0 if and only if Z is a cross-section of 2φ(α δ Γ This

completes the proof.

16. Now let us study the pseudogroups Γ^.* and Γ^. Let φ be any

local transformation on R2. Then for g2 = p?/pϊ we have

(16.1)

= (^PΪ + ΦIPIWIPI + Φ\PΪ)

where φ = (φ1} φs) and ^J = dφjdiij. Similarly we have

(16.2) φv*& = (ίδjpl + ί«/)D/(9Spi + ΦΪPί)

and

(16.3) ί5(1>*34 = (φlp\ + φϊpζ)l(φ\p\ + φlpϊ)

where g3 = pypl and g4 = p2

2/p5.

PROPOSITION 16.1. 2 r / f l J = SΓ / ? >, = 2¥ ( α p S ) if b ±? 0.
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Proof. The differential invariant 7?>δ of $β<α,6) is defined by

I*tb = (8* - hhWhY + <% - b).

By (16.1), (16.2) and (16.3) we have

and

where

G = (#pϊ + » 2 + α(0ϊpl + #pD(#pϊ + φlpl) - b(φ\p{ + φ\p*)\

Then we get

On the other hand we have

Therefore Γ7α,δ a 0 if and only if φ satisfies

(16.4) (φ\φl - φ\φΐ)(p\pl - PIPDIG = (p\pl - p\pΐ)l((piy + aptpl - b(p\Y).

On J\R\ R2l we have p\p\ - p\p\ ^ 0. Therefore the relation (16.4) is

written by

(16.5) (φ\φ\ - φlφl)((plY + ap\pl - b(plY) = G.

This relation identically holds as a polynomial with respect to the vari-

ables pi, pi, pi and p\. Thus we can induce from (16.5) the following three

relations among φ{, φ\, φ\ and φ\\

(16.6) φ\φ\ - φ\φl = ( ^ + aφlφl - 6(^D2,

(16.7) b(φ\φl - ^ D - (^D2 + aφlφ\ - 6(^ϊ)2,

(16.8) a(φlφl - φlφί) = 2 # # + α ( ^ l + 0^D - 2bφlφ\.

These relations (16.6) — (16.8) are the defining equations of Γ^,*.

Let us now induce from these relations the defining equations of

Let X{u)(dldu^) + Y(u)(dldu2) be any local cross-section of 2Γ7α,δ. If

φt is the local 1-parameter group of local transformations generated by

X(u)(dldux) + Y(u)(dldu2\ φt satisfies (16.6) ~ (16.8) and
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dφt(u)idt\ι=ΰ = x

dd(φt{u)\idUjdt\t^ = xφ),

dd(φt(u)\ldukdt\t,0 = YUk(u)

where

Φt(u) = ((&(«))» (φt(u)\).

By these relations and by (16.6), (16.7), (16.8), we get

(16.9) XU1 + YU2 = 2 7 M 2 + aXUi,

(16.10) - b(XUι + YJ = aYUί - 2bXUl,

(16.11) a(XUι + YJ = 2YU1 + a(XUι + YJ - 2bXu,.

From (16.9) and (16.11), we obtain

(16.12) XU1 = aXUi + Y π 2 ,

(16.13) YU1 = bXU2.

Since (16.10) is induced from (16.11), the relations (16.12) and (16.13) are

equivalent to the relations (16.9), (16.10) and (16.11). This proves that

(16.12) and (16.13) are the denning equations of £ r / ? l S and this means that

Next let us consider the denning equations of 2Γja,b. We have

φw*((id2 + α3z - 6)-1 - {φ\p\ + φlplYIG

and

^<1'*(633 - (α + 32)34) = (Φ\P\ + φlpl)-Ή

where

H = b(φ\p\ + φ\pί)(φ\p\ + φlpϊ) - a{φ\p\ + φlptXφlpl + φlpϊ)

- (ΦΪP\ + ΦIPΪMPI + ΦIPΪ)

= (b(φϊ)* - aφlφl - (φlf)p[p\ + (bφlφ\ - aφ\φ\ -

+ (bφlφ\ - aφlφl - ΦWMPI + Φ(φ\f - aφlφl

Since /f δ = ((a + g2)34 — 6g3)/((g2)
2 + αg2 — b), by easy calculations we see

that φ satisfies φm*If = Ip" if and only if

(16.14) ((piy + ap\p\ - b{pϊf)H = {bp\p\ - ap\pl - plpf)G .

This relation holds identically as a polynomial with respect to the vari-

ables pi, pi, pi and pi Therefore we get the following relations (16.15) ~

(16.22) among φ\, φ\, φ\ and φ\:
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b{φ\f - aφ\φ\ - (#) ' + Φψlψl - aφlφl - φϊφί)

b((φlY + aφlφl -

(16 16)

= b(2φlφl + a{φ\φ\ + φlφl) - 2bφ\φϊ),

(16.17) - b(b(φ\Y - aφlφl - (#)2) = b(($tf + aφ\φ\ - b{φtf),

(16.18) bφlφ\ - aφlφl - Φlφl = 0 ,

bφlφl - aφlφl - φlφl + a(b(φ\Y - aφ\φt - (φlf)
(16.19) = - (2φlφt + a(φlφl + φ\φί) - 2bφ\φd

- a((φlf + aφlφl - Kφϊ)2) ,

a(bφ\φl - aφlφl - Φlφϊ) - b(b(φiγ - aφlφl - (φΐf)

(16.20) = - ((φlY + aφlφl - b(φlf)

- a(2φlφl + a{φlφ\ + φlφl) - 2bφlφϊ),

(16.21) b(bφlφl - aφlφl - φlφϊ) •= α((^)2 + aφlφl - b(φlf),

(16.22) b(φϊ)> - aφlφl - (Φϊ)2 = - ((ΦIY + aφlφl - b(φlf).

These relations are the defining equations of Γ/«,s.

Let us induce the defining equations of 2Γ,α,» from the above rela-

tions (16.15) - (16.22). Let X(u){djdu^ + Y(u)(d/du2) be any local cross-

section of 2Γla,b. Then from (16.19) we get

(16.23) YU1 = bXU2.

From (16.16) we get bXUι = abXU2 + 6YW2 and so

(16.24) XU1 = αXtt2 + 7.2

because 6 ^ 0 . It is easy to check that X(u) and Y(^) satisfy the other

relations induced from (16.15) - (16.22) if they satisfy the relations (16.23)

and (16.24). Therefore X(u)(dldu^) + Y(u)(d/du2) is a local cross-section of

£Γ / α,6 if and only if it satisfies (16.23) and (16.24). This completes the

proof of Proposition 16.1.

THEOREM 16.2. Let F(zu z2) be a non-constant real rational expression

of the variables z1 and z2. We set λ(x) = F(I^b(jl(f)), I^b(jl(f))) and con-

sider the single differential equation P(F): F(I^b, I^b) = λ around the point

p = jlo(f). Then the automorphism pseudogroup 2ί(P(F)) of P(F) coincides

with the pseudogroup $β(α,δ) around β\p) and near the identity if b ^ 0.
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Proof. Since Jfiδ and Jf'δ are functionally independent, by Proposi-

tion 16.1 and Corollary 15.3, we have 2Γ(F) = fi*(β(6) where Γ(F) = {φ e

^(R2); φV*F(Iϊ\ IVh) = F{I?\ I^% Then by Lemma 14.1, we get 2 a ( P ( F ) ) =

SP(α 6). This completes the proof of Theorem 16.2.

§6. Foliations and differential equations

17. Let us consider a foliation g on a manifold M and denote by
the tangent bundle to g.

DEFINITION 17.1. For a foliation $, if there exist 1-forms ωl9 '- ,ωq

on M satisfying the following conditions (1), (2) and (3), then the pair

(^, ω) is called a generalized Lie foliation where ω = (ω1? , ωg):

(1) g — codim gf.

(2) Γ(g) a X if and only if ω(X) = 0.

(3) dα^ = Σj<fc Cίjτc<0j/\®k where all cίj1c are functions on M. If all

cijk are constants, ($, ω) is called a Lie foliation.

Now consider a differential operator P(x, D) of infinite type at any x

with the structure vector (a, b). Then we have a system of differential

equations P: P(x, D)u = 0 which is written on J^i?2, i?2) by (9.1). By the

pseudoellipticity of (9.1), it is also written by the following normal form

/ i r 7 i , PΪ = H\xx, x2, pi pi),
ί 1 7 ' 1 ) 2 172/ 1 2Λ

A2 = H\xu x29pl,pξ).

LEMMA 17.1. The set of integral points I(P) of (9.1) or (17.1) is a 6-

dimensional regular submanifold of J\R2, R2).

Proof The vector fields Zγ = (αpϊ + pl)(dldp{) + bp&d/dpl) + (ap\ + pD

+ bplQIdpf) and Z2 - />K3/3PΪ) + PΪ0/3pD + plidldpQ + plQIdpd on

Jι(R2, R2) are linearly independent at each point because p\p\ — p\p\ ̂ = 0.

We set D ^ = (S?(

)P))P/(^1()P))P
 a n d consider the correspondence D{ί):

J\R2, R2)Bp-> D™ C TP(J\R2, R% Then by Proposition 6.2, D (1) is a 4-

dimensional involutive distribution on Jι{Rι, R2) generated by Zl9 Z2, ZΆ =

djdux and Z4 = d/du2. Since the image of the map j\s): U -*J\R\ R2) for

any solution s: U —• i?2 of P is transversal to Z)(1) and dim (Im (JXs))) = 2,

we see that I(P) is a 6-dimensional regular submanifold of J\R2, R2)

defined by p\ = i/^Xi, x2, pϊ, Pi) and pj = £Γ2(Xi, x2, PL PD Since J^E 2 , i?2)

is open in J\R2, R2), the proof of Lemma 17.1 is completed.
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Let us consider the distribution E on J\R2, R2) generated by the fol-

lowing vector fields Eλ and E2:

Eλ - dldx, + plOldud +

E2 = dldχ2 + plid/du,) + pl(dldu2).

Since [E19 E2] = 0, E is involutive. For any local map / of R2 to R2, the

vector fields Ex and E2 are tangent to the image of the map j\f) at each

point of it. Since P is pseudoinvolutive, we have I(P) = S = {jl(s);

s 6 S(P), xethe domain of s}. By Lemma 17.1, I(P) is a regular submani-

fold of J\R2, R2). Thus we can obtain the involutive distribution E on

I(P) by restricting E to /(P).

PROPOSITION 17.2. 7%e foliation $ on S ^ I(P) given by E is a gener-

alized Lie foliation of codim 4.

Proof. The vector fields El9 E29 Zl9 Z2, ZS9 Z4 on J\R\ R2) are tangent

to S and linearly independent at each point of S. By Lemma 17.1 these

vector fields define a complete parallelism on S.

Let L be any leaf of g. Then for any point p e L, there exists a

neighbourhood U of p such that L Π lί is the image of the map j\s) for

a solution s of P. Conversely for a solution s of P, the image of /(s)

is an open subset of a leaf of g. By Proposition 6.2, Z,, Z2, Z3 and Z4

are cross-sections of ZU(tP). Eλ and £2 are tangent to any leaf L of g a ^

any point. Thus we see that [Ei9 Zj] is also tangent to any leaf of gf,

that is, at any point of S, [Eu Z3] is a linear combination of Ex and E2.

On the other hand, [Zi9 Z3] is clearly a cross-section of Z%{P)y that is,

[Zt, Zj] is a linear combination of Zu Z2, Zz and Z4 at any point of S.

Let ω^ ω2, ω3, ω4, be 1-forms on S defined by ω^Zj) = 5^ and ω̂  | £J = 0.

Then it is easy to check that

and

Γ(g) 3 X if and only if ω{X) = 0

where all cίjfe are functions on S and ω = (α>1? ω2, ω3, ω4). This shows that

the pair (gί, ω) is a generalized Lie foliation of codim 4. This completes

the proof of Proposition 17.2.

18. Let / be a submersion of R2 to R2 and let us consider a single

differential equation
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P(F): F(Iϊ>\I?b) = λ

on J\R2j R2) where F(zu z2) is a non-constant real rational expression of

the variables zv and z2 and λ{x) = F(l£*(jl(f)), Iϊb(jl(f))). The automor-

phism pseudogroup 2ί(P(F)) is, by Theorem 16.2, $β(α,δ) near the identity if

b ^ 0.

Assume that 6 ^ 0 , I(P(F)) is a regular submanifold and P(F) is

pseudoinvolutive i.e. I(P(F)) = S(P(F)). Let 5: U-+R2 e &(P(F)) and

denote by G*(s) the image of the map /(s): ί7 -> JXR2, R2). If we denote

by %p the maximal integral manifold of Z)(1) through /? e J\R\ R2), then

D(1)(s) = U jtecπs) %P is a regular submanifold of S(P(F)). Denote by

S°(P(F)) the connected component of S(P(F)) containing G\f).

PROPOSITION 18.1. There exists a foliation g on S°(P(F)) satisfying

the following conditions:

( i) codim g = 1.

(ii) On each leaf L of g, there exists a generalized Lie foliation ($L, ωL/

of codim 4.

Proof. Let L be a maximal connected subset of S°(P(F)) which is

locally given by D(l)(s) for some s e @(P(F)). Denote by $ the family of

all such subsets of S°(P(F)). Then it is clear that S°(P(F)) == ULeχL.

If Lx and Lz are elements of g with Lt Π i 2 ^ φ, then for p e Lt f] L2

there exists an element s e (B(P(F)) such that jl(s) = p. Since Dn)(s) c L^

B(1)(s) c L2 and dim D(1)(s) = dim Lx = dim L2, it is clear that Lx = L2.

Therefore g is a foliation on S°(P(F)) and codim $ = 1 because

dim S°(P(F)) = 7 and dimL = 6 for L e g .

Since the vector fields Ex = 9/3^ + plid/dUj) + pl(dldu2) and £J2 = d/dx2

+ pKd/dUi) + pt(dldu2) are tangent to G^s), they define a 2-dimensional

involutive distribution DL on L i.e. the foliation $L on L. Furthermore

the vector fields Zl9 Z2, Z3 and Z4 are tangent to D{1\s) at each point of

D(1)(s) for se©(P(F)) because S ^ p ^ = S?p(α,6). Therefore, in particular,

they are tangent to L at each point of L. Define the vector valued 1-

form ωL = (ωi, ωi, ω3

L, ωi) by

Then we see that the pair (gL, ωL) is a generalized Lie foliation on L of

codim 4. This completes the proof of Proposition 18.1.
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