(H, C)-GROUPS WITH POSITIVE LINE BUNDLES

YUKITAKA ABE

§ 0. Introduction

Let G be a connected complex Lie group. Then there exists the smallest closed complex subgroup G^0 of G such that G/G^0 is a Stein group (Morimoto [8]). Moreover G^0 is a connected abelian Lie group and every holomorphic function on G^0 is a constant. G^0 is called an (H, C)-group or a toroidal group. Every connected complex abelian Lie group is isomorphic to the direct product $G^0 \times C^m \times C^{*n}$, where G^0 is an (H, C)-group ([7], [9]).

Recently, several interesting results with respect to (H, C)-groups have been obtained (Kazama [5], Kazama and Umeno [6], Vogt [13], [14] and [15]). The set of (H, C)-groups includes the set of complex tori. A complex torus is called an abelian variety if it satisfies Riemann condition. The definition of quasi-abelian variety for (H, C)-groups was given in [2]. In this paper we shall show that the concept of quasi-abelian variety is a natural generalization of abelian variety. Throughout this paper, we assume that $\dim H^1(X, \mathcal{O}) < \infty$ for (H, C)-groups X. Our main result is the following.

Let $X = C^n/\Gamma$ be an (H, C)-group. The following statements are equivalent:

- (1) X has a positive line bundle;
- (2) X is a quasi-abelian variety;
- (3) X is a covering space on an abelian variety;
- (4) X is embedded in a complex projective space as a locally closed submanifold.

The above result is well-known for complex tori. For the proof we use the theory of weakly 1-complete manifolds and results of Vogt. We note that implications $(2) \Rightarrow (3)$ and $(2) \Rightarrow (4)$ were obtained by Gherardelli

Received April 12, 1985.

Revised September 18, 1986.

and Andreotti [2]. Combining with a result of Gherardelli and Andreotti [2], we get the affirmative answer to a problem of the structure of weakly 1-complete manifolds in the case of (H, C)-groups (see § 6).

The author was inspired from dissertations of Pothering [12] and Vogt [13]. He is very grateful to Professor H. Kazama who told him the existence of their dissertations.

§ 1. Preliminaries

Let G be an n-dimensional connected complex Lie group without nonconstant holomorphic functions. Such a Lie group G is said to be an (H, C)-group or a toroidal group ([7], [8]). We recall that G is abelian and then G is isomorphic onto C^n/Γ for some discrete subgroup Γ of C^n as a Lie group ([8]). If C^n/Γ is an (H, C)-group, then the generators of Γ contains n vectors linearly independent over C and rank $\Gamma = n + q$ $(1 \le q \le n)$. When Γ is generated by $p_1, \dots, p_{n+q} \in C^n$, we write

$$P=(p_1,\,\cdots,p_{n+q})\,,$$

and we call it a period basis of Γ , or also of $X = \mathbb{C}^n/\Gamma$. Two period bases P and P' are equivalent if and only if there exist a non-singular matrix S and a unimodular matrix M such that

$$P' = SPM$$
.

A period basis P is always equivalent to the following standard form

$$(I_n V)$$
.

where $V=(v_1,\,\cdots,\,v_q),\;v_j={}^\iota(v_{1j},\,\cdots,\,v_{nj}),\;\mathrm{det}\;(\mathrm{Im}\,v_{ij};\,1\leqq i,j\leqq q)\neq 0$ and I_n is the $(n,\,n)$ unit matrix.

It is well-known that C^n/Γ is an (H, C)-group if and only if

$$\max\left\{\left|\sum_{k=1}^n v_{kj}m_k-m_{n+j}\right|; 1\leq j\leq q\right\}>0$$

for all $m=(m_1,\cdots,m_n,m_{n+1},\cdots,m_{n+q})\in \mathbb{Z}^{n+q}\setminus\{0\}$ (Kopfermann [7] and Morimoto [8]).

A discrete subgroup Γ of rank n+q in C^n generates an (n+q)-dimensional real linear subspace R_{Γ}^{n+q} of C^n . R_{Γ}^{n+q} contains the q-dimensional complex linear subspace C_{Γ}^q which is the maximal complex linear subspace contained in R_{Γ}^{n+q} . If we take the standard form for the period basis of Γ , then Im $v_1, \dots, \text{Im } v_q$ generate C_{Γ}^q .

§ 2. Factors of automorphy

We introduce some results of Vogt ([13] and [14]). For the details, we refer the reader to [13].

Let Γ be a discrete subgroup of rank n+q in \mathbb{C}^n , $X=\mathbb{C}^n/\Gamma$ and $\pi\colon \mathbb{C}^n\to X$ be the projection. If $p\colon L\to X$ is a holomorphic line bundle, then its pull-back π^*L is given by the following fibre product

$$\pi^*L = \mathbf{C}^n \times_{\mathbf{x}} L = \{(\mathbf{z}, \mathbf{v}) \in \mathbf{C}^n \times L; \, \pi(\mathbf{z}) = p(\mathbf{v})\}.$$

Since any holomorphic Line bundle over C^n is analytically trivial, we have a trivialization

$$\varphi \colon \pi^*L \longrightarrow C^n \times C, (z, v) \longmapsto (z, \varphi_z(v))$$

of π^*L . We define

$$\alpha: \Gamma \times \mathbb{C}^n \longrightarrow \mathbb{C}^*, \alpha(\gamma, z) := \varphi_{z+\gamma} \varphi_z^{-1}.$$

Then α satisfies the following conditions:

- (a) $\alpha_r(z) := \alpha(r, z)$ is holomorphic for all $r \in \Gamma$;
- (b) $\alpha(0, z) = 1$ for all $z \in C^n$;
- (c) $\alpha(\Upsilon + \Upsilon', z) = \alpha(\Upsilon, z + \Upsilon')\alpha(\Upsilon', z)$ for all $\Upsilon, \Upsilon' \in \Gamma$ and $z \in \mathbb{C}^n$.

DEFINITION. A map $\alpha: \Gamma \times C^n \to C^*$ is called a factor of automorphy for Γ on C^n if it satisfies the above conditions (a), (b) and (c).

Conversely, if $\alpha: \Gamma \times C^n \to C^*$ is a factor of automorphy, then we get a line bundle L over C^n/Γ defined as the quotient of $C^n \times C$ by the following action of Γ :

$$\gamma(z, v) := (z + \gamma, \alpha(\gamma, z)v) \text{ for } \gamma \in \Gamma, z \in \mathbb{C}^n, v \in \mathbb{C}.$$

DEFINITION. Two factors of automorphy α , β are said to be equivalent if there exists a holomorphic function $h: \mathbb{C}^n \to \mathbb{C}^*$ such that

$$\beta(\gamma, z) = h(z + \gamma)\alpha(\gamma, z)h^{-1}(z)$$

for all $\gamma \in \Gamma$ and $z \in \mathbb{C}^n$.

PROPOSITION 1 (Vogt [13] and [14]). The equivalent classes of factors of automorphy for Γ on \mathbb{C}^n correspond one-to-one to the isomorphism classes of holomorphic line bundles over \mathbb{C}^n/Γ .

PROPOSITION 2 (Vogt [13]). Let L_1 and L_2 be holomorphic line bundles over \mathbb{C}^n/Γ . If factors of automorphy α_1 and α_2 give L_1 and L_2 respectively,

then $L_1 \otimes L_2$ is given by the factor of automorphy

$$\alpha_1\alpha_2: \Gamma \times C^n \longrightarrow C^*, \ \alpha_1\alpha_2(\gamma, z) := \alpha_1(\gamma, z)\alpha_2(\gamma, z)$$

for all $\gamma \in \Gamma$ and $z \in \mathbb{C}^n$.

DEFINITION. A map $a: \Gamma \times \mathbb{C}^n \to \mathbb{C}$ is called a summand of automorphy, if

- (a) $a_{r}(z) := a(r, z)$ is holomorphic for all $r \in \Gamma$;
- (b) a(0, z) = 0 for all $z \in C^n$;
- (c) $a(\Upsilon + \Upsilon', z) = a(\Upsilon, z + \Upsilon') + a(\Upsilon', z)$ for all $\Upsilon, \Upsilon' \in \Gamma$ and $z \in C^n$.

Let $a: \Gamma \times C^n \to C$ be a summand of automorphy. We set $\alpha(7, z) := \exp(\alpha(7, z))$. Then α is a factor of automorphy.

LEMMA 1 (Vogt [13]). Let Γ be a discrete subgroup of rank r in \mathbb{C}^n with a basis $\{\Upsilon_1, \dots, \Upsilon_r\}$. If a map $b \colon \Gamma \times \mathbb{C}^n \to \mathbb{C}$ satisfies the following properties:

- (a) $b_j(z) := b(\gamma_j, z)$ is holomorphic for all $j = 1, \dots, r$;
- (b) $b(\gamma_i, z + \gamma_j) + b(\gamma_j, z) = b(\gamma_j, z + \gamma_i) + b(\gamma_i, z)$ for all $i, j = 1, \dots, r$, then there exists a summand of automorphy such that

$$a(\gamma_i, z) = b(\gamma_i, z)$$
 for all $i = 1, \dots, r$.

DEFINITION. A factor of automorphy $\alpha: \Gamma \times \mathbb{C}^n \to \mathbb{C}^*$ is called a theta factor for Γ on \mathbb{C}^n , if it is expressed as follows,

$$\alpha(\varUpsilon,z) = \exp 2\pi \sqrt{-1} (\mathscr{L}_{\varUpsilon}(z) + c(\varUpsilon)),$$

where $\mathcal{L}_{r}(z)$ is a linear polynomial and c(7) is a constant for all $7 \in \Gamma$.

The following proposition was mentioned in [15], and its proof is hidden in the proof of Theorem in [14].

PROPOSITION 3. Let C^n/Γ be an (H, C)-group. For every line bundle L over C^n/Γ , there exist a topologically trivial line bundle L_0 and a line bundle L_1 given by a theta factor such that $L \cong L_0 \otimes L_1$.

Proof. The proof is along the argument of the implication $2) \Rightarrow 1$) of Theorem in [14]. Let $\alpha: \Gamma \times C^n \to C^*$ be a factor of automorphy which gives L. There exists a map $a: \Gamma \times C^n \to C$ such that $\alpha(r, z) = \exp \alpha(r, z)$. We have

$$a(\varUpsilon,z+\varUpsilon')+a(\varUpsilon',z)=a(\varUpsilon',z+\varUpsilon)+a(\varUpsilon,z)+2\pi\sqrt{-1}n(\varUpsilon,\varUpsilon')\,,\quad n(\varUpsilon,\varUpsilon')\in Z\,,$$

for all $\gamma, \gamma' \in \Gamma$ and $z \in C^n$. We may assume that $P = (I_n V)$ is a period basis of Γ . Putting

$$\ell(e_{\scriptscriptstyle j},z) := \pi \sqrt{-1} \sum\limits_{\scriptscriptstyle k=1}^{n} n(e_{\scriptscriptstyle j},e_{\scriptscriptstyle k}) z_{\scriptscriptstyle k}\,, \qquad j=1,\,\cdots,\,n,$$

$$\ell(v, e_j) := \ell(e_j, v) + 2\pi\sqrt{-1}n(v, e_j), \quad v \in V, j = 1, \dots, n,$$

we get a map $\ell \colon \Gamma \times C^n \to C$ such that $\ell(\gamma,) \colon C^n \to C$ is C-linear and

(*)
$$\ell(\gamma, \gamma') = \ell(\gamma', \gamma) + 2\pi\sqrt{-1}n(\gamma, \gamma') \quad \text{for all } \gamma, \gamma' \in P.$$

We define

$$b(\varUpsilon,z) := a(\varUpsilon,z) - \ell(\varUpsilon,z)$$
 for all $\varUpsilon \in P$.

We rewrite $P = (I_n V) = (\gamma_1, \dots, \gamma_{n+n})$. By (*) we have

$$b(\Upsilon_i, z + \Upsilon_i) + b(\Upsilon_i, z) = b(\Upsilon_i, z + \Upsilon_i) + b(\Upsilon_i, z)$$

for all $i, j = 1, \dots, n + q$. By Lemma 1 there exists a summand of automorphy \tilde{b} such that

$$ilde{b}(au_i,z)=b(au_i,z)\,,\qquad i=1,\,\cdots,\,n+q,\,z\in C^n.$$

Now we show the following (**).

(**) For any $\gamma \in \Gamma$ there exists a constant $c(\gamma) \in C$ such that

$$\tilde{b}(\gamma, z) = a(\gamma, z) - \ell(\gamma, z) + c(\gamma)$$
.

We use the proof of Lemma 1. Every $\gamma \in \Gamma$ can be expressed uniquely as

$$\gamma = \sum\limits_{i=1}^{n+q} t_i \gamma_i \,, \qquad t_i \in oldsymbol{Z} \,.$$

Let $|\gamma| = \sum_{i=1}^{n+q} |t_i|$. We show (**) by induction on $|\gamma|$. For $\gamma = 0$, we have

$$a(0,z) - \ell(0,z) = a(0,z) = 2\pi\sqrt{-1}n_0, \qquad n_0 \in Z.$$

Then we set $c(0) = -2\pi\sqrt{-1}n_0$. When $|\varUpsilon| = 1$, $\varUpsilon = \pm \varUpsilon_i$. Since $\tilde{b}(\varUpsilon_i, z) = b(\varUpsilon_i, z)$, (**) holds for $\varUpsilon = \varUpsilon_i$ with $c(\varUpsilon_i) = 0$. As in the proof of Lemma 1 ([13]), $\tilde{b}(-\varUpsilon_i, z)$ is defined by

$$\hat{b}(-\gamma_i,z) = -\tilde{b}(\gamma_i,z-\gamma_i)$$
.

Hence it holds that

$$\tilde{b}(-\gamma_i, z) = -a(\gamma_i, z - \gamma_i) + \ell(\gamma_i, z - \gamma_i)$$
.

And we have

$$-a(\gamma_i, z - \gamma_i) = a(-\gamma_i, z) + 2\pi\sqrt{-1}\{n(\gamma_i, -\gamma_i) - n_0\}.$$

Setting $c(-\gamma_i) = -\ell(\gamma_i, \gamma_i) + 2\pi\sqrt{-1}\{n(\gamma_i, -\gamma_i) - n_0\}$, we obtain (**). Assume that (**) holds for $|\gamma| \leq N$. Let $|\gamma| = N + 1$. There exist $\gamma', \gamma'' \in \Gamma$ such that $\gamma = \gamma' \oplus \gamma''$, $|\gamma''|, |\gamma''| \leq N$. By the definition of \tilde{b} it holds that

$$\tilde{b}(\varUpsilon,z) = \tilde{b}(\varUpsilon',z+\varUpsilon'') + \tilde{b}(\varUpsilon'',z).$$

Then we obtain

$$ilde{b}(ilde{\gamma},z) = a(ilde{\gamma}'+ ilde{\gamma}'',z) - 2\pi\sqrt{-1}n(ilde{\gamma}', ilde{\gamma}'') - \ell(ilde{\gamma}'+ ilde{\gamma}'',z) - \ell(ilde{\gamma}', ilde{\gamma}'') + c(ilde{\gamma}'').$$

Thus (**) holds with

$$c(\varUpsilon) = -2\pi\sqrt{-1}n(\varUpsilon',\varUpsilon'') - \ell(\varUpsilon',\varUpsilon'') + c(\varUpsilon') + c(\varUpsilon'').$$

We define the factor of automorphy by $\tilde{\beta} := \exp \tilde{b}$. Then the line bundle $L_{\tilde{\beta}}$ given by $\tilde{\beta}$ is topologically trivial (Vogt [13] and [14]). Put

$$\rho(\varUpsilon,z) := \exp\left(\ell(\varUpsilon,z) - c(\varUpsilon)\right).$$

Then ρ is a theta factor and $\alpha(\tilde{r},z) = \tilde{\beta}(\tilde{r},z)\rho(\tilde{r},z)$. By Proposition 2 we obtain $L \cong L_{\tilde{\beta}} \otimes L_{\rho}$, where L_{ρ} is the line bundle given by ρ .

§ 3. Theta functions

DEFINITION. Let Γ be a discrete subgroup of rank n+q in C^n . A holomorphic function $\theta(z)$ on C^n is called a theta function with theta factor $\rho(r,z)$ if it satisfies

$$\theta(z+\gamma) = \rho(\gamma,z)\theta(z)$$
, for all $\gamma \in \Gamma$ and $z \in \mathbb{C}^n$.

PROPOSITION 4 (Kopfermann [7]). Let Γ be a discrete subgroup of rank n+q in \mathbb{C}^n and $\rho(\Gamma, z)$ be a theta factor for Γ on \mathbb{C}^n . Then there exist a hermitian form $\mathscr{H} \colon \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ with $\mathscr{A} := \operatorname{Im} \mathscr{H} \mathbb{Z}$ -valued on $\Gamma \times \Gamma$, a \mathbb{C} -bilinear symmetric form \mathscr{Q} , a \mathbb{C} -linear form \mathscr{L} and a semi-character ψ of Γ associated with $\mathscr{A}|_{\Gamma \times \Gamma}$ such that

$$\rho(\mathbf{7},z) = \psi(\mathbf{7}) \exp 2\pi \sqrt{-1} \bigg[\frac{1}{2\sqrt{-1}} (\mathscr{H} + \mathscr{Q})(\mathbf{7},z) + \frac{1}{4\sqrt{-1}} (\mathscr{H} + \mathscr{Q})(\mathbf{7},\mathbf{7}) + \mathscr{L}(\mathbf{7}) \bigg]$$

for all $\Gamma \in \Gamma$ and $z \in \mathbb{C}^n$. If rank $\Gamma = 2n$, then this expression is unique.

A theta factor ρ with the expression as in Proposition 4 is called a

theta factor of type $(\mathcal{H}, \psi, \mathcal{Q}, \mathcal{L})$. A theta function with theta factor ρ of type $(\mathcal{H}, \psi, \mathcal{Q}, \mathcal{L})$ is called a theta function of type $(\mathcal{H}, \psi, \mathcal{Q}, \mathcal{L})$. A trivial theta function is a theta function of type $(0, 1, \mathcal{Q}, \mathcal{L})$. A theta function of type $(\mathcal{H}, \psi, 0, 0)$ is said to be reduced. Every theta function can be expressed as the product of a reduced theta function and a trivial theta function.

Let \mathscr{H} be a hermitian form on $\mathbb{C}^n \times \mathbb{C}^n$. We set

$$\operatorname{Ker}(\mathscr{H}) := \{ z \in C_r^q; \mathscr{H}(z', z) = 0 \quad \text{for all } z' \in C_r^q \}.$$

PROPOSITION 5 (Kopfermann [7]). Let Γ be a discrete subgroup of rank n+q in \mathbb{C}^n . If $\theta(z)$ is a theta function for Γ of type $(\mathcal{H}, \psi, \mathcal{Q}, \mathcal{L})$ and $\theta(z) \not\equiv 0$, then

- (1) \mathscr{H} is positive semi-definite on $C_{\Gamma}^{q} \times C_{\Gamma}^{q}$,
- (2) θ is constant on Ker (\mathcal{H}), if θ is reduced.

§ 4. Quasi-abelian varieties

Let Γ be a discrete subgroup of rank n+q in \mathbb{C}^n and \mathbb{C}^n/Γ be an (H, \mathbb{C}) -group. We consider the following condition.

- (R) There exists a hermitian form \mathscr{H} on $\mathbb{C}^n \times \mathbb{C}^n$ such that
- (1) Im \mathcal{H} is **Z**-valued on $\Gamma \times \Gamma$;
- (2) \mathscr{H} is positive definite on $C_r^q \times C_r^q$.

When rank $\Gamma = 2n$, it is well-known that \mathbb{C}^n/Γ is an abelian variety if and only if the above condition (R) is satisfied. The following definition is due to Gherardelli and Andreotti [2].

DEFINITION. An (H, C)-group C^n/Γ is called a quasi-abelian variety if it satisfies the condition (R).

PROPOSITION 6 (Gherardelli and Andreotti [2]). Let Γ be a discrete subgroup of rank n+q in \mathbb{C}^n . Suppose that \mathscr{H} is a hermitian form on $\mathbb{C}^n \times \mathbb{C}^n$ satisfying the following properties:

- (a) Im \mathcal{H} is **Z**-valued on $\Gamma \times \Gamma$,
- (b) \mathscr{H} is positive definition on $C^q_{\varGamma} \times C^q_{\varGamma}$.

Then there exist $\gamma \in C^n$ and a hermitian form 2 symmetric on $R_{\Gamma}^{n+q} \times R_{\Gamma}^{n+q}$ such that

- (1) $\Gamma_1 = \Gamma + Z \gamma$ is a discrete subgroup of rank n + q + 1 in C^n ,
- (2) Im $(\mathcal{H} + 2)$ is Z-valued on $\Gamma_1 \times \Gamma_1$,
- (3) $\mathcal{H} + 2$ is positive definite on $\mathbb{C}^n \times \mathbb{C}^n$.

Let C^n/Γ be a quasi-abelian variety with a discrete subgroup Γ of

rank n+q. Using Proposition 6 successively, we obtain a discrete subgroup $\tilde{\Gamma}$ of rank 2n such that $\tilde{\Gamma} \supset \Gamma$ and $\mathbb{C}^n/\tilde{\Gamma}$ is an abelian variety. Hence the following proposition holds.

PROPOSITION 7 (Gherardelli and Andreotti [2]). If C^n/Γ is a quasi-abelian variety, then it is a covering space on an n-dimensional abelian variety.

§ 5. (H, C)-groups with positive line bundles

Let X be a complex manifold. X is called a weakly 1-complete manifold if there exists a C^{∞} plurisubharmonic exhaustion function on X (Nakano [11]). It is well-known that an (H, C)-group C^n/Γ is weakly 1-complete (cf. Kazama [4]).

Let X be an n-dimensional weakly 1-complete manifold and ψ be its C^{∞} plurisubharmonic exhaustion function. We set $X_c = \{x \in X; \ \psi(x) < c\}$ for all $c \in \mathbb{R}$. Let $E \to X$ be a holomorphic vector bundle over X. We denote by $\Omega^p(E)$ the sheaf of germs of all E-valued holomorphic p-forms. We need the following theorems.

Theorem A (Kazama [3]). Let X be an n-dimensional weakly 1-complete manifold and $E \to X$ be a holomorphic vector bundle over X which is positive in the sense of Nakano [10]. Then for any $c \in R$, the restriction map

$$\rho \colon H^0(X, \Omega^n(E)) \to H^0(X_c, \Omega^n(E))$$

has a dense image with respect to the topology of uniform convergence on all compact sets in X_c .

Theorem B (Hironaka, cf. Fujiki [1]). Let X be a weakly 1-complete manifold and $B \to X$ be a positive line bundle over X. Then, for any $c \in \mathbb{R}$ there exist natural numbers m, N and $\varphi^{(0)}, \dots, \varphi^{(N)} \in H^0(X_d, \mathcal{O}(B^m))$ for d > c such that $\Phi = (\varphi^{(0)}: \dots : \varphi^{(N)})$ embeds X_c into \mathbb{P}^N as a locally closed submanifold and $\Phi^*[e] = B^m$, where \mathbb{P}^N is the N-dimensional complex projective space and [e] is the hyperplane bundle of \mathbb{P}^N .

PROPOSITION 8. Let $X = C^n/\Gamma$ be an (H, C)-group. Suppose that X has a positive theta bundle $L \to X$ with theta factor ρ . Then, for any $x, y \in C^n$ with $x \not\equiv y \pmod{\Gamma}$ there exist a natural number m and theta functions, θ_1, θ_2 with theta factor ρ^m such that $f(x) \not\equiv f(y)$, where $f = \theta_1/\theta_2$.

Proof. Let $\pi: \mathbb{C}^n \to X$ be the projection. For any $x, y \in \mathbb{C}^n$ with $\pi(x)$

 $\neq \pi(y)$, there exists a real number c such that $X_c \ni \pi(x)$, $\pi(y)$. Take c' > c. By Theorem B there exist natural numbers m, N and an embedding map $\Phi: X_{c'} \to P^N$, where $\Phi = (\varphi^{(0)}: \cdots : \varphi^{(N)})$ and $\varphi^{(j)} \in H^0(X_d, \mathcal{O}(L^m))$, d > c'. Since the canonical bundle K of X is analytically trivial, we have $\mathcal{O}(L^m) \cong \Omega^n(K^{-1} \otimes L^m)$ and $K^{-1} \otimes L^m$ is positive. Applying Theorem A to $\Omega^n(K^{-1} \otimes L^m)$, we can approximate any element in $H^0(X_d, \mathcal{O}(L^m))$ by elements in $H^0(X, \mathcal{O}(L^m))$ uniformly on $\overline{X}_{c'}$. Therefore there exist $\varphi^{(0)}, \cdots, \varphi^{(N)} \in H^0(X, \mathcal{O}(L^m))$ such that a holomorphic map $\tilde{\Phi} = (\tilde{\varphi}^{(0)}: \cdots : \tilde{\varphi}^{(N)}): X_c \to P^N$ separates points $\pi(x)$ and $\pi(y)$. There exist hyperplanes H_1 and H_2 of P^N such that $H_1 \ni \tilde{\Phi}(\pi(x)), H_1 \not\ni \tilde{\Phi}(\pi(y))$ and $H_2 \not\ni \tilde{\Phi}(\pi(x)), \tilde{\Phi}(\pi(y))$. Let $\ell_j = 0$ be the homogeneous equation of H_j for j = 1, 2. We set

$$f:=rac{\ell_1\!\!\left(ilde{arphi}^{(0)},\,\cdots,\, ilde{arphi}^{(N)}
ight)}{\ell_2\!\!\left(ilde{arphi}^{(0)},\,\cdots,\, ilde{arphi}^{(N)}
ight)}\,.$$

Then f is a meromorphic function on X and $f(\pi(x)) \neq f(\pi(y))$. Each section $\ell_j(\tilde{\varphi}^{(0)}, \dots, \tilde{\varphi}^{(N)})$ corresponds to a theta function θ_j with theta factor ρ^m for j = 1, 2. Then we have $f \circ \pi = \theta_1/\theta_2$.

PROPOSITION 9. Let $X = C^n/\Gamma$ be an (H, C)-group. If X has a positive line bundle, then it is a quasi-abelian variety.

Proof. Let $L \to X$ be a positive line bundle over X. By Proposition 3, we have $L \cong L_0 \otimes L_1$, where L_0 is a topologically trivial line bundle and L_1 is a theta bundle. Under our assumption, every topologically trivial line bundle over X is given by a representation of Γ ([14]). Hence we may assume that L is a positive theta bundle. Suppose that L is given by a theta factor ρ of type $(\mathcal{H}, \psi, \mathcal{Q}, \mathcal{L})$.

It suffices to show that $\operatorname{Ker}(\mathscr{H}) = \{0\}$. If $\operatorname{Ker}(\mathscr{H}) \neq \{0\}$, then there exist $x, y \in \operatorname{Ker}(\mathscr{H})$ such that $x \neq y \pmod{\Gamma}$. By Proposition 8 there exist a natural number m and theta functions θ_1, θ_2 with theta factor ρ^m such that $f(x) \neq f(y)$, where $f = \theta_1/\theta_2$. We may assume that θ_1 and θ_2 are reduced theta functions of type $(m\mathscr{H}, \psi^m, 0, 0)$. Since $\operatorname{Ker}(m\mathscr{H}) = \operatorname{Ker}(\mathscr{H})$, θ_1 and θ_2 must be constant on $\operatorname{Ker}(\mathscr{H})$ (Proposition 5). It is a contradiction.

From Propositions 7 and 9 the following theorem holds.

THEOREM 1. Let $X = C^n/\Gamma$ be an (H, C)-group. Then the following statements (1), (2) and (3) are equivalent.

(1) X has a positive line bundle.

- (2) X is a quasi-abelian variety.
- (3) X is a covering space on an n-dimensional abelian variety.

§ 6. Some remarks

H. Kazama proposed the following problem of the structure of weakly 1-complete manifolds (in Sûgaku 32 (1980), Iwanami Shoten): Let X be a weakly 1-complete manifold. Is it possible to explain X by Stein manifolds and projective algebraic compact manifolds (for example, as a fibre space) when there exists a positive line bundle over X and H^0 $(X, \emptyset) = C$?

In this section we shall give the affirmative answer to the above problem in the case of (H, C)-groups.

Let $X = C^n/\Gamma$ be an (H, C)-group with rank $\Gamma = n + q$. If X is a quasi-abelian variety, there exists a hermitian form \mathscr{H} on $C^n \times C^n$ such that

- (a) Im \mathcal{H} is **Z**-valued on $\Gamma \times \Gamma$,
- (b) \mathscr{H} is positive definite on $C_{\Gamma}^{q} \times C_{\Gamma}^{q}$.

Let $\mathscr{A}=(\operatorname{Im}\mathscr{H})|_{R^{n+q}_{\Gamma}R\times^{n+q}_{\Gamma}}$. Since \mathscr{A} is an alternating form, rank \mathscr{A} is an even number. We set rank $\mathscr{A}=2r$. Then $2q\leq 2r\leq n+q$. The following definition is due to Gherardelli and Andreotti [2].

DEFINITION. When rank $\mathscr{A}=2(q+p)$, we say that a quasi-abelian variety $X=\mathbf{C}^n/\Gamma$ is of kind p.

Using the proof of Proposition 6 and a result of period basis of abelian variety, we obtain the following theorem.

THEOREM 2 (Gherardelli and Andreotti [2]). Let $X = C^n/\Gamma$ be a quasiabelian variety of kind p with rank $\Gamma = n + q$. Then X is a fibre bundle over a (q + p)-dimensional abelian variety with fibres $C^p \times (C^*)^{n-q-2p}$.

By Theorems 1 and 2, the problem given the beginning in this section is affirmative in the case of (H, C)-groups.

We do not know whether a weakly 1-complete manifold is globally embeddable in a complex projective space or not if it has a positive line bundle. But an (H, C)-group with positive line bundle is embedded in a complex projective space by Theorems 1 and 2.

REFERENCES

- [1] Fujiki, A., On the blowing down of analytic spaces, Publ. RIMS Kyoto Univ., 10 (1975), 473-507.
- [2] Gherardelli, F. and Andreotti, A., Some remarks on quasi-abelian manifolds, Global analysis and its applications, Vol. II, 203-206, Intern. Atomic Energy Agency, Vienna, 1974.
- [3] Kazama, H., Approximation theorem and application to Nakano's vanishing theorem for weakly 1-complete manifolds, Mem. Fac. Sci. Kyushu Univ., 27 (1973), 221-240.
- [4] Kazama, H., On pseudoconvexity of complex abelian Lie groups, J. Math. Soc. Japan, 25 (1973), 329-333.
- [5] Kazama, H., $\bar{\theta}$ cohomology of (H, C)-groups, Publ. RIMS Kyoto Univ., **20** (1984), 297-317.
- [6] Kazama, H. and Umeno, T., Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan, 36 (1984), 91-106.
- [7] Kopfermann, K., Maximal Untergruppen abelscher komplexer Liescher Gruppen, Schr. Math. Inst. Univ. Münster No. 29, 1964.
- [8] Morimoto, A., Non-compact complex Lie groups without non-constant holomorphic functions, Proc. of Conf. on Complex Analysis (Minneapolis 1964), Springer-Verlag, 1965, 256-272.
- [9] Morimoto, A., On the classification of noncompact complex abelian Lie groups, Trans. Amer. Math. Soc., 123 (1966), 200-228.
- [10] Nakano, S., On complex analytic vector bundles, J. Math. Soc. Japan, 7 (1955), 1-12.
- [11] Nakano, S., Vanishing theorems for weakly 1-complete manifolds, Number theory, algebraic geometry and commutative algebra, Kinokuniya, Tokyo, 1973.
- [12] Pothering, G., Meromorphic function fields of non-compact C^n/\overline{I} Thesis, Univ. of Notre Dame, 1977.
- [13] Vogt, Ch., Geradenbündel auf toroiden Gruppen, Dissertation, Düsseldorf, 1981.
- [14] Vogt, Ch., Line bundles on toroidal groups, J. reine angew. Math., 335 (1982), 197-215.
- [15] Vogt, Ch., Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983), 217-232.

Department of Mathematics Toyama University Gofuku, Toyama, Japan