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It is well known that the fundamental group πi(X) of an arcwise connected

topological space X operates on the n-th homotopy group nn{X) of Xas a group

of automorphisms. In this paper I intend to construct geometrically a group

%{X) of automorphisms of πn(X)? for every integer n =̂  1, which includes a

normal subgroup isomorphic to π^X), so that the factor group of 31(30 by 7Γj(X)

is completely determined by some invariant Σ{X) of the space X The complete

analysis of the operation of the group on πn(X) is given in §3, §4, and §5,

Throughout the whole paper, X denotes an arcwise connected topological

space which has such suitable homotopy extension properties as a polyhedron

does, and all mappings are continuous transformations.

§1. Definition of the group 31 (X).

Let #o be an arbitrary point of the space X, and Ω a collection Xx(Xo,χo)

of all the mappings that transform X into X and xQ into xQtt For two maps

a,b£ΞΩ, a is said to be homotopic to b (in notation a <•*> b) if there exists a

homotopy ht e Ω (for 1 =s t ^ 0) such that ha ~ a and hs = b. A mapping a(Ξ Ω

is called to have a (two sided) homotopy inverse, if there is a map ψ G Ω such

that aψ ~~ 1 and ψa ~~ 1, where 1 denotes the identity transformation of X onto

itself. Let Ω* be the collection of all the mappings belonging to Ω, each of

which has a homotopy inverse,

Now let X x / be the topological product of X and the line segment /

between 0 and 1, and let us consider the totality U of the mappings θ : X x /

~» X which satisfy the following conditions :

) \
( L 1 ) ϋ) 0 (xQ, 1) = Xo J

For two maps 0, ^ £ ί / , 0 is homotopic to θr (notation : 0 ~~ θ') if there exists a

homotopy ht: Xx I-» X (for 1 ^ * ^ 0) such that
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<L2) ° * ° = ' ' ki==6'y

ii) ht(Xo,O) = ht(xθ9 1) = tfo.

ϊt is easily verified that this relation is an equivalent relation, and therefore IT

is divided into equivalent classes in this sense*

We shall denote by [0] the class containing 0. For θ G U we construct a

mapping α^^U as follows : a mapping ~o§ which is defined continuously on the

set {(Xx O)^(#o x /)} such that σQ(x, 0) == % and Je(#o, t) s 0(#Oi> f), can be

extended to a mapping α* e £7, provided that {x0} has a homotopy extension

property in X relative to X. The extended mapping is3 of course, not unique

but the homotopy class containing ϋ§ is uniquely determined if the set {(x0 x /)

^(X x 0)^{X x 1)} has a homotopy extension property in X x / relative to X

another arbitrarily extended map α* is homotopic to <τo. Now two maps 0J? 0<?

e £/ are 'multiplied' together by the rule,

Λ U ( U , 1), 2 ί -

v/here p(;r? f) ΞΞ 0 S ( 0 I ( # , ί), 0), Then we have

LEM^IA 1,1 ĵ x 02 is again a member of the collection U.

Proof, Let αi(x) Ξ 0J (^, 0), Λ 2 ( ^ ) Ξ 02(^, 0), then both α% and α2 belong

to Ω*, so that ^j and α2 have homotopy inverses f j, ^ 2 respectively. From the

considerations that ψιψ2 is a homotopy inverse of α»α\ and that 0ι x 02 (x9 0)

^ P (^ 0) = 0, (θi (x, 0), 0) = 0, (β, (x)9 0) = α?(βi (ΛT)), we have θs x 02 | X x 0 •

S J2* and therefore the condition (1.1) i) is satisfied, Also we have #j x θz(xθ9l)

= ^θS(p(^o, 1), 1) = «?Θ2(^O9 1) = 02(^o, 1) = #0. This proves the Lemma,

LEMMA 1.2 The class £0} x #2] depends only on the classes [#j] and [02]*

Pro*?/, Let 0/ e [0]] and 02' e= C^J? then there exist two homotopies hs, ks:

X x N ^ ( l ^ s ^ O ) such that h, = 0,, ftj = 0/, fe - 02, and î j ^ 0/, Putting

ps(x9 I) = ^ s ( f c ( ^ ί), 0), we have

ί) Po (*, t) - 02 (β, (Λ?, ί), 0), p3 (*, *) = ff/(β/U, ί), 0),. x

(1.4) ii) p5(*o, 0) =* s(fts(«o, 0), 0) =* s(Λβ, 0) =Λ 0 , [

iii) ps Uo, 1) - fa (hs {Xo, 1), 0) = ks (x0, 0) = ΛΓ0. ^

Since ^ s(^o ? 0) = ks(Xo, 1) = Xo, we can construct, in virtue of the homotopy

extension properties previously mentioned, ΰk3^U (1 i^ s ^ 0), which is also

continuous with respect to s, just as in case of ere. Then clearly we have cr̂  (ΛΓ? 0>

= x and ί/̂ s(̂ Γo9 ί) = ks(Xo9 t) by the construction of the function σks.

Hs (X, ΐ) = \

U*.(p,(*, 1), 2 ί - l ) , l ^ ί ^
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is obviously continuous and satisfies the conditions (1.2) of the homotopy as

to the condition ii), we have HS(XQ9 0) = ps(#o, 0) = ΛΓ0 from (1.4) ii) and

-HsUo, 1) = <*ks(ps(Xo, 1), 1) = <tka(XQ9 1) = ks(xQ, 1) = xQ from (1.4) iii).

Since (12) Ί) is evidently satisfied from (2.4) i)9*the lemma has been proved*

Thus the multiplication in U induces a multiplication in the set of the homotopy

classes [0j] x [02] = [0i x 02].

THEOREM 1. By the multiplication defined above, all the homotopy classes

of U constitute a group %{X) with xQ as the base point.

Proof Let us prove that the multiplicatoin is associative. Let 0J? 02, 03 e U9

then ([03] x £02]) x [0s] and [ 0 J x ([02] x [03]) are represented by mappings

(0i x 0.) x 03 and 0i X (02 x θ%) respectively. By definition

(03(02(0i(x, 4ί), 0), o), i^^o^εί

(0, x θo) x 0, (x, t) = < dH(σH(03(θi(x9 1), 0), 4/ - 1), 0), }^iiJ,*GJ,

and
r {d^{θ,(di(x? 2t), o),

0, x (02 x Oi) {x, 0 = 1
0o(0j(^? 1), 0), 0), 2ί - 1), l ^ ί ^ l

As . it is rather difficult to show directly the existence of homotopy between

(0i x 02) x 03 and dι x (0 'x 03), we prove it by making use of the homotopy

extension property referred to above. From the relation above we have (0j x 02)

x 03(x9 0) = θΆ(θ2(di(x, 0), 0), 0) = 0j x (02 x 03) (AT, 0), and from the property

of ύ& we have

("0S (02 (01 Uθ, 4ί), 0), 0), i ^ ί ^ l ,

(1.6) (0i x 02) x 03(^o, ί ) = < 0^{θ2(Xo? 4i - 1), 0), J ^ f ^ j ,

Since ^ x β s ί ^ ί ^ ^ i C ^ o , 1)- 0), 0), 2ί - 1) = <?Θ2XO3(̂ O9 2ί - 1) =

fθ*(ΘAxo, 4 ί - 2 ) , 0),

02 X 03(*O? 2 ί - 1) = I ^(03(02(^0,1), 0,) 4 f - 3 )

' =^θ S (Λr 0 ,4ί-3) = 0 3 U o , 4 ί - 3 ) ,

we have

/03(02(0I(ΛΓO? 2/), 0), 0), l ^ t ^ Q ,

<1.7) 0,X (03 x 03) Uo, ί) = ]03(02(ΛΓO? 4 ί - 2 ) , 0), f ^ f c ^ i ,

From (1.6) and (1.7) there exists a homotopy h(x, s9 t) denned on {x0} x / x /
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such that

h(x0, o, t) = (dι x θt) x θ*(xo, t), lmtmo,

h(xo, 1, t)=θix (02 x 00 (*o, * ) , 1 ^ t i== 0,

and h{x0, s, 0) = h(x0, s, 1) = *o, 1 ^ s ^ 0.

Moreover putting

h(x, 0, t) = (0, x 02) x 03 {x, t), x&X, l^t^O,

h{x9l,t) = θ1x (θ2x θ,)(x9t)9 xt=:X, l ^ f ^ O ,

and h(x9 5, 0) = θ* (θo (θi (x, 0), 0), 0), x e X, 1 ^ s ^ 0,

S θ

Λ is defined continuously on the set {(X x I x 0) w [(Λ O x / ) υ ( I x 0 ) v ( X x 1)3

x /}. Thus, if {(Xo x / ) υ ( I x 0 ) ϋ ( X x l ) } has a homotopy extension property

in X x I relative to X, h can be extended to a mapping X x ϊ x I -> X, which

gives a homotopy between (0j x 02) x 0Λ and θt x (θ2x 03).

Next we must prove the existence of the unity in 21 (X). Let θo(x, t) = x9

then clearly 0O S U. For any (?εC/we have from the definition of multiplication
(P(x,2t), x&X, l^ί^O,

where ρ(x9 2t) = 0O(0(#, 2t)9 0) •= 0 (x, 2t), and a%(x, t) = x may be assumed.

Since σQo(p(x9 1), 2* - 1) = p{x, 1) = θo(θ{x, 1), 0) = 0 (*, 1) for 1 ^ t ^ J , we

have

cθ(x9 2t), # e X J ^t^09

{Ox o H ^ ί ) = | ^ ^ 1 ^ ^ e x f x ^ j f ^ i ^

Let us define a homotopy hs (x, t) for 1 =̂  s =? 0 as follows

J •(*!&)•
',1), ^vtϋ^i, x=:f== Λ »

then ^ s satisfies the conditions of the homotopy (1.2), so that h0 = 0 x 0O and

hi = 0. Thus 0o represents the right side unity of the group δίCX").

Lastly we proceed to show the existence of the inverse element of any

element [0] e 3ί(Z). By the assumption on an element 0 in U, we have 01X x 0

e J2*, so that 0 I X x 0 has a homotopy inverse φ e fl*. Now we define a

mapping 0~J e Z7 as follows : if we put

0-'(*, 0) =

then 0-J can be extended to a m a p : X x I-> X because of the homotopy
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extension property of {x0}. This extended map θ~ι is shown to represent the

inverse of [#]. Indeed, we have

where p(*, t)^θ~ι{θ (x,t),0)=φ(θ (*,*)), *β-' (x, 0)=x, and a^(xθ9t) = 0-*{x09 t)

= φ{θ(xo, 1 — t)). As ψ is a homotopy inverse of θ \ X x 0, and on the other

hand tfe-1 |*O x /represents the inverse element of [p | x0 x / ] , we have a continuous

function A defined on {{X x f x 0)~[(X x 0)-(X x 1) - (*0 X / ) ] X /> such that

5, 0) = k(x, s), ί G l , SE /,

A(#o, s, t) = l(s, t), 5G/, ί ε / ,

h(x9θ,t) = θxd-'{xj), x&X, ίε/,

A(#, 1, ί) = ̂ , Λ G J , ί G / ,

where ^ is a homotopy obtained by the relation ψ θ ~~ 1, and / is also a

homotopy whose existence is assured by p(xθ91 -1) = ̂ Θ-J(^O, ί) Again, by the aid

of a homotopy extension property of { U x / ) ϋ ( I x 0 ) υ ( I x l ) } , h can be

extended to a map : X x / x /-» X, which gives a desired homotopy. This com-

pletes the proof.

In order to clarify the conditions preassigned to the space X we put down

here all the homotopy extension properties assumed in the arguments of the

above Theorem

ΐ) {xQ} has a homotopy extension property in X relative to X, .

(1.8) ii) {Oo x / ) υ ( I x 0 ) υ ( Z x l ) } has a homotopy extension property 1

in X x / relative to X >

These assumptions are? of course, satisfied by a polyhedron.

§ 2. A group of automorphisms Σ(X) and the structure of %(X).

Now we define a group Σ(X), which operates on πn(X), as we shall see

later, as a group of automorphisms, and study a homomorphism of %(X) onto

Σ(X), the kernel of which is isomorphic to the fundamental group π}{X) of X

Let us define a homotopy concept in Ω* in the following sense : we shall

write a — b for a, b e i2* if there exists a homotopy ht e £(1 =* f =̂  0) such that

ho = a and hi = b. Then i2* is divided into homotopy classes. Let us denote

by Σ(X) the set of all the homotopy classes. For two maps a, b&Ω* we define

{a x b) (x) ΞΞ b(a (x)) for any x e X. Then ax b&Ώ* because a x b&Ώ follows

immediately from the definition and, if φ and ψ are homotopy inverses of α
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and b respectively, ψ x ψ e Ω* is a homotopy inverse of a x b. Furthermore,

if a — af and a ~~ V, a x b *** a' x b\ Thus the multiplication in Ω* induces a

multiplication in Σ(X).

THEOREM 2. Σ{X) constitutes a group.

Proof. It is evident from the definition of. multiplication that the associative

law holds. As to the existence of unity, let E be a class containing the identity

transformation of X, then E A = A and -A E = A for any A e ^ ( l ) , Lastly

for any A = M we choose A*"1 = [<ρ] containing a homotopy inverse φ of #.

Then AA"1 = Z? and A'1 A = Z? is clear from the definition of homotopy inverse*

THEOREM 3. Σ(X) operates on the n-th homotopy group πn(X,Xo), for every

integer n ~ 1, as a group of automorphisms.

Proof. Let / be a representative of an element a of πn(X) and let a be a

representative of A e Σ(X). Let us take the mapping af: Sn -» ĴΓ as a represen-

tative of Aαr. The correspondence A a -» Aα: is a transformation of 7rrt(X)

into itself because, if / ' is another representative of a, we have af ~~ af, and if

a! is another representative of A, we have also af ~~ a% Then it is easily

proved that this correspondence is an automorphism of πn(X).

Example of Σ(X) :

Let X be an ^-sphere Sn

9 then from the concept of Brouwer's degree we

have Σ(Sn) = {E = [1], A = [-1]} where E is a class containing the identity

transformation and A is a class containing a mapping of degree —l Since

clearly A2 = A A = E, the group is a cyclic group of order 2.

Now we intend to define a homomorphism φ of 31 (X) onto 2χX)β Let θ e £Γ

be a representative of an element of 91 (X), then #Θ = θ | X x 0 represents an

element of Σ(X). From the homotopy concepts given in § 1 and § 2? it is obvious

that if θ ~~ 0'9 we have a9 ~~ aQ>« By the correspondence ψ : £ΘJ -> Π ê] we have

the following theorem.

THEOREM 4. ψ is a homomorphism of 21 (Λ") owfo ^(X), the kernel of which is

isomorphic to the fundamental group π^X).

Proof. For two elements [0,1 [0 2 ]e2ί(Z) ? we have φ(ZΘJ) = [«Θ,] and

f ([0a]) = [ββj]. By definition y>([0j] x [0a]) = ψ(ίθi x 0S]) may be represented

by a mapping θx x 021 Z x 0 = p(*, 0) = 02(0, (x, 0), 0), so that 0, x 021X x 0

= 0θ] x ββs. Thus ^([0J x [02]) = ̂ ([0i]) x ^ ( [ 0 Ϊ ] ) is proved. Clearly φ is an

onto-homomorphism from the definition of the group.

Lastly, in order to complete the proof it is sufficient to prove that the kernel

of φ is isomorphic to τr,(Z). If φ&ΘJ) = [αβ] is unity, we may take without

loss of generality a representative 0 of [0] as follows :
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i) θ : Xx I->X, \

(2.1) ii) 0{x, 0) == x} >

iii) 0(xQ? 1) = ΛTO,

for (1.8) is assmπed, To any element [0J belonging to the kernel of ψ let there

correspond an element [ςoj of the fundamental group π\(?C) by the rule*

(2.2) ίθ(ί) = 0(ΛΓO, /).

This correspondence Λ has a definite meaning because, if 0 ^ 0 ' , fo and fθ'

represent the same element of /r3(X). Let us prove that λ is an isomorphism.

Let [0,1 [ΘQ be two elements belonging to the kernel of φ9 then [0,] x [02] is

represented by a map θi x 02?

r 0 (0ιU, 2f), 0)? l ^ ί ^ O , i G l 3

0 ! X 0o(j¥, i l) - \ _ λ ^ χ

( OQ2(02(0I (x, 1 ) , 0 ) , 2/' - 1 ) , 1 ^ / ^ i j , x E l ,

Since from (2.1) we have 02{x, 0) = x, 0o(0, (ΛT, 2ί), 0) = 0J(A:, 2ί) and

1), 0), 2/ - 1) - </92(0J(Λ;? 1), 21 - 1) so that by (2,2)

,(^0, 2ί), i^/^-0,

Since 0J(^P, 1) = ô and <yθ2(̂ o3 ί) ~ ^(ΛΓ O, ί), we have <7θ2( 3̂ (^o51), 2ί ~ 1) = 02(ΛΓO?

2ί -.1), Now Iθjyoo^) may be described as follows :

(0i(*o,2f), j^ί^O,

iυ»(XQ9 It — 1 ) , J. ~r ί =^ ̂

On the other hand, we have, by the definition of the fundamental group,

so that the homomorphism is established.

Clearly λ is an onto-homomorphism, because of the homotopy extension

property (1.8) i). ϊt remains only to prove that from £βJ **» ίo2 follows 0j ~ 02-

It may be assumed that 0J(ΛΓ, 0) --- ΛΓ and 02(#, 0) == x Since fθj — ?θ2, a homotopy

hs(t) ( 1 ^ 5 : ^ 0 ) exists such that /%(/) = 0,{x^ I), hit) = 02(ΛΓO, ί) and fe(0)

= hs(l) - Xo. A continuous function /i may be defined on the set {(X x / x (0))

(X x 0) - (X x 1)- (ΛΓO x / ) ] x /} as follows :
a

h(xβ S; 0) ~ x, x G= X, s e /,

x9 o, ί) = 0i(*, ί)» ^ e= x; t e /,

Γ, 1, i) - 02(AT, 0, # G X, ί ε / ,
s ί

&(AΓo, 5, 0 = ks(t), SE/, ί Έ / .

ϊf (1.8) ii) is assumed, it is proved by the aid of the extended map h: Xxίxϊ
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-» X that θι is homotopic to θ2. This completes the proof.

§ 3. Operation of 2ί(X) on the homotopy groups.

Let / be a representative of an element α G ̂ »(X) and θ be a representative

of an element t? e 2ί(X). Let us define ?.?<* = [ft] G τrΛ(X) by the rule,

(3.1) h(x) s 0(/(*), 1).

This definition has a definite meaning in the sense that [h~] depends only on a

and #. Then we have,

THEOREM 5. ϋcc = (Aa)x where A = ̂ >(#) e Σ{X) and ξ is an element of

κy{X) represented by θ(xOί t) (l^tmO).

Proof. From the definition of homomorphism <p, A is represented by a$(x)

= θ(x, 0), and therefore θ(f(x), 0) = a*f(x). It is an immediate consequence

of the operation of A that aQf represents an element Ace of πn(X). Moreover

^ f(P) = «̂o for a fixed point p e Sw

? 0(f(p), t) = ̂ (ΛΓ0, ί) represents an element

ς of πi(X), so that according to the operation of π} on πn due to Eilenberg

h{x) ~ θ(f(x),l) represents an element (Aa)*&πn. This completes the prooL

As a direct consequence of Theorem 5 we have,

THEOREM 6. 5ί(X) is a group of automorphisms of πn{X) for every integer

n=*l.

Proof. Because of the combination of automorphisms A and ξ, the operation

of t?e9ϊ(X) on 7r« is also an automorphism of πn(X).

§ 4O Algebraic construction of δί(JX').

Now that the operation of tyί(X) on πn has been clarified by Theorem 5? we

can construct the group *Ά(X) from a purely algebraic standpoint. Let X(X)

= {)A, f ) ; A G ̂ (X), «? e 7Γ5(Z)} the totality of all the ordered pairs consist-

ing of an arbitrarily chosen element of Σ(X) and of an arbitrarily chosen element

of πι(X). Defining (A,ξ)(a) = {Aac)* for any α G τrn(I), (A, ξ) operates on

r.n(X), for every integer π ̂  19 as an automorphism. If we define a multipli-

cation in the set X(X) of automorphisms just defined by the rule,

(5, y)(A, £)(«) = (ft V)((-A, ?)(«)),

then we have (J9, V) (-4, ξ) G Z(X). In order to prove this, we need the follow-

ing lemma.

LEMMA 4.1 A{oc*) = {Aoc)A* = (A, -A£)(«) for any α G ^ , where Aξ can

be interpreted in the sense that Σ(X) 3 A operates on the homotopy group of

any dimension, especially on the fundamental group too.

Proof. Let oc be represented by a mapping / : Sn -> X, Sn 3 p0 -> Xo and let
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ξ = [έ?(*), 1 ̂  t ^ 03. We have a mapping F: {&' x (0) - (p0) xj}->X such that

F(x, 0) s fix) for any # e Sn, and F(^ o , 0 s e(t). From the homotopy extension

property of a polyhedron we have an extended map F : S* x / -+ X of K Since

F(#, 0) =/(*) and F(£ o , ί) = e(t), ,F{x, 1) represents an element **&πn(X).

Let o be a representative of A. Putting a(F(x9 t)) = G{%, t): S ^ x / ^ I w e

have IGix, 0)] = Aoc from G(x, 0)=a(f{x)) and £G(x, 1)] = A(<x*) from

G(ΛΓ, 1) =a(F\x9 1)). Also, from G(^o ? *) ^a{e{t)) follows [G(AΓOS ί)3 = Af

Thus we have A(a*) = (Aoc)A\ Making use of the lemma, we have

{B, V)(A, ξ)(a) = (B, y){(A, ξ)(a)) - (B,

3 (A B, Bf i?)ία).

Thus (£, v ) (Λ f) = (A S, Bξ- η)^ YΛX).

THEOREM 7. J5y ί̂ /s multiplication X(X) forms a group.

Proof As to the associative law we have

(C, C) (B, v) (A, I) = (C, C)(AB, Bf . v)

= (AB C, C(Bf v) C)

= (ABC, £Cf * C77 C)

((C, C)(Bf *))(A, I) = (5C? C^ * C)(A, f)

, BCξiCη ζ))

ί . Cy . C)'

Thus (C, C)((B, *)(A, f)) = ((C, O(B, v) ) (Λf)

The existence of the unity is proved as folίows :

(E, e)(A, ξ) = (A^? ^f e) = (A, f) where E, e are the unities of ΣiX) and

wi(A) respectively.

The existence of an inverse element is proved thus :

(A-1, A-ιξ-*)(A, ξ) = {AA-\ A-"ξ . A"1?-1) - ( ^ A-^f ?"1)) = (£, «)•

This completes the proof.

Now the following MAIN THEOREM concerning the relation of two groups

2ί(X) and χ(X) imparts the complete analysis to the structure of 31 (X) and

also to the operation of 21 (X) on πn(X) for every integer n ^ 1.

MAIN THEOREM 8. ?ί(#) is isomorphic to the group YAX). Moreover, an

isomorphism can be established between these groups, preserving the operation on

the homotopy groups.

Proof. The method of proof being analogous as for Theorems 4, 5, we shall
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restrict ourselves to show the correspondence between two groups. Let θ be a

representative of & e 3I(X) and let α8 = 0 \ X x 0, £θ = θ \ x0 x /. Then to # let

there correspond (Oa], CfθH) e #(X). It can be shown that this correspondence

is an isomorphism and that the operations of ϋ and of the corresponding element

( O Θ I Cfo]) on πn are the same.

§ 5, Some remarks on the group 21 (X).

By the aid of the main theorem it is advantageous to use %{X) in place of

5ί(Z) in calculating the invariant %(X) of the space X As is easily seen, two

distinct elements of X(X) do not always operate differently on πn so that as the

group of the operation on πn> %{X) may be reduced to a smaller groupβ This

reduction gives rise to an analogous classification of the space X as the sim-

plicity of a space due to Eilenberg*

Let X*(X) be the totality of ail elements in X(X) whose operations on any

element of πn(X) are trivial he, X*(X) = {(A, ξ) I (A, ξ)(a) = a for any

element αGτr f l(X)}. Then X*(X) is clearly a normal subgroup of X(X). Simi-

lary, put χ**(X) Ξ ((A, e) (A, e)(a) = a for any <x^πn(X)} and χ***(X)

ΞΞ {(E, ξ) (E, ξ)(a) = a for any a e ?r?ί(X)}5 then these two groups are also

normal in Σ(X) and ^i(Z) respectively as well as in X(X)« It is well known

thaΐ the space is ^-simple in the sense of Eilenberg if χ***(X) ^τrj(X). It may

be an interesting problem to consider the spaces satisfying the conditions such

as χ*(X) - X(X) or χ**(X) ^ Σ(X).
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