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Abstract. To a certain Volevié system of singular partial differential equations,
called a Fuchsian system, all the solutions of the homogeneous equation in a
complex domain are constructed and parametrized in a good way, without any
assumption on the characteristic exponents.

§1. Introduction

Let C be the set of complex numbers, ¢ be a variable in C, and = =
(z1,...,2zy,) be variables in C". We use the notation D; := 9/0t, D, :=
(Dzys- -y Dz,), Dy := 0/0x;, and N := {nonnegative integers }, Z :=
{integers }.

We consider a certain Volevi¢ system of singular partial differential op-
erators, considered intensively and called a Fuchsian system in [4]. Namely,

where I,,, denotes the m x m unit matrix, and A(t,z; D) = (4;;(t, ;
D,))i<ij<m is an m x m matrix of partial differential operators. Assume
that the coefficients of A; ; are holomorphic in a neighborhood of (¢,z) =
(0,0). We also assume the following two conditions.
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(A-1) There exist n; € N (1 < j < m) such that ordp, 4; ; < n;—n;+1,
where ordp, A; ; denotes the order of a partial differential operator
A; ; with respect to D,.

(A-2) A(0,z;D,) =: Ao(x) is independent of D,.

Such a system is called a Fuchsian system ([4]). Hereafter, we fix the integers
n;. Note that if n; —n; +1 < 0 then A;; = 0, since A;; are differential
operators.

Let pa be the matriz order of A, or, the order of A in the sense of
Volevi¢ ([3]), defined by

4 = max (max E ordp, A;, , )
P 1<p<m; 1<i1<ia<..<ip<m P 7r66p =t kst '

where &, is the symmetric group of p numbers. It is well-known (see [3])
that the condition (A-1) is equivalent to each of the following two conditions.

(A-1) pa <1.
(A-1)" DI, — A is a kowalevskian system in the sense of Volevic.

M. Miyake showed that a kowalevskian system in the sense of Volevi¢ can
be reduced to a first order system. Although our system also can be reduced
to a first order system by his method, the condition (A-2) may be violated.
We do not use the conditions (A-1)’, (A-1)"” in this article.

For such systems, the second author ([4],[5]) showed fundamental theo-
rems that are extensions of the Cauchy-Kowalevsky theorem and the Holm-
gren theorem, which shall be stated later (Theorems 1.1, 1.2).

We set C(z; \) = C[P](x; \) := det(A\,;, — Ap(x)). This polynomial of A
is called the indicial polynomial of P, and a root A of C(z;\) = 0 is called
a characteristic exponent or a characteristic index of P at x.

In order to consider solutions in germ sense, set

O(€) : = { holomorphic functions on Q } ,

Br:={zecC" : |z| <R}, Ap:={teC :|t|<T} (T'>0),
Oo L= U O(BR) s 0(070) = U O(AT X BR) s
R>0 R>0,T>0

Soo, 7 =R(A7 \ {0}) (the universal covering of Az \ {0}) ,
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Sor:={t€ S : |argt| <0} ,

O:= U O(Soo,T X BR) .
T>0,R>0

As in the case of single Fuchsian partial differential equations, we
have the following fundamental theorems, which correspond to the Cauchy-
Kowalevsky theorem and the Holmgren theorem.

THEOREM 1.1. ([4, Theorem 1.2.10])  If C(0;5) # 0 (j € N), then
for every 7 € (O,0))™, there erists a unique solution S (O(0,0)™ of

(CP) Puw=f(ta) .

THEOREM 1.2. ([5, Theorem 2])  Let Q be an open neighborhood of
0 € R". Let L € R satisfy that if C(z;\) = 0 (x € Q) then Re\ <
L. If w(t) = W(t,x) € CH0,T],D'(Q)™ is a solution of PW = 0 in
the real domain (0,T) x Q, and if W satisfies t=Lw € C°([0,T], D' ()™,
then there exists a neighborhood U C R™ of (0,0) such that @ = 0 in
UNI0,T) x Q]. Here, D'(Q) denotes the space of Schwartz distributions
on €.

If we impose the condition that the characteristic exponents of P do
not differ by integers, then the structure of the kernel Ker ((5)mP of the

map P : (O)™ — (O)™ has been studied in [4] (Theorem 1.3.6, etc.). The
purpose of this article is to give a solution map, that is, a linear isomorphism

(1.2) (Og)" =5 Ker 5, P:={wWe(O)™ : Pu=0},

(@)
rather explicitly, with no assumptions on the characteristic exponents (The-
orem 2.3).

In the case of single Fuchsian partial differential equations, the first
author ([2]) gave a good solution map, which can be considered as an ex-
tension of the classical Frobenius method to ordinary differential equations.
The construction given in this article is based on the same idea.

Remark 1.3. By modifying Example 1.0.9 in [4], we see the following.
Let P’ be a single Fuchsian partial differential operator with weight 0 ([1],
(4], (2], etc.); that is, P' = (tD;)™ + Y250, Pj(t,x; Dy)(tDy)™ 7, ordp, Pj <
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j, and F)]{(O,SU;D;E) =: aj(z) is a function of z. Then, by u; = (tD¢)’ u
(1 < j <'m), the equation Pu = f is reduced to

0 1 0 0 0

0 0 1 0 0

tD I — | o e
0 0 0 1 0

-P, =P P — P f

Since this system satisfies (A-1) with n; = j and (A-2), it is a Fuchsian
system. Further, this system has the same indicial polynomial C(x;\) as
P’ where the indicial polynomial of P’ is defined by C[P'](z;A) := A" +
Sy ag(x)NTT = [P ()] =o-

§2. Construction of the solution map

We assume that the coefficients of A; ; are holomorphic in Ap, X Bpg,,
(To, Roo > 0). Let p; (I =1,...,d) be all the distinct roots of C(0; \) = 0,
and let r; be the multiplicity of u;. As is well-known, there exists an m x m
matrix Q(z) with Op entries which satisfies the following conditions.

e Q(x)~! has also the entries in O,

o Q(z) ' Ap(2)Q(z) = Ai(z) ® ... ® Ag(2)

Ay (z) 0 . 0
B O As(x) O :
| o . i
) e O Ai(z)
e A;is an 7 X 1 matrix with Qg entries (I =1,...,d),

o det(A,, — A(0)) = (A — )" (I=1,...,d).

When we decompose an m vector @ € C™ to d blocks corresponding to

the above decomposition of Q(z)~!1A4¢(z)Q(z), we denote the I-th block of
7 by w’D € C". Conversely, for an r; vector © € C", we denote by
7D € C™ the m vector with the entries ¥ in the I-th block and the
entries 0 in other blocks.

Set
(2.1) Ap={j—-jeC:1<i<d,je N} .
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Take € > 0 as Rep;—e & Z foralll. Take L; € Z as Li+¢e < Rep; < Lj+e+1.
Just in the same way as or more easily than Lemmata 3.1, 3.2 in [2], we
have the following two lemmata.

LEMMA 2.1. For each | with 1 <1 <d, there exrists a domain D; in
C enclosed by a simple closed curve 'y such that the following holds.

() meD (1<1<d),
(

b) DiNDy=0 (I#1"), where D denotes the closure of D.

)

(c)  For everyl, we have DN Ap = {1 }.

(d)  For everyl, we have Dy C{\€C : Ly +e<ReA< L;+e+1}.
LEMMA 2.2. There exists Ro € (0, Rog) such that

(e)  For everyx € Br,, A € Ule Iy, and j € N, we have C(x; A+ j) #

Oor:= (] U O@Sor xBr) for 6€(0,00] and R>0 .
O0<R'<R T'>0

If €2 is not an open set, then O(2) denotes the set of functions holomorphic
in a neighborhood of 2. The following is the main result.

THEOREM 2.3. (1) For every R € (0,Ry), every T > 0, and every
F € O(Ar x By x (UL, T))™, the equation

(2.2) P(V) = F (t,a; \)

has a unique solution V. = V[F](t,a;A) € O({t = 0} x Bp x (UL, ).
Further, if F € O(Ar x BR X (Ufl,1 D)™, then for 1 <1<d

2.3) @[, Flt,z) = 277\/_ i AV [F(t, 23 0) dA ( (6;,/3)”1)

is a solution of PW = 0.
(2) For R € (0,Ro) and 3 € O(Bp)", set w[7i] = [, QE""] by
considering ?(t,z;)\) = Q(x)%* Y (). Then, the map
P
(2.4) OBr™> | : | =D wl@e Ker 5~— .. P
@ =1

is a linear isomorphism. Especially, (Og)™ — Ker( &ym P by this map.
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We actually prove that the map (2.4) is surjective onto Ker s~ Goym P for

every 6 € (0,00]. This implies that all solutions in (Op )™ extend auto-
matically to (O )™

We end this section by giving an asymptotic expansion of the solution
wW[@). Let F € O(Ar x Bg x (UL, D)™

Expand F =Y t/Fj(; \), V[F] = Y527V, (23 \), and A(t,x; Dy)
= Ao(z) + Y12, t'Bi(x; D). Then, from P (t*V) = *F, we have

(25) (Al — Ag(2)Vo(2;0) = Fo(32)
(2.6) (A + §) L — Ao()Vj (25 A) = Fj (a3 )

+> Bi; Da)Vii(wsA) (> 1) .
If X e U, Ty, then det((A + j)I,n — Ao(x)) = Clzs A + j) # 0 (z € Bry,

j € N) by Lemma 2.2. Hence, we can determine ?] € O(Bg x (Uf:1 ry))m
uniquely, and

1 —
V. e . x O(Bg x (U, D; )™ ,
e DT Ty O (UL

where m;, € N.
Let @ [@i] = Y520 tu;(@i](t, x) be the expansion of @;[]] according
to the expansion of % Q_)W)] Then, the leading term is

wp[@i(t, 2) = t*@Q() 7 (x) = Q) (M@ T ()}

§3. Proof of (1) of Theorem 2.3

In this section, we prove (1) of Theorem 2.3.
For every R € (0, Ry), and for every T ¢ O(Ar x Br X (Ufl:1 )™,
we solve the equation (2.2)

(tDy I — A(t, 23 D))tV = tSF (¢, 2 C).
(We replace A by ( for later convenience.) This equation is equivalent to

(3.1)  P#¥(V):= (DI + CLn — A(t,z;D,))V = F (t,2;0).



STRUCTURE OF SOLUTIONS TO FUCHSIAN SYSTEMS 7

Fix an arbitrary (zo,(g) € Bgr X (U;l:1 I')). As an equation with respect to
the variables (¢, z, (), the system (3.1) is a Fuchsian system and its indicial
polynomial is

CIP#)(x, (3 N) = det(My, + (L — Ao()) = C[P] (23X + C).

By Lemma 2.2, we have C[P#](xo,(p;j) = C[P](z0;(o + j) # 0 for all
j € N. By considering (xg,(p) as the origin and by using Theorem 1.1,
we have a unique holomorphic solution V of (3.1) in a neighborhood of
(0,9, (o). Since (z9,(y) € BrX (Uf:1 I')) is arbitrary, and since the solution
is unique, we have a holomorphic solution in a neighborhood of {t =
0} x B x (UL, T).-
The latter part of (1) is trivial.

84. Function spaces

In this section, we introduce some function spaces, used in [2] in order

3

to “measure” the order of functions as t — 0.

DEFINITION 4.1. (|2, Definition 5.1])  For 6 € (0,00], T > 0, and R >
0, set

W(0,T,R) :={¢ € O(Syr x Bg) : for every 6’ € (0,6)
(4.1) and every R’ € (0, R), we have
SUD|g|< R/ lo(t,z)] =0 ast—0in Ser 7} ,

we.R = () U wer.r)
(4 2) 0<R/<]i_\7_1>0
' ={¢ € Oyp : for every R € (0, R),
there exists 77 > 0 such that ¢ € W(0,T7',R') } .

Further, for a € R, set
(4.3) W@, T,R): =t*x W(0,T,R) ,
W@ (@, R): =t*x W(0,R) .
We have the following fundamental properties of these function spaces.
LEMMA 4.2. ([2, Lemma 5.2])

(1) If d < a, then W@ (@, T,R) ¢ W@)(0,T,R) and W@ (,R) C
W) (6, R).



8 T. MANDAI AND H. TAHARA
(2) tx W@, T,R) c Wat)(9, T, R), t x W@ (9, R)c Wt (4, R).
(3) D,(W@(8,T, R))cW =D (9,T,R), D,(W®(8,R))c W=D (0,R).

(4) If B(t,x; D) is a differential operator of x with the coefficients in
O(Ar x Bg), then

(4.5) B(t,z; D) (W0, T,R)) c W@ (6,T,R) ,
B(t,z; D) (W (9, R)) c W (6,R) .

PROPOSITION 4.3. ([2, Proposition 5.3])  For a simple closed curve I’
in C and a function V(tw; A) € O(Ar x Br x )™, set

(L) = /F AV (L N d\ € O(Swr x Bp)™ .
If a <min{ReX : A €T'}, then we have
w e W9 (co, T,R)™ .
If V € O({t = 0} x Br x T')™ instead, then we have @ € W@ (0o, R)™.
LEMMA 4.4.  Ifg; € O(Bgr)" (0 < R < Ry), then we can write
@@t ) = Q@) {tH B2} + ¢ Tt @)

where T/ [@]] € W(LlJri(oo, R)™. Note that t*'®) Gj(x) e W1+ (00, 00, R)".
Especially, ui[@i] € W) (00, R)™.

Proof. In

PVIQE V(¢ 23 0) dA |

we have
VIQE)(t:3) = (AL — Ag(a)) " Q)P (@) + £ Rilt, 1)
= Q{0 ~ A@) 7@ Y vt R |

where R; € O({t =0} x Bgr % (U;l:1 I'})). This gives the result. 0
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§5. Euler systems

In order to prove (2) of Theorem 2.3, we need to study a special system
(tDy — A)uw = 7(15) of ordinary differential equations with holomorphic
parameter x.

The first lemma is easy and so the proof may be omitted.

LEMMA 5 1. Ifée(0,00], R€ (0 Ry), W € (Og.p)™ and (tD¢lpy, —

Ao(z))W = 0, then there exist unique @] € (’)(BR)” (1 <1< d) such that
d th @51 (2)
= Q@){t" Dz ()} = Q(x) :
=1 tAa®) 55 ()

and hence W € W(Lmi"+€)(oo, 00, R)™, where Ly := minj<;<q L.
Further, if L € Z and if @ € WA (0, R)™, then @ = 0 for | such
that Ly < L.

PROPOSITION 52.  ForeveryL € Z,0 ¢ (0,00], T >0, Re (0,Ryp),
and for every q € W(L+€)(9 T,R)™, there exists © € WLFI) (9, T R)™
such that (tDt — Ao(x))T =7 (t,x).

Proof.  Set v = Q(z){(v1,...,v3) and § = Q(x)X7,--.,79d)-
(i) If Rew; > L + ¢, then take 7" € (0,T) and take

t
d
ag_ww/"—Mmﬁﬁ$)T
T T

By an estimate similar to (6.3) in [2], we can see that T; € W ()9, T, R)"
(ii) If Repy < L + ¢, then take

¢ 1
= tAz(a:)/ ~A@) g (r,z) dr _ / o=@ G (ot 2) do
0 0 g

T

§6. Temperedness of all solutions

In this section, we show that all the solutions of P = 0 in (O)™ has

at most a polynomial growth as t — 0.

PROPOSITION 6.1. There exists a € R such that if W € OAS@T X
Br)™ (6 € (0,0¢], T € (0,Ty), R € (0,Rp)) satisfies Puw = 0, then
w e W@, T, R)™



10 T. MANDAI AND H. TAHARA

First, we prepare some notations.

DEFINITION 6.2. (1) For a vector @ = Yuy,...,u,) € C™, set

[ :== 32701 lug|. For a matrix A, set [|Al| := SUD| 77| <1 ||[A@||.

(2) Set O, := O(B,) N C°B,) for p > 0. For ¢ € O,, we define
|l[lp := max; <, |¢(x)]. The norm of a vector @ € (O,)™ and a matrix A
with entries in O, are defined similarly.

(3) Set M := HAOHRO‘

(4) Set p; j := max{n;—n;+1,1} and p := max; j{ p;; } = max; j{n;—
n;+1 }.

(56) The (4,j) component of a matrix B is denoted by B; ;.

By a change of coordinates from ¢ to tP, we may assume that P has the
following form

(6.1) P =1tDI,, — Ao(z) —t*’B(t,xz; Dy) ,

where B has also holomorphic coefficients.

Let @ € O(Sgp,r x Br)™ satisfy Pw = 0. We need to show that for
every 0’ € (0,0) and R’ € (0, R), the asymptotics |t|~||@ (¢)||r — 0 holds
as t — 0 in Sy 7. In fact, we fix R” € (R', R) and show that

2
@ @®)l|r < WHW(TT?/VDHR” for all t € Sor1

for sufficiently small T" > 0.

From now on, we write R instead of R”. We may assume that R < 1.
By rotating ¢, we may also assume ¢ € (0,7"), though we should be careful
about how small 7" should be taken.

LEMMA 6.3. Set e;j(s,x) = (e_SAO(x))ivj: the (i,j) component of
e—340()  Then, there exists Cy > 0 such that

lleii(s)l|r < CosPi™teM
for s € (0,00).

Proof.  First, we show that if n;—n;+k < 0 then the (7, j) component
(Ao(x)*); ; of Ag(x)* vanishes, by induction on k.

When k = 1, this is what we stated just after the condition (A-1).

We assume the claim for k. If n; —n; + k + 1 < 0, then for each
I, we have n; —n; +k < 0 or n; —n; +1 < 0. Hence (Ag(x)*1);; =

> (Ao(@)%);1(Ao(2))1,; = O.
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Next, we show that if 0 <k < p; ; — 1 then (Ao(:):)k')i’j =0. Ifp; ; =1,
then this is trivial. If p; ; > 2 then p; ;j = n; —n;+1. Hence 0 < k < p; j —1
implies n; — nj + k < 0 and we have (Ag(x)*);; = 0.

Since e~*40(®) = S (1/k!)(—s)* Ag(2)*, we have e; ;(s,z) = O(sPi~1)
(s — 0). Since ||e=#40®)||z < eM*, we have the lemma. 0

The following is easy and hence the proof may be omitted.

LEMMA 6.4. For every ? € C°(0,T); Or)™, there exists a unique
—

solution W € C*((0,T]; Or)™ of (tDy — Ao(x)) W = T and W=y = 0.
This solution is expressed as

g —- dr
7(t7$) — _/ e—(logT—logt)Ao(ac) f (T,l') a
t T

Using this lemma, we define an operator R=(R; ;) from C°((0,T]; Og)™
—
to C1((0,T]; Or)™ by R[ f] := . Note that

T d
Ri )t z) = —/t e; ;(log T — logt, 2)é(7, x) 77 .

By Lemma 6.3 and by the estimate log7—logt < (t—t)/t (0 <t <T),
we have

1Ri; (@11,

(6.2) B d
SCo/t %(%) ||¢(T)Hp77 (0<t<T)

for every ¢ € C°((0,77; 0,), where Cy is the constant given in Lemma 6.3.
Now, Let 0 < T < Hlin{To, 1} Set C' := maxi,j{ (pi,j — 1)' Co }
The following is the key lemma in proving Proposition 6.1.

o« and by, €
C%([0,T); Og). Set K := maxee(o,7] Xsjaj=t |0a(t)|[r- Let a, b and A be
nonnegative real numbers.
(1) If ¢ € CO(0,T); Op) satisfies [|6(t)ll, < A/(R—p)* for cveryt € (0,T]
and every p € (0, R), then we have

LEMMA 6.5. Let B = B(t,x;Dz) = > 4= ba(t,2)Dg

A

1Be(t)l], < Ke'(a+ 1)~--(a+l)(R_7p)aH
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for every t € (0,T] and every p € (0, R).

(2) 116 € CO((0,T}; On) satisfies || (t)||, < (A/M 7)) {(T—1)t/(R—p)"}

for every t € (0,T] and every p € (0, R), then we have

1< AKEC (a+1)...(a+1) (T —t)>+Pis
PSP D). (bt py) (R )

[IRi5[t" Bo(¢)

for every t € (0,T] and every p € (0, R).

The appearance of (a + 1)...(a + 1) in (1) is the difficulty to get good
estimate of . The presence of (b+1)...(b+ p; ;) in the denominator in
(2) resolves this difficulty as is seen later.

Proof. (1) By Cauchy’s theorem, we have

1D29], <

1
p/_p||¢||p’ (0<p<p,§R) ,

and hence if |a| = [ then

1
(0" = pi—1)(pi—1 = pi—2) - - - (p2 — p1)(p1 — p)

1Dz ¢ll, < [l

for every p’s with 0 < p=pg < p1 <...<pi—1 < py=p'. Thus, we have
1 1
(0 =p-1)---(pr—p) (R=p)"
Set pj —pj—1 = t;(R—pj—1), 0 < t; <1 (j =1,...,1), then R —p; =
(1 =1;)(R = pj—1) and pj — pj1 = t;(1 —tj—1)... (1 —t1)(R — p). Hence,
1 1
(0 =p—1)..-(p1—p) (R—p)°

63 [IBo0)], < AK

1 1
Ctitg . (1 — )0 (1 — t)et=2 (1 — 1) (R — p)ett
Since
n = o) (1 ) < )
05t t(l—tyr P p) =TI
we can take pi, ..., pi_1, and p; = p’ such that
1 1 l 1
<éa+!l)...(a+1) —F .
(¢ =pi=1) - (p1—p) (R—p')" (R — p)tt
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Thus,

(6.4) 1Bo()|l, < AKe (a+1)... (a+1) ——

(R—p)ett
(2) By the result of (1) and (6.2), we have

Co
[[R: ;" Bo| ()], < T ETpeY

X/T(T—t)pi’j_lTMTp(T_T)b dr AKel(a—i—l)...(a—i—l) .
t

TM+p—1 (R — p)att
Since tM+Pii=1 > ¢M+p=1 and since it is easy to show

iy — DNT — e
(b+1)...(b+pi7j) ’

4 (
/ (r — i (T = 1) dr =
t
for example by induction on p; ; > 1, we have the result.
Now, set @ (z) := w(T,z) € (Or)™ and solve

{ tDw® — Ag(2x)7©® =T |

7Oy = F(2) ,
{ e K S
That is,
TO (4, ) = e—(losT—log) Ao(@) 3 () |
7w®(t,z) = R[PBw*Y)(t,z) .
We have W =) 22, W (k) if this series converges.

We can easily estimate 7 as follows.

M
(65) ZO@In < (3) 1Pl8 < e

13

In (6.1), let B = (Bi,j)7 BZ'J'(t,I';Dx) = Z\odgnifnfrl bi7j;a(t,$)Dg,
and set B(f)»(t,:z:;Dx) = Z|a\:l b j.oDg. Note that if [ > n; —n; + 1 then
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Set w® =P W), For T := (i[k],...,i[1]), J := Gk —1],...,
jl0)), and L := (I[k],...,I[1]), set

(1[k]) (2 () (0)
(R; ilk] 7 Bz[k}][k 1]) (R il2],if2)t" B[2]g[l])(Rj[l]vi[l]thi[l},j[O])uj[o] :

Note that the subscript of R is in the order (j,i) not (i,7). Since w® =

(Rt*B) ... (Rt?B) W, where k iteration of Rt?B appears, we have

=S W a<i<m),

IJ,L
where the summation is taken over only those I, J, L that satisfy
1<ifs],jls—1] <m and 0 <I[s] < g — njjs—y + 1 (1<s<k).

Take K as > |bija(t)|[r < K for 0 <1 <p, 1 <4,j <m, and
0<t<T.

LEMMA 6.6.
)L KkCke 1[*k] " [ ]l (T _ t)p*k
|| ][k 7[7(]( )||P— tMer 1 —m L ||W|| (R—p)l[*k]

for 0 < p < Rand 0 < t < T, where l[xk] := l[1] + ... + l[k], psk =
Pjin) F - T PjlkLilk]-

Proof. We show by induction on k using Lemma 6.5. When k£ = 0,
the estimate is trivial.
We assume that the estimate is valid for k. By Lemma 6.5, we have

I (k+1) ®)| w
jlk+1], I J p = tM+p—1

(Ixk] + 1) ... (U[xk] + Uk + 1]) (T — t)PrFPilktalilk+)
(Pa + 1) o (Dake + Djfosa)ifhgn) (R — p)llsklile+1] 7

where A := K*CkelKITM || || g 1[*k]!/psx!. This shows that the estimate
is valid for k£ + 1. [
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COROLLARY 6.7. There exists H, such that

(k) 1 T k
il ol < s { KOy} 1P I

forO<t<T and 0 < p < R.

Proof. Since 1[xk] < pk, pax > k, TM < 1, (T — t)P=+ < T*, and
(R—p)!*H > (R — p)P*, we have only to show the existence of H, such that
1[*K]!/ps! < HE.

Since l[s] < Nj[s] — Mj[s—1] + 1, we have l[*k] < (k] + (nz[k] — N + 1) +
(Mie—1) — nyk—1) + 1) + ..+ (g — nypy + 1) — ngjo) < psk +p — 1. Thus,

[[xk)! « +p—1)! _ _
[*]' S(pk p' ) S(p*k-i-p—l)p 1§(pk+p—1)p1
Dk Pk
Since [(p — 1) log{p(k+1) —1}]/k — 0 as k — oo, there exists H), such
that {p(k +1) - 1}P"* < H} (k=0,1,2,...). 0

Since the numbers of I and J do not exceed mF¥, and that of L does
not exceed (p + 1)*, if we take p = R’ and take T > 0 satisfying

T
KCePHy———+ m? 1) <

DN =

then we have 1

WO Ol < s ()1 N

which implies
2
I7Ollr < 3= ll@llr -

§7. Proof of the injectivity of (2.4)

Suppose that R € (0,Ry), p; € O(Br)" (1 <1 < d) and that @
Zle T [@}] = 0. Further, suppose that there exists [ such that @] #
We shall show that this leads to a contradiction.

We can take ly as Lj, = min{ L; : @] # 6)}

Consider the lo-th block (Q~1) ") = 3¢ {Q~'wi [z} ") of Q1.
If I # Iy, then L; > L;, and hence

{Q_lm[@)]}b(lo) c W(Ll+1+e) (OO, R)TZO C /I/I\;(Ll0+1+6) (OO, R)TZO

by Lemma 4.4.  Thus, 0 = Q') W) (¢, x) = tAlo(x)@_g(m) +
W14 (00, R)0, which means t4% @ g2 (z) € WFot1+9) (0o, R)0.
This implies &;; = 0 by Lemma 5.1, which contradicts the definition of lj.

v.
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§8. Proof of the surjectivity of (2.4)

Assume that @ € (Opr)™ and Pw = 0. We need to construct
Pl € OBr)" (1 <1 < d). Instead of constructing @; on Bg, we fix
an arbitrary R’ € (0, R) and construct p; € O(Bpg/)™. Take an arbitrary
Ry € (R',R). Then there exists 71 > 0 such that @ € O(Sg, X Bg,)™
Set A(t,z;Dy) = Ao(z) +tB(t, x; Dy).

(I) By Proposition 6.1, there exists L € Z such that @ €
W9 (9,71, R))™. From this, we have tB(w) € W) (9, Ty, Ry)™
by Lemma 4.2.

(II) By Proposition 5.2, there exists @ € W+ (9, Ty, Ry)™ such
that (DI, — Ap(z)) T = tB(T).

(IIT) Since (tDyI, — Ao(x)) (W — T) = 0 and since @ — T €
WL+ (9, Ty, R))™, there exists @j[1] € O(Bg,)™ such that @ — T =
l
Zl<l<d Li>L Q(x ){tAl eil](x )}ﬁ() by Lemma 5.1.
_ (IV) Set w[l] := Zlglgd; IRl u;[@i[1]]. Then we have P(wW([1]) =
0 and

w1] = (7 = > Q@) g () V)

=7 = Yot e W6, R

using Lemma 4.4. Take Ry € (R',R;). There exists To > 0 such that
ﬂ)[l] S W(L+1+E)((9,T2,R2)m

Now, we can return to step (I) using @[1] instead of @ and with the
order increased by 1. Thus, by repeating this argument, there exist R’ <
Rj < ... < Ry < Ry < R and j[j] € O(Bg,)" such that w[j] :== U —
SIS @B k] € WEHIHI (9, Rj)™ also satisfies P(@[j]) = 0.

For a sufficiently large M, if w € WEAMTI(9 R') and P(T) = 0,
then W = 0 by Theorem 1.2. Hence, we have w[M] = U), which implies
T = 3, W[ L, Fi[k]]. Thus, we have constructed 7} = S0l Fi[k] €
O(Bpg/)™. Since (2.4) is injective, that is, pj are uniquely determined by
7w, and since R'(< R) is arbitrary, we have the existence of p; € O(Br)"

(1 <1< d), that is, the surjectivity of (2.4) to Ker(m)mP.
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