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Abstract. To a certain Volevič system of singular partial differential equations,
called a Fuchsian system, all the solutions of the homogeneous equation in a
complex domain are constructed and parametrized in a good way, without any
assumption on the characteristic exponents.

§1. Introduction

Let C be the set of complex numbers, t be a variable in C, and x =

(x1, . . . , xn) be variables in C
n. We use the notation Dt := ∂/∂t, Dx :=

(Dx1 , . . . , Dxn), Dxj
:= ∂/∂xj , and N := {nonnegative integers }, Z :=

{ integers }.
We consider a certain Volevič system of singular partial differential op-

erators, considered intensively and called a Fuchsian system in [4]. Namely,

P = tDtIm − A(t, x;Dx) ,(1.1)

where Im denotes the m × m unit matrix, and A(t, x;Dx) = (Ai,j(t, x;

Dx))1≤i,j≤m is an m × m matrix of partial differential operators. Assume

that the coefficients of Ai,j are holomorphic in a neighborhood of (t, x) =

(0, 0). We also assume the following two conditions.
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(A-1) There exist nj ∈ N (1 ≤ j ≤ m) such that ordDxAi,j ≤ ni−nj +1,

where ordDxAi,j denotes the order of a partial differential operator

Ai,j with respect to Dx.

(A-2) A(0, x;Dx) =: A0(x) is independent of Dx.

Such a system is called a Fuchsian system ([4]). Hereafter, we fix the integers

nj. Note that if ni − nj + 1 < 0 then Ai,j = 0, since Ai,j are differential

operators.

Let ρA be the matrix order of A, or, the order of A in the sense of

Volevič ([3]), defined by

ρA := max
1≤p≤m; 1≤i1<i2<...<ip≤m

1

p

(
max
π∈Sp

p∑

k=1

ordDxAik,iπ(k)

)
,

where Sp is the symmetric group of p numbers. It is well-known (see [3])

that the condition (A-1) is equivalent to each of the following two conditions.

(A-1)′ ρA ≤ 1.

(A-1)′′ DtIm − A is a kowalevskian system in the sense of Volevič.

M. Miyake showed that a kowalevskian system in the sense of Volevič can

be reduced to a first order system. Although our system also can be reduced

to a first order system by his method, the condition (A-2) may be violated.

We do not use the conditions (A-1)′, (A-1)′′ in this article.

For such systems, the second author ([4],[5]) showed fundamental theo-

rems that are extensions of the Cauchy-Kowalevsky theorem and the Holm-

gren theorem, which shall be stated later (Theorems 1.1, 1.2).

We set C(x;λ) = C[P ](x;λ) := det(λIm −A0(x)). This polynomial of λ

is called the indicial polynomial of P , and a root λ of C(x;λ) = 0 is called

a characteristic exponent or a characteristic index of P at x.

In order to consider solutions in germ sense, set

O(Ω) : = {holomorphic functions on Ω } ,

BR : = {x ∈ C
n : |x| < R } , ∆T := { t ∈ C : |t| < T } (T > 0) ,

O0 : =
⋃

R>0

O(BR) , O(0,0) :=
⋃

R>0,T>0

O(∆T × BR) ,

S∞,T : = R(∆T \ {0}) (the universal covering of ∆T \ {0}) ,
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Sθ,T : = { t ∈ S∞,T : | arg t| ≤ θ } ,

Õ : =
⋃

T>0,R>0

O(S∞,T × BR) .

As in the case of single Fuchsian partial differential equations, we

have the following fundamental theorems, which correspond to the Cauchy-

Kowalevsky theorem and the Holmgren theorem.

Theorem 1.1. ([4, Theorem 1.2.10]) If C(0; j) 6= 0 (j ∈ N ), then

for every
−→
f ∈ (O(0,0))

m, there exists a unique solution −→u ∈ (O(0,0))
m of

(CP ) P−→u =
−→
f (t, x) .

Theorem 1.2. ([5, Theorem 2]) Let Ω be an open neighborhood of

0 ∈ R
n. Let L ∈ R satisfy that if C(x;λ) = 0 (x ∈ Ω) then Reλ <

L. If −→u (t) = −→u (t, x) ∈ C1((0, T ],D′(Ω))m is a solution of P−→u =
−→
0 in

the real domain (0, T ) × Ω, and if −→u satisfies t−L−→u ∈ C0([0, T ],D′(Ω))m,

then there exists a neighborhood U ⊂ R
n+1 of (0, 0) such that −→u =

−→
0 in

U ∩ [(0, T ) × Ω]. Here, D′(Ω) denotes the space of Schwartz distributions

on Ω.

If we impose the condition that the characteristic exponents of P do

not differ by integers, then the structure of the kernel Ker
( eO)mP of the

map P : (Õ)m → (Õ)m has been studied in [4] (Theorem 1.3.6, etc.). The

purpose of this article is to give a solution map, that is, a linear isomorphism

(O0)
m ∼−→ Ker

( eO)mP := {−→u ∈ (Õ)m : P−→u =
−→
0 } ,(1.2)

rather explicitly, with no assumptions on the characteristic exponents (The-

orem 2.3).

In the case of single Fuchsian partial differential equations, the first

author ([2]) gave a good solution map, which can be considered as an ex-

tension of the classical Frobenius method to ordinary differential equations.

The construction given in this article is based on the same idea.

Remark 1.3. By modifying Example 1.0.9 in [4], we see the following.
Let P ′ be a single Fuchsian partial differential operator with weight 0 ([1],
[4], [2], etc.); that is, P ′ = (tDt)

m +
∑m

j=1 P ′
j(t, x;Dx)(tDt)

m−j , ordDxP ′
j ≤
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j, and P ′
j(0, x;Dx) =: aj(x) is a function of x. Then, by uj = (tDt)

j−1u
(1 ≤ j ≤ m), the equation Pu = f is reduced to




tDtIm −




0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1
−P ′

m −P ′
m−1 −P ′

m−2 . . . −P ′
1







−→u =




0
0
...
0
f




.

Since this system satisfies (A-1) with nj = j and (A-2), it is a Fuchsian
system. Further, this system has the same indicial polynomial C(x;λ) as
P ′, where the indicial polynomial of P ′ is defined by C[P ′](x;λ) := λm +∑m

j=1 aj(x)λm−j = [t−λP ′(tλ)]|t=0.

§2. Construction of the solution map

We assume that the coefficients of Ai,j are holomorphic in ∆T0 × BR00

(T0, R00 > 0). Let µl (l = 1, . . . , d) be all the distinct roots of C(0;λ) = 0,

and let rl be the multiplicity of µl. As is well-known, there exists an m×m

matrix Q(x) with O0 entries which satisfies the following conditions.

• Q(x)−1 has also the entries in O0,

• Q(x)−1A0(x)Q(x) = A1(x) ⊗ . . . ⊗ Ad(x)

:=




A1(x) O . . . O

O A2(x) O
...

... O
. . .

...
O . . . O Ad(x)


,

• Al is an rl × rl matrix with O0 entries (l = 1, . . . , d),

• det(λIrl
− Al(0)) = (λ − µl)

rl (l = 1, . . . , d).

When we decompose an m vector −→u ∈ C
m to d blocks corresponding to

the above decomposition of Q(x)−1A0(x)Q(x), we denote the l-th block of
−→u by −→u [(l) ∈ C

rl . Conversely, for an rl vector −→v ∈ C
rl , we denote by

−→v ](l) ∈ C
m the m vector with the entries −→v in the l-th block and the

entries 0 in other blocks.

Set

ΛP := {µl − j ∈ C : 1 ≤ l ≤ d, j ∈ N } .(2.1)
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Take ε ≥ 0 as Reµl−ε 6∈ Z for all l. Take Ll ∈ Z as Ll+ε < Reµl < Ll+ε+1.

Just in the same way as or more easily than Lemmata 3.1, 3.2 in [2], we

have the following two lemmata.

Lemma 2.1. For each l with 1 ≤ l ≤ d, there exists a domain Dl in

C enclosed by a simple closed curve Γl such that the following holds.

(a) µl ∈ Dl (1 ≤ l ≤ d),

(b) Dl ∩ Dl′ = ∅ (l 6= l′), where D denotes the closure of D.

(c) For every l, we have Dl ∩ ΛP = {µl }.
(d) For every l, we have Dl ⊂ {λ ∈ C : Ll + ε < Reλ < Ll + ε + 1 }.

Lemma 2.2. There exists R0 ∈ (0, R00) such that

(e) For every x ∈ BR0 , λ ∈ ⋃d
l=1 Γl, and j ∈ N , we have C(x;λ + j) 6=

0.

Set

Õθ,R :=
⋂

0<R′<R

⋃

T ′>0

O(Sθ,T ′ × BR′) for θ ∈ (0,∞] and R > 0 .

If Ω is not an open set, then O(Ω) denotes the set of functions holomorphic

in a neighborhood of Ω. The following is the main result.

Theorem 2.3. (1) For every R ∈ (0, R0), every T > 0, and every−→
F ∈ O(∆T × BR × (

⋃d
l=1 Γl))

m, the equation

P (tλ
−→
V ) = tλ

−→
F (t, x;λ)(2.2)

has a unique solution
−→
V =

−→
V [

−→
F ](t, x;λ) ∈ O({t = 0} × BR × (

⋃d
l=1 Γl)).

Further, if
−→
F ∈ O(∆T × BR × (

⋃d
l=1 Dl))

m, then for 1 ≤ l ≤ d

−→u [l,
−→
F ](t, x) :=

1

2π
√
−1

∫

Γl

tλ
−→
V [

−→
F ](t, x;λ) dλ

(
∈ (Õ∞,R)m

)
(2.3)

is a solution of P−→u =
−→
0 .

(2) For R ∈ (0, R0) and −→ϕl ∈ O(BR)rl, set −→ul [
−→ϕl ] := −→u [l, Q−→ϕl

](l)] by

considering
−→
F (t, x;λ) := Q(x)−→ϕl

](l)(x). Then, the map

O(BR)m 3




−→ϕ1
...
−→ϕd


 ∼7−→

d∑

l=1

−→ul [
−→ϕl ] ∈ Ker

(Õ∞,R)mP(2.4)

is a linear isomorphism. Especially, (O0)
m ∼−→ Ker

( eO)mP by this map.
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We actually prove that the map (2.4) is surjective onto Ker
(Õθ,R)mP for

every θ ∈ (0,∞]. This implies that all solutions in (Õθ,R)m extend auto-

matically to (Õ∞,R)m.

We end this section by giving an asymptotic expansion of the solution
−→ul [

−→ϕl ]. Let
−→
F ∈ O(∆T × BR × (

⋃d
l=1 Dl))

m.

Expand
−→
F =

∑∞
j=0 tj

−→
Fj(x;λ),

−→
V [

−→
F ] =

∑∞
j=0 tj

−→
Vj(x;λ), and A(t, x;Dx)

= A0(x) +
∑∞

l=1 tlBl(x;Dx). Then, from P (tλ
−→
V ) = tλ

−→
F , we have

(λIm − A0(x))
−→
V0(x;λ) =

−→
F0(x;λ) ,(2.5)

((λ + j)Im − A0(x))
−→
Vj(x;λ) =

−→
Fj(x;λ)(2.6)

+

j∑

l=1

Bl(x;Dx)
−−→
Vj−l(x;λ) (j ≥ 1) .

If λ ∈ ⋃d
l=1 Γl, then det((λ + j)Im − A0(x)) = C(x;λ + j) 6= 0 (x ∈ BR0 ,

j ∈ N ) by Lemma 2.2. Hence, we can determine
−→
Vj ∈ O(BR × (

⋃d
l=1 Γl))

m

uniquely, and

−→
Vj ∈

1

C(x;λ + j)
∏j−1

ν=0 C(x;λ + ν)mj,ν

×O(BR ×
(⋃d

l=1 Dl

)
)m ,

where mj,ν ∈ N .

Let −→ul [
−→ϕl ] =

∑∞
j=0 tj−→ul,j[

−→ϕl ](t, x) be the expansion of −→ul [
−→ϕl ] according

to the expansion of
−→
V [Q−→ϕl

](l)]. Then, the leading term is

−→ul,0[−→ϕl ](t, x) = tA0(x)Q(x)−→ϕl
](l)(x) = Q(x){tAl(x)−→ϕl(x)}](l) .

§3. Proof of (1) of Theorem 2.3

In this section, we prove (1) of Theorem 2.3.

For every R ∈ (0, R0), and for every
−→
F ∈ O(∆T × BR × (

⋃d
l=1 Γl))

m,

we solve the equation (2.2)

(tDtIm − A(t, x;Dx))(tζ
−→
V ) = tζ

−→
F (t, x; ζ).

(We replace λ by ζ for later convenience.) This equation is equivalent to

P#(
−→
V ) := (tDtIm + ζIm − A(t, x;Dx))

−→
V =

−→
F (t, x; ζ).(3.1)
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Fix an arbitrary (x0, ζ0) ∈ BR × (
⋃d

l=1 Γl). As an equation with respect to

the variables (t, x, ζ), the system (3.1) is a Fuchsian system and its indicial

polynomial is

C[P#](x, ζ;λ) = det(λIm + ζIm − A0(x)) = C[P ](x;λ + ζ).

By Lemma 2.2, we have C[P #](x0, ζ0; j) = C[P ](x0; ζ0 + j) 6= 0 for all

j ∈ N . By considering (x0, ζ0) as the origin and by using Theorem 1.1,

we have a unique holomorphic solution
−→
V of (3.1) in a neighborhood of

(0, x0, ζ0). Since (x0, ζ0) ∈ BR×(
⋃d

l=1 Γl) is arbitrary, and since the solution−→
V is unique, we have a holomorphic solution in a neighborhood of {t =

0} × BR × (
⋃d

l=1 Γl).

The latter part of (1) is trivial.

§4. Function spaces

In this section, we introduce some function spaces, used in [2] in order

to “measure” the order of functions as t → 0.

Definition 4.1. ([2, Definition 5.1]) For θ ∈ (0,∞], T > 0, and R >
0, set

W (θ, T,R) := {φ ∈ O(Sθ,T × BR) : for every θ′ ∈ (0, θ)
and every R′ ∈ (0, R), we have
sup|x|≤R′ |φ(t, x)| → 0 as t → 0 in Sθ′,T } ,

(4.1)

W̃ (θ,R) :=
⋂

0<R′<R

⋃

T ′>0

W (θ, T ′, R′)

= {φ ∈ Õθ,R : for every R′ ∈ (0, R),
there exists T ′ > 0 such that φ ∈ W (θ, T ′, R′) } .

(4.2)

Further, for a ∈ R, set

W (a)(θ, T,R) : = ta × W (θ, T,R) ,(4.3)

W̃ (a)(θ,R) : = ta × W̃ (θ,R) .(4.4)

We have the following fundamental properties of these function spaces.

Lemma 4.2. ([2, Lemma 5.2])

(1) If a′ < a, then W (a)(θ, T,R) ⊂ W (a′)(θ, T,R) and W̃ (a)(θ,R) ⊂
W̃ (a′)(θ,R).
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(2) t × W (a)(θ, T,R) ⊂ W (a+1)(θ, T,R), t × W̃ (a)(θ,R)⊂W̃ (a+1)(θ,R).

(3) Dt(W
(a)(θ, T,R))⊂W (a−1)(θ, T,R), Dt(W̃

(a)(θ,R)) ⊂ W̃ (a−1)(θ,R).

(4) If B(t, x;Dx) is a differential operator of x with the coefficients in

O(∆T × BR), then

B(t, x;Dx)(W (a)(θ, T,R)) ⊂ W (a)(θ, T,R) ,(4.5)

B(t, x;Dx)(W̃ (a)(θ,R)) ⊂ W̃ (a)(θ,R) .(4.6)

Proposition 4.3. ([2, Proposition 5.3]) For a simple closed curve Γ
in C and a function

−→
V (t, x;λ) ∈ O(∆T × BR × Γ)m, set

−→u (t, x) :=

∫

Γ
tλ
−→
V (t, x;λ) dλ ∈ O(S∞,T × BR)m .

If a < min{Reλ : λ ∈ Γ }, then we have

−→u ∈ W (a)(∞, T,R)m .

If
−→
V ∈ O({t = 0} × BR × Γ)m instead, then we have −→u ∈ W̃ (a)(∞, R)m.

Lemma 4.4. If −→ϕl ∈ O(BR)rl (0 < R < R0), then we can write

−→ul [−→ϕl ](t, x) = Q(x){tAl(x)−→ϕl(x)}](l) + t · −→rl [−→ϕl ](t, x) ,

where −→rl [
−→ϕl ]∈W̃ (Ll+ε)(∞, R)m. Note that tAl(x)−→ϕl(x)∈W (Ll+ε)(∞,∞, R)rl .

Especially, −→ul [
−→ϕl ] ∈ W̃ (Ll+ε)(∞, R)m.

Proof. In

−→ul [
−→ϕl ](t, x) =

1

2π
√
−1

∫

Γl

tλ
−→
V [Q−→ϕl

](l)](t, x;λ) dλ ,

we have

−→
V [Q−→ϕl

](l)](t, x;λ) = (λIm − A0(x))−1Q(x)−→ϕl
](l)(x) + t · Rl(t, x;λ)

= Q(x)
{

(λIrl
− Al(x))−1−→ϕl(x)

}](l)
+ t · Rl(t, x;λ) ,

where Rl ∈ O({t = 0} × BR × (
⋃d

l=1 Γl)). This gives the result.
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§5. Euler systems

In order to prove (2) of Theorem 2.3, we need to study a special system

(tDt − A)−→u =
−→
f (t) of ordinary differential equations with holomorphic

parameter x.

The first lemma is easy and so the proof may be omitted.

Lemma 5.1. If θ ∈ (0,∞], R ∈ (0, R0), −→u ∈ (Õθ,R)m and (tDtIm −
A0(x))−→u =

−→
0 , then there exist unique −→ϕl ∈ O(BR)rl (1 ≤ l ≤ d) such that

−→u =

d∑

l=1

Q(x){tAl(x)−→ϕl(x)}](l) = Q(x)




tA1(x)−→ϕ1(x)
...

tAd(x)−→ϕd(x)




and hence −→u ∈ W (Lmin+ε)(∞,∞, R)m, where Lmin := min1≤l≤d Ll.

Further, if L ∈ Z and if −→u ∈ W̃ (L+ε)(θ,R)m, then −→ϕl =
−→
0 for l such

that Ll < L.

Proposition 5.2. For every L ∈ Z, θ ∈ (0,∞], T > 0, R ∈ (0, R0),
and for every −→g ∈ W (L+ε)(θ, T,R)m, there exists −→v ∈ W (L+ε)(θ, T,R)m

such that (tDtIm − A0(x))−→v = −→g (t, x).

Proof. Set −→v = Q(x)t(−→v1 , . . . ,−→vd) and −→g = Q(x)t(−→g1 , . . . ,−→gd).
(i) If Reµl > L + ε, then take T ′ ∈ (0, T ) and take

−→vl = tAl(x)

∫ t

T ′

τ−Al(x)−→gl (τ, x)
dτ

τ
.

By an estimate similar to (6.3) in [2], we can see that −→v l∈W (L+ε)(θ, T,R)rl .
(ii) If Reµl < L + ε, then take

−→vl = tAl(x)

∫ t

0
τ−Al(x)−→gl (τ, x)

dτ

τ
=

∫ 1

0
σ−Al(x)−→gl (σt, x)

dσ

σ
.

§6. Temperedness of all solutions

In this section, we show that all the solutions of P−→u =
−→
0 in (Õ)m has

at most a polynomial growth as t → 0.

Proposition 6.1. There exists a ∈ R such that if −→u ∈ O(Sθ,T ×
BR)m (θ ∈ (0,∞], T ∈ (0, T0), R ∈ (0, R0)) satisfies P−→u =

−→
0 , then

−→u ∈ W (a)(θ, T,R)m.
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First, we prepare some notations.

Definition 6.2. (1) For a vector −→u = t(u1, . . . , um) ∈ C
m, set

||−→u || :=
∑m

j=1 |uj |. For a matrix A, set ||A|| := sup||−→u ||≤1 ||A−→u ||.
(2) Set Oρ := O(Bρ) ∩ C0(Bρ) for ρ > 0. For ϕ ∈ Oρ, we define

||ϕ||ρ := max|x|≤ρ |ϕ(x)|. The norm of a vector −→ϕ ∈ (Oρ)
m and a matrix A

with entries in Oρ are defined similarly.
(3) Set M := ||A0||R0 .
(4) Set pi,j := max{nj−ni+1, 1 } and p := maxi,j{ pi,j } = maxi,j{ni−

nj + 1 }.
(5) The (i, j) component of a matrix B is denoted by Bi,j.

By a change of coordinates from t to tp, we may assume that P has the

following form

P = tDtIm − A0(x) − tpB(t, x;Dx) ,(6.1)

where B has also holomorphic coefficients.

Let −→u ∈ O(Sθ,T × BR)m satisfy P−→u =
−→
0 . We need to show that for

every θ′ ∈ (0, θ) and R′ ∈ (0, R), the asymptotics |t|−a||−→u (t)||R′ → 0 holds

as t → 0 in Sθ′,T . In fact, we fix R′′ ∈ (R′, R) and show that

||−→u (t)||R′ ≤ 2

|t|M+p−1
||−→u (T t/|t|)||R′′ for all t ∈ Sθ′,T ,

for sufficiently small T > 0.

From now on, we write R instead of R′′. We may assume that R ≤ 1.

By rotating t, we may also assume t ∈ (0, T ), though we should be careful

about how small T should be taken.

Lemma 6.3. Set ei,j(s, x) := (e−sA0(x))i,j: the (i, j) component of

e−sA0(x). Then, there exists C0 > 0 such that

||ei,j(s)||R ≤ C0s
pi,j−1eMs

for s ∈ (0,∞).

Proof. First, we show that if ni−nj+k < 0 then the (i, j) component
(A0(x)k)i,j of A0(x)k vanishes, by induction on k.

When k = 1, this is what we stated just after the condition (A-1).
We assume the claim for k. If ni − nj + k + 1 < 0, then for each

l, we have ni − nl + k < 0 or nl − nj + 1 < 0. Hence (A0(x)k+1)i,j =∑
l(A0(x)k)i,l(A0(x))l,j = 0.
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Next, we show that if 0 ≤ k < pi,j − 1 then (A0(x)k)i,j = 0. If pi,j = 1,
then this is trivial. If pi,j ≥ 2 then pi,j = nj −ni +1. Hence 0 ≤ k < pi,j −1
implies ni − nj + k < 0 and we have (A0(x)k)i,j = 0.

Since e−sA0(x) =
∑

k(1/k!)(−s)kA0(x)k, we have ei,j(s, x) = O(spi,j−1)
(s → 0). Since ||e−sA0(x)||R ≤ eMs, we have the lemma.

The following is easy and hence the proof may be omitted.

Lemma 6.4. For every
−→
f ∈ C0((0, T ];OR)m, there exists a unique

solution −→u ∈ C1((0, T ];OR)m of (tDt − A0(x))−→u =
−→
f and −→u |t=T =

−→
0 .

This solution is expressed as

−→u (t, x) = −
∫ T

t

e−(log τ−log t)A0(x)−→f (τ, x)
dτ

τ
.

Using this lemma,we define an operator R=(Ri,j) from C0((0, T ];OR)m

to C1((0, T ];OR)m by R[
−→
f ] := −→u . Note that

Ri,j[φ](t, x) = −
∫ T

t

ei,j(log τ − log t, x)φ(τ, x)
dτ

τ
.

By Lemma 6.3 and by the estimate log τ − log t ≤ (τ − t)/t (0 < t ≤ τ),

we have

||Ri,j[φ](t)||ρ

≤ C0

∫ T

t

(τ − t)pi,j−1

tpi,j−1

(τ

t

)M
||φ(τ)||ρ

dτ

τ
(0 < t ≤ T )

(6.2)

for every φ ∈ C0((0, T ];Oρ), where C0 is the constant given in Lemma 6.3.

Now, Let 0 < T < min{T0, 1}. Set C := maxi,j{ (pi,j − 1)!C0 }.
The following is the key lemma in proving Proposition 6.1.

Lemma 6.5. Let B = B(t, x;Dx) =
∑

|α|=l bα(t, x)Dα
x and bα ∈

C0([0, T ];OR). Set K := maxt∈[0,T ]

∑
|α|=l ||bα(t)||R. Let a, b and A be

nonnegative real numbers.

(1) If φ ∈ C0((0, T ];OR) satisfies ||φ(t)||ρ ≤ A/(R−ρ)a for every t ∈ (0, T ]
and every ρ ∈ (0, R), then we have

||Bφ(t)||ρ ≤ Kel(a + 1) . . . (a + l)
A

(R − ρ)a+l



12 T. MANDAI AND H. TAHARA

for every t ∈ (0, T ] and every ρ ∈ (0, R).
(2) If φ ∈ C0((0, T ];OR) satisfies ||φ(t)||ρ ≤ (A/tM+p−1){(T−t)b/(R−ρ)a}
for every t ∈ (0, T ] and every ρ ∈ (0, R), then we have

||Ri,j [t
pBφ](t)||ρ ≤ AKelC

tM+p−1

(a + 1) . . . (a + l)

(b + 1) . . . (b + pi,j)

(T − t)b+pi,j

(R − ρ)a+l

for every t ∈ (0, T ] and every ρ ∈ (0, R).

The appearance of (a + 1) . . . (a + l) in (1) is the difficulty to get good

estimate of −→u . The presence of (b + 1) . . . (b + pi,j) in the denominator in

(2) resolves this difficulty as is seen later.

Proof. (1) By Cauchy’s theorem, we have

||Dxφ||ρ ≤ 1

ρ′ − ρ
||φ||ρ′ (0 < ρ < ρ′ ≤ R) ,

and hence if |α| = l then

||Dα
xφ||ρ ≤ 1

(ρ′ − ρl−1)(ρl−1 − ρl−2) . . . (ρ2 − ρ1)(ρ1 − ρ)
||φ||ρ′

for every ρ’s with 0 < ρ = ρ0 < ρ1 < . . . < ρl−1 < ρl = ρ′. Thus, we have

||Bφ(t)||ρ ≤ AK
1

(ρ′ − ρl−1) . . . (ρ1 − ρ)

1

(R − ρ′)a
.(6.3)

Set ρj − ρj−1 = tj(R − ρj−1), 0 < tj < 1 (j = 1, . . . , l), then R − ρj =
(1 − tj)(R − ρj−1) and ρj − ρj−1 = tj(1 − tj−1) . . . (1 − t1)(R − ρ). Hence,

1

(ρ′ − ρl−1) . . . (ρ1 − ρ)

1

(R − ρ′)a

=
1

t1t2 . . . tl(1 − t1)a+l−1(1 − t2)a+l−2 . . . (1 − tl)a
1

(R − ρ)a+l
.

Since

min
0<t<1

1

t(1 − t)p
= (p + 1)

(
1 +

1

p

)p
≤ (p + 1)e ,

we can take ρ1, . . . , ρl−1, and ρl = ρ′ such that

1

(ρ′ − ρl−1) . . . (ρ1 − ρ)

1

(R − ρ′)a
≤ el(a + l) . . . (a + 1)

1

(R − ρ)a+l
.
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Thus,

||Bφ(t)||ρ ≤ AKel(a + l) . . . (a + 1)
1

(R − ρ)a+l
.(6.4)

(2) By the result of (1) and (6.2), we have

||Ri,j [t
pBφ](t)||ρ ≤ C0

tM+pi,j−1

×
∫ T

t

(τ − t)pi,j−1τMτp (T − τ)b

τM+p−1

dτ

τ

AKel(a + 1) . . . (a + l)

(R − ρ)a+l
.

Since tM+pi,j−1 ≥ tM+p−1 and since it is easy to show

∫ T

t

(τ − t)pi,j−1(T − τ)b dτ =
(pi,j − 1)!(T − t)b+pi,j

(b + 1) . . . (b + pi,j)
,

for example by induction on pi,j ≥ 1, we have the result.

Now, set −→ϕ (x) := −→u (T, x) ∈ (OR)m and solve

{
tDt

−→u (0) − A0(x)−→u (0) =
−→
0 ,

−→u (0)|t=T = −→ϕ (x) ,
{

tDt
−→u (k) − A0(x)−→u (k) = tpB−→u (k−1) ,

−→u (k)|t=T =
−→
0 ,

(k ≥ 1) .

That is,

−→u (0)(t, x) = e−(log T−log t)A0(x)−→ϕ (x) ,
−→u (k)(t, x) = R[tpB−→u (k−1)](t, x) .

We have −→u =
∑∞

k=0
−→u (k) if this series converges.

We can easily estimate −→u (0) as follows.

||−→u (0)(t)||R ≤
(T

t

)M
||−→ϕ ||R ≤ TM

tM+p−1
||−→ϕ ||R .(6.5)

In (6.1), let B = (Bi,j), Bi,j(t, x;Dx) =
∑

|α|≤ni−nj+1 bi,j;α(t, x)Dα
x ,

and set B
(l)
i,j (t, x;Dx) :=

∑
|α|=l bi,j;αDα

x . Note that if l > ni − nj + 1 then

B
(l)
i,j ≡ 0.
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Set −→u (k) = t(u
(k)
1 , . . . , u

(k)
m ). For I := (i[k], . . . , i[1]), J := (j[k − 1], . . . ,

j[0]), and L := (l[k], . . . , l[1]), set

u
(k) L
j,I,J :=

(Rj,i[k]t
pB

(l[k])
i[k],j[k−1]) . . . (Rj[2],i[2]t

pB
(l[2])
i[2],j[1])(Rj[1],i[1]t

pB
(l[1])
i[1],j[0])u

(0)
j[0] .

Note that the subscript of R is in the order (j, i) not (i, j). Since −→u (k) =

(RtpB) . . . (RtpB)−→u (0), where k iteration of RtpB appears, we have

u
(k)
j =

∑

I,J,L

u
(k) L
j,I,J (1 ≤ j ≤ m) ,

where the summation is taken over only those I, J , L that satisfy

1 ≤ i[s], j[s − 1] ≤ m and 0 ≤ l[s] ≤ ni[s] − nj[s−1] + 1 (1 ≤ s ≤ k) .

Take K as
∑

|α|=l ||bi,j,α(t)||R ≤ K for 0 ≤ l ≤ p, 1 ≤ i, j ≤ m, and

0 < t ≤ T .

Lemma 6.6.

||u(k) L

j[k],I,J
(t)||ρ ≤ KkCkel[∗k]

tM+p−1
TM ||−→ϕ ||R

l[∗k]!

p∗k!

(T − t)p∗k

(R − ρ)l[∗k]

for 0 < ρ < R and 0 < t ≤ T , where l[∗k] := l[1] + . . . + l[k], p∗k :=
pj[1],i[1] + . . . + pj[k],i[k].

Proof. We show by induction on k using Lemma 6.5. When k = 0,
the estimate is trivial.

We assume that the estimate is valid for k. By Lemma 6.5, we have

||u(k+1) L

j[k+1],I,J
(t)||ρ ≤ AKel[k+1]C

tM+p−1

× (l[∗k] + 1) . . . (l[∗k] + l[k + 1])

(p∗k + 1) . . . (p∗k + pj[k+1],i[k+1])

(T − t)p∗k+pj[k+1],i[k+1]

(R − ρ)l[∗k]+l[k+1]
,

where A := KkCkel[∗k]TM ||−→ϕ ||R l[∗k]!/p∗k!. This shows that the estimate
is valid for k + 1.
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Corollary 6.7. There exists Hp such that

||u(k) L

j[k],I,J
(t)||ρ ≤ 1

tM+p−1

{
KCepHp

T

(R − ρ)p

}k
||−→ϕ ||R

for 0 < t ≤ T and 0 < ρ < R.

Proof. Since l[∗k] ≤ pk, p∗k ≥ k, T M < 1, (T − t)p∗k ≤ T k, and
(R−ρ)l[∗k] ≥ (R−ρ)pk, we have only to show the existence of Hp such that
l[∗k]!/p∗k! ≤ Hk

p .
Since l[s] ≤ ni[s]−nj[s−1] +1, we have l[∗k] ≤ nj[k] +(ni[k]−nj[k] +1)+

(ni[k−1] − nj[k−1] + 1) + . . . + (ni[1] − nj[1] + 1) − nj[0] ≤ p∗k + p − 1. Thus,

l[∗k]!

p∗k!
≤ (p∗k + p − 1)!

p∗k!
≤ (p∗k + p − 1)p−1 ≤ (pk + p − 1)p−1 .

Since [(p− 1) log{p(k + 1)− 1}]/k → 0 as k → ∞, there exists Hp such
that {p(k + 1) − 1}p−1 ≤ Hk

p (k = 0, 1, 2, . . .).

Since the numbers of I and J do not exceed mk, and that of L does

not exceed (p + 1)k, if we take ρ = R′ and take T > 0 satisfying

KCepHp
T

(R − R′)p
m2(p + 1) ≤ 1

2
,

then we have

||u(k)
j (t)||R′ ≤ 1

tM+p−1
(
1

2
)k||−→ϕ ||R ,

which implies

||−→u (t)||R′ ≤ 2

tM+p−1
||−→ϕ ||R .

§7. Proof of the injectivity of (2.4)

Suppose that R ∈ (0, R0), −→ϕl ∈ O(BR)rl (1 ≤ l ≤ d) and that −→u =∑d
l=1

−→ul [
−→ϕl ] =

−→
0 . Further, suppose that there exists l such that −→ϕl 6= −→

0 .

We shall show that this leads to a contradiction.

We can take l0 as Ll0 = min{Ll : −→ϕl 6= −→
0 }.

Consider the l0-th block (Q−1−→u )[(l0) =
∑d

l=1{Q−1−→ul [
−→ϕl ]}[(l0) of Q−1−→u .

If l 6= l0, then Ll ≥ Ll0 and hence

{Q−1−→ul [
−→ϕl ]}[(l0) ∈ W̃ (Ll+1+ε)(∞, R)rl0 ⊂ W̃ (Ll0

+1+ε)(∞, R)rl0

by Lemma 4.4. Thus,
−→
0 = (Q−1−→u )[(l0)(t, x) = tAl0

(x)−→ϕl0(x) +

W̃ (Ll0
+1+ε)(∞, R)rl0 , which means tAl0

(x)−→ϕl0(x) ∈ W̃ (Ll0
+1+ε)(∞, R)rl0 .

This implies −→ϕl0 =
−→
0 by Lemma 5.1, which contradicts the definition of l0.
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§8. Proof of the surjectivity of (2.4)

Assume that −→u ∈ (Õθ,R)m and P−→u =
−→
0 . We need to construct

−→ϕl ∈ O(BR)rl (1 ≤ l ≤ d). Instead of constructing −→ϕl on BR, we fix

an arbitrary R′ ∈ (0, R) and construct −→ϕl ∈ O(BR′)rl . Take an arbitrary

R1 ∈ (R′, R). Then there exists T1 > 0 such that −→u ∈ O(Sθ,T1 × BR1)
m.

Set A(t, x;Dx) = A0(x) + tB(t, x;Dx).

(I) By Proposition 6.1, there exists L ∈ Z such that −→u ∈
W (L+ε)(θ, T1, R1)

m. From this, we have tB(−→u ) ∈ W (L+1+ε)(θ, T1, R1)
m

by Lemma 4.2.

(II) By Proposition 5.2, there exists −→v ∈ W (L+1+ε)(θ, T1, R1)
m such

that (tDtIm − A0(x))−→v = tB(−→u ).

(III) Since (tDtIm − A0(x))(−→u − −→v ) =
−→
0 and since −→u − −→v ∈

W (L+ε)(θ, T1, R1)
m, there exists −→ϕl [1] ∈ O(BR1)

rl such that −→u − −→v =∑
1≤l≤d;Ll≥L Q(x){tAl(x)−→ϕl [1](x)}](l) by Lemma 5.1.

(IV) Set −→u [1] := −→u −∑
1≤l≤d;Ll≥L

−→ul [
−→ϕl [1]]. Then we have P (−→u [1]) =

−→
0 and

−→u [1] =
(−→u −

∑

l

Q(x){tAl(x)−→ϕl [1](x)}](l)
)

−
∑

l

(−→ul [
−→ϕl [1]] − Q(x){tAl(x)−→ϕl [1](x)}](l)

)

= −→v −
∑

l

t(−→rl [
−→ϕl [1]])

](l) ∈ W̃ (L+1+ε)(θ,R1)
m ,

using Lemma 4.4. Take R2 ∈ (R′, R1). There exists T2 > 0 such that
−→u [1] ∈ W (L+1+ε)(θ, T2, R2)

m.

Now, we can return to step (I) using −→u [1] instead of −→u and with the

order increased by 1. Thus, by repeating this argument, there exist R ′ <

Rj < . . . < R2 < R1 < R and −→ϕl [j] ∈ O(BRj
)rl such that −→u [j] := −→u −∑j

k=1

∑
l
−→ul [

−→ϕl [k]] ∈ W̃ (L+j+ε)(θ,Rj)
m also satisfies P (−→u [j]) =

−→
0 .

For a sufficiently large M , if −→u ∈ W̃ (L+M+ε)(θ,R′) and P (−→u ) =
−→
0 ,

then −→u =
−→
0 by Theorem 1.2. Hence, we have −→u [M ] =

−→
0 , which implies

−→u =
∑

l
−→ul [

∑M
k=1

−→ϕl [k]]. Thus, we have constructed −→ϕl =
∑M

k=1
−→ϕl [k] ∈

O(BR′)rl . Since (2.4) is injective, that is, −→ϕl are uniquely determined by
−→u , and since R′(< R) is arbitrary, we have the existence of −→ϕl ∈ O(BR)rl

(1 ≤ l ≤ d), that is, the surjectivity of (2.4) to Ker
(Õθ,R)mP .
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