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Abstract

In this paper, we wil give an elementary proof of Lemma VI.4.2 of [6] and show
that the spectral mapping theorem holds for Weyl spectra of this mapping.

1. Introduction.

Let $\mathcal{H}$ be a complex Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators
on $\mathcal{H}$ . An operator $T\in B(\mathcal{H})$ is said to be hyponormal if $T^{*}T\geq TT^{*}$ . For an operator $T$ , we
denote the spectrum and the approximate point spectrum by $\sigma(T)$ and $\sigma_{a}(T)$ , respectively.
A point $z\in C$ is in the joint approximate point spectrum $\sigma_{ja}(T)$ if there exists a sequence
of unit vectors $\{x_{n}\}$ in $\mathcal{H}$ such that $(T-z)x_{n}\rightarrow 0$ and $(T-z)^{*}x_{n}\rightarrow 0$ . In [6] D. Xia proved
the following result:

THEOREM A (Lemma VI.4.2 of [6]). Let $T=H+iK$ be hyponormal and $f,g$ be bounded
real-valued, continuovs $fi\iota nctions$ and $f(x)\neq 0$ . Take a mapping in the complex plane

$\tau(x+iy)=x+i(f(x)^{2}y+g(x))$

and denote $\tau(T)=H+i(f(H)Kf(H)+g(H))$ . Then

$\sigma(\tau(T))=\tau(\sigma(T))$ .

This proof needs the singular integral model of a hyponormal operator. In this paper we
will give an elementary proof of the following theorem without the singular integral model.

THEOREM 1. Let $T=H+iK$ be hyponormal and $f,g$ be bounded real-valued, continuous
functions and $f(x)\neq 0$ at $x\in\sigma(H)$ . Take a mapping in the complex plane
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$\tau(x+iy)=x+i(f(x)^{2}y+g(x))$

and denote $\tau(T)=H+i(f(H)Kf(H)+9(H))$ . Then

$\sigma(\tau(T))=\tau(\sigma(T))$ .

2. Proof.

We need the folowing theorem:

THEOREM $B$ (Lemma I.3.1 of [6]). Let $\mathcal{R}$ be a set of the complex plane $C,$ $T(t)$ be an
opemtor-valued function of $t\in[0,1]$ which is continuous in the norm topolopy, $\tau_{t},$ $t\in[0,1]$ ,
be a famdy of bijective mappings ffom $\mathcal{R}$ onto $\tau_{\ell}(\mathcal{R})\subset C$ and for any fxed $z\in \mathcal{R},$ $\tau_{t}(z)$ be
continuous function of $t\in[0,1]$ such that $\tau_{o}$ is the identity fimction. Suppose

$\sigma_{a}(T(t))\cap\tau_{\ell}(\mathcal{R})=\tau_{\ell}(\sigma_{a}(T(0))\cap \mathcal{R})$

for all $t\in[0,1]$ . Then, for all $t\in[0,1]$ ,

$\sigma(T(t))\cap\tau_{t}(\mathcal{R})=\tau_{\ell}(\sigma(T(0))\cap \mathcal{R})$ .

PROOF OF THEOREM 1. First we assume that $f(x)>0(x\in\sigma(H))$ . For any $t\in[0,1]$ , set

$T(t)=H+i\{(tf(H)+1-t)K(tf(H)+1-t)+tg(H)\}$

and
$\tau_{\ell}(x+iy)=x+i((tf(x)+1-t)^{2}y+tg(x))$ .

Then it holds that $T(O)=T$ and $\tau_{o}(x+iy)=x+iy$ . It is clear that $T(t)$ and $\tau_{\ell}$ satisfy the
condition of Theorem B. Let $A=tf(H)+1-t$ . Since $A$ commutes with $H$ , we have

$T(t)^{*}T(t)-T(t)T(t)$ $=2i$ ($HAKA$ –AKAH)

$=A(2i(HK-KH))A\geq 0$ .

Hence $T(t)$ is hyponormal. Since, for every $t\in[0,1]$ ,

$Re(\sigma(T(t)))=\sigma(H)$ ,

let $\mathcal{R}$ be a set of $C$ such that

$f(Re(z))>0$ at $z\in \mathcal{R}$ and $\sigma(T(t))\subset\tau_{\ell}(\mathcal{R})$ for every $t\in[0,1]$ .
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For any $a+ib\in\sigma_{a}(T(t))$ , since $T(t)$ is hyponormal and

$\sigma_{a}(T(t))=\sigma_{ja}(T(t))$ ,

there exists a sequence $\{x_{n}\}$ of unit vectors such that

$\lim_{n\rightarrow\infty}(H-a)x_{n}=0$ and $\lim_{n\rightarrow\infty}(AKA+tg(H)-b)x_{n}=0$ . (1)

Let $c=\frac{b-tg(a)}{(tf(a)+1-t)^{2}}$ . Then we have

$\tau_{t}(a+ic)=a+i(b-tg(a)+tg(a))=a+ib$ .

And

$(K-c)x_{n}=\{K-\frac{b-tg(a)}{(tf(a)+1-t)^{2}}\}x_{n}$

$=\frac{1}{(tf(a)+1-t)^{2}}\{(tf(a)+1-t)^{2}K-b+tg(a)\}x_{n}$ .

Since

$\{(tf(a)+1-t)^{2}K-b+tg(a)\}x_{n}=\{AKA+tg(H)-b\}x_{n}$

$-\{AKA+tg(H)-(tf(a)+1-t)^{2}K-tg(a)\}x_{\mathfrak{n}}$ , (2)

from (1) it is clear that the first part of (2) tends to $0$ . About the second part: Since
$T=H+iK$ is hyponormal,

$i(HK-KH)=i((H-a)K-K(H-a))\geq 0$ .

Therefore we have $\lim_{n\rightarrow\infty}(H-a)Kx_{\mathfrak{n}}=0$ . Hence, for every polynomial $p(\cdot)$ , we have

$\lim_{n\rightarrow\infty}(p(H)-p(a))Kx_{n}=0$

Therefore, it holds that

$\lim_{n\rightarrow\infty}(A-\alpha)Kx_{\mathfrak{n}}=0$ ,

where $\alpha=tf(a)+1-t$ . Since

AKA-a2$K=AK(A-\alpha)+\alpha(A-\alpha)K$,
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the second part of (2) also tends to $0$ . Therefore we have $(K-c)x_{n}\rightarrow 0$ as $ n\rightarrow\infty$ and
it follows that

$a+ic\in\sigma_{a}(T)$ .

The converse inclusion relation is easy. Since $\sigma(T(t))\subset\tau_{\ell}(\mathcal{R})$ , we have

$\sigma_{a}(T(t))=\tau_{\ell}(\sigma_{a}(T))$ for every $t\in[0,1]$ .

By Theorem $B$ , we have

$\sigma(T(t))=\tau_{\ell}(\sigma(T(O)))$ for every $t\in[0,1]$ .

Letting $t=1$ , we have

$T(1)=H+i(f(H)Kf(H)+g(H))=\tau(T)$

and
$\tau_{1}(x+iy)=x+i(f(x)^{2}y+g(x))=\tau(x+iy)$ .

Therefore, we have $\sigma(\tau(T))=\tau(\sigma(T))$ . If $f(x)<0(x\in\sigma(H))$ , then we let

$T(t)=H+i\{(t(-f(H))+1-t)K(t(-f(H))+1-t)+tg(H)\}$

and
$\tau_{\ell}(x+iy)=x+i\{(t(-f(x))+1-t)^{2}y+tg(x)\}$ .

Therefore, we have $\sigma(\tau(T))=\tau(\sigma(T))$ .

Finally, in a general case we let

$\mathcal{R}^{+}=\{z\in C : f(Re(z))>0(Re(z)\in\sigma(H))\}$

and
$\mathcal{R}^{-}=\{z\in C:f(Re(z))<0(Re(z)\in\sigma(H))\}$ .

And let
$\tau_{\ell}^{+}(x+iy)=x+i((tf(x)+1-t)^{2}y+tg(x))$ on $\mathcal{R}^{+}$

and

$\tau_{\ell}^{-}(x+iy)=x+i((-tf(x)+1-t)^{2}y+tg(x))$ on $\mathcal{R}^{-}$ .

Then we have $\tau_{o}^{+}=\tau_{o}^{-}=id$ and $\tau_{1}^{+}=\tau_{1}^{-}=\tau$ . It holds that $\tau_{\ell}^{+}$ and $\tau_{\ell}^{-}$ are one-to-one and
onto on $\mathcal{R}^{+}$ and $\mathcal{R}^{-}$ , respectively $(\forall t\in[0,1])$ . Also we let

$T^{+}(t)=H+i(AKA+tg(H))$ and $T^{-}(t)=H+i(BKB+tg(H))$ ,
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where $A=tf(H)+1-t$ and $B=t(-f(H))+1-t$ . Then from the above it holds that

$\sigma(T^{+}(t))\cap\tau_{\ell}^{+}(\mathcal{R}^{+})=\tau_{t}^{+}(\sigma(T^{+}(0))\cap \mathcal{R}^{+})$

and

$\sigma(T^{-}(t))\cap\tau_{\ell}^{-}(\mathcal{R}^{-})=\tau_{\ell}^{-}(\sigma(T^{-}(0))\cap \mathcal{R}^{-})$ ,

for every $t\in[0,1]$ . Hence we have

$\sigma(\tau(T))\cap(\mathcal{R}^{+}\cup \mathcal{R}^{-})$ $=$ $\tau(\sigma(T)\cap(\mathcal{R}^{+}\cup \mathcal{R}^{-}))$ .

This completes the proof.

3. Application.

For an operator $T\in B(\mathcal{H})$ , Weyl spectrum $\omega(T)$ of $T$ is defined by

$\omega(T)=$ $\cap$ $\sigma(T+K)$ .
$ K:cmpac\ell$

In [2], Berberian showed that the spectral mapping theorem does not generally hold for Weyl
spectra (Th.3.2 of [2]). But recently in [4] Duggal and in [5] Huruya showed the interesting
results for the spectral mapping theorem of Weyl spectrum of p.hyponormal operator. Also
we have

THEOREM 2. Let $T=H+iK$ be hyponormal and $f,g$ be bounded, real-valued, continuous
fimctions and $f(x)\neq 0$ at $x\in\sigma(H)$ . Take a mapping in the complex plane

$\tau(x+iy)=x+i(f(x)^{2}y+g(x))$

and denote $\tau(T)=H+i(f(H)Kf(H)+g(H))$ . Then

$\omega(\tau(T))=\tau(\omega(T))$ .

For the proof of this theorem, let $\pi_{oo}(T)$ denote the set of all isolated eigenvalues of finite
multiplicity of $T$ . Then in [3] Cobum proved the following

THEOREM C. Let $T$ be hyponormal. Then

$\omega(T)=\sigma(T)-\pi_{oo}(T)$ .

PROOF OF THEOREM 2. From the proof of Theorem 1, it holds that $Tx=\lambda x$ if and only
if $\tau(T)x=\tau(\lambda)x$ . Hence we have
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$\pi_{oo}(\tau(T))=\tau(\pi_{oo}(T))$ .

Since $T$ and $\tau(T)$ are hyponormal, from Theorem $C$ it holds that

$\omega(T)=\sigma(T)-\pi_{w}(T)$ and $\omega(\tau(T))=\sigma(\tau(T))-\pi_{\infty}(\tau(T))$ .

Therefore, Theorem 2 follows from Theorem 1. This completes the proof.
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