SPECTRAL MAPPING THEOREMS AND WEYL SPECTRA FOR HYPONORMAL OPERATORS

Muneo Chō and Yoshihiko Nagano

Abstract

In this paper, we will give an elementary proof of Lemma VI.4.2 of [6] and show that the spectral mapping theorem holds for Weyl spectra of this mapping.

1. Introduction.

Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . An operator $T \in B(\mathcal{H})$ is said to be hyponormal if $T^*T \geq TT^*$. For an operator T, we denote the spectrum and the approximate point spectrum by $\sigma(T)$ and $\sigma_a(T)$, respectively. A point $z \in \mathbb{C}$ is in the joint approximate point spectrum $\sigma_{ja}(T)$ if there exists a sequence of unit vectors $\{x_n\}$ in \mathcal{H} such that $(T-z)x_n \to 0$ and $(T-z)^*x_n \to 0$. In [6] D. Xia proved the following result:

THEOREM A (Lemma VI.4.2 of [6]). Let T = H + iK be hyponormal and f, g be bounded real-valued, continuous functions and $f(x) \neq 0$. Take a mapping in the complex plane

$$\tau(x + iy) = x + i(f(x)^2y + g(x))$$

and denote $\tau(T) = H + i(f(H)Kf(H) + g(H))$. Then

$$\sigma(\tau(T)) = \tau(\sigma(T)).$$

This proof needs the singular integral model of a hyponormal operator. In this paper we will give an elementary proof of the following theorem without the singular integral model.

THEOREM 1. Let T = H + iK be hyponormal and f, g be bounded real-valued, continuous functions and $f(x) \neq 0$ at $x \in \sigma(H)$. Take a mapping in the complex plane

(1991) Mathematics Subject Classification. 47B20.

Key words and phrases. Hilbert space, hyponormal operator, Weyl spectrum, spectral mapping theorem.

$$\tau(x+iy) = x + i(f(x)^2y + g(x))$$

and denote $\tau(T) = H + i(f(H)Kf(H) + g(H))$. Then

$$\sigma(\tau(T)) = \tau(\sigma(T)).$$

2. Proof.

We need the following theorem:

THEOREM B (Lemma I.3.1 of [6]). Let \mathcal{R} be a set of the complex plane C, T(t) be an operator-valued function of $t \in [0,1]$ which is continuous in the norm topology, τ_t , $t \in [0,1]$, be a family of bijective mappings from \mathcal{R} onto $\tau_t(\mathcal{R}) \subset C$ and for any fixed $z \in \mathcal{R}$, $\tau_t(z)$ be continuous function of $t \in [0,1]$ such that τ_0 is the identity function. Suppose

$$\sigma_a(T(t)) \cap \tau_t(\mathcal{R}) = \tau_t(\sigma_a(T(0)) \cap \mathcal{R})$$

for all $t \in [0, 1]$. Then, for all $t \in [0, 1]$,

$$\sigma(T(t)) \cap \tau_t(\mathcal{R}) = \tau_t(\sigma(T(0)) \cap \mathcal{R}).$$

PROOF OF THEOREM 1. First we assume that f(x) > 0 $(x \in \sigma(H))$. For any $t \in [0, 1]$, set

$$T(t) = H + i\{(tf(H) + 1 - t)K(tf(H) + 1 - t) + tg(H)\}$$

and

$$\tau_t(x + iy) = x + i((tf(x) + 1 - t)^2y + tg(x)).$$

Then it holds that T(0) = T and $\tau_o(x + iy) = x + iy$. It is clear that T(t) and τ_t satisfy the condition of Theorem B. Let A = tf(H) + 1 - t. Since A commutes with H, we have

$$T(t)^*T(t) - T(t)T(t)^* = 2i(HAKA - AKAH)$$

$$= A(2i(HK - KH))A \ge 0.$$

Hence T(t) is hyponormal. Since, for every $t \in [0, 1]$,

$$Re(\sigma(T(t))) = \sigma(H),$$

let R be a set of C such that

$$f(Re(z)) > 0$$
 at $z \in \mathcal{R}$ and $\sigma(T(t)) \subset \tau_t(\mathcal{R})$ for every $t \in [0, 1]$.

For any $a + ib \in \sigma_a(T(t))$, since T(t) is hyponormal and

$$\sigma_a(T(t)) = \sigma_{ia}(T(t)),$$

there exists a sequence $\{x_n\}$ of unit vectors such that

$$\lim_{n\to\infty} (H-a)x_n = 0 \text{ and } \lim_{n\to\infty} (AKA + tg(H) - b)x_n = 0.$$
 (1)

Let $c = \frac{b - tg(a)}{(tf(a) + 1 - t)^2}$. Then we have

$$\tau_t(a+ic) = a+i(b-tg(a)+tg(a)) = a+ib.$$

And

$$(K-c)x_n = \{K - \frac{b-tg(a)}{(tf(a)+1-t)^2}\}x_n$$

$$= \frac{1}{(tf(a)+1-t)^2} \{ (tf(a)+1-t)^2 K - b + tg(a) \} x_n.$$

Since

$$\{(tf(a) + 1 - t)^{2}K - b + tg(a)\}x_{n} = \{AKA + tg(H) - b\}x_{n}$$

$$- \{AKA + tg(H) - (tf(a) + 1 - t)^{2}K - tg(a)\}x_{n},$$
(2)

from (1) it is clear that the first part of (2) tends to 0. About the second part: Since T = H + iK is hyponormal,

$$i(HK-KH) = i((H-a)K-K(H-a)) \ge 0.$$

Therefore we have $\lim_{n\to\infty} (H-a)Kx_n = 0$. Hence, for every polynomial $p(\cdot)$, we have

$$\lim_{n\to\infty}(p(H)-p(a))Kx_n=0$$

Therefore, it holds that

$$\lim_{n\to\infty}(A-\alpha)Kx_n=0,$$

where $\alpha = tf(a) + 1 - t$. Since

$$AKA - \alpha^2K = AK(A - \alpha) + \alpha(A - \alpha)K$$

the second part of (2) also tends to 0. Therefore we have $(K-c)x_n \to 0$ as $n \to \infty$ and it follows that

$$a + ic \in \sigma_a(T)$$
.

The converse inclusion relation is easy. Since $\sigma(T(t)) \subset \tau_t(\mathcal{R})$, we have

$$\sigma_a(T(t)) = \tau_t(\sigma_a(T))$$
 for every $t \in [0,1]$.

By Theorem B, we have

$$\sigma(T(t)) = \tau_t(\sigma(T(0)))$$
 for every $t \in [0, 1]$.

Letting t = 1, we have

$$T(1) = H + i(f(H)Kf(H) + g(H)) = \tau(T)$$

and

$$au_1(x+iy) = x + i(f(x)^2y + g(x)) = au(x+iy).$$

Therefore, we have $\sigma(\tau(T)) = \tau(\sigma(T))$. If f(x) < 0 $(x \in \sigma(H))$, then we let

$$T(t) = H + i\{(t(-f(H)) + 1 - t)K(t(-f(H)) + 1 - t) + tg(H)\}$$

and

$$\tau_t(x+iy) = x + i\{(t(-f(x)) + 1 - t)^2y + tg(x)\}.$$

Therefore, we have $\sigma(\tau(T)) = \tau(\sigma(T))$.

Finally, in a general case we let

$$\mathcal{R}^+ = \{ z \in \mathbf{C} : f(Re(z)) > 0 \ (Re(z) \in \sigma(H)) \}$$

and

$$\mathcal{R}^- = \{ z \in \mathbf{C} : f(Re(z)) < 0 \mid (Re(z) \in \sigma(H)) \}.$$

And let

$$\tau_t^+(x+iy) = x + i((tf(x) + 1 - t)^2y + tg(x))$$
 on \mathcal{R}^+

and

$$au_t^-(x+iy) = x + i((-tf(x)+1-t)^2y + tg(x)) \ \ ext{on} \ \ \mathcal{R}^-.$$

Then we have $\tau_o^+ = \tau_o^- = id$ and $\tau_1^+ = \tau_1^- = \tau$. It holds that τ_t^+ and τ_t^- are one-to-one and onto on \mathcal{R}^+ and \mathcal{R}^- , respectively $(\forall t \in [0,1])$. Also we let

$$T^{+}(t) = H + i(AKA + tg(H))$$
 and $T^{-}(t) = H + i(BKB + tg(H)),$

where A = tf(H) + 1 - t and B = t(-f(H)) + 1 - t. Then from the above it holds that

$$\sigma(T^+(t)) \ \bigcap \ \tau_t^+(\mathcal{R}^+) \ = \ \tau_t^+(\sigma(T^+(0)) \ \bigcap \ \mathcal{R}^+)$$

and

$$\sigma(T^-(t)) \bigcap \tau_t^-(\mathcal{R}^-) = \tau_t^-(\sigma(T^-(0)) \bigcap \mathcal{R}^-),$$

for every $t \in [0,1]$. Hence we have

$$\sigma(\tau(T)) \ \bigcap \ (\mathcal{R}^+ \ \bigcup \ \mathcal{R}^-) \ = \ \tau(\sigma(T) \ \bigcap \ (\mathcal{R}^+ \ \bigcup \ \mathcal{R}^-)).$$

This completes the proof.

3. Application.

For an operator $T \in B(\mathcal{H})$, Weyl spectrum $\omega(T)$ of T is defined by

$$\omega(T) = \bigcap_{K:compact} \sigma(T+K).$$

In [2], Berberian showed that the spectral mapping theorem does not generally hold for Weyl spectra (Th.3.2 of [2]). But recently in [4] Duggal and in [5] Huruya showed the interesting results for the spectral mapping theorem of Weyl spectrum of p-hyponormal operator. Also we have

Theorem 2. Let T = H + iK be hyponormal and f, g be bounded, real-valued, continuous functions and $f(x) \neq 0$ at $x \in \sigma(H)$. Take a mapping in the complex plane

$$\tau(x+iy) = x + i(f(x)^2y + g(x))$$

and denote $\tau(T) = H + i(f(H)Kf(H) + g(H))$. Then

$$\omega(\tau(T)) = \tau(\omega(T)).$$

For the proof of this theorem, let $\pi_{oo}(T)$ denote the set of all isolated eigenvalues of finite multiplicity of T. Then in [3] Coburn proved the following

THEOREM C. Let T be hyponormal. Then

$$\omega(T) = \sigma(T) - \pi_{oo}(T).$$

PROOF OF THEOREM 2. From the proof of Theorem 1, it holds that $Tx = \lambda x$ if and only if $\tau(T)x = \tau(\lambda)x$. Hence we have

$$\pi_{oo}(\tau(T)) = \tau(\pi_{oo}(T)).$$

Since T and $\tau(T)$ are hyponormal, from Theorem C it holds that

$$\omega(T) = \sigma(T) - \pi_{oo}(T)$$
 and $\omega(\tau(T)) = \sigma(\tau(T)) - \pi_{oo}(\tau(T))$.

Therefore, Theorem 2 follows from Theorem 1. This completes the proof.

References

- [1] J. V. Baxley, On the Weyl spectrum of a Hilbert space operator, Proc. Amer. Math. Soc. 34(1972), 447-452.
- [2] S. K. Berberian, The Weyl Spectrum of an Operator, Indiana Univ. Math. J. 20(1970), 529-544.
- [3] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13(1965), 285-288.
- [4] B. P. Duggal, On the spectrum of p-hyponormal operators, Acta Sci. Math. (Szeged) to appear.
- [5] T. Huruya, A note on p-hyponormal operators, Proc. Amer. Math. Soc. 125(1998), 3617-3624.
- [6] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Boston, 1983.

DEPARTMENT OF MATHEMATICS, KNAGAWA UNIVERSITY, KNAGAWA-KU, YOKOHAMA 221-8686, JAPAN

Received November 13, 1997