Nihonkai Math. J.
Vol.9 (1998), 71-75

Local uniqueness of the unknown. diffusivity
in some heat conduction problem

SHIN-ICHI NAKAMURA

1. Introduction

Let us consider some heat conduction problem in a infinite composite material in R3.
Suppose that the region z > 0 is of one material and z < 0 of another, and that there is
no contact resistance at the boundary z = 0. Assume that a line source (which is identical
with the y-axis) is emitting at the rate Q per unit length per unit time from time 0 to T
Measuring the temperature at the boundary, we want to determine the physical properties of
one material when the physical properties of the other material are known. The uniqueness
of the diffusivity of a finite homogeneous conductor in R! was proved in [3]. In this note we
shall give mathematical rigorous justification of the local uniqueness studied experimentally
and theoretically in [1], [2], [6]. Our mathematical model is as follows:

(Oi—rk1D)uy = ng—é(x)é(z){ﬂ(t)——H(t—T)}, —00 < 7,y < +00,2 > 0,t >0, T >0, (1.1)
1P1

(Oe—K2D)ug =0, -0 < T,y < +00,2 < 0,t >0, (1.2)
ui(z,y,2,0) = 0,us(z,y,2,0) =0, (1.3)
ui(z,y,0,t) = uz(z,y,0,t), (1.4)
pic1K10;ui(z,y,0,t) = pacaradus(z, y,0,t), (1.5)

where k; (a positive constant) is the known diffusivity, p; and p, (positive constants) are
the known density, ¢, and ¢, (positive constants) are the known specific heat, x; (a positive
constant) is the unknown diffusivity, and H(t) is the Heaviside function. We measure the
temperature at the boundary z = 0 excepting the y-axis (a line source).

o(xO:yO»T) = 112(5170, yO’Oy T)’ Zo # 0. . (1'6)

Knowing d0/dlog 7', we study the determination of k3. Our main theorem is as follows:
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Theorem. Suppose that z?/4k;T < 1, then the unknown diffusivity , is uniquely
determined locally (in the neighbourhood of k,) from df/dlogT. The following inequality

holds
do Q 1

dlogT 27 (piciKy + pacaks)

1.7)

where C is a positive constant.

Remark. From (1.7), assuming that z2/T is sufficiently small, then x; is approximately

p':—c,(zg;%z — p1c1Ky).

2. Proof of theorem

To construct the solutions u; and us satisfying (1.1)-(1.5), we define w; and w, as the
solutions of the following system:

(G — k1A)wy = 6(z)6(y)é(z — 2')6(¢), —00 < 7,y < +00,2 >0,2' >0,t >0, (2.1)
(O — k2A)we =0, —00 < Z,y < +00,2<0,t >0, (2.2)
wl(xv Y, 2, O) =0, 'LUQ(.’L’, Yy,2, 0) = 01 (2'3)
w (.’B, ¥,0, t) = ‘w2(.’B, y,0, t)a (24)
pic1k18,wi(z, y, 0,) = pacara0,wa(z,y, 0, ). (2.5)
Then it is easily seen that
_ Q T [+oo o Y 1 get
u2(x7 Y, 0) T) = m/o Lm lzl,lllgw’l(za Y-y )0) t—1 )dy dt’. (26)

Carslaw and Jaeger constructed the solutions satisfying (2.1)-(2.5). -

Lemma 2.1([4]). The solution w; is expressed as follows:
k2 1 e—k232/4(k2u+1—u)
872(r12)°72 Jo (KPu+ 1 — w)u'/2(1 — )1/

we(z,y,2,t) = H(t) f2(Z2, 2 k,o,u)du, (2.7)
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where

kZ(1 —u) +0%uZ' _2%0-wirz%  or'/2yl/2(1 — y)}/2 (kZ —-0Z')?
= T duizuwy —
f2 (1 —u+o%u)? ¢ + (1 —u+o?u)’/2 2(1 —u+ ou)
(1-u)Z'+ ckZu —dez'okz)?
xerfe 2ul/2(1 — w)V2(1 — u + o2u)1/2 ¢ T,
_ 2 o z' _ (=% + '.‘/2)1/2 _ 1/2 1 —1._-1/2 . 1/2 —-1/2
_—W’Z - (Ki]t)l/z, - (Ki]t)l/z yT = P2tk Py Cy Ky 1a‘ndk'~nl kg .

Proof of theorem. Noting that H(T —t') = 1,0 < ¢’ < T and f3(0,0,k,0,u) =
on!/2ul/2(1 — u)V*(1 — u + 0%u)~%/2, from (2.6) and (2.7), we get

k3 (=24 (y—y")3)

, kao- T r+o0 1 3/2 1 e— d4x1 (T—17)(k3ut1~-w) ' et
y¥H Y, T)= / / N dudy'dt
'U»2(1' y 0 ) 0 J-oo 47TK,1 (T - t') Y

c1p1 0 (Fu+1—u)(1—u+ou)¥?
Qko’ 1 T 1 -2 k3.2 , 1
= — %y (T=2T) A}
4mryc1p1 Jo /0 T_¢¢ dt (Ku+1—-w)2(1 —u+ azu)a/zd“
Qka /1 1 /+°° -8 .1
= dsd
dmricipy Jo (K2u+1—u)V2(1 — u+ 0%u)3/2 JE£=2 ¢ 5§ asdu

_ _ Qkeo /1 1 NG k*z?
T drriaipr Jo (K2u 41— u)V/2(1 —u+ o2u)¥2 VO 4k, T

where ['(v,z) = [[F*e~*s*"1ds. Using the formula I'(0,z) = —y — logz — }% %—E‘E (vis
the Euler constant),we have

1

Chd 1 2. 2
0= o
471’!%101/)1 ‘/0 (kzu +1-— u)l/2(1 —u+ agu)3/2( 04 logk Ty
ey -
+log(4r T (K*u + 1 — u)) — ) 4N1T(k'u+l-—u) ).
n=1 nn
Hence
do Qko’ 1 1 d
= — —y— k2 2
dlogT 4wk p;m /0 (Fu+1—u)2(1—u+ 02U)3/2TdT( ~v—log k*z?
k33 n
+ 00 _+
+log(4n1’['(k2u 41— u)) _ Z ( 4&11(::’::1—1;)) )du

n=1
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Qko 1 1 gl | k2x?2 "
= / 1+ — | - 9 du
drricipy Jo (KPu+ 1 —u)V/2(1 — u + o2u)3/2 —nt \ 4T (Ku+1—u
P n=1
Qko 1 oM J
- 451 T(k4ut1—u)
4dmKic1p /o (FPu+1—u)/2(1—-u+ a”u)"/?‘3 l ¢
%y 1 T
=—=" K e 4T (k1 v+(1-u)xqg du_
arpice, © Jo (kau+ (1— u)ka)72(1 — u + p3chpy 2ci 2Ky Kau)3/2

To prove the local uniqueness, it is sufficient to show that d,, (ﬁf) lxg=x, 7# 0. We set

1 1
/0 (ku+ (1 —u)s)Y/2(1 — u + A2k~ 1su)3/2

here C) = ;PR k = K1, s = Ko, A = pacopr'c7!, and B = (—z2/4T). If we show that

B
e xut(l—-u)s du’

F(s)= C;s'/?

4xpiciny
F'(k) <0, then the local uniqueness will be proved. Now we are going to compute F”(k).
; _ Cl B/l‘ 1 u 3CIA2 B/K. 1 —-u
() = 2x° /o 1-u+ Azu)"/zdu T € /o 1-—u+ A2u)5/2du
+ K2 © .[) (1 —u+A2u)3/2du'

Inserting f —urAvapradu = 24-1(A+1)72, ff (e Asgyradu = (—2/3)(2A+1)A3(A+1)72,
and f (1_—;"::1'}17)35‘1" = —2(A + 1)~2 in this equality, we have

F'(k) = 2C\x" Y (A + 1) 2eB/%(-1 — k7' B).

From the assumption z3/4%,71" < 1, we obtain I/(k) < 0. Therefore the local uniqueness has
been proved. Let us derive the inequality (1.7). Using the estimates |e*—1| < C|z| (forz >
0), we get

dé Qpacy /‘ 1 d
dlogT 4mpicik, Jo (k%2 + 1 —u)/2(1 — u + o2u)3/2 U
/1 1 K2zl

0o (k2+1—-u)"2(1 —u+02u)¥24x,T(k2u+ 1 — u)
Inserting [y (K>u+1—u)"Y2(1—u+0%u)"%2du = 2(k+0) " 'o~1 and f!(K?u+1—u)~3/2(1—
u + 0%2u)~32dy = 2(ko + 1)(k + o)~ 2k~ 1o~} in this inequality, we have

o 2Qpacy
dlogT A4mpiciri(k + o)o

<C du|.

3

T
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/ 1

Combining this with o = pacary’ 2p7 el nf”z and k = n}/2n51/2, we can derive (1.7). The

proof is completed.
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