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1. Introduction.

Controllability of linear and nonlinear systems represented by ordinary differ-
ential equations in finite-dimension space has been extensively studied. Several
authors have extended the concept to infinite-dimension systems represented by
evolution equations with bounded operators in Banach spaces(Ref.[4]) for Volterra
integrodifferential systems, I and Kwun(Ref.[3]) studied the approximate control-
lability for delay Volterra systems with bounded linear operators in Banach space.
The purpose of this paper is to study the controllability of abstract functional inte-
grodifferential systems in Banach space by using the Schauder fixed point theorem
and we give an example. The abstract functional integrodifferential equations are
arised many physical phenomena.

2. Preliminaries. :

Let X be a Banach space with norm ||-|| and let C = C([—r, 0], X) be the Banach
space of continuous functions defined on [—r,0],r > 0 with supermum norm || - ||c.
If z is continuous function from [—r,T],T > 0 to X and ¢t € [0,T] = J, then z;
denotes the element of C given by z,(8) = z(t + 6) for § € [—r,0]. We consider the
following abstract functional integrodifferential equation

520+ 42(0) =B + [ lat)o(a,2.)-+ ht 3,2,

| (1) + f(t,ze), te€[0,T)=J
z(t) = ¢(t), —-r<t<0.

where the state z(-) takes values in the Banach space X and the control function
u(-) is given in L*(J;U), a Banach space of admissable control functions, with U a
Banach space.

Here —A is an infinitesimal generator of a strongly continuous semigroup S (t),t>0
on X, and B is a bounded linear operator from U into X. The nonlinear functions
9: I XC—->X,h:JxJIJxC—X,f:JxC — X and the kernela: J x J — R

(R denotes the set of real numbers) are continuous.
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We list the following hypotheses;

(i) A is the infinitesimal generator of a strongly continuous semigroup S(t),t >
0 satisfying ||S(¢)|| < M;.

(i1) The linear operator W from U into X, defined by

Wu = /T S(T — s)Bu(s)ds,

has an invertible operator W~! defined on L?(J;U)/ker W, and there exists posi-
tive constants My, M3 such that ||B|| < My, [|[W™1|| < M;.
(i) Let by,b3 : J — Rt by : J x J — R* be continuous functions such that

lg(t, 6) — g(t, V)l < b1 (D)l — Ylle,
A(t,s,8) — h(t, s, )| < b2(2,5)l16 — ¥llc,
”f(t’ ¢) - f(ta d’)” S b3(t)“¢ - d)”C)

where |jg(¢,0)|| = ||h(t,s,0)|| = || f(¢,0)]| =0 for t,seJ, ¢,¢€C.
(iv) The function a(t, s) is Hoélder continuous with exponent a, i.e., there exists
a positive constant ap such that

la(t1,s1) — a(tz, s2)| < ao([t1 —t2|* + [s1 — s2|%)
for ty,%2,81,52 € J,0< a < 1.
Then, for the system (1), there exists a mild solution of the following form(Ref.(2]):
t
2(t) =S(£)6(0) + / S(t — 5)Bu(s)ds
0
t L]
+ [ s - 9 [Tatontatr ) + b, r e
0 0

(2) + f(s,xs)}ds, te0,T)=J

z(t) =¢(t), -r<t<O0.

Definition 2.1. The system (1) is said to be controllable on the interval J if,
for every continuous initial function ¢ € C and z; € X, there exists a control
u € L?(J;U) such that the solution z(t) of (1) satisfies z(T') = z;.

3. Main Result.

Theorem 3.1. If the hypotheses (i)~(iv) are satisfied, then the system (1) is
controllable on J.

Proof. Using the hypothsis (ii), define the control
u(t) =W a1 — S(T)$(0)

— /OT S(T —s) {/os[a(s,T)g('r,xr) + h(s,T,z,)]dT + f(s, xs)}ds](t).
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Now, it is shown that, when using this control, the operator defined by
t .
(®2)(1) =S(16(0) + [ S(t = )BW[z1 - S(T)8(0)
T ’ ]
@ = [ sr-a{ [l natren) + bl + fs,00 dslnan
~Jo 0

+/0 S(t —s) {/Os[a(s,r)g(T,m,.) + h(s,7,z-)|dr + f(s,xs)}ds
(®z)(t) =¢(t), te[-r,0]

has a fixed point. This fixed point is then a solution of Equation (2). Clearly
(®z)(T) = 1, which means that control u steers the abstract functional integrodif-
ferential system from the initial function ¢ to z; in time T, provided we can obtain
a fixed point of nonlinear operator ®. Define the function ¢’ € C([—r,T]; X) by

¢ = ¢
$'(t) = S()$(0), teJ

and

Xo={z e C([-r,T); X): 20 =0, ||z||c £d,0 Lt <T},

where the positive constant d is given by

d= M;MyM; [”.Zl ” + M NK, T? + MK,T + K3]T + M, [NI&"lT + KT + K3]T
Then, X, is bounded, closed convex subset of C([—r,T]; X). Consider the trans-
formation

Y:Xo— C([—-r,T); X)
defined by

(Y2)o =0,
varn = [ St~ ) BW [z, / U S(r—s) { / “[a(s, Tg(r, 8, + 1)
(4 +hs, 78, 2 )ldr + (5,8, + 22) bl ()
+ [ 5= [Tate 1ot 6+ 20) + hisy 8, + e

+ (s, 4, +xs>}ds, tel.

Finding a fixed point of Y, and thus proving the theorem, is equivalent to finding
a fixed point of @, and hence the solution (2) for the system (1). For that, if z is a
fixed point of Y, then we can define

Ut=¢'t+$t, te J.
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Then
Vo ‘:QS,

u(t) =S(£)$(0) + / S(t — m)BW™[z1 — S(T)$(0)
T s
-/ S(T—s>{ [ ot m)a(r,00) + s, vr)]dT+f(s,vs)}dS](n)dn
+ /o S(t — s){/os[a(s,‘r)g(r, vr) + h(s,T,v;))dT + f(s,v,)}ds, teJ.

We claim that Y : Xo — Xj. It is easy to observe from hypothesis (iv) that there
exists a constant N such that |a(t,s)] < N, t,s € J. By virtue of hypothesis (iii)
and the continuity of function g, k, f, there exist constants K; > 0,z = 1,2,3 such
that [lg(r, ¢, + z.)|| < K1, [Ih(s, 7, ¢, +2,)|| < Kz and || f(s, 6, +z.)|| < K3, for
0<7<s<T,teJandz € Xy. Thus, we have

t T s
ROOIES / S(t — n)BW [z - / S(T—s){ / (a(s, 7)g(r> &, + z7)
Fh(sm 8.+ z)dr + f(s, ) + xs)}dSI(n)dnll
+ [ 5= { [ 1ot 1ot 8, 20+ s, 6, + 2 e

T+ f(s, ) + xa)}dsu

_<_ M1M2M3[”:E1” + MINKsz + M1K2T2 + M1K3T]T
+ M [NK,T + KT + K3]T = d,
which implies that
[(YZ)ellc < d.

It follows that Y is also continuous and maps Xy into itself. Moreover, Y maps X
into a precompact subset of Xo. To prove this, we first show that, for every fixed
t € J, the set

Xo(t) = {(Y:I:)(t) 1T € Xo}

is precompact in X. This is clear for ¢ = 0, since Xo(0) = {0}. Let ¢ > 0 be fixed
and for 0 < € < t define

t—e

T ]
)= [ S6-nBW e~ [ 5@ -5){ [lats,otr, +20)
+ b, 7,8+ 2 )ldr + (5,8, +2,) bl
+ /0 N S(t—s) {/Oa[a(s,‘r)g('r, ¢ +x,)+ h(s, 7,8, + z,)]dr

+ f(s, 4, +xs)}ds
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Since S(t) is compact for every ¢ > 0, the set
Xc(t) = {(Yez)(t) : z € Xo}

i1s precompact in X for every €,0 < ¢ < t. Furthermore, for z € Xy, we have

(¥ 2)6)~ (e )
t T )
<I [ s@-mpw e~ [ s@-9{ [Tats,matr. 8, +20)

+h(s, 7, ¢+ aldr + £(s, 6, + 2.) pasin)dn]
» w1 [ s [Tate,matr. 8, +20)+ hsm, 6%+ o )ar

+ fs, 0+ ) fds|
S€M1M2M3[”$1” + MlNK1T2 + le&"sz + M1K3T]
+ Me[NK1T + K,T + K]

which implies that X(¢) is totally bounded, that is, precompact in X. We want to
show that

Y(Xo)={Yz:z € Xo}
is an equicontinuous family of functions. For that, let ¢ > ¢; > 0. Then, we have
(Yz)(t1) — (Yz)(t2)|
t T
<l [ 18t - ) - St~ mIBWer - [ S(T )
0 0

- {/os[a(s, 7)9(7, 67 +z7) + h(s, 7, ¢ + zr)ldT + f(s, 4, + wa)}dSI(n)dn

_[" S(tz —n)BW ™[z, — /OT S(T - s) {/os[a(s,'r)g(r, ¢ +zr)

ty

+ h(s,m, @, + z)ldr + f(s, 6, + z,>}dsl(n)dnn
5)  +l / [S(ts — 5) — S(t2 — 5)]
) {‘/Os[a(s,'r)g(r, ¢ +z.)+ h(s, 7,8, + z)ldT + f(s, 4, + :cs)}ds

t2

Y T { / a(s, 7)g(r, & +22) + h(s, 7, b, + 20)ldr

121
T £, 8, +xs>}dsn
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t1
S/ ”S(tl — S) — S(tz — S)||M2M3[||1)1 || + M1N11’1T2 + M1]X’2T2 + MII\"gT]dS
0
t2
+ / ”S(tz — s)”MzMg[”.’EIH + MlNK1T2 + M1K2T2 + M1R’3T]d8
t1
t1
+ / 1S(t1 — ) = S(t2 — s)|[INKL1T + KT + K3)ds
0
t2
+/ “S(tz —S)H[NKIT-{-KgT-f-Kg]dS
t

The compactness of S(¢),t > 0 implies that S(¢) is continuous in the uniform
operator topology for ¢ > 0. Thus, the right hand side of (5), which is indepentent
of £ € Xy, tends to zero as t; —t; — 0. So, Y(Xy) is an equicontinuous family of
functions. Also, Y(Xp) is bounded in Xj, and so by the Arzela-Ascoli Theorem,
Y (X,) is precompact. Hence, from the Schauder Fixed point theorem, Y has a
fixed point in X,. So that, any fixed point of ® is a mild solution of (1) on J
satisfying
(®z)(t) = z(t) € X.

Thus, the system (1) is controllable on J.

4. Example.
Consider the abstract functional integrodifferential equation of the form

ye(t, )= (k(2)yz(t, 7))z

=(BMU%+AIdn@ﬂams—nwD+hwsw®—rmDMs

(6) + f(t,y(t —r,z)), z€l0,1]=1I,tel,
y(t,0) =y(¢,,1) =0, teJ
y(t,z) = é(t,z), -r<t<0,z€l,

where B : U — X, with U Cc J and X = L?[I, R], is a linear operator such that
there exists an invertible operator W~! on L?(J,U)/ker W, where W is defined by

Wu = /T S(T — s)Bu(s)ds,

S(t) is a compact semigroup. The functions a, g, h and f in (6) satisfy the following
conditions;

(i) a:J x J — R is Holder continuous with exponent a,

(1) The functions g,f : J x R = R,h: J x J x R — R are continuous and
such that

l9(t,2) — 9(,7)| < Lalz — 3,

|h(t,s,z) — h(t,s,T)| < La|z — T,

F(t,2) - F(4,7)| < Lolo — 7],

lg(¢,0)| = |h(t’3a0)| = |f(£,0)] =0,
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for 0 < s < ¢ < T and z,7 € R, where L,, Ly, L3 are nonnegative constants. Let
X = L*(I,R). "We define an operator

A: X - X by (Ay)(t)(z) = —(k(z)y:(t,))s

with
D(A)={z e X: (k(yz (-, )z € X, y(t,0) = y(¢,1) = 0}.

Deﬁne the mapping G,F : JxC — X and H: J xJ x C — X by G(t,¢)(z) =
g(t,¢(—r)z), H(t,s qS)(:v) h(t,s,¢(—r)z) and F(t,¢)(z) = f(t,¢(—r)z). Equa-

tion (6) can be formulated abstractly as

y'(t) + Ay(t) =(Bu)(t) + / la(t, $)G(s, ye) + H(t, 5, y)]ds

(7) +F(tyy), tel0,T]=J
y(t) = ¢(t), -r<t<0.

Further, all the conditions satisfied in the above theorem are satisfied. Hence, the
system (6) is controllable on J.
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