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Conjugacy classes of zero entropy automorphisms

on free group factors

Naohito Tanaka

1. Introduction. The entropy $H(\theta)$ of $a*$-automorphism $\theta$ on a von Neumann algebra
$M$ is defined by Connes- $St\phi rmer[4]$ as an extended version of classical one. The notion
of entropy is conjugacy invariant, that is, $H(\theta)=H(\alpha^{-1}\theta\alpha)$ for an automorphism $\alpha$ of
$M$ .

Besson[2] gives an example of an uncountable family of automorphisms on the hyperfi-
nite $II_{1}$ factor $R$ which have zero entropy but are not pairwize conjugate. An interesting
example of $II_{1}$ -factor which is not hyperfinite is the group von Neumann algebra $L(F_{n})$ of
the free group $F_{n}$ on $n$ generators $(n\geq 2)$ .

The purpose of this paper is to give an altemative version of Besson’s result to free
group factors. That is, we show:

Theorem. There exists an un $co$untable family of automorphisms on $L(F_{n})$ which have
entropy zero bu $t$ are pairwize non conjuga$te$ .

The author would like to thank the referee for many valuable comments and pointing
out a mistake in the first virsion of this paper.

2. Automorphisms of free group factors. Let $G$ be a countable infinite group and
$l^{2}(G)$ the Hilbert space of all square summable functions on $G$ . For each $g$ in $G$ , let $u(g)$

be the unitary representation of $G$ to $l^{2}(G)$ defined by

$(u(g)\xi)(h)=\xi(g^{-1}h)$ $(\xi\in l^{2}(G), h\in G)$ .

The von Neumann algebra on $l^{2}(G)$ generated by $\{u(g);g\in G\}$ is called the left von
Neumam algebra of $G$ and denoted by $L(G)$ . It is well known that $L(G)$ is factor if and
only if $G$ is an ICC group, that is, every conjugacy class $C_{g}=\{hgh^{-1} ; h\in G\}$ is infinite,
except the trivial {1}. Let $\{\delta(g)\}_{g\in G}$ be an othonomal basis in $l^{2}(G)$ given by

$(\delta(g))(h)=\left\{\begin{array}{ll}1 & h=g\\0 & otherwise\end{array}\right.$ $(g\in G)$ .

The functional $\tau$ on $L(G)$ defined by

$\tau(x)=(x\delta(e)|\delta(e))$ ($x\in R(G),$ $e$ is the unit of $G$),
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is a faithful finite normal trace. For an $x\in L(G)$ , put $x(g)=\tau(xu(g^{-1}))$ then $x$ has a
unique expansion:

$x=\sum_{g\in G}x(g)u(g)$
, in the $pointwise||\cdot||_{2}$ -convergence topology,

and

$||x||_{2}^{2}=\tau(x^{*}x)=\sum_{g\in G}|x(g)|^{2}$
.

We fix an integer $n$ and let $F_{\mathfrak{n}}$ be the free group on $n$ generators $\{g_{1}, \cdots g_{\mathfrak{n}}\}$ $(n=$
$2,3,$ $\cdots$ ). It is obvious that $F_{\mathfrak{n}}$ is an ICC group. Each element $g$ in $F_{\mathfrak{n}}$ has the expression
caled a reduced word. For each $g$ in $F_{n}$ , we shall call the sum of powers of component $g_{m}$

in the reduced word the order of $g$ with respect to $g_{m}$ $(m=1,2, \cdots , n)$ and denote it by
$O_{m}(g)$ . For an example, let $g$ in $F_{\mathfrak{n}}$ be a reduced word

$g=g_{1}^{n_{1}}$
‘

$g_{1}^{\mathfrak{n}_{2}}2$
$g^{\mathfrak{n}}$: $(i_{j}=1,2, \cdots n, n_{j}=\pm 1, \pm 2, \cdots(j=1,2, \cdots k))$ ,

then the order $O_{m}(g)$ of $g$ is $\sum_{j=1}^{k}\delta_{(m,i_{j})}n_{j}$ . We denote by $Aut(L(F_{n}))$ the group of
automorphisms of $L(F_{\mathfrak{n}})$ .

Put
$\Gamma=\{\gamma=(\gamma_{1},\gamma_{2}, \cdots\gamma_{n});\gamma_{i}\in T(i=1,2, \cdots n)\}$ ,

where $T$ be the unit circle in the complex plane. For $\gamma\in\Gamma$ , the $\alpha_{\gamma}\in Aut(L(F_{\mathfrak{n}}))$ is defined
by:

$(*)$ $\alpha_{\gamma}(x)=\sum_{g\in F_{\mathfrak{n}}}x(g)\prod_{m=1}^{\mathfrak{n}}\gamma_{m}^{O_{m}\langle g)}u(g)$ $(x\in L(F_{\mathfrak{n}}))$ .

Such automorphisms are treated in [1,3,5]. The following Lemma is well known in the
specialists but we denote a proof of it for the sake of completeness.

Lemma 1. If a sequence $\{\gamma_{i}\}\subset\Gamma$ converges to $\gamma\in\Gamma$ , then $\alpha_{\gamma;}$ converges to $\alpha_{\gamma}$ (in the
sense of point wise $||\cdot||_{2}$ convergence).

Proof. Put $\gamma_{i}=$ $(\gamma_{i_{1}},\gamma_{i_{2}}, \cdots , \gamma_{i_{\mathfrak{n}}}),$ $\gamma=(\gamma_{1},\gamma_{2}, \cdots\gamma_{n})$ . We denote $\alpha_{\gamma i}$ (resp. $\alpha_{\gamma}$ ) by $\alpha_{i}$

(resp. $\alpha$ ).

Let $x\in L(F_{\mathfrak{n}})$ . To simplify, we assume $||x||_{2}=1$ . For a given $\epsilon>0$ , there exists a finite
set $K\subset F_{\mathfrak{n}}$ such that $||x-\sum_{g\in K}x(g)u(g)||_{2}<\epsilon/3$ . Let

$M=\max|O_{m}(g)|g\in K,1\leq m\leq n$
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Since $\{\gamma_{i}\}\subset\Gamma$ converges to $\gamma\in\Gamma$ , we have an integer $r$ which satisfies that if $i>r$ then
$M\cdot n\cdot|\gamma i-\gamma|<\frac{\epsilon}{3}$ Put

$y=\sum_{g\in K}x(g)u(g)$ .

Then

$\Vert\alpha_{i(y)-\alpha(y)\Vert_{2}^{2}\leq\sum_{g\in K}|x(g)|^{2}|fi_{1}^{\gamma_{m}^{O_{m}(g)}}\cdot\cdot- II_{1}^{\gamma_{m}^{O_{m}(g)}1^{2}}}$

$\leq||x||_{2}^{2}|\prod_{m=1}^{n}\gamma_{i_{m}}^{O_{m}(g)}-\prod_{m=1}^{n}\gamma_{m}^{O_{m}(g)}|^{2}$

$\leq M^{2}n^{2}|\gamma_{i}-\gamma|^{2}<(\frac{\epsilon}{3})^{2}$ .

Hence

$\Vert\alpha_{i}(x)-\alpha(x)||_{2}\leq||\alpha_{i}(x)-\alpha_{i}(y)\Vert+||\alpha_{i}(y)-\alpha(y)||_{2}+||\alpha(y)-\alpha(x)||_{2}$

$=2||x-x_{0}||_{2}+||\alpha_{i}(x_{0})-\alpha(x_{0})\Vert_{2}$ $\square $

$<\epsilon$ .

Two $\alpha_{1}$ and $\alpha_{2}\in Aut(L(F_{n}))$ are said to be conjugate when $\theta^{-1}\alpha_{1}\theta=\alpha_{2}$ for some $\theta\in$

$Aut(L(F_{n}))$ . Put $\gamma_{i}=(\gamma_{i1}, \gamma_{i2}, \cdots , \gamma_{in})\in\Gamma$ with $\gamma_{ij}\in \mathbb{T}(i=1,2j=1,2, \cdots n)$ . Let
$\theta\in Aut(L(F_{n}))$ satisfy $\theta^{-1}\alpha_{\gamma_{1}}\theta=\alpha_{\gamma_{2}}$ .

Let
$\theta(u(g_{i}))=\sum_{g\in F_{n}}x_{i}(g)u(g)$

,

be the Fourier expansion of $\theta(u(g_{i}))$ . Then,

$\alpha_{\gamma_{1}}\cdot\theta(u(g_{i}))=\sum_{g\in F_{\mathfrak{n}}}x_{i}(g)\prod_{m=1}^{n}\gamma_{1m}^{O_{m}(g)}u(g)$

$=\theta\cdot\alpha_{\gamma_{2}}(u(g_{i}))=\theta(\gamma_{2i}u(g_{i}))=\sum_{g\in F_{n}}\gamma_{2i}x_{i}(g)u(g)$
$(i=1,2, \cdots n)$ .

It follows that

$x_{i}(g)\prod_{m=1}^{n}\gamma_{1m}^{O_{m}(g)}=x_{i}(g)\gamma_{2i}$

Since $\theta(u(g_{i}))$ is unitary,

$\sum_{g\in F_{n}}|x_{i}(g)|^{2}=1$

$(i=1,2, \cdots n, g\in F_{n})$ .

$(i=1,2, \cdots n)$ .
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Hence, for each $i(i=1,2, \cdots n)$ , there exists $h_{i}$ in $F_{\mathfrak{n}}$ such that $x_{i}(hi)\neq 0$ , so that

$(*1)$ $\prod_{m=1}^{\mathfrak{n}}\gamma_{1_{m}}^{O_{m}(h_{i})}=\gamma_{2_{i}}$ $(i=1,2, \cdots n)$ .

Rom now, we restrict our interest to the case of $n=2$ .

Put $\gamma=(1, \gamma_{1}),$ $\gamma^{\prime}=(1,\gamma_{1}^{l})$ with $\gamma_{1},\gamma_{1}^{l}\in I$ . Suppose that $\alpha_{\gamma}$ is conjugate to $\alpha_{\gamma^{\prime}}$ and
that $\gamma_{1}$ is a primitive nth root of 1.

By assumption, there exist an automorphism $\theta$ such that $\theta^{-1}\alpha_{\gamma}\theta=\alpha_{\gamma^{\prime}}$ . Clearly,
$\alpha_{\gamma}^{n}=id$ by the definition of $\alpha_{\gamma}$ (id is the identity automorphism of $L(F_{\mathfrak{n}})$). Therefore,

$\alpha_{\gamma}^{n},$ $=(\theta^{-1}\alpha_{\gamma}\theta)^{\mathfrak{n}}=\theta^{-1}\alpha_{\gamma}^{\mathfrak{n}}\theta=id$ .

IFMrthermore, if $\alpha_{\gamma}^{m}=id$ for some integer $m$ , then $(\theta^{-1}\alpha_{\gamma}\theta)^{m}=\theta^{-1}\alpha_{\gamma}^{m}\theta=id$ . Hence,
$\alpha_{\gamma}^{m}=\theta I\theta^{-1}=I$ . Hence, the $\gamma_{1}$ is a primitive nth root of 1 if and only if $\gamma_{1}^{\prime}$ is a primitive
nth root of 1. the $\gamma_{1}$ is an irrational if and only if $\gamma_{1}^{\prime}$ is an irrational.

Let $\gamma_{1}$ be irrational. Flirom $(*1)$ , there exist a integers $j,$ $k$ such that

$\gamma_{1}^{j}=\gamma_{1}^{\prime}$ , $\gamma_{1}^{k}=\gamma_{1}$

’

Hence,

$\gamma_{1}^{jk}=\gamma_{1}^{k}=\gamma_{1}’$ .

Then $\gamma_{1}^{jk-1}=1$ . Hence, we give $j=1$ and $k=1$ , or $j=-1$ and $k=-1$ .
Conversely, we suppose that $\gamma_{1}$ and $\gamma_{1}^{l}$ are irrational and $\gamma_{1}=\gamma_{1}^{\prime}m$ ($m=1$ or-l). We

define an autmorphism $\theta$ by

$\theta(u(g_{1}))=u(g_{1})$ , $\theta(u(g_{2}))=u(g_{2})^{m}$ .

This automorphism $\theta$ satisfies $\theta^{-1}\alpha_{\gamma}\theta=\alpha_{\gamma^{\prime}}$ . Then $\alpha_{\gamma}$ and $\alpha_{\gamma}^{\prime}$ are conjugate.

Lemma 2. Put $\gamma=(1,\gamma_{1}),$ $\gamma^{\prime}=(1,\gamma_{1}^{\prime})$ with $\gamma_{1},\gamma_{1}^{l}\in\prime F$ and $\gamma_{1}$ is $a$ irrational. Then $\alpha_{\gamma}$

and $\alpha_{\gamma^{\prime}}$ are conjugate if an $d$ only if $\gamma_{1}=\gamma_{1}^{l}$ or $\gamma_{1}^{-1}=\gamma_{1}^{l}$ .

Proof. bivial from preceding aurgument.
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3. Proof of Theorem. For the sake of simplicity, we show the case of $n=2$ . Another
case is proved by a similar method. Let $\alpha$ be an action of $\mathbb{T}^{2}$ on $Aut(L(F_{n}))$ defined by $(*)$ .
Then $\alpha$ is continuous by Lemma 1. Hence the autmorphism group $\alpha_{I^{2}}$ is compact. Besson
in $[2:Proposition1.7]$ proved that an automorphism $\theta$ of a finite von Neumann algebra $M$

has entropy zero if $\theta$ is contained in a compact group of automorphisms for the topology of
pointwise 2-norm convergence on $Aut(M)$ . Therefore $H(\alpha_{\gamma})=0$ for al $\gamma\in T^{2}$ . A family
of uncountable non conjugate automorphisms of $L(F_{2})$ is given by case of Lemma 2. $\square $

Remark. J. Phillips gave an example of outer conjugacy classes of automorphisms of
$L(F_{n})$ . His automorphisms have all entropy zero. However his technique to distinguish
the automorphisms is not effect for $L(F_{n})(n<+\infty)$ . Because they are classfied by
$\gamma=(1,\gamma_{1},\gamma_{2}, \cdots\gamma_{n}, \cdots)(\gamma;\in \mathbb{T})$ for a group $\{1, \gamma_{1},\gamma_{2}, \cdots , \gamma_{n}, \cdots\}$ .
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